基本初等函数复习题型最细最精

合集下载

2024年高考数学总复习第二章《函数与基本初等函数》函数的单调性与最值

2024年高考数学总复习第二章《函数与基本初等函数》函数的单调性与最值

2024年高考数学总复习第二章《函数与基本初等函数》§2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质.1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的增区间.提示(-∞,-a ]和[a ,+∞).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.(×)(2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)所有的单调函数都有最值.(×)题组二教材改编2.函数f (x )=x 2-2x 的单调递增区间是____________.答案[1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是______.答案24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________.答案(-∞,2]解析由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2.题组三易错自纠5.函数y =12log (x 2-4)的单调递减区间为________.答案(2,+∞)6.若函数f (x )=|x -a |+1的增区间是[2,+∞),则a =________.答案2解析∵f (x )=|x -a |+1的单调递增区间是[a ,+∞),∴a =2.7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.答案[-1,1)解析-2≤a+1≤2,-2≤2a≤2,a+1>2a,解得-1≤a<1.8.函数f(x)1x,x≥1,-x2+2,x<1的最大值为________.答案2解析当x≥1时,函数f(x)=1x为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.题型一确定函数的单调性命题点1求函数的单调区间例1(1)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案D解析函数y=x2-2x-8=(x-1)2-9图象的对称轴为直线x=1,由x2-2x-8>0,解得x>4或x<-2,所以(4,+∞)为函数y=x2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f(x)=ln(x2-2x-8)的单调递增区间为(4,+∞).(2)函数y=-x2+2|x|+3的单调递减区间是__________________.答案[-1,0],[1,+∞)解析由题意知,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4,二次函数的图象如图.由图象可知,函数y=-x2+2|x|+3的单调递减区间为[-1,0],[1,+∞).命题点2讨论函数的单调性例2判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解函数f (x )=ax 2+1x(1<a <3)在[1,2]上单调递增.证明:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.引申探究如何用导数法求解本例?解f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3,所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上是增函数.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.跟踪训练1(1)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x -xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是______________.答案(-∞,2]解析因为f (x )在R 上单调递增,所以a -1>0,即a >1,因此g (x )的单调递减区间就是y =|x -2|的单调递减区间(-∞,2].(3)函数f (x )=|x -2|x 的单调递减区间是________.答案[1,2]解析f (x )2-2x ,x ≥2,x 2+2x ,x <2.画出f (x )图象,由图知f (x )的单调递减区间是[1,2].题型二函数的最值1.函数y =x 2-1x 2+1的值域为____________.答案[-1,1)解析由y =x 2-1x 2+1,可得x 2=1+y 1-y.由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为________.答案2解析由1-x 2≥0,可得-1≤x ≤1.可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin θ∈[0,π],所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为________.答案[3,+∞)解析函数y 2x +1,x ≤-1,,-1<x <2,x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞).4.函数y =3x +1x -2的值域为________________.答案{y |y ∈R 且y ≠3}解析y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}.5.函数f (x )-log 2(x +2)在区间[-1,1]上的最大值为________.答案3解析由于y 在[-1,1]上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ()A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关答案B 解析方法一设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.方法二由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)分离常数法:形如求y=cx+dax+b(ac≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三函数单调性的应用命题点1比较函数值的大小例3已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f -12,b=f(2),c=f(3),则a,b,c的大小关系为()A.c>a>b B.c>b>aC.a>c>b D.b>a>c答案D解析根据已知可得函数f(x)的图象关于直线x=1对称,且在(1,+∞)上是减函数,因为a=f -12f522<52<3,所以b>a>c.命题点2解函数不等式例4(2018·四川成都五校联考)设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是()A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}答案B解析∵f(x)是奇函数,f(-3)=0,∴f(-3)=-f(3)=0,解得f(3)=0.∵函数f(x)在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0;当x>3时,f(x)>0.∵函数f(x)是奇函数,∴当-3<x<0时,f(x)>0;当x<-3时,f(x)<0.则不等式f (x )<0的解集是{x |0<x <3或x <-3}.命题点3求参数的取值范围例5(1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是()A.π4B.π2C.3π4D .π答案C解析∵f (x )=cos x -sin x =-2sin∴当x -π4∈-π2,π2,即x ∈-π4,3π4时,y =sinf (x )=-2sin ∴-π4,3π4是f (x )在原点附近的单调减区间,结合条件得[0,a ]⊆-π4,3π4,∴a ≤3π4,即a max =3π4.(2)已知函数f (x )2+12a -2,x ≤1,x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案(1,2]解析由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)(2018·安徽滁州中学月考)已知函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是______________.答案(-4,4]解析设g (x )=x 2-ax +3a ,根据对数函数及复合函数的单调性知,g (x )在[2,+∞)上是增函数,且g (2)>0,2,a >0,∴-4<a ≤4,∴实数a 的取值范围是(-4,4].思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2(1)如果函数f (x )2-a )x +1,x <1,x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案32,解析对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数.-a >0,>1,2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是32,(2)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是______________.答案12,解析因为函数f (x )是定义在区间[0,+∞)上的增函数,且满足f (2x -1)<所以0≤2x -1<13,解得12≤x <23.1.下列函数中,在区间(0,+∞)上为增函数的是()A .y =ln(x +2)B .y =-x +1C .yD .y =x +1x答案A解析函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.已知函数f(x)=x2-2x-3,则该函数的单调递增区间为()A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞)答案B解析设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3,所以函数f(x)的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f(x)的单调递增区间为[3,+∞).3.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)答案A解析因为f(x)是偶函数,所以f(-3)=f(3),f(-2)=f(2).又因为函数f(x)在[0,+∞)上是增函数,所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).4.已知函数f(x)-2a)x,x≤1,a x+13,x>1,当x1≠x2时,f(x1)-f(x2)x1-x2<0,则a的取值范围是(),13 B.13,12,12 D.14,13答案A解析当x1≠x2时,f(x1)-f(x2)x1-x2<0,∴f(x)是R上的减函数.∵f(x)-2a)x,x≤1,a x+13,x>1,-2a<1,a<1,-2a≥13,∴0<a≤13.5.设f (x )x -a )2,x ≤0,+1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为()A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案D 解析∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知函数f (x )2x ,x ≥1,+c ,x <1,则“c =-1”是“函数f (x )在R 上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若函数f (x )在R 上单调递增,则需log 21≥c +1,即c ≤-1.由于c =-1,即c ≤-1,但c ≤-1不能得出c =-1,所以“c =-1”是“函数f (x )在R 上单调递增”的充分不必要条件.7.已知奇函数f (x )在R 上是增函数.若a =-b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为________________.答案a >b >c 解析∵f (x )在R 上是奇函数,∴a =-log f (log 25).又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8,∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是______________.答案-14,0解析当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是-140.9.记min{a ,b },a ≤b ,,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为________.答案6解析由题意知,f (x )+2,0≤x ≤4,-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.11.已知f (x )=x x -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明当a =-2时,f (x )=x x +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增.(2)解设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )x ),x >0,f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )x +1)2,x >0,(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1,由g (x )在[-2,2]上是单调函数,知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )3,x ≤0,(x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是()A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案D 解析∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案(-∞,-2)解析二次函数y 1=x 2-4x +3的对称轴是x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2020x +ln(x 2+1+x )-2020-x +1,则不等式f (2x -1)+f (2x )>2的解集为____________.答案解析由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上单调递增,∴2x -1>-2x ,∴x >14,∴16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1.(1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解(1)2-1>0,x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2).(2)∵函数f (x )在(0,3]上是增函数,∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立.设g (a )=-2ma +m 2,a ∈[-1,1],∴(-1)≥0,(1)≥0,m +m 2≥0,2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。

