以太网电接口EMC设计指导书

合集下载

经典中的经典 以太网电接口采用UTP设计的EMC设计指导书

经典中的经典 以太网电接口采用UTP设计的EMC设计指导书

�以太网电接口采用UTP设计的EMC设计指导书一、UTP(非屏蔽网线)的介绍非屏蔽网线由两根具有绝缘保护层的铜导线组成,两根绝缘铜导线按照一定密度绞在一起,每一根导线在传输中辐射的电波会与另外一根的抵消,这样可降低信号的干扰程度。

用来衡量UTP的主要指标有:1、衰减:就是沿链路的信号损失度量。

2、近端串扰:测量一条UTP链路对另一条的影响。

3、直流电阻。

4、衰减串扰比(ACR)。

5、电缆特性。

二、10/100/1000BASE-T以太网电接口原理图设计10/100/1000BASE-T以太网口电路按照连接器的种类网口电路可以分为:网口变压器集成在连接器里的网口电路和网口变压器不集成在连接器里的网口电路。

1、网口变压器未集成在连接器里的网口电路原理图网口电路主要包括PHY芯片,网口变压器,网口连接器三部分,图中左侧的八个49.9Ω的电阻是差分线上的终端匹配电阻,其阻值的大小由差分线的特性阻抗决定,当变压器内的线圈匝数发生变化时,其阻值也跟随变化,保证两者的阻抗匹配。

由电容组成的差模、共模滤波器可以增强EMC性能。

在线圈的中心抽头处接的电容可以有效的改善电路的抗EMC性能,合理的选择电容值可以使电路的EMC做到最优。

电路的右侧四个75Ω的电阻是电路的共模阻抗。

2、网口变压器集成在连接器里的网口电路原理图网口电路主要包括PHY芯片,网口连接器两部分,网口变压器部分集成在接口内部,同样左侧的49.9Ω的电阻阻值也是由变压器的匝数及差分线的特性阻抗决定的。

中间的电容组成共模、差模滤波器,滤除共模及差模噪声。

75Ω的共模电阻也集成在网口连接器的内部。

3、网口指示灯电路原理图带指示灯的以太网口电路原理图与不带指示灯灯的大致相同,只是多出指示灯的驱动电路。

注意点:1)、两个匹配电阻是否需要根据PHY层芯片决定,如有的PHY层芯片内部集成匹配电阻就不需要。

匹配电阻是接地还是接电源也是由PHY芯片决定,一般接电源。

以太网EMC接口电路设计与PCB设计说明

以太网EMC接口电路设计与PCB设计说明

以太网EMC接口电路设计及PCB设计我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。

目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。

目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。

从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。

大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。

面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。

下图1以太网的典型应用。

我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。

图1 以太网典型应用1.图2网口变压器没有集成在网口连接器里的参考电路PCB布局、布线图,下面就以图2介绍以太网电路的布局、布线需注意的要点。

图2 变压器没有集成在网口连接器的电路PCB布局、布线参考a)RJ45和变压器之间的距离尽可能的短,晶振远离接口、PCB边缘和其他的高频设备、走线或磁性元件周围,PHY层芯片和变压器之间的距离尽可能短,但有时为了顾全整体布局,这一点可能比较难满足,但他们之间的距离最大约10~12cm,器件布局的原则是通常按照信号流向放置,切不可绕来绕去;b)PHY层芯片的电源滤波按照要芯片要求设计,通常每个电源端都需放置一个退耦电容,他们可以为信号提供一个低阻抗通路,减小电源和地平面间的谐振,为了让电容起到去耦和旁路的作用,故要保证退耦和旁路电容由电容、走线、过孔、焊盘组成的环路面积尽量小,保证引线电感尽量小;c)网口变压器PHY层芯片侧中心抽头对地的滤波电容要尽量靠近变压器管脚,保证引线最短,分布电感最小;d)网口变压器接口侧的共模电阻和高压电容靠近中心抽头放置,走线短而粗(≥15mil);e)变压器的两边需要割地:即RJ45连接座和变压器的次级线圈用单独的隔离地,隔离区域100mil以上,且在这个隔离区域下没有电源和地层存在。

EMC-测试作业指导书要点

EMC-测试作业指导书要点

EMC测试作业指导书一.EMC 测试类型EMC测试包括ESD测试,EFT测试,Surge 测试,Harmonic 测试,Flicker 测试,Conducted Immunity 测试,Power Dip测试和EMI 测试,相应的测试标准和测试方法将在下面详细介绍。

二.名词定义:ESD:静电放电EFT:电快速瞬变脉冲群Harmonic :谐波Flicker :闪烁发射Surge :浪涌Power Dip:电压跌落Conducted Immunity : 传导免疫性EUT:受试设备三.测试规划5.1 ESD测试5.11测试目的验证产品设计的成熟度,模拟在干燥地区易遭受静电放电的情况,保证产品在ESD下性能保持完好,功能正常,不被损害。

5.12 测试标准按照EN61000-4-2 进行,测试电压为8KV(空气放电)和4KV(接触放电).5.13 测试场地BQC EMC实验室5.14 测试设备NoiseKen ESS-2002(静电测试器)5.15 ESD原理一个充电的导体接近另一个导体时,就有可能发生ESD。

首先,两个导体之间会建立一个很强的电场,产生由电场引起的击穿。

两个导体之间的电压超过它们之间空气和绝缘介质的击穿电压时,就会产生电弧。

在0.7ns到10ns的时间里,电弧电流会达到几十安培,有时甚至会超过100安培。

电弧将一直维持直到两个导体接触短路或者电流低到不能维持电弧为止。

可能产生电弧的实例有人体、带电器件和机器。

人的自然动作摩擦会形成400~600V电势,如果他们在打开或包装泡沫衬底纸箱或气泡塑料袋过程中一直接触的都是绝缘体,其身体表面上的净电荷积累可能达到约26,000V。

