正余弦定理解三角形教案

合集下载

高三数学总复习 正弦定理和余弦定理教案

高三数学总复习   正弦定理和余弦定理教案

高三数学总复习 正弦定理和余弦定理教案教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等.教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式. ②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形.③能解决与三角形有关的实际问题.教学难点:①根据已知条件判定解的情形,并正确求解.②将实际问题转化为解斜三角形.教学过程一、基础回顾1、正余弦定理正弦定理:a sinA =b sinB =c sinC=2R(其中R 为△ABC 外接圆的半径). 余弦定理a 2=b 2+c 2-2bccosA ,b 2=a 2+c 2-2accosB ;c 2=a 2+b 2-2abcosC2、变形式①a =2RsinA ,b =2RsinB ,c =2RsinC ;(其中R 是△ABC 外接圆半径)②a ∶b ∶c =sinA :sinB :sinB③cosA =b 2+c 2-a 22bc ,cosB =a 2+c 2-b 22ac ,cosC =a 2+b 2-c 22ab. 3、三角形中的常见结论(1) A +B +C =π.(2) 在三角形中大边对大角,大角对大边:A>B a>b sinA>sinB.(3) 任意两边之和大于第三边,任意两边之差小于第三边.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高); ② S =12absinC =12acsinB =12bcsinA =abc 4R; ③ S =12r(a +b +c)(r 为内切圆半径); ④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c). 二、基础自测1、在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =________.2、在△ABC 中,a =3,b =1,c =2,则A =________.3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若a =2bcosC ,则此三角形一定是________三角形.4、已知△ABC 的三边长分别为a 、b 、c ,且a 2+b 2-c 2=ab ,则∠C=________.5、在△ABC 中,a =32,b =23,cosC =13,则△ABC 的面积为________.三、典例分析例1 (2013·惠州模拟)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理,得asin B =bsin A ,又asin Asin B +bcos 2A =2a ,∴bsin 2A +bcos 2A =2a ,即b =2a ,因此b a = 2. (2)由c 2=b 2+3a 2及余弦定理,得cos B =a 2+c 2-b 22ac =(1+3)a 2c, (*) 又由(1)知,b =2a ,∴b 2=2a 2,因此c 2=(2+3)a 2,c =2+3a =3+12 a. 代入(*)式,得cos B =22, 又0<B <π,所以B =π4. 规律方法:1.运用正弦定理和余弦定理求解三角形时,要分清条件和目标.若已知两边与夹角,则用余弦定理;若已知两角和一边,则用正弦定理.2.在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.例2、(2013·合肥模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =(cos 2A 2,cos 2A),且m ·n =72. (1)求角A 的大小; (2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =(cos 2A2,cos 2A ), ∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3. 又∵m ·n =72, ∴-2cos 2A +2cos A +3=72,解得cos A =12. ∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3,∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc . ① 又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b =3, 于是a =b =c =3,即△ABC 为等边三角形.规律方法:判定三角形的形状,应围绕三角形的边角关系进行转化.无论使用哪种方法,不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能.例3、(2012·课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,acos C +3asin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c.解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,则sin B =sin A cos C +cos A sin C . 所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin(A -π6)=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. ① 又a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.② 由①②联立,得b =c =2.四、练习 变式练习1:(2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且bsin A =3acos B.(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.变式练习2:在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C.(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状五、作业布置六、板书设计1、正余弦定理2、变形式3、三角形中常用结论典例分析七、教学反思。

正余弦定理解三角形教案

正余弦定理解三角形教案

正余弦定理解三角形教案教案名称:正余弦定理解三角形教学目标:1.理解正余弦定理的概念并能灵活运用;2.能够利用正余弦定理解决实际问题;3.培养学生的数学思维和解决问题的能力;4.增强学生对数学的兴趣和学习自信心。

教学内容:1.正余弦定理的定义和公式推导;2.正余弦定理在实际问题中的应用;3.基于正余弦定理的综合练习。

教学重难点:1.理解正余弦定理的原理和推导过程;2.能够正确运用正余弦定理解决实际问题。

教学准备:1.教师准备三角形模型或者三条不等边长的竹条作为示范;2.准备相关练习题,包括实际问题和综合运用题。

教学过程:Step 1 引入(5分钟)1.引导学生回顾勾股定理和相似三角形的知识;2.提问:在解决实际问题中,有时候我们遇到三角形的边长不全或者只知道一些角度的情况,如何确定三角形的形状和大小呢?Step 2 介绍正余弦定理(15分钟)1.教师出示三角形模型或者示范竹条,引导学生观察并提问:如何利用已知边长和角度求解未知边长?2.引入正余弦定理的概念,即在任意三角形ABC中,设边长AC=a,BC=b,AB=c,∠ABC=C,则正余弦定理的表达式如下:正弦定理:a/sinA = b/sinB = c/sinC余弦定理:c^2 = a^2 + b^2 - 2abcosCStep 3 推导正余弦定理(20分钟)1.引导学生观察三角形模型或竹条,提问:如何推导出正余弦定理的公式?2.引导学生进行思考和讨论,将问题进行归纳总结,推导正余弦定理的公式;3.教师给出正余弦定理的公式推导过程;4.引导学生进行理解和思考,让学生自己演算推导公式,帮助理解和记忆。

