第四章1 《数字逻辑》(第二版)习题答案

合集下载

数字逻辑 课后习题答案

数字逻辑 课后习题答案
时序逻辑电路:电路在任意时刻产生的稳定输出值不仅与该时刻电路的输 入值有关,而且与电路过去的输入值有关。时序逻辑电 路又可根据电路中有无统一的定时信号进一步分为同 步时序逻辑电路和异步时序逻辑电路。
4. 最简电路是否一定最佳?为什么?
解答
一个最简的方案并不等于一个最佳的方案。最佳方案应满足全面的性能指标 和实际应用要求。所以,在求出一个实现预定功能的最简电路之后,往往要根据 实际情况进行相应调整。
2. 数字逻辑电路具有哪些主要特点?
解答
数字逻辑电路具有如下主要特点:
● 电路的基本工作信号是二值信号。 ● 电路中的半导体器件一般都工作在开、关状态。 ● 电路结构简单、功耗低、便于集成制造和系列化生产。产品价格低
廉、使用方便、通用性好。 ● 由数字逻辑电路构成的数字系统工作速度快、精度高、功能强、可
第二章
1 假定一个电路中,指示灯 F 和开关 A、B、C 的关系为 F=(A+B)C
试画出相应电路图。 解答
电路图如图 1 所示。
图1
2 用逻辑代数的公理、定理和规则证明下列表达式:
(1) AB + AC = AB + AC (2) AB + AB + AB + AB = 1 (3) AABC = ABC + ABC + ABC
= (A + B) ⋅ (A + B) =B
( ) F = BC + D + D ⋅ B + C ⋅ (AC + B)
= BC + D + (B + C)(AC + B) = BC + D + BC(AC + B) = BC + D + AC + B = B + D + AC

数字逻辑(第二版)毛法尧课后题答案(1_6章)

数字逻辑(第二版)毛法尧课后题答案(1_6章)

1.1把下列不同进制数写成按权展开式⑴(4517.239) 10= 4 X 103+5 X 102+1 X 101+7 X 10°+2 X 10-1+3 X 10-2+9 X 10-3(2) (10110.0101) 2=1X 24+0 X 23 + 1 X 22+1 X 21+0 X 2°+0 X 2-1+1 X 2-2+0 X 2-3 + 1 X 2-4⑶(325.744) 8=3 X82+2 X81+5 X8°+7 X8-1 +4 X8-2+4 X8-3⑷(785.4AF) 16=7 X 162+8 X 161+5 X 16°+4 X 16-1 +A X 16-2+F X 16-31.2完成下列二进制表达式的运算⑴(1110101) 2=(165) 8=(75) 16=7 X 16+5=(117) 10⑵(0.110101) 2=(0.65) 8=(0.D4) 16=13 X 16-1 +4 X 16-2 =(0.828125) 10 ⑶(10111.01) 2=(27.2) 8=(17.4) 16=1 X 16+7+4 X 16-1=(23.25) 101.4将下列十进制数转换成二进制数 、八进制数和十六进制数,精确到小数点后5位:⑴(29) 10=(1D) 16=(11101) 2=(35) 8⑵(0.207) 1o =(0.34FDF) 16=(0.001101) 2=(0.15176) 8习题一(1) 10111+101.101= U100.1Q11U111.000十)MJLURD100.1D1⑶ 10.01X1.01=10.110110.01 X) 1.01 10 01 +) 10 0110.1101⑵ noo-m,on -100.101UOOJOOO-)U1,OU1Q0.101⑷ lool oooi-njoi -10.110,1moi) 10010D0Anunmoi moi1.3将下列二进制数转换成十进制数 、八进制数和十六进制数(33.333) io =(21.553F7) 16=(100001.010101) 2=(41.25237) 81.5如何判断一个二进制正整数B=b 6b 5b 4b 3b 2b 1b o 能否被 ⑷10整除?解:一个二进制正整数被(2) 10除时,小数点向左移动一位,被⑷10除时,小数点向左移动两位, 能被整除时,应无余数 故当b 1=0和b 0=0时,二进制正整数 B=b 6b 5b 4b 3b 2b 1b 0能否被(4)1。