高中数学必修一基本初等函数常考题型总结归纳(无答案)

高中数学必修一基本初等函数常考题型总结归纳(无答案)

函数的概念及其表示➢定义域一.常见的几种求定义域情况n :当n为偶数时,x≥01.√x2.分式:分母≠03.log a x : 真数位置的x>0(a>0且a≠1)+kπ,kϵZ4.tan x :x≠π2注:不能先化简再求定义域二.抽象函数求定义域定义域只说x,()内范围一致➢值域1.直接法2.配方法3.图像法4.分离常数法5.换元法➢ 解析式 1.配凑法 2.换元法 3.待定系数法 4.方程组法一.定义域1.函数f (x )=log 2x -1的定义域为 2.[]_______)31(1,0)12(的定义域,求的定义域为已知x f x f -- 3.已知函数f (x )的定义域为[3,6],则函数y =f (2x )log 12(2-x )的定义域为( )A .[32,+∞)B .[32,2)C .(32,+∞)D .[12,2)4.已知函数32341++-=ax ax ax y 的定义域为R ,求实数a 的取值范围5.若函数34)(2++=x ax x f 的定义域为R ,则实数a 的取值范围是二.判断是否为同一函数1.下列是同一函数的是A. B.C. x x y -1·1+= 21x y -=D. 2)3(x y -=3-=x y2. 下列各组函数中,表示同一函数的是 A. 01,y y x == B. 211,1x y x y x -=-=+C. ,y x y =D. 2,y x y ==三.函数求值问题1.已知()23f x x =+,求:(1)f ,(1)f a +,(2)f x ,[()]f f x ;()||f x x=()Q x =2x y =2)(x y =2.设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,若2)(≤x f ,则x 的取值范围是 ( )A .]2,1[-B .]2,0[C .],1[+∞D .],0[+∞四.值域 (一)直接法11.54.42.31.2.122++=+=+=+==x y x y x y x y x y211.10113.912.811.71.62++=++=+=+==x y x y xy x y xy(二)配方法2245.232.1x x y x x y -+=++=(三)图像法[]xx y x x x y 1.22,232.12+=-∈++=,12.51.41,10,1.32--=+=⎪⎩⎪⎨⎧≥<<=x x y x y x x x xy(四)分离常数2211.33-415.21.1x x y x x y x x y +-=-=+=(五)换元法x x y xx y -+=-+=12.221.13.xy 21-=; 4. 112-=x y ; 5.322)21(--=x x y6.)4(log 22+=x y 7. ()22123log x x y -+=8.函数)1,0)(1(log )(≠>+=a a x x f a 的定义域和值域都是[0,1],则a =( )A .31 B .2 C .22D .29.已知函数3234+⋅-=x x y 的值域为[]7,1,则x 的范围是 ( ) A .[]4,2 B .)0,(-∞ C .[](0,1)2,4U D .(][],01,2-∞U五.解析式 (一)配凑法)(,1)1(.2)(33)1(.1222x f xx x x f x f x x x f 求,求+=-++=+(二)换元法 3.x x x f 2)1(+=+(三)待定系数法4.如果______)(12))(()(=-=x f x x f f x f ,则是一次函数,5.已知=-=-+=)则是二次函数,且x f x x f x f f x f (,1)()1(,2)0()((四)方程组法6.=+=-+)(3)(2)(3x f x x f x f ,则已知7已知=≠=+)(),0()()1(2x f x x x f xf 则函数的基本性质------定义域优先➢ 单调性1.定义:如果对于定义域I 内的某个区间D 内的任意两个自变量的值1x 与2x ,当12x x <时都有12()()f x f x <,那么说函数()f x 在区间D 上是增函数;当12x x <时都有12()()f x f x >,那么说函数()f x 在区间D 上是减函数注:单调区间若不连续,要用“,”或者“和”来表示2.证明函数的单调性步骤(抽象函数的单调性依旧适用) 任取→作差→变形→定号→结论注:作差有时也作商;常见变形:因式分解、通分、配方、分子(母)有理化等3.常见函数单调性:(1)一次函数(0)y kx b k =+≠ (2)二次函数2(0)y ax bx c a =++≠ (3)(0)ky k x=≠(4)指数函数(5)对数函数(6)幂函数(7)复合函数(8)分段函数4.函数单调性的性质(1)增+增=增,增-减=增,减+减=减,减-增=减;(2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反;(3)在公共定义域内,函数y=f(x)(f(x)≠0)与y=-f(x),y=1f(x)单调性相反;(4)在公共定义域内,函数y=f(x)(f(x)≥0)与y=f(x)单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反;(6)互为反函数的两个函数单调性相同➢奇偶性-----------前提:定义域关于原点对称1定义:设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有x D-∈,若()()f x f x-=-,则这个函数叫做奇函数;若()()f x f x-=-,则这个函数叫做偶函数。