针对大多数环境的产品和通用标准决定使用如5.12标准所列的测试水平.5.16 测试方法1.EUT 按照正常运行时的典型安装进行布局和配置,并将所有电缆都连接上.对地的连接尤为重要.EUT 放置在离地平面80cm 的木桌上,设备下面放置一个水平耦合板,但该耦合板与设备之间绝缘隔离.如图5.1.2.信号输入 将Notebook 的信号输入到EUT 的D-Sub 端口,将DVD Player 信号输入到EUT ,运行一段程序.3.静电放电发生器设置 静电放电发生器的面板如图5.2所示。

硬件EMC设计规范

硬件EMC设计规范

目录前言 (2)8 电路设计 (3)8.1电源电路 (3)8.1.1电源输入部分的EMC设计 (4)8.1.2电源输出部分的EMC设计 (5)8.1.3电源转换芯片的EMC设计 (7)8.2接口电路 (7)8.2.1 RS485/CAN接口设计 (8)8.2.2 RS232接口设计 (8)8.2.3 USB接口设计 (9)8.2.4 S_VIDEO接口设计 (9)8.2.5 以太网接口设计 (10)8.3 时钟晶体电路 (11)8.3.1 无源晶体 (11)8.3.2 有源震荡器 (11)8.4 面板电路 (12)8.5 数字总线电路 (12)前言本规范的其他系列规范:无与对应的国际标准或其他文件的一致性程度:无规范代替或作废的全部或部分其他文件:无与其他规范或文件的关系:无本规范由工程技术中心提出。

本规范主要起草和解释部门:本规范主要起草人:本规范批准部门:硬件EMC设计规范8 电路设计电路设计中,如按功能划分种类繁多,不胜枚举。

功能电路的设计好坏,在于设计人员的理论知识和实践经验,在此不做讨论。

由于各类认证中,对电磁兼容要求越来越重视,就此需要重点关注的电路设计大致可分为以下几类:8.1电源电路电源电路设计中,功能性设计主要考虑温升和纹波大小。

温升大小由结构散热和效率决定;输出纹波除了采用输出滤波外,输出滤波电容的选取也很关键:大电容一般采用低ESR电容,小电容采用0.1UF和1000pF共用。

电源电路设计中,电磁兼容设计是关键设计。

主要涉及的电磁兼容设计有:传导发射和浪涌。

传导发射设计一般采用输入滤波器方式。

外部采购的滤波器内部电路一般采用下列电路:Cx1和Cx2为X电容,防止差模干扰。

差模干扰大时,可增加其值进行抑制;Cy1和Cy2为Y电容,防止共模干扰。

共模干扰大时,可增加其值进行抑制。

需要注意的是,如自行设计滤波电路,Y电容不可设计在输入端,也不可双端都加Y电容。

浪涌设计一般采用压敏电阻。

以太网电接口EMC设计指导书

以太网电接口EMC设计指导书

以太网电接口EMC设计指导书1000字以太网是一种常用的局域网技术,用于连接网络上的设备,例如计算机、服务器、路由器、交换机等等。

以太网电接口的设计在EMC方面较为重要,下面是一份以太网电接口EMC设计指导书,总长1000字左右。

1. PCB设计在PCB设计方面,需要关注的主要是地线的分布和走线。

在走线上,要避免在信号线和电源线或地线上交错走线,应采用分层走线或穿孔解决。

此外,尽量缩短信号线与地线或电源线之间的距离,使其形成一个尽可能小的环路。

2. PCB布局以太网电接口在PCB上的布局也十分重要。

布局应考虑分离敏感信号和不敏感信号,将不同信号类别的器件分布在不同区域。

同时,要避免信号层与电源层(或地层)太过接近,应间隔至少一层其他层。

3. 地线在以太网电接口中,地线的规划和布线是十分重要的。

在PCB上,应保持地面干净和光滑,避免短路和信号串扰。

此外,应在地铺设好装置引脚的直接连接,避免共振现象的发生,保持电抗联源。

同时,要尽量减少地线的共同部分,以避免漏泄电流在不同层之间的传播。

4. 滤波电容为减少电磁干扰,在接口两端应布置抗搅扰滤波电容。

在这里,应选择滤波电容容值、材料以及其布线位置做好设计,以满足电磁兼容要求。

应将滤波电容放置在距离器件尽可能近的位置上,使其具有最大的采样效果。

5. 接地端口在接口的连接形式上,一般可以选用以太网连串和RJ45插座两种方案。

在接地端口的连接上,应选取好质量较高的接地砂纸,确保连接良好。

6. 电源供给在以太网接口的设计中,应考虑并满足器件的电源供给要求。

应选用超低噪声稳压器,以保证电源纹波的较低水平。

在电源供给的接口布线上,要避免与信号线并行,对于高频分立器件,应将滤波电容布置在它们的电源引脚附近。

以上是以太网电接口EMC设计指导书,设计人员在设计过程中需要避免一些错误,使其更符合EMC要求。

以太网电接口EMC设计指导书

以太网电接口EMC设计指导书

以太网电接口采用UTP的EMC设计指导书目录前言 (4)1范围和简介 (5)1.1范围 (5)1.2简介 (5)1.3关键词 (5)2规范性引用文件 (5)3术语和定义 (6)4UTP(非屏蔽网线)的介绍 (6)510/100BASE-T、1000BASE-T以太网电接口的共模噪声 (7)610/100/1000BASE-T以太网电接口电路设计 (7)6.110/100/1000BASE-T以太网电接口原理图设计 (7)6.1.1网口变压器集成在连接器里的网口电路原理图 (8)6.1.2网口变压器集成在连接器里的网口电路原理图 (8)6.1.3网口指示灯电路原理图 (9)6.1.4带滤波的10/100BaseT以太网口电路原理图 (10)6.1.5带滤波的1000BaseT以太网口电路原理图 (11)6.210/100/1000BASE-T以太网电接口PCB布局、布线 (12)6.2.1网口变压器没有集成在连接器里的网口电路PCB布局、布线规则 126.2.2采用一体化连接器的网口电路PCB布局、布线规则 (15)6.2.3其它的布局、布线建议 (16)7实际测试案例: (19)8结论: (22)9附录: (24)10参考文献 (26)前言本规范的其他系列规范:无与对应的国际标准或其他文件的一致性程度:无规范代替或作废的全部或部分其他文件:无与其他规范或文件的关系:无与规范前一版本相比的升级更改的内容:如果是升级规范,则一定要在此处详细描述本版本相对于上一版本更改的内容,如果是第一次制定,则填写“第一版,无升级更改信息”。