Step 4 正余弦定理在实际问题中的应用(20分钟)1.教师给出一些实际问题,如测量高楼的高度、桥梁的宽度等,让学生利用正余弦定理计算;2.学生进行小组合作解题,可以通过模型或者竹条进行实际操作,更好地理解和应用正余弦定理;3.学生展示解题过程和结果,教师带领讨论和总结。

最新正弦定理余弦定理说课稿优秀5篇

最新正弦定理余弦定理说课稿优秀5篇

最新正弦定理余弦定理说课稿优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!最新正弦定理余弦定理说课稿优秀5篇作为一位无私奉献的人·民教师,通常会被要求编写说课稿,说课稿有助于教学取得成功、提高教学质量。

正弦定理和余弦定理的运用教案

正弦定理和余弦定理的运用教案

正弦定理和余弦定理的运用教案正文:正弦定理和余弦定理的运用教案一、教学目标1. 理解正弦定理和余弦定理的含义和基本公式;2. 掌握正弦定理和余弦定理在解决三角形相关问题中的应用方法;3. 培养学生的逻辑思维能力和解决实际问题的能力。

二、教学重点1. 正弦定理的推导和应用;2. 余弦定理的推导和应用。

三、教学难点1. 正弦定理和余弦定理的理解和记忆;2. 通过具体问题实际运用,使学生深入理解定理的应用方法。

四、教学准备1. 教材:三角函数学科教材;2. 工具:投影仪、黑板、粉笔、直尺、量角器。

五、教学过程Ⅰ. 导入(10分钟)1. 教师简要复习三角比的概念和计算方法;2. 教师引导学生思考:在已知某一角的情况下,如何确定三角形的边长呢?Ⅱ. 正弦定理的推导和应用(20分钟)1. 教师通过投影仪展示正弦定理的基本公式:a/sinA = b/sinB =c/sinC;2. 教师讲解正弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用正弦定理解决问题,并逐步引导学生总结出应用方法。

Ⅲ. 余弦定理的推导和应用(20分钟)1. 教师通过投影仪展示余弦定理的基本公式:c² = a² + b² - 2abcosC;2. 教师讲解余弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用余弦定理解决问题,并逐步引导学生总结出应用方法。

Ⅳ. 正弦定理和余弦定理的综合应用(25分钟)1. 教师给出一些复合问题,要求学生结合正弦定理和余弦定理解决问题;2. 学生分组讨论、解答问题,并在黑板上展示解题过程;3. 教师组织学生展示解题思路和方法,并针对不同解题方法进行及时点评。

Ⅴ. 拓展应用(15分钟)1. 教师布置一些拓展性应用题,要求学生在课后完成;2. 学生自主学习拓展内容,并在下节课讲解时与教师进行互动讨论。

Ⅵ. 总结与作业(10分钟)1. 教师对本节课的要点进行总结,并强调正弦定理和余弦定理的重要性;2. 布置作业:完成课后习题,复习和巩固所学知识。

江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案一、教学目标1. 让学生掌握正弦定理和余弦定理的定义及表达式。

2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。

3. 引导学生通过观察、分析、归纳和验证等方法,深入理解正弦定理和余弦定理的内在联系。

二、教学内容1. 正弦定理:在三角形中,各边的长度与其对角的正弦值成比例。

2. 余弦定理:在三角形中,各边的平方和等于其他两边平方和与这两边夹角余弦值的乘积的两倍。

三、教学重点与难点1. 教学重点:正弦定理和余弦定理的定义及应用。

2. 教学难点:正弦定理和余弦定理的推导过程及其在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳和验证等方法,探索正弦定理和余弦定理。