数字逻辑(第二版)毛法尧课后题答案(1-6章)

数字逻辑(第二版)毛法尧课后题答案(1-6章)

习题一1.1 把下列不同进制数写成按权展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.001101)2=(0.15176)8⑶(33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶-10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。

数字逻辑课后答案 第四章

数字逻辑课后答案 第四章

第四章 习题答案1.设计4个寄存器堆。

解:2. 设计具有4个寄存器的队列。

解:3.设计具有4个寄存器的堆栈解:可用具有左移、右移的移位寄存器构成堆栈。

寄存器组输入数据输出数据4.SRAM 、DRAM 的区别解:DRAM 表示动态随机存取存储器,其基本存储单元是一个晶体管和一个电容器,是一种以电荷形式进行存储的半导体存储器,充满电荷的电容器代表逻辑“1”,“空”的电容器代表逻辑“0”。

数据存储在电容器中,电容存储的电荷一般是会慢慢泄漏的,因此内存需要不时地刷新。

电容需要电流进行充电,而电流充电的过程也是需要一定时间的,一般是0.2-0.18微秒(由于内存工作环境所限制,不可能无限制的提高电流的强度),在这个充电的过程中内存是不能被访问的。

DRAM 拥有更高的密度,常常用于PC 中的主存储器。

SRAM 是静态的,存储单元由4个晶体管和两个电阻器构成,只要供电它就会保持一个值,没有刷新周期,因此SRAM 比DRAM 要快。

SRAM 常常用于高速缓冲存储器,因为它有更高的速率;5. 为什么DRAM 采用行选通和列选通解:DRAM 存储器读/写周期时,在行选通信号RAS 有效下输入行地址,在列选通信号CAS 有效下输入列地址。

如果是读周期,此位组内容被读出;如果是写周期,将总线上数据写入此位组。

由于DRAM 需要不断刷新,最常用的是“只有行地址有效”的方法,按照这种方法,刷新时,是在RAS 有效下输入刷新地址,存储体的列地址无效,一次选中存储体中的一行进行刷新。

每当一个行地址信号RAS 有效选中某一行时,该行的所有存储体单元进行刷新。

6. 用ROM 实现二进制码到余3码转换 解: 真值表如下:8421码 余三码B B BG G G栈顶SR 1SR 2SR 3输入数据输出数据压入弹出3232BG0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 10 0 110 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 11 0 1 01 0 1 11 1 0 0最小项表达式为: G=G=G=G=阵列图为:7. 用ROM 实现8位二进制码到8421码转换10103∑)9,8,7,6,5(2∑)9,4,3,2,1(1∑)8,7,4,3,0(0∑)8,6,4,2,0(G 3G 2G 1G 0B 3B 2B 1B B 0解:输入为8位二进制数,输出为3位BCD码,12位二进制数,所以,所需8ROM的容量为:2*12=30728.ROM、EPROM和EEPROM的区别解:ROM 指的是“只读存储器”,即Read-Only Memory。

数字逻辑设计习题参考答案(第4章)

数字逻辑设计习题参考答案(第4章)

第4章 组合逻辑电路4—1 分析下图所示电路的逻辑功能,写出输出的逻辑表达式,列出真值表,说明其逻辑功能。

C B)⊙(⊕=A Y经过真值表分析其逻辑功能为当A 、B 、C 三个输入信号中有且只有两个为1时输出为1,其他为0。

4—2 逻辑电路如下图所示: 1、写出S 、C 、P 、L 的函数表达式;2、当取S 和C 作为电路的输出时,此电路的逻辑功能是什么?X Z Y S ⊕⊕= YZ X Z Y C +⋅⊕=)(Z Y P ⊕= Z Y L ⋅=当取S 和C 作为电路的输出时,此电路的逻辑功能是1位全加器,其中X 为低位的进位,S 为当前位的和,C 为进位。