2024年高考数学总复习第二章《函数与基本初等函数》函数的奇偶性与周期性

2024年高考数学总复习第二章《函数与基本初等函数》函数的奇偶性与周期性

2024年高考数学总复习第二章《函数与基本初等函数》§2.3函数的奇偶性与周期性最新考纲1.结合具体函数,了解函数奇偶性的含义.2.学会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.概念方法微思考1.如果已知函数f (x ),g (x )的奇偶性,那么函数f (x )±g (x ),f (x )·g (x )的奇偶性有什么结论?提示在函数f (x ),g (x )公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.已知函数f (x )满足下列条件,你能得到什么结论?(1)f (x +a )=-f (x )(a ≠0);(2)f (x +a )=1f (x )(a ≠0);(3)f (x +a )=f (x +b )(a ≠b ).提示(1)T =2|a |(2)T =2|a |(3)T =|a -b |题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =x 2,x ∈(0,+∞)是偶函数.(×)(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√)题组二教材改编2.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x (1+x ),则f (-1)=________.答案-2解析f (1)=1×2=2,又f (x )为奇函数,∴f (-1)=-f (1)=-2.3.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )-4x 2+2,-1≤x <0,x ,0≤x <1,则f 32______.答案1解析f 32=f -124×-122+2=1.4.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.答案(-2,0)∪(2,5]解析由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题组三易错自纠5.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是()A .-13 B.13C.12D .-12答案B 解析∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.6.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.答案3解析∵f (x )为偶函数,∴f (-1)=f (1).又f (x )的图象关于直线x =2对称,∴f (1)=f (3).∴f (-1)=3.题型一函数奇偶性的判断例1判断下列函数的奇偶性:(1)f (x )=36-x 2+x 2-36;(2)f (x )=ln (1-x 2)|x -2|-2;(3)f (x )2+x ,x <0,x 2+x ,x >0.解(1)-x 2≥0,2-36≥0,得x 2=36,解得x =±6,即函数f (x )的定义域为{-6,6},关于原点对称,∴f (x )=36-x 2+x 2-36=0.∴f (-x )=-f (x )且f (-x )=f (x ),∴函数f (x )既是奇函数又是偶函数.(2)-x 2>0,-2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x ,∴f (x )=ln (1-x 2)-x.又∵f (-x )=ln[1-(-x )2]x =ln (1-x 2)x =-f (x ),∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x );当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知,对于定义域内的任意x ,总有f (-x )=-f (x ),∴函数f (x )为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.跟踪训练1(1)下列函数中,既不是奇函数也不是偶函数的是()A .f (x )=x +sin 2xB .f (x )=x 2-cos xC .f (x )=3x -13xD .f (x )=x 2+tan x答案D解析对于选项A ,函数的定义域为R ,f (-x )=-x +sin 2(-x )=-(x +sin 2x )=-f (x ),所以f (x )=x +sin 2x 为奇函数;对于选项B ,函数的定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),所以f (x )=x 2-cos x 为偶函数;对于选项C ,函数的定义域为R ,f (-x )=3-x-13-x =-x f (x ),所以f (x )=3x -13x 为奇函数;只有f (x )=x 2+tan x 既不是奇函数也不是偶函数.故选D.(2)(2018·石景山模拟)下列函数中既是奇函数,又在区间(0,+∞)上单调递减的函数为()A .y =xB .y =-x 3C .y =12log xD .y =x +1x答案B解析由题意得,对于函数y =x 和函数y =12log x 都是非奇非偶函数,排除A ,C.又函数y=x +1x 在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,排除D ,故选B.题型二函数的周期性及其应用1.(2018·抚顺模拟)已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=________.答案-2解析f (7)=f (-1)=-f (1)=-2.2.已知定义在R上的函数f(x)满足f(2)=2-3,且对任意的x都有f(x+2)=1-f(x),则f(2020)=________.答案-2-3解析由f(x+2)=1-f(x),得f(x+4)=1-f(x+2)=f(x),所以函数f(x)的周期为4,所以f(2020)=f(4).因为f(2+2)=1-f(2),所以f(4)=-1f(2)=-12-3=-2- 3.故f(2020)=-2- 3.3.(2017·山东)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.答案6解析∵f(x+4)=f(x-2),∴f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),∴f(x)是周期为6的周期函数,∴f(919)=f(153×6+1)=f(1).又f(x)是定义在R上的偶函数,∴f(1)=f(-1)=6,即f(919)=6.4.设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x<1时,f(x)=2x-1,则f(1)+f(2)+________.答案2-1解析依题意知:函数f(x)为奇函数且周期为2,则f(1)+f(-1)=0,f(-1)=f(1),即f(1)=0.∴f(1)+f(2)+=0+f(0)+=f(0)+=f(0)=122-1+20-1=2-1.思维升华利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.题型三函数性质的综合应用命题点1求函数值或函数解析式例2(1)设f (x )是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2021)=________.答案-12解析设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .因为f (x )是定义在R 上周期为4的奇函数,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +b =2a -1,解得a =12,所以f (2021)=f (1)=12×1-1=-12.(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案e-x -1-x ,x ≤0,e x -1+x ,x >0解析∵当x >0时,-x <0,∴f (x )=f (-x )=e x -1+x ,∴f (x )e -x -1-x ,x ≤0,e x -1+x ,x >0.命题点2求参数问题例3(1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__________.答案1解析∵f (-x )=f (x ),∴-x ln(a +x 2-x )=x ln(x +a +x 2),∴ln[(a +x 2)2-x 2]=0.∴ln a =0,∴a =1.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f 12=f 32,则a +3b 的值为________.答案-10解析因为f (x )是定义在R 上且周期为2的函数,所以ff (-1)=f (1),故从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.(3)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=-x 2+ax -1-a ,若函数f (x )为R 上的减函数,则a 的取值范围是____________.答案[-1,0]解析因为函数f (x )是R 上的奇函数,所以f (0)=0,若函数f (x )为R 上的减函数,则满足当x >0时,函数为减函数,且-1-a ≤0-a -2=a 2≤0,1-a ≤0,≤0,≥-1,即-1≤a ≤0.命题点3利用函数的性质解不等式例4(1)(2018·聊城模拟)已知函数f (x )=|x |(10x -10-x ),则不等式f (1-2x )+f (3)>0的解集为()A .(-∞,2)B .(2,+∞)C .(-∞,1)D .(1,+∞)答案A解析由于f (-x )=-f (x ),所以函数为奇函数,且为单调递增函数,故f (1-2x )+f (3)>0等价于f (1-2x )>-f (3)=f (-3),所以1-2x >-3,x <2,故选A.(2)设函数f (x )=ln(1+|x |)-11+x2,解不等式f (x )>f (2x -1).解由已知得函数f (x )为偶函数,所以f (x )=f (|x |),由f (x )>f (2x -1),可得f (|x |)>f (|2x -1|).当x>0时,f(x)=ln(1+x)-11+x2,因为y=ln(1+x)与y=-11+x2在(0,+∞)上都单调递增,所以函数f(x)在(0,+∞)上单调递增.由f(|x|)>f(|2x-1|),可得|x|>|2x-1|,两边平方可得x2>(2x-1)2,整理得3x2-4x+1<0,解得13<x<1.所以符合题意的x思维升华解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.跟踪训练2(1)定义在R上的奇函数f(x)满足f(x),当x ,12时,f(x)=12log(1)x ,则f(x)()A.减函数且f(x)>0B.减函数且f(x)<0 C.增函数且f(x)>0D.增函数且f(x)<0答案D解析当x ,12时,由f(x)=12log(1-x)可知,f(x)单调递增且f(x)>0,又函数f(x)为奇函数,所以在区间-12,f(x)<0.由f(x)知,函数的周期为32,f(x)<0.故选D.(2)(2018·烟台模拟)已知偶函数f(x)在[0,+∞)上单调递增,且f(1)=-1,f(3)=1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[3,5]B.[-1,1]C.[1,3]D.[-1,1]∪[3,5]答案D解析由偶函数f(x)在区间[0,+∞)上单调递增,则在区间(-∞,0)上单调递减,又f(1)=-1,f(3)=1,则f(-1)=-1,f(-3)=1,要使得-1≤f(x-2)≤1,即1≤|x-2|≤3,即1≤x-2≤3或-3≤x-2≤-1,解得-1≤x≤1或3≤x≤5,即不等式的解集为[-1,1]∪[3,5],故选D.(3)已知函数g(x)是R上的奇函数,且当x<0时,g(x)=-ln(1-x),函数f(x)3,x≤0,(x),x>0,解不等式f(6-x2)>f(x).