2. 利用多媒体课件,直观展示正弦定理和余弦定理的推导过程。

3. 设计具有代表性的例题,讲解正弦定理和余弦定理在解决实际问题中的应用。

4. 组织学生进行小组讨论和探究,提高学生的合作能力和解决问题的能力。

五、教学过程1. 导入新课:通过展示三角形模型,引导学生思考三角形中的几何关系。

2. 探究正弦定理:让学生观察三角形模型,引导学生发现各边长度与对角正弦值的关系,进而总结出正弦定理。

3. 验证正弦定理:让学生运用正弦定理解决具体问题,验证其正确性。

4. 探究余弦定理:引导学生观察三角形模型,发现各边平方和与夹角余弦值的关系,总结出余弦定理。

5. 验证余弦定理:让学生运用余弦定理解决具体问题,验证其正确性。

6. 总结正弦定理和余弦定理:引导学生对比总结两个定理的异同点。

7. 巩固练习:设计具有针对性的练习题,让学生巩固正弦定理和余弦定理的应用。

8. 拓展与应用:引导学生运用正弦定理和余弦定理解决实际问题,提高学生的应用能力。

六、教学评价1. 课堂讲解:评价学生对正弦定理和余弦定理的理解程度,以及运用这两个定理解决问题的能力。

2. 练习题:通过布置练习题,检验学生对正弦定理和余弦定理的掌握情况。

初中数学教学课例《正余弦定理解三角形》教学设计及总结反思

初中数学教学课例《正余弦定理解三角形》教学设计及总结反思

教学重点:正余弦定理及其推论和正余弦定理的运
用。
教学难点:正余弦定理的发现和推导过程以及多解
情况的判断。
教学目标
1、理解并掌握正余弦定理和正余弦定理的推论。
2、掌握正余弦定理的推导、证明过程。 3、能运用正余弦定理及其推论解决“两角及一 边”“两边及其中一边的对角”“两边一夹角”“三 边”问题。
学生基本熟悉了公式,但对于学生计算能力薄弱, 学生学习能 自学能力差,缺乏团结合作的意识。针对学生存在的这
不够强。在后面的课程中,我会在不断培养学生实际操 作的能力,也会加强学生逻辑的转化。尽量将课堂 40 分钟高效的利用起来。
知 a=8,∠B=60°,∠C=75°,求∠A,b,c.在学生思考 过程中遇到问题当面处理,3 分钟后,由一位同学到讲 台上给大家讲解其具体的解法。在学生讲解结束后,对 学生讲解存在的问题:(1)书写的格式;(2)三角形 内角和定理和正余弦定理的运用;再次规范其书写,强 调公式的重要性。通过学生学习情况的反馈,学生基本 上掌握这一题型的运用。
4、在交流合作的过程中增强合作探究、团结协作 精神,体验解决问题的成功喜悦。
5、感受数学一般规律的美感,培养数学学习的兴 趣。
通过对正弦定理和余弦定理的复习。讲解一个已知 三角形的任意两边及一边的题型之后,出一道类似练习 教学过程 题让学生自主学习之后讲解。主要开展过程如下:对例 题 1 在△ABC 中,已知∠A=45°,∠B=60°,c=2,解 三角形.讲解之后。让学生思考训练 1 在△ABC 中,已
分的基础,初中的直角三角形性质及勾股定理、必修一
中的向量知识都是本节课内容学习的知识基础,同时又
对本节课的学习提供了一定的方法指导。其次,正余弦 教材分析
定理在高中解三角形问题中有着重要的地位,是解决各

《利用正弦、余弦定理解三角形》说课稿

《利用正弦、余弦定理解三角形》说课稿

《利用正弦、余弦定理解三角形》说课稿兴平南郊中学林克生各位专家、各位同仁,大家好!我说教材的题目是《利用正弦、余弦定理解三角形》专题,下面我从六个方面来进行说明。

一、教材分析解三角形是高中数学的重要教学内容,高考几乎都考察到。

它涉及三角形的边、角、面积,以及三角函数、平面向量和不等式等相关知识,综合性较强。

在解三角形的复习中,根据考试大纲的要求,重点讲解如何运用正弦定理和余弦定理解三角形问题,以及判断三角形的形状问题。

做好解三角形的教学,不但可以提高学生的解题能力,而且还对学生的数学思路的发展有帮助。

因此,解三角形对于高考数学复习的意义之大。

二、学情分析本节授课对象是高三学生,学生在高二的时候已经学过两个定理的证明和简单运用,本节是利用这两个定理来处理有关的三角形问题,即正弦定理和余弦定理的运用问题。

由具体例子出发探索研究三角形边角关系,激起学生的学习兴趣,使学生产生探索研究的愿望。

三、教学目标知识与技能:(1)掌握正弦定理,余弦定理,并能解决一些简单的三角形中的度量问题;(2)进一步熟练掌握正弦、余弦定理在解各类三角形中的应用,提高对正弦、余弦定理应用范围的认识。

过程与方法:(1)由具体的解三角形的例子出发,培养学生观察、比较、分析、概括的能力,体会数形结合的思想.(2)通过学习提高学生数据处理能力和获取知识能力.3.情感态度与价值观:通过本节学习,(1)鼓励学生积极、主动的参与教学的整个过程,激发其求知的欲望;培养学生乐于探究、敢于创新的精神.(2)认识数学应用价值和文化价值,发展数学应用意识,提高学生分析问题,解决问题的能力,提升学生的数形结合和化归能力,学会学以致用。

四、教学重点:解三角形过程中正弦定理、余弦定理的合理选取教学难点:解三角形过程中“边→角”“角→边”的互相转化五、学法与教法学法与教学用具学法:开展“动脑想、多交流、勤设问”的研讨式学习方法,逐渐培养学生“会观察”、“会类比”、“会分析”、“会论证”的能力。