(由真值表可C 与YZ X Z Y +⋅+)(完全一致。

)ZB CBA ⋅CB)⊙(⋅A Z)(Z Y X ⊕⋅ZY X ⊕⋅)(Z Y X ⊕⋅ZY ⋅12344—3 下图是由三个全加器构成的电路,试写出其输出1F ,2F ,3F ,4F 的表达式。

Z Y X F ⊕⊕=1 Z Y X F ⋅⊕=)(2Z XY Z XY F +⋅=3 XYZ F =44—4 下图是由3线/8线译码器74LS138和与非门构成的电路,试写出1P 和2P 的表达式,列出真值表,说明其逻辑功能。

ABC C B A m m m m Y Y P +⋅⋅=+=⋅=⋅=70707016543216543212m m m m m m Y Y Y Y Y Y P +++++=⋅⋅+⋅⋅=C B C A B A ++=P1的逻辑功能为当三个输入信号完全一致时输出为1。

P2的逻辑功能为当上输入信号不完全一致时输出为1。

4—5使用74LS138 译码器及少量门电路对三台设备状态进行监控,由不同指示灯进行指示。

当设备正常工作时,指示灯绿灯亮;当有一台设备出故障时,指示灯红灯亮;当有两台设备出故障时,指示灯黄灯亮;当有三台设备出故障时,指示灯红灯和黄灯都亮。

1234解:设输入变量A 、B 、C 分别对应三台设备的状态,0表示故障,1表示正常;输出变量X 、Y 、Z 表示绿、黄、红三个灯的亮灭,0表示灭,1表示亮,根据题意可得真值表如下:设ABC 分别连入74LS138的A 2A 1A 0 由真值表得 42104210Y Y Y Y m m m m Y ⋅⋅⋅=+++=6530Y Y Y Y Z ⋅⋅⋅=4—6 下图3.6是由八选一数据选择器构成的电路,试写出当1G 0G 为各种不同的取值时的输出Y 的表达式。

数字逻辑第四章课后答案

数字逻辑第四章课后答案

即 A1=A,A0=C,D0=1, D2= B ,D1=D3= B。逻辑图如下图(b)所示。
C AB 1
1
B
AC
1
1
A1 A0 D3 D2 D1 D0 4 选 1 数据选择器
Y
A1 A0 D3 D2 D1 D0 4 选 1 数据选择器
Y
Y (a) AB 作为地址
Y (b) AC 作为地址
4-9
分析图 4.49 所示电路,写出输出 Y 的逻辑函数式并化简。
Y DCB A DC BA DC B A CB A DC BA DC B A
卡诺图化简
DC BA 00 01 11 10 00 0 0 0 1 01 0001 11 1 1 0 0 10 1 1 0 1
化简后的逻辑函数 Y DB A DB DC A
4-10 试用 8 选 1 数据选择器产生逻辑函数 Y AC ABC A BC
B A1 8 选 1 数据选择器
A A2
F
Y
如果用 BCD 作为数据选择器的地址(B=A2,C=A1,D=A0),A 作为数据,
则函数变换成
Y ABCD AB CD A BCD 1 BCD 1 BC D 1 BC D
D7= D6= D4=1,D2= D0=0, D5= D1=A, D3 = A
A(B C) M1 M2
&
&
=
AB C
(b) 不用约束项化简
4- 4
盛建伦:《数字逻辑与 VHDL 逻辑设计》习题解答
习题 4-5 的逻辑图
4-6 试用 3 线-8 线译码器 74HC138 和门电路实现如下多输出逻辑函数并画出逻辑图。
Y1 ABC A(B C) Y2 AC AB Y3 ( A B)(A C) Y4 ABC A B C