解∵g(x)是奇函数,∴当x>0时,g(x)=-g(-x)=ln(1+x),易知f(x)在R上是增函数,由f(6-x2)>f(x),可得6-x2>x,即x2+x-6<0,∴-3<x<2.函数的性质函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.一、函数性质的判断例1(1)(2017·全国Ⅰ)已知函数f(x)=ln x+ln(2-x),则()A.f(x)在(0,2)上单调递增B.f(x)在(0,2)上单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称答案C解析f(x)的定义域为(0,2).f(x)=ln x+ln(2-x)=ln[x(2-x)]=ln(-x2+2x).设u=-x2+2x,x∈(0,2),则u=-x2+2x在(0,1)上单调递增,在(1,2)上单调递减.又y=ln u在其定义域上单调递增,∴f(x)=ln(-x2+2x)在(0,1)上单调递增,在(1,2)上单调递减.∴选项A,B错误;∵f(x)=ln x+ln(2-x)=f(2-x),∴f(x)的图象关于直线x=1对称,∴选项C正确;∵f(2-x)+f(x)=[ln(2-x)+ln x]+[ln x+ln(2-x)]=2[ln x+ln(2-x)],不恒为0,∴f(x)的图象不关于点(1,0)对称,∴选项D错误.故选C.(2)定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在下列哪个区间上单调递减()A.[3,7]B.[4,5]C.[5,8]D.[6,10]答案B解析依题意知,f(x)是偶函数,且是以6为周期的周期函数.因为当x∈[0,3]时,f(x)单调递增,所以f(x)在[-3,0]上单调递减.根据函数周期性知,函数f(x)在[3,6]上单调递减.又因为[4,5]⊆[3,6],所以函数f(x)在[4,5]上单调递减.(3)定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4-x)=f(x).现有以下三个命题:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数.其中正确命题的序号是________.答案①②③解析由f(x)+f(x+2)=0可得f(x+4)=-f(x+2)=f(x),∴函数f(x)的最小正周期是4,①对;由f(4-x)=f(x),可得f(2+x)=f(2-x),f(x)的图象关于直线x=2对称,②对;f(4-x)=f(-x)且f(4-x)=f(x),∴f(-x)=f(x),f(x)为偶函数,③对.二、函数性质的综合应用例2(1)(2018·全国Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)等于()A.-50B.0C.2D.50答案C解析∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).∵f(1-x)=f(1+x),∴-f(x-1)=f(x+1),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数且定义域为R得f(0)=0,又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.故选C.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则()A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案D解析因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).(3)设偶函数f (x )满足f (x )=2x -4(x ≥0),则满足f (a -2)>0的实数a 的取值范围为__________.答案{a |a >4或a <0}解析∵偶函数f (x )满足f (x )=2x -4(x ≥0),∴函数f (x )在[0,+∞)上为增函数,f (2)=0,∴不等式f (a -2)>0等价于f (|a -2|)>f (2),即|a -2|>2,即a -2>2或a -2<-2,解得a >4或a <0.1.下列函数中,既是偶函数又在区间(1,2)内单调递减的是()A .f (x )=xB .f (x )=1x 2C .f (x )=2x +2-xD .f (x )=-cos x答案B解析函数f (x )=1x2是偶函数,且在(1,2)内单调递减,符合题意.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)等于()A .-3B .-54C.54D .3答案A 解析由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是()①y =f (|x |);②y =f (-x );③y =xf (x );④y =f (x )+x .A .①③B .②③C .①④D .②④答案D解析由奇函数的定义f (-x )=-f (x )验证,①f (|-x |)=f (|x |),为偶函数;②f (-(-x ))=f (x )=-f (-x ),为奇函数;③-xf (-x )=-x ·[-f (x )]=xf (x ),为偶函数;④f (-x )+(-x )=-[f (x )+x ],为奇函数.可知②④正确,故选D.4.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f (1)等于()A .-2B .0C .2D .1答案A解析∵函数f (x )为定义在R 上的奇函数,且周期为2,∴f (1)=-f (-1)=-f (-1+2)=-f (1),∴f (1)=0,124=-2,∴f (1)=-2.5.(2018·惠州调研)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为()A .(2,+∞)(2,+∞)(2,+∞)D .(2,+∞)答案B解析f (x )是R 上的偶函数,且在(-∞,0]上是减函数,所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12.6.(2018·海南联考)已知函数f (x )是定义在R 上的偶函数,f (x )=f (12-x ),当x ∈[0,6]时,f (x )=log 6(x +1),若f (a )=1(a ∈[0,2020]),则a 的最大值是()A .2018B .2010C .2020D .2011答案D解析由函数f (x )是定义在R 上的偶函数,f (x )=f (12-x ),可得f (-x )=f (12+x ),即f (x )=f (12+x ),故函数的周期为12.令log 6(a +1)=1,解得a =5,∴在[0,12]上f (a )=1的根为5,7;又2020=12×168+4,∴a 的最大值在[2004,2016]上,即2004+7=2011.故选D.7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln 1+e 3x e 3x +e 6x =2ax =ln e 2ax,即1+e 3x e 3x +e 6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0恒成立,所以a =-32.8.已知函数f (x )是奇函数,当x >0时,f (x )=ln x ,则f ________.答案-ln 2解析由已知可得ln 1e2=-2,所以f (-2).又因为f (x )是奇函数,所以f (-2)=-f (2)=-ln 2.9.奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________.答案9解析由于f (x )在[3,6]上为增函数,所以f (x )的最大值为f (6)=8,f (x )的最小值为f (3)=-1,因为f (x )为奇函数,所以f (-3)=-f (3)=1,所以f (6)+f (-3)=8+1=9.10.若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调递增的.如果实数t 满足f (ln t )+2f (1),那么t 的取值范围是________.答案1e,e 解析由于函数f (x )是定义在R 上的偶函数,所以f (ln t )=由f (ln t )+2f (1),得f (ln t )≤f (1).又函数f (x )在区间[0,+∞)上是单调递增的,所以|ln t |≤1,即-1≤ln t ≤1,故1e≤t ≤e.11.已知函数f (x )x 2+2x ,x >0,,x =0,2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)-2>-1,-2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.(1)证明∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].13.若定义在R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f (x )对任意x ∈R 恒成立,则f (2023)=________.答案1解析因为f (x )>0,f (x +2)=1f (x ),所以f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ),即函数f (x )的周期是4,所以f (2023)=f (506×4-1)=f (-1).因为函数f (x )为偶函数,所以f (2023)=f (-1)=f (1).当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1).由f (x )>0,得f (1)=1,所以f (2023)=f (1)=1.14.(2018·天津河西区模拟)设f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2+1,0≤x <1,-2x ,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1-x )≤f (x +m )恒成立,则实数m的最大值是()A .-1B .-13C .-12D.13答案B解析易知函数f (x )在[0,+∞)上单调递减,又函数f (x )是定义在R 上的偶函数,所以函数f (x )在(-∞,0)上单调递增,则由f (1-x )≤f (x +m ),得|1-x |≥|x +m |,即(1-x )2≥(x +m )2,即g (x )=(2m +2)x +m 2-1≤0在x ∈[m ,m +1]上恒成立,当m =-1时,g (x )=0,符合要求,当m ≠-1(m )=(3m -1)(m +1)≤0,(m +1)=(m +1)(3m +1)≤0,解得-1<m ≤-13,所以-1≤m ≤-13,即m 的最大值为-13.15.已知函数f (x )=sin x +x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为______________________________.答案2解析易知f (x )在R 上为单调递增函数,且f (x )为奇函数,故f (mx -2)+f (x )<0等价于f (mx -2)<-f (x )=f (-x ),则mx -2<-x ,即mx +x -2<0对所有m ∈[-2,2]恒成立,令h (m )=mx +x -2,m ∈[-2,2](-2)<0,(2)<0即可,解得-2<x <23.16.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,求f (1)+f (2)+f (3)+f (4)+…+f (2020)的值.解因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f(x)的周期为4,所以f(4)=f(0)=0,f(3)=f(-1)=-f(1).在f(x+1)=f(-x+1)中,令x=1,可得f(2)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)=0.所以f(1)+f(2)+f(3)+f(4)+…+f(2020)=0.。