人教A版高中数学必修5第一章 解三角形1.1 正弦定理和余弦定理教案

人教A版高中数学必修5第一章 解三角形1.1 正弦定理和余弦定理教案

专题22正弦定理和余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R a 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.高频考点二 利用正弦、余弦定理判定三角形的形状例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3. 【感悟提升】(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.高频考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7. 【方法规律】三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C . 2.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】21133.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=o ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.4.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8. 【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA ),则A =( )A.3π4 B.π3 C.π4 D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C.答案 C【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 . 【答案】【解析】因为0A π<<,所以sin 4A ==,又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】(62-,6+2)AB 的取值范围为(62-,6+2).【2015江苏高考,15】(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值 【答案】(17(243【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围. 【答案】(1)详见解析;(2)29,]28. 【解析】(1)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =,即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,故2B A π=+,即2B A π-=; (2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]28.(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.【解析】(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x .因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.当sin α+cos α=0时,由α是第二象限角,得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2013·北京卷)在△ABC 中,a =3,b =2 6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.【解析】(1)因为a =3,b =2 6,∠B=2∠A, 所以在△ABC 中,由正弦定理得3sin A =2 6sin 2A .所以2sin Acos A sin A =2 63.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B=2∠A,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =2 23.在△ABC 中,sin C =sin(A +B) =sin AcosB +cos Asin B =5 39. 所以c =a sin Csin A=5.(2013·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac. (1)求B ; (2)若sin Asin C =3-14,求C.=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. (2013·浙江卷)已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 【答案】C【解析】由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan2α=-34,选择C.(2013·重庆卷)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .2 2-1 【答案】C1.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30° B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1, 由A ∈(0°,180°),∴A =90°,∴C =60°.故选C. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6解析∵A=2π3,a=2,b=233,∴由正弦定理asin A=bsin B可得,sin B=basin A=2332×32=12.∵A=2π3,∴B=π6.答案 D3.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 B4.△ABC的内角A,B,C的对边分别为a,b,c,则“a>b”是“cos 2A<cos 2B”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为在△ABC中,a>b⇔sin A>sin B⇔sin2A>sin2B⇔2sin2A>2sin2B⇔1-2sin2A<1-2sin2B⇔cos 2A<cos 2B.所以“a>b”是“cos 2A<cos 2B”的充分必要条件.答案 C5.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C=4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.10.如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD 、AC 的长.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b=2,故S △ABC =12ab sin C =12×2×2×32= 3.12.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;精品文档. (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。

《10 正弦定理余弦定理》教学设计-优质教案

《10  正弦定理余弦定理》教学设计-优质教案

变式训练2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a .例3、.(1) 在△ABC 中,由已知条件解三角形,其中有两解的是 ____________(1).020,45,80b A C ===(2).030,28,60a c B ===(3).014,16,45a b A === (4). 012,15,120a c A ===(2) 在△ABC 中,边长0,2,45a x b B ==∠=,若该三角形有两解,则x 的取值 范围是 .注:解三角形时,三角形解的个数的判断-在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式解的个数一解两解一解一解NO.9正弦定理和余弦定理课后作业1、在ABC ∆中,sin :sin :sin 3:2:4A B C =,则cos C 的值为2、在等腰△ABC 中,若顶角A 的余弦为53-,则其底角B 的正弦值为3、在ABC ∆中,已知2cos c a B =,则此三角形的形状是4、在ABC ∆中,下列命题成立的是 (填上所有正确命题的序号) (1)sin()sin A B C += (2)cossin 22A B C+= (3)sin sin A B A B >⇔> (4)若sin 2sin 2,A B =则ABC ∆一定为等腰三角形 (5)若C 为钝角,则sin cos A B >5、在△ABC 中,若B =π4,b =2a ,则C =________6、△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是________.7、若△ABC 的内角A ,B ,C 所对的边为a ,b ,c 满足(a +b )2-c 2=4,且C =60,则ab 的值为________.8、已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________9、已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为________. 10、在锐角三角形ABC ∆中,角,,A B C 所对的边分别为,,,a b c 若2C B =,则cb的取值范围 是11、在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,已知20a c +=,2C A =,3cos 4A =. (1)求ca的值; (2)求b 的值.12、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知B =C ,2b =3a . (1) 求cos A 的值; (2) cos ⎝⎛⎭⎫2A +π4的值.。

正弦余弦定理教案

正弦余弦定理教案

正弦余弦定理教案教案标题:正弦余弦定理教案教案概述:本教案旨在帮助学生理解和应用正弦余弦定理,以解决与三角形相关的问题。

通过课堂讲解、示例演示和小组合作学习,学生将能够掌握正弦余弦定理的概念、公式和应用方法,并能够运用所学知识解决实际问题。

教学目标:1. 理解正弦余弦定理的概念和公式;2. 能够应用正弦余弦定理解决与三角形相关的问题;3. 培养学生的逻辑思维和问题解决能力;4. 提高学生的合作与沟通能力。