数字逻辑(第二版)毛法尧课后题答案

数字逻辑(第二版)毛法尧课后题答案
∴按从小到大顺序排序为:
(27)10 , (00111000)8421BCD ,(135.6)8,(11011001)2 (3AF)16,
9
第二章 逻辑代数基础
2.1 分别指出变量(A,B,C,D)在何种取值时, 下列函数的值为1?
(1)F BD ABC
(0100,0111,1100,1101,1111)
16
(4)F A( A B C)(A C D)(E C D) A( A C D)(E C D) ( AC AD)(E C D) ACE ADE
(5)F AC ABC BC ABC
F AC ABC BC ABC ( AC ABC)(B C)(A B C) C(A B)(B C)(A B C) C(A B)(B C) C(B AC) BC
7
1.10 将下列8421BCD码转换成十进制数和二进制数 (1)011010000011 (2)01000101.1001
解:(1)(011010000011)8421BCD=(683)D=(1010101011)2 (2)(01000101.1001)8421BCD=(45.9)D=(101101.1110)2
21
(2)F ( A, B, C, D) AB ACD AC BC
AB 00
01 11
10
CD
00 1
1
1
0
1
1
01
1
0
11 1
0
10 1
0
1
1
1
1
(2)F ( A, B,C, D) AB AC BC
最简或与表达式: F ABC ABC F F (A B C)(A B C)
20
2.10 用卡诺图化简下列函数 , 并写出最简“与 或”表达式和最简“或 与”表达式

数字逻辑(第二版)毛法尧课后题解答(1-6章)

数字逻辑(第二版)毛法尧课后题解答(1-6章)

习题一1.1 把下列不同进制数写成按权展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.001101)2=(0.15176)8⑶(33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶-10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。

吉林大学-数字逻辑(第2版)习题答案

吉林大学-数字逻辑(第2版)习题答案

毛法尧第二版习题一1.1 把下列不同进制数写成按权展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.00111)2=(0.15176)8采用0舍1入规则⑶(33.333)10=(21.553F7)16=(100001.01011)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶-10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。

数字逻辑(第二版)毛法尧课后题答案

数字逻辑(第二版)毛法尧课后题答案
22
(3)F ( A, B,C, D) BC D D(B C)( AD B) BC D AD BБайду номын сангаас
AB CD 00
00 0
01 11 10
1
1
0
01
1
1
11 1
1
1
1
1
1
10 0
1
1
0
(3)F B D
23
2.11用卡诺图判断函数 F(A、B、C、D)和G(A 、B、C、D)的关系
(3)(325.744)8 =3×82+2×81+5×80+7×8-1+4×8-2+4×8-3
(4)(785.4AF)16 =7×162+8×161+5×160+4×16-1+A×16-2+F×16-3
1
1.2 完成下列二进制表达式的运算
(1)10111+101.101 (2)1100-111.011
7
1.10 将下列8421BCD码转换成十进制数和二进制数 (1)011010000011 (2)01000101.1001
解:(1)(011010000011)8421BCD=(683)D=(1010101011)2 (2)(01000101.1001)8421BCD=(45.9)D=(101101.1110)2
4
1.8 用原码、反码和补码完成如下运算
(2)0.010110-0.100110 解(2)[0.010110-0.100110]原=1.010000
∴ 0.010110-0.100110=-0.010000 [0.010110-0.100110]反=[0.010110]反+[-0.100110]反

数字逻辑(第二版)毛法尧课后题答案

数字逻辑(第二版)毛法尧课后题答案
17
(4)F A(A B C)(A C D)(E CD) A(A C D)(E C D) A(C D)(E C D) A(C D)E
(5)F AC ABC BC ABC (AC ABC)(B C)(A B C) C(A B)(B C)(A B C) CB(A B) BC
(3)(325.744)8 =3×82+2×81+5×80+7×8-1+4×8-2+4×8-3
(4)(785.4AF)16 =7×162+8×161+5×160+4×16-1+A×16-2+F×16-3
1
1.2 完成下列二进制表达式的运算
(1)10111+101.101 (2)1100-111.011
1.11 试用8421BCD码、余3码和格雷码分别表示下列各数
(1)578)10 (2)(1100110)2
解:(578)10
=(010101111000)8421BCD =(100010101011)余3 =(1001000010)2 =(1101100011)G
解:(1100110)2
=(1010101)G =(102)10 =(000100000010)8421BCD =(010000110101)余3
=02550+99877=02427 ∴2550-123=+2427
6
1.9 分别用“对9的补数“和”对10的补数完成下列十进制 数的运算
(2)537-846 解:(2)[537-846]9补=[537]9补+[-846]9补 =0537+9153=9690 ∴537-846=-309 [537-846]10补=[537]10补+[-846]10补 =0537+9154=9691 ∴537-846=-309