基本初等函数总复习

基本初等函数总复习

指数函数总复习【知识点回顾】一、指数与指数幂的运算 (1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.n a =;当n a =;当n 为偶数时, (0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 二、指数函数及其性质 (4)指数函数定义域R值域(0,+∞)过定点图象过定点(0,1),即当x=0时,y=1.奇偶性非奇非偶单调性在R上是增函数在R上是减函数函数值的变化情况y>1(x>0), y=1(x=0), 0<y<1(x<0)y>1(x<0), y=1(x=0), 0<y<1(x>0)a变化对图象的影响在第一象限内,a越大图象越高,越靠近y轴;在第二象限内,a越大图象越低,越靠近x轴.在第一象限内,a越小图象越高,越靠近y轴;在第二象限内,a越小图象越低,越靠近x轴.【考点链接】考点一、指数的运算xay=xy(0,1)O1y=xay=xy(0,1)O1y=例1.化简:1114424111244()a b b a a b --=- .例2. 根据下列条件求值:已知32121=+-xx ,求23222323-+-+--x x x x 的值;练习1:计算:(1)1020.5231(2)2(2)(0.01)54--+⋅-(2)120.750311(0.064)()16()2322----÷+-.(3) 2433221)(---⋅÷⋅a b b a(4)211511336622263a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭考点二、定义域例3. 求下列函数的定义域:21(1).2-=x y 31(2).3-⎛⎫= ⎪⎝⎭xy练习2.求下列函数的定义域:(1)1x 21y ()2-= (2)2x 3y 5-=考点三、值域例4. 函数11x x e y e -=+的值域练习3、(1)求函数2(0)21xxy x =>+的值域.(2)求下列函数的定义域、值域: (1)1218x y -= (2)11()2x y =-(3)3x y -=考点四、指数型函数例5. 已知函数3234+⋅-=x x y 的定义域为[0,1],则值域为 。

基本初等函数经典复习题+答案

基本初等函数经典复习题+答案

必修1根本初等函数复习题求函数的定义域时列不等式组的主要依据是:⑴偶次方根的被开方数不小于零;(2)对数式的真数必须大于零;⑶分式的分母不等于零;[4〕指数、对数式的底必须大于零且不等于1.4、函数单调区间与单调性的判定方法(八)定义法:①任取xι,X 2∈D,且XKX2;Q)作差千(xι)—fa);(3)变形〔通常是因式分解和配方];④定号[即判断差千(x∣)-f(x2)的正负〕;@下结论[指出函数f(x)在给定的区间D 上的单调性].(B)图象法(从图象上看升降)⑹复合函数的单调性:复合函数Hg"]的单调性与构成它的函数u=g(x),y 二人。

的单调性密切相关,其规律:"同增异减〃 1、以下函数中,在区间(0,÷oo)不是增函数的是()1、暴的运算性质 〔1〕a r ∙a s = a r+s (r,5 ∈ R); 〔3〕a r ∙b r = (ab)r (r ∈ R) 2对数的运算性质 如果 α>0,且 awl, M >0, ① Iog“(M ・N)= Iogq M +log” N ; ③ IOg“M" =〃Iog"M,(Y ∈R). 换底公式:log” b = l°g 。