教学重点:1. 正弦余弦定理的概念和公式;2. 正确应用正弦余弦定理解决问题。

教学准备:1. 教师准备:教学课件、示例题和练习题、白板/黑板、标尺、三角形模型等;2. 学生准备:纸和笔。

教学过程:引入(5分钟):1. 教师通过引入实际问题,如测量高楼的高度或计算不可测量的边长等,激发学生对正弦余弦定理的兴趣;2. 教师提问学生是否了解正弦余弦定理,并引导学生思考如何解决这些问题。

讲解(15分钟):1. 教师通过PPT或板书,简要介绍正弦余弦定理的概念和公式;2. 教师结合实例演示,详细讲解如何应用正弦余弦定理解决问题;3. 教师强调定理的前提条件和使用注意事项。

示范(15分钟):1. 教师提供一些示例题,引导学生运用正弦余弦定理解决问题;2. 教师逐步讲解解题思路和步骤,鼓励学生积极参与讨论和提问;3. 教师展示解题过程,并解释每一步的原理和方法。

合作学习(20分钟):1. 学生分成小组,每个小组选择一个实际问题,并运用正弦余弦定理解决;2. 学生共同讨论问题、分析解题思路,并记录解题过程;3. 学生相互交流和合作,解决问题,并给出解决方案;4. 教师巡回指导、辅助和解答学生的问题。

总结(5分钟):1. 教师对学生的合作学习过程进行总结,强调正弦余弦定理的重要性和应用价值;2. 教师提醒学生复习和巩固所学内容,并鼓励学生在实际生活中运用正弦余弦定理。

作业布置:1. 学生完成课堂练习题,巩固所学知识;2. 学生选择一个实际问题,并运用正弦余弦定理解决,写出解题过程和结果。

正、余弦定理及其解三角形教案

正、余弦定理及其解三角形教案

正、余弦定理及其解三角形〖考纲要求〗1.掌握正、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦、余弦定理解决一些与测量和几何计算有关的实际问题。

〖三维目标〗1.知识与技能:掌握正、余弦定理,并能解决一些简单的三角形度量问题;2.过程与方法:通过对实际问题解决方案的自主探究,达到准确熟练应用正余弦定理的目的. 提高学生数学的提出、分析和解决实际问题的能力,加强数学表达和交流的能力.3.情感态度价值观:创设问题情境,激发学生观察、分析、探求的学习激情、强化学生参与意识、合作精神及主体作用,让学生在自我探索中体验成功的乐趣.〖复习建议〗熟练掌握三角形中的边角关系:内角和定理、正余弦定理、大边对大角定理、两边之和大于第三边定理,掌握边与角的转化方法;掌握三角形形状判定方法:角的判定、边的判定、综合判定、余弦定理判定.一、基础回顾: 1.正弦定理:R CcB b A a 2sin sin sin === 2.余弦定理:A bc c b a cos 2222⋅-+=;B ac c a b cos 2222⋅-+=C ab b a c cos 2222⋅-+=公式变形:bc a c b A 2cos 222-+= acb c a B 2cos 222-+=abc b a C 2cos 222-+=3.已知两边及其一边的对角,求解三角形4.三角形常用面积公式: (1)ah s 21=(2)A bc B ac C ab s sin 21sin 21sin 21===二、典例讲解:题型一 利用正弦定理求解三角形典例1.已知下列各三角形中的两边及其一边的对角,先判断三角形是否有解?有解得做出解答.60,65,10 )3(80,20,10 )2(105,8,7 (1)=========C c b A b a A b a思考:在△ABC 中,B A sin sin >是B A >的什么条件?题型二 余弦定理应用典例2.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且ca bC B +-=2cos cos . (1)求角B 的大小;(2)若,4,13=+=c a b 求△ABC 的面积.跟踪练习:在在△ABC 中,A 、B 、C 所对的边分别为a 、b 、c ,且31cos =A (1) 求A CB 2cos 2sin 2++的值 (2) 若3=a ,求bc 的最大值题型三 判断三角形的形状例3 、在△ABC 中,已知B C B C cos )sin(2sin +=,那么△ABC 一定是 ( )A .等腰直角三角形 B.等腰三角形C.直角三角形D.等边三角形 跟踪练习1. △ABC 中,B b A a cos cos =,则△ABC 的形状为( ) A .等腰三角形 B.直角三角形C.等腰三角形或直角三角形。