第四章 《数字逻辑》(第二版)习题答案

第四章 《数字逻辑》(第二版)习题答案

第四章1.分析图1所示的组合逻辑电路,说明电路功能,并画出其简化逻辑电路图。

图1 组合逻辑电路解答○1根据给定逻辑电路图写出输出函数表达式CABCBABCAABCF⋅+⋅+⋅=○2用代数法简化输出函数表达式CBA ABC CBA ABC C)B(A ABCCABCBABCAABCF+ =+ ++ =+ +=⋅+⋅+⋅=○3由简化后的输出函数表达式可知,当ABC取值相同时,即为000或111时,输出函数F的值为1,否则F的值为0。

故该电路为“一致性电路”。

○4实现该电路功能的简化电路如图2所示。

图22. 分析图3所示的逻辑电路,要求:(1) 指出在哪些输入取值下,输出F 的值为1。

(2) 改用异或门实现该电路的逻辑功能。

图3 组合逻辑电路解答分析给定逻辑电路,可求出输出函数最简表达式为 C B A C B A F ⊕⊕=⊕⊕=○1 当ABC 取值000、011、101、110时,输出函数F 的值为1; ○2 用异或门实现该电路功能的逻辑电路图如图4所示。

图43.析图5所示组合逻辑电路,列出真值表,并说明该电路的逻辑功能。

图5 组合逻辑电路= 1 = 1 = 1 A W B C D X Y Z . . .解答○1 写出电路输出函数表达式如下: D C Z C,B Y B,A X A,W ⊕=⊕=⊕==○2 列出真值表如表1所示。

表1ABCD WXYZ ABCD WXYZ 0000 0001 0010 0011 0100 0101 0110 0111 0000 0001 0011 0010 0110 0111 0101 0100 1000 1001 1010 1011 1100 1101 1110 1111 1100 1101 1111 1110 1010 1011 1001 1000○3 由真值表可知,该电路的功能是将四位二进制码转换成Gray 码。

4.设计一个组合电路,该电路输入端接收两个2位二进制数A=A 2A 1,B=B 2B 1。

(完整版)数字逻辑习题答案毛法尧第二版

(完整版)数字逻辑习题答案毛法尧第二版
习题二
2.1分别指出变量(A,B,C,D)在何种取值组合时,下列函数值为1。
如下真值表中共有6种
如下真值表中共有8种
如下真值表中除0011、1011、1111外共有13种:
2.2用逻辑代数公理、定理和规则证明下列表达式:

证明:左边= =右边
∴原等式成立.

证明:左边= =右边
∴原等式成立.

证明:左边=
解:根据题目要求的功能,可列出真值表如下:
用卡诺图化简:z1= +
z2= +
∴转化为“与非与非”式为:
逻辑电路为:
3.8设计一个检测电路,检测四位二进制码中1的个数是否为奇数,若为偶数个1,则输出为1,否则为0。
解:用A、B、C、D代表输入的四个二进制码,F为输出变量,依题意可得真值表:
卡诺图不能化简:
=
⑶ = =
=
⑷ = =
=
3.2将下列函数简化,并用“与或非”门画出逻辑电路。
⑴ =
⑵ ∑m(1,2,6,7,8,9,10,13,14,15)=
3.3分析下图3.48所示逻辑电路图,并求出简化逻辑电路。
解:如上图所示,在各个门的输出端标上输出函数符号。则
=A(B⊙C)+C(A⊙B)
真值表和简化逻辑电路图如下,逻辑功能为:依照输入变量ABC的顺序,若A或C为1,其余两个信号相同,则电路输出为1,否则输出为0。
∴537-846=-309
[537-846]10补=[537]10补+[-846]10补=0537+9154=9691
∴537-846=-309
1.10将下列8421BCD码转换成二进制数和十进制数:
⑴(0110,1000,0011)8421BCD=(1010101011)2=(683)10