本规范由XX部门提出。

本规范主要起草和解释部门:本规范主要起草专家:格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......)本规范主要评审专家:格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......)本规范批准部门:XX部门本规范所替代的历次修订情况和修订专家为:10/100/1000BASE-T以太网口采用UTP网线的EMC设计指导书1范围和简介1.1范围本规范规定了10/100 BASE-TX、1000 BASE-TX以太网口采用UTP网线的EMC电路设计,用以保证10/100 BASE-TX、1000 BASE-TX以太网口具有良好的EMC性能,使用UTP就能满足系统的EMC要求。

RJ45以太网接口EMC防雷设计方案

RJ45以太网接口EMC防雷设计方案

以太网接口EMC设计方案一、接口概述RJ45以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。

二、接口电路原理图的EMC设计百兆以太网接口2KV防雷滤波设计图1 百兆以太网接口2KV防雷滤波设计接口电路设计概述:本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC 问题;同时此电路兼容了百兆以太网接口防雷设计。

本防雷电路设计可通过IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的非屏蔽平衡信号的接口防雷测试。

电路EMC设计说明:(1)电路滤波设计要点:为了抑制RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。

图2 带有共模抑制作用的网络变压器RJ45接口的NC空余针脚一定要采用BOB-smith电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试,BOB-smith电路能有10个dB左右的抑制干扰的效果。

网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上C4-C7,此电容取值5Pf~10pF。

在变压器驱动电源电路上,增加LC型滤波,抑制电源系统带来的干扰,如电路图上L1、C1、C2、C3,L1采用磁珠,典型值为600Ω/100MHz,电容取值0.01µF~0.1µF。

百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于EMC干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。

(2)电路防雷设计要点:为了达到IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的防雷测试要求,成本最低的设计方案就是变压器初级中心抽头通过防雷器件接地,电路图上的D1可以选择成本较低的半导体放电管,但是要注意“防护器件标称电压要求大于等于6V;防护器件峰值电流要求大于等于50A;防护器件峰值功率要求大于等于300 W。

EMC测试指导书

EMC测试指导书

EMC测试指导书编写人员:杨继明工号:0807252M修订记录目录(报告完成后请更新)1概述 (5)1.1 试件名称、型号、版本及工作电压和电流 (5)1.2 测试性质 (5)1.3 采用标准、采用依据及测试项目列表 (5)1.4 辅助设备列表 (6)1.5 测试人员、参试人员 (6)1.6 测试部门、地点、时间 (6)2受试设备配置 (6)2.1 实物配置框图 (6)2.2 工作状态 (7)2.3 测试组网 (7)2.4 结构描述 (7)2.5 单板配置 (7)2.6 接口及接口电缆配置 (7)2.7 抗扰度说明 (8)2.7.1 监控信息 (8)2.7.2 抗扰度判据 (8)3总结和评价 (8)3.1 测试充分性评价 (8)3.2 测试差异说明 (8)3.3 测试项目通过清单 (9)3.4 问题及相关对策 (9)3.4.1 问题描述 (9)3.4.2 对策描述 (10)4测试内容 (10)4.1 电磁骚扰测试 (10)4.1.1 测试任务1——辐射骚扰测试(RE) (10)4.1.2 测试任务2—传导骚扰测试(CE) (13)4.1.3 测试任务3——谐波电流骚扰测试(Harmonic) (16)4.1.4 测试任务4 ——电压波动与闪烁测试(Fluctuations and flicker) (17)4.2 电磁抗扰度测试 (18)4.2.1 测试任务1——射频电磁场辐射抗扰度测试(RS) (18)4.2.2 测试任务2——传导骚扰抗扰度测试(CS) (19)4.2.3 测试任务3——电快速瞬变脉冲群抗扰度测试(EFT/B) (21)4.2.4 测试任务4——静电放电抗扰度测试(ESD) (22)4.2.5 测试任务5——电压跌落、短时中断与电压缓变抗扰度测试(DIP/interruption 〕 (24)4.2.6 测试任务6——浪涌抗扰度测试(SURGE) (25)4.2.7 测试任务7——工频磁场抗扰度测试(PMS) (29)附录一:相关测试仪器信息 (32)附录二:测试仪器不确定度: (34)附录三:骚扰测试曲线和数据: (35)附录四:测试布置照片: .............................................................................. 错误!未定义书签。

完美的EMC电路设计攻略教案资料

完美的EMC电路设计攻略教案资料

完美的E M C电路设计攻略第一讲:完美的EMC电路设计攻略之:遵循三大规律、三个要素【导读】产品上市周期短,EMC测试迟迟不通过,令很多工程师“一夜愁白了头发”。

本期大讲台,我们为大家分享EMC三个规律和EMC问题三要素,会使得EMC问题变的有规可循,坚持EMC的规律使得解决EMC问题省时省力,事半功倍。

在进行电子设计方案过程中需要工程师在设计之初就进行严格把关!在产品结构方案设计阶段,主要针对产品需要满足EMC法规标准,对产品采用什么屏蔽设计方案、选择什么屏蔽材料,以及材料的厚度提出设计方案,另外对屏蔽体之间的搭接设计,缝隙设计考虑,同时重点考虑接口连接器与结构件的配合。

一、EMC设计的三大规律规律一、EMC费效比关系规律: EMC问题越早考虑、越早解决,费用越小、效果越好。

在新产品研发阶段就进行EMC设计,比等到产品EMC测试不合格才进行改进,费用可以大大节省,效率可以大大提高;反之,效率就会大大降低,费用就会大大增加。

经验告诉我们,在功能设计的同时进行EMC设计,到样板、样机完成则通过EMC测试,是最省时间和最有经济效益的。

相反,产品研发阶段不考虑EMC,投产以后发现EMC不合格才进行改进,非但技术上带来很大难度、而且返工必然带来费用和时间的大大浪费,甚至由于涉及到结构设计、PCB设计的缺陷,无法实施改进措施,导致产品不能上市。