正余弦定理的应用举例教案

正余弦定理的应用举例教案

正余弦定理的应用举例教案章节一:正弦定理的应用1.1 导入:通过复习正弦定理的定义和公式,引导学生理解正弦定理在几何中的应用。

1.2 实例讲解:以一个等腰三角形为例,利用正弦定理求解三角形的角度和边长。

1.3 练习:给出几个应用正弦定理的例题,让学生独立解答。

章节二:余弦定理的应用2.1 导入:回顾余弦定理的定义和公式,引导学生理解余弦定理在几何中的应用。

2.2 实例讲解:以一个直角三角形为例,利用余弦定理求解三角形的角度和边长。

2.3 练习:给出几个应用余弦定理的例题,让学生独立解答。

章节三:正弦定理和余弦定理的综合应用3.1 导入:介绍正弦定理和余弦定理的综合应用,引导学生理解两者之间的关系。

3.2 实例讲解:以一个复杂的三角形为例,利用正弦定理和余弦定理相互验证,求解三角形的角度和边长。

3.3 练习:给出几个综合应用正弦定理和余弦定理的例题,让学生独立解答。

章节四:正弦定理和余弦定理在实际问题中的应用4.1 导入:引导学生思考正弦定理和余弦定理在实际问题中的应用,如测量学和工程学。

4.2 实例讲解:以一个实际问题为例,如测量一个未知角度的三角形,利用正弦定理和余弦定理求解。

4.3 练习:给出几个实际问题应用正弦定理和余弦定理的例题,让学生独立解答。

章节五:总结与拓展5.1 总结:回顾本节课学习的正弦定理和余弦定理的应用,让学生总结关键点和注意事项。

5.2 拓展:引导学生思考正弦定理和余弦定理在其他领域的应用,如物理学和天文学。

5.3 练习:给出一个拓展性问题,让学生独立解答,激发学生的思考和创造力。

正余弦定理的应用举例教案章节六:正弦定理在三角形判定中的应用6.1 导入:引导学生思考正弦定理在三角形判定中的应用,如判断三角形的类型。

6.2 实例讲解:以一个给定角度的三角形为例,利用正弦定理判断三角形的类型。

6.3 练习:给出几个利用正弦定理判断三角形类型的例题,让学生独立解答。

章节七:余弦定理在三角形判定中的应用7.1 导入:回顾余弦定理的定义和公式,引导学生理解余弦定理在三角形判定中的应用。

高中《正弦和余弦定理》数学教案4篇

高中《正弦和余弦定理》数学教案4篇

高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。

它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。

以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。

高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。

正余弦定理完美教案

正余弦定理完美教案

正余弦定理完美教案第一章:正弦定理简介1.1 学习目标了解正弦定理的定义和基本性质学会运用正弦定理解决实际问题1.2 教学内容正弦定理的定义及公式正弦定理与三角形内角和的关系正弦定理在实际问题中的应用1.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理的规律1.4 教学步骤1. 引入正弦定理的概念,引导学生了解正弦定理的定义和公式2. 通过示例,讲解正弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对正弦定理的理解和应用能力第二章:余弦定理简介2.1 学习目标了解余弦定理的定义和基本性质学会运用余弦定理解决实际问题2.2 教学内容余弦定理的定义及公式余弦定理与三角形内角和的关系余弦定理在实际问题中的应用2.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现余弦定理的规律2.4 教学步骤1. 引入余弦定理的概念,引导学生了解余弦定理的定义和公式2. 通过示例,讲解余弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对余弦定理的理解和应用能力第三章:正弦定理与余弦定理的综合应用3.1 学习目标学会运用正弦定理和余弦定理解决综合问题理解正弦定理和余弦定理之间的关系3.2 教学内容正弦定理和余弦定理的综合应用正弦定理和余弦定理之间的关系3.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理之间的关系3.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在解决综合问题中的应用2. 引导学生发现正弦定理和余弦定理之间的关系3. 安排练习题,巩固学生对正弦定理和余弦定理的综合应用能力第四章:正弦定理和余弦定理在几何中的应用4.1 学习目标学会运用正弦定理和余弦定理解决几何问题理解正弦定理和余弦定理在几何中的重要性4.2 教学内容正弦定理和余弦定理在几何中的应用正弦定理和余弦定理在几何中的重要性4.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在几何中的重要性4.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在几何问题中的应用2. 引导学生理解正弦定理和余弦定理在几何中的重要性3. 安排练习题,巩固学生对正弦定理和余弦定理在几何中的应用能力第五章:正弦定理和余弦定理在实际问题中的应用5.1 学习目标学会运用正弦定理和余弦定理解决实际问题理解正弦定理和余弦定理在实际问题中的意义5.2 教学内容正弦定理和余弦定理在实际问题中的应用正弦定理和余弦定理在实际问题中的意义5.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在实际问题中的意义5.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在实际问题中的应用2. 