数字逻辑(第2版)习题答案

数字逻辑(第2版)习题答案

毛法尧第二版习题一1.1 把下列不同进‎制数写成按权‎展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进‎制表达式的运‎算:1.3 将下列二进制‎数转换成十进‎制数、八进制数和十‎六进制数:⑴(111010‎1)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101‎)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125‎)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制‎数转换成二进‎制数、八进制数和十‎六进制数,精确到小数点‎后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.00111)2=(0.15176)8采用0舍1入‎规则⑶(33.333)10=(21.553F7)16=(100001‎.01011)2=(41.25237)81.5 如何判断一个‎二进制正整数‎B=b6b5b4‎b3b2b1‎b0能否被(4)10整除?解: 一个二进制正‎整数被(2)10除时,小数点向左移‎动一位, 被(4)10除时,小数点向左移‎动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数‎B=b6b5b4‎b3b2b1‎b0能被(4)10整除.1.6 写出下列各数‎的原码、反码和补码:⑴0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶-10110[-10110]原=110110‎; [-10110]反=101001‎; [-10110]补=101010‎1.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完‎成如下运算:⑴000010‎1-001101‎0[000010‎1-001101‎0]原=100101‎01;∴000010‎1-001101‎0=-001010‎1。

(完整word版)《数字逻辑》(第二版)习题答案

(完整word版)《数字逻辑》(第二版)习题答案

第一章1. 什么是模拟信号?什么是数字信号?试举出实例。

模拟信号-----指在时间上和数值上均作连续变化的信号。

例如,温度、压力、交流电压等信号。

数字信号-----指信号的变化在时间上和数值上都是断续的,阶跃式的,或者说是离散的,这类信号有时又称为离散信号。

例如,在数字系统中的脉冲信号、开关状态等。

2. 数字逻辑电路具有哪些主要特点?数字逻辑电路具有如下主要特点:●电路的基本工作信号是二值信号。

●电路中的半导体器件一般都工作在开、关状态。

●电路结构简单、功耗低、便于集成制造和系列化生产。

产品价格低廉、使用方便、通用性好。

●由数字逻辑电路构成的数字系统工作速度快、精度高、功能强、可靠性好。

3. 数字逻辑电路按功能可分为哪两种类型?主要区别是什么?根据数字逻辑电路有无记忆功能,可分为组合逻辑电路和时序逻辑电路两类。

组合逻辑电路:电路在任意时刻产生的稳定输出值仅取决于该时刻电路输入值的组合,而与电路过去的输入值无关。

组合逻辑电路又可根据输出端个数的多少进一步分为单输出和多输出组合逻辑电路。

时序逻辑电路:电路在任意时刻产生的稳定输出值不仅与该时刻电路的输入值有关,而且与电路过去的输入值有关。

时序逻辑电路又可根据电路中有无统一的定时信号进一步分为同步时序逻辑电路和异步时序逻辑电路。

4. 最简电路是否一定最佳?为什么?一个最简的方案并不等于一个最佳的方案。

最佳方案应满足全面的性能指标和实际应用要求。

所以,在求出一个实现预定功能的最简电路之后,往往要根据实际情况进行相应调整。

5. 把下列不同进制数写成按权展开形式。

(1) (4517.239)10 (3) (325.744)8(2) (10110.0101)2 (4) (785.4AF)16解答(1)(4517.239)10 = 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3(2)(10110.0101)2= 1×24+1×22+1×21+1×2-2+1×2-4(3)(325.744)8 = 3×82+2×81+5×80+7×8-1+4×8-2+4×8-3 (4) (785.4AF)16 = 7×162+8×161+5×160+4×16-1+10×16-2+15×16-36.将下列二进制数转换成十进制数、八进制数和十六进制数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章
1.分析图1所示的组合逻辑电路,说明电路功能,并画出其简化逻辑电路图。