规律二、高频电流环路面积S越大, EMI辐射越严重。

高频信号电流流经电感最小路径。

当频率较高时,一般走线电抗大于电阻,连线对高频信号就是电感,串联电感引起辐射。

电磁辐射大多是EUT被测设备上的高频电流环路产生的,最恶劣的情况就是开路之天线形式。

对应处理方法就是减少、减短连线,减小高频电流回路面积,尽量消除任何非正常工作需要的天线,如不连续的布线或有天线效应之元器件过长的插脚。

减少辐射骚扰或提高射频辐射抗干扰能力的最重要任务之一,就是想方设法减小高频电流环路面积S。

RJ45以太网口辐射设计总结

RJ45以太网口辐射设计总结

以太网口EMC设计总结关键字:以太网口;EMI;Bob-Smith电路;共模;差模;网络变压器问题背景介绍:对于主要的100M网口接口需要做特殊的保护处理,具体要求需要达到6KV设计目标(10/700雷电模拟电压波),在设计雷击防护指标时候,遇到了网口的EMI问题,作者在调试过程中对传统bob-smith端接和防雷设计做了相关的工作,在此总结出来供以后网口辐射设计参考。

具体原理及步骤:一、共模、差模信号及其噪声抑制变压器、共模扼流圈和自耦变压器的端接法,对在局域网和通信接口电路中减小共模干扰起关键作用。

共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心EMI问题。

接下来阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引起噪音发射。

1.1差/共模信号介绍图1-1差模信号模型以及波形图因为V1和V2对地是对称的,所以地线上没有电流流过。

所有的差模电流(IDIFF)全流过负载,两个电压(V1+V2)瞬时值之和总是等于零。

图1-2共模信号模型以及波形图因为在负载两端没有电位差,所以没有电流流过负载。

所有的共模电流都通过电缆和地之间的寄生电容流向地线。

两个电压瞬时值之和(V1+V2)不等于零。

相对于地而言,每一电缆上都有变化的电位差,这变化的电位差就会从电缆上发射电磁波。

1.2电缆线上产生的共模、差模噪音及其EMC电子设备中电缆线上的噪音有从电源电缆和信号电缆上产生的辐射噪音和传导噪音两大类。

这两大类中又分为共模噪音和差模噪音两种。

差模传导噪音是电子设备内部噪音电压产生的与信号电流或电源电流相同路径的噪音电流,如图1-3a所示。

减小这种噪音的方法是在信号线和电源线上串联差模扼流圈、并联电容或用电容和电感组成低通滤波器,来减小高频的噪音,如图1-3b所示。

图1-3差模噪声及其抑制差模辐射噪音是图1-3b电缆中的信号电流环路所产生的辐射。

RJ45以太网接口EMC设计方案

RJ45以太网接口EMC设计方案

以太网接口EMC设计方案一、接口概述RJ45以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。

赛盛技术应用电磁兼容设计平台(EDP)软件从接口原理图、结构设计,线缆设计三个方面来设计以太网口的EMC设计方案。

二、接口电路原理图的EMC设计本方案由电磁兼容设计平台(EDP)软件自动生成百兆以太网接口2KV防雷滤波设计图1 百兆以太网接口2KV防雷滤波设计接口电路设计概述:本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC问题;同时此电路兼容了百兆以太网接口防雷设计。

本防雷电路设计可通过IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的非屏蔽平衡信号的接口防雷测试。

电路EMC设计说明:(1)电路滤波设计要点:为了抑制RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。

图2 带有共模抑制作用的网络变压器RJ45接口的NC空余针脚一定要采用BOB-smith电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试,BOB-smith电路能有10个dB左右的抑制干扰的效果。

网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上C4-C7,此电容取值5Pf~10pF。

在变压器驱动电源电路上,增加LC型滤波,抑制电源系统带来的干扰,如电路图上L1、C1、C2、C3,L1采用磁珠,典型值为600Ω/100MHz,电容取值0.01µF~0.1µF。

百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于EMC干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。

通信接口EMC设计

通信接口EMC设计
6.2 以太网通信接口滤波设计................................................................................. 9
6.3 RJ45 接口连接器............................................................................................ 12
此版权归北京港湾网络有限公司所有 翻录必究
第 4 页共 22 页
港湾网络有限公司技术规范
保密文件 内部公开
5、接口信号的滤波、防护、隔离器件等尽可能靠近接口连接器处,相应的信号连 接线必须尽可能短(符合工艺要求条件下的最短距离)。
6、接口变压器要就近放置在连接器附近,通常在对应接口连接器 3cm以内。 7、模拟信号接口和数字信号接口、低速逻辑信号接口和高速逻辑信号接口等(以 敏感和干扰发射程度来区分),它们之间要间隔一定距离放置。当连接器之间存在相 互干扰的可能时,必须采取隔离、屏蔽等措施。 8、同一接口连接器里存在不同类型的信号时,必须用地针隔离这些信号,特别是 对于一些比较敏感的信号。 9、接口信号线走线的线宽应始终一致。对于高速信号线,如果走线有需要弯曲的 地方,则应采用圆弧平滑地弯曲走线。 10、禁止在差分线和信号回线之间走其他信号线,差分对线对应的部份应平行、 就近、同层走线,且走线的长度尽可能一致。 11、当接口信号线较长(从驱动、接收器到接口连接器超过 2.5 cm ),应按传 输线布线方法,使走线满足规定的特性阻抗。 12、所有的信号走线不能跨平面走线,除非已经过隔离滤波器。 13、接口信号连接器建议选用带屏蔽外壳的连接器,尤其是高频信号连接器。 14、连接器的金属外壳应与机壳保持良好的电连续性,对于能够360度环绕的连接 器,则必须 360 度环绕连接,而且通常连接阻抗要小于1mΩ 。 15、对于不能进行360 度环绕连接的连接器,则建议采用外壳四周有向上簧片的 连接器,而且簧片必须有足够的尺寸和性能(弹性),以保持与机壳间有良好的电连 接。 16、滤波连接器对产品EMC性能往往有很大的帮助,但其成本比较高,通常在采 用板内滤波、电缆屏蔽等方法能解决问题的情况下,就不采用滤波连接器。滤波连接 器通常用在一些特殊的情况下,如严格的军标要求、恶劣工业环境的小批量应用以及