引导学生理解正弦定理和余弦定理在实际问题中的意义3. 安排练习题,巩固学生对正弦定理和余弦定理在实际问题中的应用第六章:正弦定理和余弦定理的综合练习6.1 学习目标巩固正弦定理和余弦定理的基本概念提高运用正弦定理和余弦定理解决综合问题的能力6.2 教学内容综合练习题,涵盖正弦定理和余弦定理的应用分析解题思路和方法6.3 教学方法提供综合练习题,引导学生独立解答分析解题思路,讨论解题方法6.4 教学步骤1. 提供综合练习题,要求学生独立解答2. 分析解题思路,引导学生运用正弦定理和余弦定理解决问题3. 讨论解题方法,总结正弦定理和余弦定理的应用技巧第七章:正弦定理和余弦定理在三角形中的应用7.1 学习目标深入学习正弦定理和余弦定理在三角形中的应用掌握正弦定理和余弦定理在解决三角形问题时的灵活运用7.2 教学内容正弦定理和余弦定理在三角形中的应用案例三角形特殊角度时的定理特殊性质7.3 教学方法采用案例教学,通过具体三角形问题讲解定理的应用引导学生通过几何画图工具直观理解定理的应用7.4 教学步骤1. 通过具体三角形问题,展示正弦定理和余弦定理的应用2. 引导学生利用几何画图工具,直观理解定理的应用过程3. 安排练习题,巩固学生对定理在三角形中应用的理解第八章:正弦定理和余弦定理在复杂三角形中的应用8.1 学习目标学习正弦定理和余弦定理在复杂三角形中的应用培养学生解决复杂三角形问题的能力8.2 教学内容复杂三角形问题中正弦定理和余弦定理的运用练习题及解题策略8.3 教学方法采用问题解决法,引导学生思考和探讨提供练习题,让学生通过实际操作解决问题8.4 教学步骤1. 引入复杂三角形问题,引导学生思考如何应用定理2. 提供练习题,让学生独立解决3. 讨论解题策略,引导学生总结解题技巧第九章:正弦定理和余弦定理在实际工程中的应用9.1 学习目标学习正弦定理和余弦定理在实际工程中的应用培养学生解决实际工程问题的能力9.2 教学内容正弦定理和余弦定理在工程测量、建筑等方面的应用案例实际工程问题中的解题方法9.3 教学方法采用案例教学,通过实际工程案例讲解定理的应用引导学生通过实际操作,理解定理在工程中的应用9.4 教学步骤1. 通过实际工程案例,展示正弦定理和余弦定理的应用2. 引导学生参与实际操作,理解定理在工程中的应用过程3. 安排练习题,巩固学生对定理在实际工程中应用的理解第十章:总结与复习10.1 学习目标总结正弦定理和余弦定理的主要内容和应用复习本门课程的知识点,为考试做好准备10.2 教学内容复习正弦定理和余弦定理的基本概念、性质和应用总结解题方法和技巧10.3 教学方法通过复习讲义和练习题,引导学生复习和巩固知识点组织复习课堂,鼓励学生提问和讨论10.4 教学步骤1. 发放复习讲义,让学生提前预习2. 组织复习课堂,引导学生复习重点知识点3. 提供练习题,让学生通过实际操作巩固知识点重点和难点解析第六章:正弦定理和余弦定理的综合练习环节:分析解题思路和方法重点和难点解析:此环节需要重点关注解题思路的培养和方法的多样性。

(完整版)正余弦定理教案

(完整版)正余弦定理教案

正弦定理和余弦定理安勤辉一。

教学目标:1知识与技能:认识正弦、余弦定理,了解三角形中的边与角的关系2过程与方法:通过具体的探究活动,了解正弦、余弦定理的内容,并从具体的实例掌握正弦、余弦定理的应用情感态度与价值观:通过对实例的探究,体会到三角形的和谐美,学会稳定性的重要二. 教学重、难点:1. 重点:正弦、余弦定理应用以及公式的变形2。

难点:运用正、余弦定理解决有关斜三角形问题。

知识梳理1.正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,则(1)S=错误!ah(h表示边a上的高).(2)S=错误!bc sin A=错误!ab sin C=错误!ac sin B。

(3)S=错误!r(a+b+c)(r为△ABC内切圆半径)问题1:在△ABC中,a=错误!,b=错误!,A=60°求c及B C问题2在△ABC中,c=6 A=30° B=120°求a b及C问题3在△ABC中,a=5,c=4,cos A=错误!,则b=通过对上述三个较简单问题的解答指导学生总结正余弦定理的应用;正弦定理可以解决(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边和其他两角余弦定理可以解决(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角我们不难发现利用正余弦定理可以解决三角形中“知三求三”知三中必须要有一边应用举例【例1】(1)(2013·湖南卷)在锐角△ABC中,角A,B所对的边长分别为a,b。

若2a sin B=错误! b,则角A等于 ( ).A.错误! B。

错误! C。

错误! D.错误!(2)(2014·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,c=4错误!,B =45°,则sin C=______.解析(1)在△ABC中,由正弦定理及已知得2sin A·sin B=错误!sin B,∵B为△ABC的内角,∴sin B≠0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个性化教案【知识梳理】1.正弦定理:asin A=bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos_A,b2=a2+c2-2ac cos_B,c2=a2+b2-2ab cos_C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.三角形内角和为π,故有sin A >0 sin A=sin(B+ C),cos A=-cos(B+ C)5.三角形大边对大角,或者说大角对大边。