■ 〔 a IogC α(1)log b n= —log rt ⅛ ; [2 〃7 〔2〕S)' =α" ; (r,StR)(4)a" =yja n, (a>0,m,n E N ∖n> 1) a' = N Q IOga N = x N>0,那么:② log 噂=log” M Tog” N ;④ IOgQl= O, bg" = lO,且 awl ; c>0,且 CW1; b>0〕 log” b =; ---- ∙log/y = a x a>1 0<a<1 y = Iog tj X a>1 II0<a<1定义域R 值域y>0 在R 上单调递增 非奇非偶函数 函数图象都过定点[0, 1〕 3、定义域: 定义域R 值域y>0 在R 上单调递减 非奇非偶函数 函数图象都过定点〔〕 定义域x>0 值域为R在R 上递增 非奇非偶函数 函数图象都过定点定义域x>0值域为R 在R 上递减 非奇非偶函数 函数图象都过定点[1, 能使函数式有意义的实数X 的集合称为函数的定义域。

基本初等函数知识点题型归纳总结

基本初等函数知识点题型归纳总结

m
an
n am
0 的正分数指数幂等于 0,0 的负分数指数幂
没有意义
3.实数指数幂的运算性质
(1) a r · ar ars
(2) (a r )s a rs
(3) (ab)r a r a s
(二)指数函数及其性质
1、指数函数的概念:一般地,函数
y a x (a 0,且a 1) 叫做指数函数,其中 x 是自变

函数图象都
过定点(0,1)
0<a<1
6
5
4
3
2
11
-4
-2
0
2
4
6
-1
定义域 R
值域 y>0
在 R 上单调
递减
非奇非偶函

函数图象都
过定点(0,1)
注意:利用函数的单调性,结合图象还可以看出: ( 1 ) 在 [a , b] 上 , f (x) a x (a 0且a 1) 值 域 是 [f (a),f (b)]或[f (b),f (a)];
经典例题透析 类型一、求函数解析式
例 1.已知幂函数 y (m2 m 1)xm22m3 ,当 x (0,∞) 时为减函数,则幂函数 y __________.
类型二、比较幂函数值大小 例 2.比较下列各组数的大小.
4
4
3
3
(1) 3.14 3 与 3 ; (2) ( 2 ) 5 与 ( 3) 5 .
对数函数类型一函数的定义域值域求含有对数函数的复合函数的定义域值域其方法与一般函数的定义域值域的求法类似但要注意对数函数本身的性质如定义域值域及单调性在解题中的重要作用例1
基本初等函数
一、指数函数
(一)指数与指数幂的运算

基本初等函数经典复习题答案

基本初等函数经典复习题答案

())1,,,0(.4*>∈>=n N n m a a a n m n mxN N a a x =⇔=log 必修1基本初等函数 复习题1、幂的运算性质(1)s r s r a a a +=⋅),(R s r ∈; (2)rs s r a a =)(;),(R s r ∈ (3)()r r r ab b a =⋅)(R r ∈ 2、对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1()N M N M a a a log log log +=⋅; ○2 N M NM a a a log log log -=; ○3()R n M n M a n a ∈=,log log . ④1log ,01log ==a a a换底公式:abb c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ) (1)b mnb a n a m log log =;(2)a b b a log 1log =.求函数的定义域时列不等式组的主要依据是:(1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于1. 4、函数单调区间与单调性的判定方法(A) 定义法:○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x 1)-f(x 2)的正负); ○5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降)(C)复合函数的单调性:复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.x y 2= B. x y lg = C. 3x y = D. 1y x= 2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞) 3、若{|2},{|x M y y P y y ====,则M∩P ( ) A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( ) A.a>5,或a<2 B.2<a<5 C.2<a<3,或3<a<5 D.3<a<45、 已知x a x f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a 6、函数|log |)(21x x f =的单调递增区间是 ( )A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞7、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( ) A 、0<a<b<1<d<c B 、0<b<a<1<c<d C 、0<d<c<1<a<b D 、0<c<d<1<a<b 8、已知幂函数f(x)过点(2,22),则f(4)的值为 ( )A 、21 B 、 1 C 、2 D 、8 9、6.0log 5.0=a ,5.0log 2=b ,5log3=c ,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b 10、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是1.a 0a ,1)2(212≠>⎪⎭⎫⎝⎛>--且其中x x a a A.(0,1) B.(1,2) C.(0,2) D.[2,+∞] 11、函数)1(log 21-=x y 的定义域为 .12. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =13、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为 14、函数2)23x (lg )x (f +-=恒过定点15、求下列各式中的x 的值1)1x (ln )1(<-16.点(2,1)与(1,2)在函数()2ax bf x +=的图象上,求()f x 的解析式。