电子工程师EMC设计手册

电子工程师EMC设计手册

EMI / EMC设计秘籍——电子产品设计工程师必备手册目录一、EMC工程师必须具备的八大技能二、EMC常用元件三、EMI/EMC设计经典85问四、EMC专用名词大全五、产品内部的EMC设计技巧六、电磁干扰的屏蔽方法七、电磁兼容(EMC)设计如何融入产品研发流程.一、EMC工程师必须具备的八大技能EMC工程师需要具备那些技能?从企业产品需要进行设计、整改认证的过程看,EMC工程师必须具备以下八大技能:1、EMC的基本测试项目以及测试过程掌握;2、产品对应EMC的标准掌握;3、产品的EMC整改定位思路掌握;4、产品的各种认证流程掌握;5、产品的硬件硬件知识,对电路(主控、接口)了解;6、EMC设计整改元器件(电容、磁珠、滤波器、电感、瞬态抑制器件等)使用掌握;7、产品结构屏蔽设计技能掌握;8、对EMC设计如何介入产品各个研发阶段流程掌握。

二、EMC常用元件介绍共模电感由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一!这里就给大家简单介绍一下共模电感的原理以及使用情况。

共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。

原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。

因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。

共模电感在制作时应满足以下要求:1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。

2)当线圈流过瞬时大电流时,磁芯不要出现饱和。

3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。

RJ45以太网接口EMC设计方案

RJ45以太网接口EMC设计方案

电磁兼容设计平台(EDP)应用案例——以太网口以太网接口EMC 设计方案一、接口概述RJ45 以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。

赛盛技术应用电磁兼容设计平台(EDP)软件从接口原理图、结构设计,线缆设计三个方面来设计以太网口的EMC 设计方案。

二、接口电路原理图的EMC设计本方案由电磁兼容设计平台(EDP)软件自动生成百兆以太网接口2KV 防雷滤波设计图 1百兆以太网接口2KV 防雷滤波设计接口电路设计概述:本方案从 EMC 原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决 EMC 问题;同时此电路兼容了百兆以太网接口防雷设计。

本防雷电路设计可通过 IEC61000-4-5 或 GB17626.5 标准,共模 2KV,差摸 1KV 的非屏蔽平衡信号的接口防雷测试。

电路 EMC 设计说明:(1)电路滤波设计要点:为了抑制 RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。

电磁兼容设计平台(EDP)应用案例——以太网口图 2带有共模抑制作用的网络变压器RJ45接口的 NC空余针脚一定要采用 BOB-smith 电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试, BOB-smith 电路能有 10 个 dB 左右的抑制干扰的效果。

网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF 的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上 C4-C7,此电容取值5Pf~10pF。

在变压器驱动电源电路上,增加LC 型滤波,抑制电源系统带来的干扰,如电路图上L1、 C1、 C2、C3, L1 采用磁珠,典型值为600Ω/100MHz ,电容取值0.01 μ F~0.1。

μF百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于 EMC 干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。

电子电路布局的EMC设计准则和示例

电子电路布局的EMC设计准则和示例

电子电路布局的EMC设计准则和示例EMC(Electromagnetic Compatibility,电磁兼容性)是指电子设备在电磁环境中无相互干扰且能正常工作的能力。

在电路设计过程中,EMC设计是非常重要的一环,它能够保证电子设备正常运行,并减少电磁干扰对其他设备的影响。

本文将介绍电子电路布局的EMC设计准则和示例,并详细列举步骤。

一、EMC设计准则:1. 尽量减少回路长度:回路长度越长,电磁波传播的路径就越长,干扰信号的问题会更加严重。

因此,在设计电路布局时要尽量缩短回路长度。

2. 适当使用铺铜:通过合理使用铺铜层来减少回路的阻抗,降低电磁辐射的问题。

同时,铺铜层还可用于建立大地平面,增加电磁屏蔽效果。

3. 保持信号线和电源线的分离:为了避免信号线和电源线之间互相干扰,应尽量将它们分离开来布局。

可以使用不同的铺铜层或间隔来隔离信号线和电源线。

4. 避免信号线和辐射物体的交叉:辐射物体包括传输线、散射线和天线等。

信号线和辐射物体之间的交叉会引起电磁干扰,因此应避免它们的交叉。

5. 采用合适的布局规划:合理规划电路板上各部分的位置,确保信号的传输路径尽可能短,同时也要考虑到布线、阻抗匹配等问题。

6. 控制布线走线:布线走线要遵循短、粗、宽、直的原则,尽可能减小阻抗,降低交叉干扰,提高信号质量。

7. 合理选择元器件:选择合适的元器件对EMC设计非常重要。

应选择与EMC 要求相符的低噪声、低电磁辐射的元器件,并尽量避免使用有明显辐射磁场的元器件。

8. 加强接地设计:良好的接地设计可以提高电磁屏蔽效果,减少电磁辐射。

应在电路设计中充分考虑接地的布局和连接方法,并避免接地线的断开、升高阻抗等问题。

9. 使用滤波器和抑制器:滤波器和抑制器可以有效抑制电磁辐射和吸收噪声,提高电路的抗干扰能力。

在设计电路布局时,可以考虑加入合适的滤波器和抑制器,进一步提高电磁兼容性。

10. 增加屏蔽:对于特别敏感的部件或高频信号,可采用金属屏蔽罩或截获罩等形式进行屏蔽,减少电磁辐射和接收干扰。

以太网的EMC设计

以太网的EMC设计

以太网电接口采用UTP的EMC设计指导书目 录前 言 (4)1范围和简介 (5)1.1范围 (5)1.2简介 (5)1.3关键词 (5)2规范性引用文件 (5)3术语和定义 (6)4UTP(非屏蔽网线)的介绍 (6)510/100BASE-T、1000BASE-T以太网电接口的共模噪声 (7)610/100/1000BASE-T以太网电接口电路设计 (7)6.110/100/1000BASE-T以太网电接口原理图设计 (7)6.1.1网口变压器集成在连接器里的网口电路原理图 (8)6.1.2网口变压器集成在连接器里的网口电路原理图 (8)6.1.3网口指示灯电路原理图 (9)6.1.4带滤波的10/100BaseT以太网口电路原理图 (10)6.1.5带滤波的1000BaseT以太网口电路原理图 (11)6.210/100/1000BASE-T以太网电接口PCB布局、布线 (12)6.2.1网口变压器没有集成在连接器里的网口电路PCB布局、布线规则126.2.2采用一体化连接器的网口电路PCB布局、布线规则 (15)6.2.3其它的布局、布线建议78结论: (22)9附录: (24)10参考文献 (26)前言本规范的其他系列规范:无与对应的国际标准或其他文件的一致性程度:无规范代替或作废的全部或部分其他文件:无与其他规范或文件的关系:无与规范前一版本相比的升级更改的内容:如果是升级规范,则一定要在此处详细描述本版本相对于上一版本更改的内容,如果是第一次制定,则填写“第一版,无升级更改信息”。