即:若a>b, A> B,sin A> sin B 知一推二6.正弦值(不是1)的情况下,对应角度有两个,而余弦值与角度一一对应。

【常考考点】1.考查利用正、余弦定理解任意三角形的方法.2.考查利用正、余弦定理判断三角形的形状以及计算三角形的面积.3.正余弦定理的实际应用(灵活运用)【解题关键】1.三角函数及三角恒等变换的基础.2.正弦定理、余弦定理实现边角互化。

(通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的正确选择).3.能利用三角形的判定方法准确判断解三角形的情况。

4.三角形的边角关系(大边对大角)、三角形内角和180度。

5.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解【一条规律】在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.【两类问题】在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.【两种途径】根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于().A.5 2 B.10 2C.1063D.5 6解析由A+B+C=180°,知C=45°,由正弦定理得:asin A=csin C,即1032=c22.∴c=1063.答案 C2.在△ABC中,若sin Aa=cos Bb,则B的值为().A.30° B.45° C.60° D.90° 解析由正弦定理知:sin A sin A=cos Bsin B,∴sin B=cos B,∴B=45°.答案 B3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于().A.30° B.45° C.60° D.75°解析由余弦定理得:cos A=b2+c2-a22bc=1+4-32×1×2=12,∵0<A<π,∴A=60°. 答案 C4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为().A.3 3 B.2 3 C.4 3 D. 3解析∵cos C=13,0<C<π,∴sin C =223, ∴S △ABC =12ab sin C =12×32×23×223=4 3. 答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32, 故C =150°为三角形的最大内角. 答案 150°考点一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°, ∴sin A =32.∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin Csin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin Csin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________. 解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A =2,sin 2A +cos 2A =1, 联立解得sin A =255, 再由正弦定理得a sin A =bsin B , 代入数据解得a =210. 答案 255 210考点二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c ,整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π. (2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 【训练2】已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c , 且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2 A2+cos A =0, 得1+cos A +cos A =0, 即cos A =-12, ∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3, 则a 2=(b +c )2-bc ,又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.考点三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断. 解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C , 得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos B sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练3】 在△ABC 中,若a cos A =b cos B =ccos C ;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径). ∴sin A cos A =sin B cos B =sin C cos C .即tan A =tan B =tan C ,∴A =B =C . 答案 B考点四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎨⎧a 2+b 2-ab =4,ab =4,解得⎩⎨⎧a =2,b =2.(2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6, a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a . 联立方程组⎩⎨⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题. 【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103, 所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35, 所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20. 所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.,【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错因 忽视三角形中“大边对大角”的定理,产生了增根. 实录 由1+2cos(B +C )=0, 知cos A =12,∴A =π3, 根据正弦定理a sin A =bsin B 得: sin B =b sin A a =22,∴B =π4或3π4.以下解答过程略.正解 ∵在△ABC 中,cos(B +C )=-cos A , ∴1+2cos(B +C )=1-2cos A =0,∴A =π3. 在△ABC 中,根据正弦定理a sin A =bsin B , ∴sin B =b sin A a =22.∵a >b ,∴B =π4,∴C =π-(A +B )=512π. ∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12.【试一试】△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2 A =2a . (1)求ba ;(2)若c 2=b 2+3a 2,求B . [尝试解答] (1)由正弦定理得, sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A . 故sin B =2sin A ,所以ba = 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =1+3a2c. 由(1)知b 2=2a 2,故c 2=(2+3)a 2. 可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.【巩固练习】1 .在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin 3,a B b A =则角等于( )A.3πB.4πC.6π D.12π2 .设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定3 .在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则( ) A .6πB .3π C .23π D .56π 4 .ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A )32 (B 31 (C )232 (D 315.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a=,3b =,则c = ( )A .23B .2C 2D .16.设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin b c a A B +==,则角C =( )A .3πB .23πC .34π D .56π 7.已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )A .10B .9C .8D .58.在△ABC 中,3,5a b ==,1sin 3A =,则sin B = ( )A .15B .59 C .3D .19.已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是________10.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B(II)若1sin sin 4A C =,求C 11.在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =, a = 3, 2cos 3B =. (Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值.12.在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c,且2asinB=3b . (Ⅰ)求角A 的大小;(Ⅱ) 若a=6,b+c=8,求△ABC 的面积.13.(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且. a 2=b 2+c 2+3bc (Ⅰ)求A ;(Ⅱ)设a =S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.14.在△ABC 中,角A,B,C 的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.(1)求证:a,b,c 成等差数列;(2) 若C=23π,求ab的值.15.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=.(Ⅰ)求角A 的大小; (Ⅱ)若△ABC 的面积53S =5b =,求sin sin B C 的值.。

相关文档
最新文档