压轴题09 基本初等函数、函数与方程(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题09 基本初等函数、函数与方程(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题09基本初等函数、函数与方程题型/考向一:基本初等函数的图像与性质题型/考向二:函数的零点题型/考向三:函数模型及其应用○热○点○题○型一基本初等函数的图像与性质1.指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质分0<a <1,a >1两种情况,着重关注两个函数图象的异同.2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,12,-1五种情况.一、单选题1.若125()3a -=,121log 5b =,3log 7c =,则a ,b ,c 的大小关系为()A .a b c >>B .b c a>>C .c a b>>D .c b a>>2.已知函数()2121x f x =-+,则()A .()f x 是偶函数且是增函数B .()f x 是偶函数且是减函数C .()f x 是奇函数且是增函数D .()f x 是奇函数且是减函数【答案】CA.y =B .21y x =C .lg y x =D .332x xy --=4.已知函数()1,0,2x f x x ⎧≥⎪=⎨⎛⎫-<⎪⎪⎝⎭⎩若()()6f a f a <-,则实数a 的取值范围是()A .()3,-+∞B .(),3-∞-C .()3,+∞D .(),3-∞【答案】D【详解】由解析式易知:()f x 在R 上递增,又()()6f a f a <-,所以6a a <-,则3a <.故选:D5.函数()2eln 2x f x x=的图象大致是()A .B .C .D .A .1,2⎛⎫-∞- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭7.已知实数1a ≠,函数()2,0,a x f x x -≥=⎨<⎩若(1)(1)f a f a -=-,则a 的值为()A .12B .12-C .14D .14-8.函数⎣⎦的部分图象大致是()A .B .C .D .【答案】C【详解】对于函数()()()ln 1ln 1f x x x x =+--⎡⎤⎣⎦,有1010x x +>⎧⎨->⎩,可得11x -<<,所以,函数()f x 的定义域为()1,1-,()1,1x ∀∈-,()()()()()()ln 1ln 1ln 1ln 1f x x x x x x x f x -=---+=+--=⎡⎤⎡⎤⎣⎦⎣⎦,所以,函数()f x 为偶函数,排除AB 选项;当01x <<时,110x x +>->,则()()ln 1ln 1x x +>-,此时()()()ln 1ln 10f x x x x =+-->⎡⎤⎣⎦,排除D 选项.故选:C.二、填空题9.已知函数()2()e e x x f x x -=-⋅,若实数m 满足))2(1)f f m f -≤,则实数m的取值范围是____________.【答案】ln3-##1ln311.已知,,1x y a ∈>R ,若2x y a a a +=,且x y +的最大值为3,则函数()()212log 2f x x ax a =-++的最小值为______故当4x =时,()2432x --+取得最大值32,则()f x 的取到最小值为5-.故答案为:5-.12.幂函数y=xa ,当a 取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=xa ,y=xb 的图象三等分,即有BM =MN =NA ,那么ab =______.○热○点○题○型二函数的零点判断函数零点个数的方法:(1)利用零点存在定理判断.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.一、单选题1.函数()243xf x x =+-的零点所在的区间是()A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【答案】C【详解】 函数()243x f x x =+-的图象是连续不间断的,根据增函数加增函数为增函数的结论知()f x 在定义域R 上为增函数,412204f ⎛⎫=-< ⎪⎝⎭,12102f ⎛⎫=-> ⎪⎝⎭,故函数()243x f x x =+-的零点所在区间是11,42⎛⎫⎪⎝⎭.故选:C.()a 的值是()A .0B .1C .2D .3【答案】B 【详解】依题意,因为函数()2cos 1f x a x x =--有且只有1个零点,所以()2cos 10f x a x x =--=有且仅有一个解,即2cos 1a x x =+有且仅有一个解,转化为cos y a x =与21y x =+有且仅有一个交点,当0a =时,cos 0y a x ==与21y x =+没有交点,所以0a ≠;当a<0时,因为[]cos 1,1x ∈-,所以[]cos ,y a x a a =∈-,当0x =时,21y x =+有最小值1,cos y a x =有最小值a<0,此时cos 0y a x ==与21y x =+没有交点,由于cos 0y a x ==与21y x =+都是偶函数,若在除去0x =之外有交点,则交点必为偶数个,不符合题意,所以a<0不符合题意;当0a >时,因为[]cos 1,1x ∈-,所以[]cos ,y a x a a =∈-,又因为211y x =+≥,所以当且仅当1a =时,此时0x =有唯一的交点.故选:B.3.已知()0,2πθ∈,若函数()()2sin cos sin 2f x x x x θ=-+在π0,4⎛⎫⎪⎝⎭上无零点,则θ的值可能为()A .π6B .π4C .11π12D .6π54.若函数2()1,0f x x x -⎧≤=⎨+>⎩,则函数()()2g x f x =-的零点的个数是()A .1B .2C .3D .4【答案】B【详解】由题意函数22,0()1,0x x f x x x -⎧≤=⎨+>⎩,则函数()()2g x f x =-的零点个数即()2f x =的解的个数,当0x >时,令212+=x ,即1x =,符合题意;当0x ≤时,令22x -=,得=1x -,符合题意,故()()2g x f x =-的零点有2个,故选:B.5.已知函数()2ln 1212x x x f x mx mx x +>⎧⎪=⎨-+≤⎪⎩,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是()A .71,4⎛⎤⎥⎝⎦B .(]1,2C .41,3⎛⎤ ⎥⎝⎦D .[]1,36.是定义在R 上的奇函数,当1,1x ∈-时,f x x =,11f x f x +=-,令()()lg g x f x x =-,则函数()g x 的零点个数为()A .4B .5C .6D .7【答案】B【详解】由()()11f x f x +=-可得,()f x 的图象关于1x =对称,又由()()11f x f x +=-可得()()2()f x f x f x +=-=-,所以()4(2)()f x f x f x +=-+=,所以()f x 以4为周期,所以作出()f x 的图象如下,()()lg g x f x x =-的零点个数即为方程()lg f x x =也即()f x 的图象与lg y x =图象的交点个数,因为lg 91,lg101<=,所以数形结合可得()f x 的图象与lg y x =图象的交点个数为故选:B.7.已知函数41,0141,02x x x x ⎧+-≤⎪=⎨⎛⎫->⎪ ⎪⎝⎭⎩,关于的方程有6个不等实数根,则实数t 的取值范围是()A .7,5⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭B.7,5⎡⎫⎛⎫-∞--+∞⎪⎢ ⎪⎪⎝⎭⎣⎭ C .7,52⎛-- ⎝⎦D .7,522⎛⎛⎫-- ⎪ ⎪⎝⎭⎝⎭【答案】D【详解】作出函数()f x 的图象如图所示,∴函数()f x 的图象与函数()y c c =∈R 的图象最多三个交点,且()f x c =有3个实数根时,13c -<<,()()()22110f x t f x t ∴+-+-=有6个不等实数根等价于一元二次方程()22110x t x t +-+-=在()1,3-上有两个不同的实数根,是()A .6B .5C .4D .3二、多选题9.已知偶函数()f x 满足()()()126f x f x f -+=,()11e f -=+,且当[)0,6x ∈时,()e 1x f x a -=+,则下列说法正确的有()A .2e a =B .()f x 在[]18,24上为增函数C .()320231ef -=-D .()f x 在[]2023,0-上共有169个零点【答案】ABD【详解】因为函数()f x 为偶函数,所以()()111e f f -==+,又当[)0,6x ∈时,()e 1x f x a -=+,故()11e 11e f a -=+=+,解得2e a =,故A 选项正确.