本规范由XX部门提出。

本规范主要起草和解释部门:本规范主要起草专家:格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......)本规范主要评审专家: 格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......)本规范批准部门:XX部门本规范所替代的历次修订情况和修订专家为:10/100/1000BASE-T以太网口采用UTP网线的EMC设计指导书1范围和简介1.1范围本规范规定了10/100 BASE-TX、1000 BASE-TX以太网口采用UTP网线的EMC电路设计,用以保证10/100 BASE-TX、1000 BASE-TX以太网口具有良好的EMC性能,使用UTP就能满足系统的EMC要求。

USB2.0接口EMC设计方案

USB2.0接口EMC设计方案

电磁兼容设计平台(EDP)应用案例——以太网口USB2.0 接口 EMC 设计方案一、接口概述USB 通用串行总线(英文:Universal Serial Bus,简称 USB)是连接外部装置的一个串口汇流排标准,在计算机上使用广泛,但也可以用在机顶盒和游戏机上,补充标准On-The-Go ( OTG)使其能够用于在便携装置之间直接交换资料。

USB 接口的电磁兼容性能关系到设备稳定行与数据传输的准确性,赛盛技术应用电磁兼容设计平台(EDP)软件从接口原理图、结构设计,线缆设计三个方面来设计USB2.0 接口的 EMC 设计方案二、接口电路原理图的EMC设计本方案由电磁兼容设计平台(EDP)软件自动生成B2.0 接口防静电设计图1 USB 2.0接口防静电设计接口电路设计概述:本方案从 EMC 原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决 EMC 问题。

电路 EMC 设计说明:(1)电路滤波设计要点:L1 为共模滤波电感,用于滤除差分信号上的共模干扰;L2 为滤波磁珠,用于滤除为电源上的干扰;C1、C2 为电源滤波电容,滤除电源上的干扰。

L1共模电感阻抗选择范围为60Ω/100MHz ~120 Ω /100MHz ,典型值选取90Ω/100MHz ;L2 磁珠阻抗范围为 100Ω /100MHz ~1000Ω /100MHz ,典型值选取 600Ω /100MHz ;磁珠在选取时通流量应符合电路电流的要求,磁珠推荐使用电源用磁珠;C1、C2 两个电容在取值时要相差 100 倍,典型值为 10uF、0.1uF;小电容用滤除电源上的高频干扰,大电容用于滤除电源线上的纹波干扰;C3 为接口地和数字地之间的跨接电容,典型取值为1000pF,耐压要求达到2KV 以上,C3 容值可根据测试情况进行调整;( 2)电路防护设计要点D1、 D2 和 D3 组成 USB 接口防护电路,能快速泄放静电干扰,防止在热拔插过程中产生的大量干扰能量对电路进行冲击,导致内部电路工作异常。

以太网EMC接口电路设计及PCB设计

以太网EMC接口电路设计及PCB设计

以太网EMC接口电路设计及PCB设计我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。

目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。

目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。

从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。

大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。

面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。

下图1以太网的典型应用。

我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。

图1 以太网典型应用1.图2网口变压器没有集成在网口连接器里的参考电路PCB布局、布线图,下面就以图2介绍以太网电路的布局、布线需注意的要点。

图2 变压器没有集成在网口连接器的电路PCB布局、布线参考a)RJ45和变压器之间的距离尽可能的短,晶振远离接口、PCB边缘和其他的高频设备、走线或磁性元件周围,PHY层芯片和变压器之间的距离尽可能短,但有时为了顾全整体布局,这一点可能比较难满足,但他们之间的距离最大约10~12cm,器件布局的原则是通常按照信号流向放置,切不可绕来绕去;b)PHY层芯片的电源滤波按照要芯片要求设计,通常每个电源端都需放置一个退耦电容,他们可以为信号提供一个低阻抗通路,减小电源和地平面间的谐振,为了让电容起到去耦和旁路的作用,故要保证退耦和旁路电容由电容、走线、过孔、焊盘组成的环路面积尽量小,保证引线电感尽量小;c)网口变压器PHY层芯片侧中心抽头对地的滤波电容要尽量靠近变压器管脚,保证引线最短,分布电感最小;d)网口变压器接口侧的共模电阻和高压电容靠近中心抽头放置,走线短而粗(≥15mil);e)变压器的两边需要割地:即RJ45连接座和变压器的次级线圈用单独的隔离地,隔离区域100mil以上,且在这个隔离区域下没有电源和地层存在。

【优质文档】emc设计指导书-优秀word范文 (13页)