图1 组合逻辑电路
解答
○1根据给定逻辑电路图写出输出函数表达式
C
A B C
B
A B C
A
A B C
F⋅
+

+

=
○2用代数法简化输出函数表达式
C
B
A ABC C
B
A ABC C)
B
(A ABC
C
ABC
B
ABC
A
ABC
F
+ =
+ +
+ =
+ +
=

+

+

=
○3由简化后的输出函数表达式可知,当ABC取值相同时,即为000或111时,输出函数F的值为1,否则F的值为0。

故该电路为“一致性电路”。

○4实现该电路功能的简化电路如图2所示。

图2
4.设计一个组合电路,该电路输入端接收两个2位二进制数A=A2A1,B=B2B1。

当A>B时,输出Z=1,否则Z=0。

解答
○1根据比较两数大小的法则,可写出输出函数表达式为
○2根据所得输出函数表达式,可画出逻辑电路图如图6所示。

图6
6.假定X=AB代表一个2位二进制数,试设计满足如下要求 (2) Y=X3
(Y也用二进制数表示。

)
○1假定AB表示一个两位二进制数,设计一个两位二进制数立方器。

由题意可知,电路输入、输出均为二进制数,输出二进制数的值是输入二进制数AB的立方。

由于两位二进制数能表示的最大十进制数为3,3的立方等于27,表示十进制数27需要5位二进制数,所以该电路应有5个输出。

假定用TWXYZ表示输出的5位二进制数,根据电路输入、输出取值关系可列出真值表如表4所示。

由真值表可写出电路的输出函数表达式为
T=
AB,
=
=
=
=
B
W
AB,
Z
A,
Y
0,
X
根据所得输出函数表达式,可画出用与非门实现给定功能的逻辑电路图如图9所示。

图9
8.设计一个“四舍五入”电路。

该电路输入为1位十进制数的8421码,当其值大于或等于5时,
输出F 的值为1,否则F 的值为0。

解答
○1 根据题意,可列出真值表如表5所示。

表5

2 由真值表可写出输出函数表达式为 F(A,B,C,D)=∑m(5~9)+∑d(10~15)
经化简变换后,可得到最简与非表达式为
○3逻辑电路图如图11所示。

图11
10.设计一个加/减法器,该电路在M控制下进行加、减运算。

当M=0时,实现全加器功能;
当M=1时,实现全减器功能。

解答○1设:A-----被加数/被减数
B-----加数/减数
C-----来自低位的进位输入 /来自低位的借位输入
F-----本位“和”/本位“差”
G-----向高位的“进位” /向高位的“进位”
○2由真值表可写出输出函数表达式:
M=0: F( A,B,C) = ∑m(1,2,4,7)
G( A,B,C) = ∑m(3,5,6,7)
M=1: F( A,B,C) = ∑m(1,2,4,7)
G( A,B,C) = ∑m(1,2,3,7)
经化简变换后,可得函数表达式如下:
○3 根据逻辑表达式,可作出逻辑电路图如图13所示。

图 13
12.下列函数描述的电路是否可能发生竞争?竞争结果是否会产生险象?在什么情况下产生险
象?若产生险象,试用增加冗余项的方法消除。

(2) BC CD A AB F ++=2 因为逻辑表达式BC CD A AB F ++=2中有
逻辑变量A 以互补形式出现,故会发生竞争。

但由于不论BCD 取何值,表达式都不会变成
A A + 或者A A ⋅的形式,所以不会产生险象。

相关文档
最新文档