【优质文档】emc设计指导书-优秀word范文 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==emc设计指导书篇一:华为EMC设计指导书(一)篇二:结构EMC设计指导书结构EMC设计指导书深圳市易安技术开发有限公司版权所有翻录必究目录1. 目的 .................................................................. ..................................................................... .... 5 2. 范围 .................................................................. .............................................(来自:WWw. : emc设计指导书 )............................ 5 3. 定义 .................................................................. ..................................................................... .... 5 4. 引用标准和参考资料 .................................................................. ............................................. 5 5. 缝隙屏蔽设计 .................................................................. (6)5.1. 5.2. 5.2.1. 5.2.2. 5.3. 5.3.1. 5.4. 5.4.1. 5.4.2. 5.4.3.基本原则 .................................................................. ......................................... 6 影响缝隙屏蔽的主要因素 .................................................................. ............. 6 紧固点直接连接方式 .................................................................. ..................... 6 屏蔽材料连接 .................................................................. ................................. 7 缝隙屏蔽设计 .................................................................. ................................. 7 紧固点直接连接 .................................................................. ............................. 7 安装屏蔽材料 .................................................................. ................................. 9 屏蔽材料的选用 .................................................................. ............................. 9 屏蔽材料的安装 .................................................................. ........................... 10 屏蔽材料的压缩量 .................................................................. .. (10)6. 进出线缆屏蔽设计 .................................................................. .. (11)6.1. 6.2. 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5.基本原则 .................................................................. ....................................... 11 屏蔽电缆处理方式 .................................................................. ....................... 11 屏蔽连接器转接 .................................................................. ........................... 12 EMI滤波器转接 .................................................................. .......................... 13 金属丝网夹线方式 .................................................................. ....................... 14 专用簧片夹线 .................................................................. ............................... 17 安装槽夹线 .................................................................. .. (18)7. 通风孔屏蔽设计 .................................................................. (19)7.1. 7.2. 7.3.覆盖金属丝网 ................................................................................................. 20 穿孔金属板 .................................................................. ................................... 21 截至波导通风板 .................................................................. (23)8. 塑胶件屏蔽设计 .................................................................. (24)8.1. 8.2. 8.2.1. 8.2.2.导电漆 .................................................................. ........................................... 25 塑胶件屏蔽常用结构形式 .................................................................. ........... 26 屏蔽方式 .................................................................. ....................................... 26 盒体与盒盖之间的接缝处理 .................................................................. . (26)9. PCB局部屏蔽设计 .................................................................. . (26)9.1. 9.2. 9.2.1.10.选用材料 .................................................................. ....................................... 27 结构形式 .................................................................. ....................................... 27 盒体式 .................................................................. . (27)屏蔽材料选用 .................................................................. ............................................... 28 10.1. 10.2.选用原则 .................................................................. ....................................... 28 各种优选屏蔽材料的应用 .................................................................. .. (29)11. 附录 .................................................................. (33)11.1.屏蔽材料选用简易对照表 .................................................................. .. (33)结构EMC设计指导书【摘要】:【关键词】:【定义与缩略语】:EMC:Electromagnetic Compatibility 电磁兼容性 RE:Radiated Emission 辐射发射 ESD:Electrostatic discharge 静电放电1. 目的本指导书旨在指导公司结构造型的EMC设计,将EMC设计要素在结构机电中予以实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以太网电接口采用UTP的EMC设计指导书目录前言 (4)1范围和简介 (5)1.1范围 (5)1.2简介 (5)1.3关键词 (5)2规范性引用文件 (5)3术语和定义 (6)4UTP(非屏蔽网线)的介绍 (6)510/100BASE-T、1000BASE-T以太网电接口的共模噪声 (7)610/100/1000BASE-T以太网电接口电路设计 (7)6.110/100/1000BASE-T以太网电接口原理图设计 (7)6.1.1网口变压器集成在连接器里的网口电路原理图 (8)6.1.2网口变压器集成在连接器里的网口电路原理图 (8)6.1.3网口指示灯电路原理图 (9)6.1.4带滤波的10/100BaseT以太网口电路原理图 (10)6.1.5带滤波的1000BaseT以太网口电路原理图 (11)6.210/100/1000BASE-T以太网电接口PCB布局、布线 (12)6.2.1网口变压器没有集成在连接器里的网口电路PCB布局、布线规则 126.2.2采用一体化连接器的网口电路PCB布局、布线规则 (15)6.2.3其它的布局、布线建议 (16)7实际测试案例: (19)8结论: (22)9附录: (24)10参考文献 (26)前言本规范的其他系列规范:无与对应的国际标准或其他文件的一致性程度:无规范代替或作废的全部或部分其他文件:无与其他规范或文件的关系:无与规范前一版本相比的升级更改的内容:如果是升级规范,则一定要在此处详细描述本版本相对于上一版本更改的内容,如果是第一次制定,则填写“第一版,无升级更改信息”。

本规范由XX部门提出。

本规范主要起草和解释部门:本规范主要起草专家:格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......)本规范主要评审专家:格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......)本规范批准部门:XX部门本规范所替代的历次修订情况和修订专家为:规范号主要起草专家主要评审专家姓名(工号)、姓名(工号)姓名(工号)、姓名(工号)姓名(工号)、姓名(工号)姓名(工号)、姓名(工号)10/100/1000BASE-T以太网口采用UTP网线的EMC设计指导书1 范围和简介1.1范围本规范规定了10/100 BASE-TX、1000 BASE-TX以太网口采用UTP网线的EMC电路设计,用以保证10/100 BASE-TX、1000 BASE-TX以太网口具有良好的EMC性能,使用UTP就能满足系统的EMC要求。

本规范适用于具有110/100 BASE-TX、1000 BASE-TX以太网口的单板设计和已有单板的升级,以及现有未对10/100 BASE-TX、1000 BASE-TX以太网口进行EMC电路设计的产品的整改指导。

1.2简介随着海外市场的拓展,特别是北美市场的介入,对产品使用UTP(Unshielded Twisted Pairs)电缆满足EMC性能的需求越来越急切。

UTP电缆以价格便宜、重量轻,容易制作的优点,得到广大用户的青睐,应用十分普遍。

但在应用UTP电缆的同时,EMC的问题就摆在我们面前了,需要尽快解决。

大家都知道,UTP对于EMI有一定的抑制作用,但只局限于较低频率,在一篇文档上我看到是30MHz,也就是说,单靠UTP自身的共模抑制作用是不能满足RE性能的。

UTP和以前我们使用的STP 不同,STP网线的外面包有一层屏蔽编织网和铝箔,这些屏蔽层衰减、吸收了网线对外的辐射。

10/100 BASE-TX、1000 BASE-TX以太网口在我司产品单板中的应用十分普遍,针对目前存在的以太网口使用UTP无法满足EMC性能要求的问题,特制订本指导书,目的在于规范设计,提高10/100 BASE-TX、1000 BASE-TX以太网口的EMC性能。

在本规范中针对10/100 BASE-TX、1000 BASE-TX以太网口的器件、原理图和PCB提出了EMC设计建议,并根据产品的定位推荐使用的解决方案。

由于技术的不断发展,本指导书也会根据实际情况进行相应的修改和补充,本设计指导书将进行不定期的修订,以最新的设计指导书为准。

同时由于不同产品的的差异性,实际设计时,可考虑对指导书中电路的参数进行调整。

1.3关键词EMC、网口变压器、PCB、以太网口、一体化连接器、UTP2 规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本规范。

序号编号名称1 CISPR 22(1997) Information technology equipment radio disturbancecharacteristics limits and methods of measurement.2 Fcc part 153 GR 1089-CORE Electromagnetic Compatibility and Electrical Safety GenericCriteria for Network Telecommunications Equipment4 单板接口电路EMC设计指导书1.03 术语和定义UTP:非屏蔽网线。

PGND:设备金属外壳的保护接地,用于泄放故障电流和单板保护器件泄流通道。

GND:设备功能电路的接地,是单板及母板上的数字地和模拟地的统称。

EMC:(Electromagnetic compatibility)电磁兼容性EMI: (Electromagnetic interference) 电磁干扰EMS:(Electromagnetic Susceptibility) 电磁敏感度ESD: (Electrostatic discharge) 静电放电EFT/B: (Electrical fast transient burst) 电快速瞬变脉冲群Surge :浪涌RE:(Radiated emission)辐射骚扰CE:(Conducted emission)传导骚扰CS:(Conducted Susceptibility)传导骚扰抗扰度RS:(Radiated Susceptibility)射频电磁场辐射抗扰度MAC:媒体接入控制层,是数据链路层的子层。

PHY:物理层4UTP(非屏蔽网线)的介绍非屏蔽网线由两根具有绝缘保护层的铜导线组成,两根绝缘铜导线按照一定密度绞在一起,这样可降低信号的干扰程度。

每一根导线在传输中辐射的电波会与另外一根的抵消。

UTP因为安装容易、重量轻、具有阻燃性等优点得到广泛应用。

EIA/TIA为双绞线电缆定义了五种不同质量的型号,现在应用最多的是五类线,其最高传输速率100M,主要应用与十兆、百兆以太网。

超五类线是相比五类线串扰更小、衰减更小的双绞线。

用来衡量UTP的主要指标有:1、衰减:就是沿链路的信号损失度量。

2、近端串扰:测量一条UTP链路对另一条的影响。

3、直流电阻。

4、衰减串扰比(ACR)。

5、电缆特性。

5 10/100BASE-T、1000BASE-T以太网电接口的共模噪声在10/100/1000BASE-T以太网接口中,与EMC关系最大的部分位于PHY芯片到连接器之间的部分,良好的PHY芯片可以大大降低EMI,提高EMS。

10/100BASE-T、1000BASE-T接口的共模噪声频谱如下图所示:图1 差分线输出共模噪声频谱图中蓝线和黑线分别代表100BASE-T和1000BASE-T的信号频谱,纵轴的大小反应了信号的强度。

网口的EMI主要来自于差分信号线对以及变压器中心抽头的输出共模噪声,这些共模噪声在UTP 中就会产生EMI。

6 10/100/1000BASE-T以太网电接口电路设计目前以太网按照速率主要包括10M,10/100M,1000M三种接口,10M应用已经很少,基本为10/100M 所代替。

目前我司产品的以太网电接口类型主要是采用双绞线的RJ45接口,因此下面只讲述采用双绞线作为传输媒介,采用RJ45对外接口的10/100M,1000M网口基本原理、器件选型以及PCB设计方面的内容。

设计时应考虑的因素。

6.110/100/1000BASE-T以太网电接口原理图设计我司的产品广泛应用到了10/100/1000BASE-T以太网接口,因为双绞线接口10/100/1000BASE-T 价格低廉,应用简单等特点应用最为普遍,特别是以太网交换机,一块单板可能就会出48个10/100M 以太网口,网口的类型也是多种多样,因为网口信号的速率、密度很高,EMI问题显得十分突出。

10/100/1000BASE-T以太网口电路按照连接器的种类网口电路可以分为:网口变压器集成在连接器里的网口电路和网口变压器不集成在连接器里的网口电路。

下面分别给出它们的原理图:6.1.1网口变压器集成在连接器里的网口电路原理图图2 10/100/1000BASE-T以太网口电路原理图1根据上图,可见网口电路主要包括PHY芯片,网口变压器,网口连接器三部分。

1、上图中,变压器匝数比不同,变压器前面的49.9欧姆电阻就不同,根据实际变压器情况以及网线阻抗进行选择,保证两者阻抗匹配。

2、上图右侧的虚线框中部分是Bob smith 电路,此电路由Bob smitch发明,采用此电路的主要作用如下:1) 可以产生10dB的共模EMI衰减。

2) 提供接近75欧姆的共模阻抗。

3) 降低RJ45连接器未使用管脚的辐射发射。

3、上图中,网口变压器中心抽头的电容值对EMC性能有影响,调整电容的大小,可以使EMC 性能最优。

4、上图中间部分的,由电容组成的差模、共模滤波器可以增强EMC性能,建议在网口增加此部分电路。

5、上图是1000BaseT接口的原理图,和10/100BaseT的区别仅仅在于每个端口10/100BaseT由两对差分线组成,而1000BaseT接口由四对差分线组成。

6.1.2网口变压器集成在连接器里的网口电路原理图图3 10/100/1000BASE-T以太网口电路原理图2根据上图,可见网口电路主要包括PHY芯片,网口连接器两部分。

1、上图中,变压器匝数比不同,变压器前面的49.9欧姆电阻就不同,根据实际变压器情况以及网线阻抗进行选择。

2、上图的Bob smith 电路集成在网口连接器里。

3、上图中,CT端对地的电容值对EMC性能有影响,调整电容的大小,可以使EMC性能最优。

4、上图中间部分的,由电容组成的差模、共模滤波器可以增强EMC性能,建议在网口增加此部分电路。

相关文档
最新文档