因为()()()126f x f x f -+=,令6x =-,得()()()666f f f --=,故()60f =.由()()120f x f x -+=得()()12f x f x +=,即函数()f x 具有周期性且周期为12.当[)0,6x ∈时,()2e 1xf x -=+单调递减,故当(]6,0x ∈-时,函数()f x 单调递增,所以当(]18,24x ∈时,函数()f x 单调递增.又()()1860f f ==,且当(]18,24x ∈时,函数()0f x >恒成立,所以()f x 在[]18,24上为增函数,故B 选项正确.()()()()()32023121687755e 1f f f f f -=⨯+==-==+,故C 选项错误.因为当[)0,6x ∈时,()2e 1xf x -=+单调递减,所以当06x ≤<时,()420<e 1e 1f x -+<≤+,又()f x 为偶函数,所以60x -<≤时,()0f x >,又()60f -=,所以函数()f x 在[)6,6-上有且仅有一个零点,因为()f x 的周期为12,2023121687=⨯+,所以(]2016,0-上有168个零点,再考虑[]2023,2016--等价于[]7,0-这个区间,有1个零点,故最终有169个零点,故D 选项正确.故选:ABD .10.定义在R 上的偶函数()f x 满足()()22f x f x -=+,且当[]0,2x ∈时,()2e 1,01,44,1 2.x x f x x x x ⎧-≤≤=⎨-+<≤⎩若关于x 的不等式()m x f x ≤的整数解有且仅有9个,则实数m的取值可以是()A .e 16-B .e 17-C .e 18-D .e 19-三、填空题11.已知函数()131,0ln ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若函数()()()2221g x f x af x a =-+-⎡⎤⎣⎦恰有4个不同的零点,则a 的取值范围是__________.【答案】()[)1,01,2- 【详解】令()()()22210g x f x af x a =-+-=⎡⎤⎣⎦,得()1f x a =-或()1f x a =+,画出()f x 的大致图象.设()f x t =,由图可知,当0t <或2t >时,()t f x =有且仅有1个实根;当0=t 或12t ≤≤时,()t f x =有2个实根;当01t <<时,()t f x =有3个实根.则()g x 恰有4个不同的零点等价于10,011a a -<⎧⎨<+<⎩或10,112a a -=⎧⎨≤+≤⎩或011,12a a <-<⎧⎨+>⎩或112,112,a a ≤-≤⎧⎨≤+≤⎩解得10a -<<或12a ≤<.故答案为:()[)1,01,2-12.已知函数11,02()2(2),28x x f x f x x ⎧--≤≤=⎨-<≤⎩,若方程()f x kx =恰好有四个实根,则实数k 的取值范围是___.设()g x kx =,若方程()f x kx =恰好有四个实根,则函数()f x 与()g x 的图象有且只有四个公共点,由图得,(1,1),(3,2),(5,4),(A D B C 则2481,,,357OA OB OC OD k k k k ====,则<<<OB OC OA OD k k k k ,○热○点○题○型三函数模型及其应用应用函数模型解决实际问题的一般程序和解题关键:(1)一般程序:――→读题文字语言⇒――→建模数学语言⇒――→求解数学应用⇒――→反馈检验作答(2)解题关键:解答这类问题的关键是确切地写出相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.一、单选题1.垃圾分类,一般是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而变成公共资源的一系列活动的总称.已知某种垃圾的分解率ν与时间t (月)满足函数关系式t v a b =⋅(其中a ,b 为非零常数).若经过6个月,这种垃圾的分解率为5%,经过12个月,这种垃圾的分解率为10%,那么这种垃圾完全分解(分解率为100%)至少需要经过()(参考数据lg 20.3≈)A .20个月B .40个月C .28个月D .32个月m /s )可以表示为31log 2100Qv =,其中Q 表示鲑鱼的耗氧量的单位数.当一条鲑鱼以3ln2m /s ln3的速度游动时,其耗氧量是静止时耗氧量的倍数为()A .83B .8C .32D .643.0C 表示生物体内碳14的初始质量,经过t 年后碳14剩余质量01()2hC t C ⎛⎫= ⎪⎝⎭(0t >,h为碳14半衰期).现测得一古墓内某生物体内碳14含量为00.4C ,据此推算该生物是距今约多少年前的生物(参考数据lg 20.301≈).正确选项是()A .1.36hB .1.34hC .1.32hD .1.30h“ChatGTP ”的人工智能聊天程序进入中国,迅速以其极高的智能化水平引起国内关注.深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的,在神经网络优化中,指数衰减的学习率模型为00G GL L D =,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.2以下(不含0.2)所需的训练迭代轮数至少为()(参考数据:1g20.3010≈)A .72B .74C .76D .78血氧饱和度低于90%时,需要吸氧治疗,在环境模拟实验室的某段时间内,可以用指数模型:0()e KtS t S =描述血氧饱和度()S t 随给氧时间t (单位:时)的变化规律,其中0S 为初始血氧饱和度,K 为参数.已知060%S =,给氧1小时后,血氧饱和度为80%.若使得血氧饱和度达到90%,则至少还需要给氧时间(单位:时)为()(精确到0.1,参考数据:ln 2069ln 3110≈≈.,.)A .0.3B .0.5C .0.7D .0.9故选:B6.某企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量M (单位:mg /L )与时间t (单位:h )之间的关系为0e ktM M -=(其中0,M k 是正常数).已知在处理过程中,该设备每小时可以清理池中残留污染物10%,则过滤一半的污染物需要的时间最接近()(参考数据:lg20.30≈,lg30.48≈)A .6小时B .8小时C .10小时D .12小时媒质传递热量逐渐冷却时所遵循的规律.统计学家发现网络热搜度也遵循这样的规律,即随着时间的推移,热搜度会逐渐降低.假设事件的初始热搜度为()000N N >,经过t (天)时间之后的热搜度变为()0etN t N α-=,其中α为冷却系数.若设某事件的冷却系数0.3α=,则该事件的热搜度降到初始的50%以下需要的天数t 至少为().(ln 20.693≈,t 取整数)A .7B .6C .4D .3族整体利益和两岸同胞切身利益,解放军组织多种战机巡航台湾.已知海面上的大气压强是760mmHg ,大气压强P (单位:mmHg )和高度h (单位:m )之间的关系为760e hk P -=(e为自然对数的底数,k 是常数),根据实验知500m 高空处的大气压强是700mmHg ,则当歼20战机巡航高度为1000m ,歼16D 战机的巡航高度为1500m 时,歼20战机所受的大气压强是歼16D 战机所受的大气压强的()倍.A .0.67B .0.92C .1.09D .1.5【答案】C二、多选题9.如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =,关于下列说法正确的是()A .浮萍每月的增长率为3B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积超过280m D .若浮萍蔓延到2224m 2m 8m 、、所经过的时间分别是123t t t 、、,则2132t t t =+【答案】CD【详解】由图可知,函数过点()1,3,将其代入解析式,=3a ,故3t y =,A 选项,取前3个月的浮萍面积,分别为32m ,92m ,272m ,故增长率逐月增大,A 错误;从前3个月浮萍面积可看出,每月增加的面积不相等,B 错误;第4个月的浮萍面积为812m ,超过了802m ,C 正确;令132t =,234t =,338t =,解得:132333log 2,log 4,log 8t t t ===,1333332log 2log 8log 162log 42t t t +=+===,D 正确.故选:CD10.泊松分布适合于描述单位时间(或空间)内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,显微镜下单位分区内的细菌分布数等等.其概率函数为()e !kP X k k λλλ-==,参数λ是单位时间(或单位面积)内随机事件的平均发生次数.现采用某种紫外线照射大肠杆菌,大肠杆菌的基因组平均产生3个嘧啶二体.设大肠杆菌的基因组产生的嘧啶二体个数为Y ,()P Y k =表示经该种紫外线照射后产生k 个嘧啶二体的概率.已知Y 服从泊松分布,记为()Y Pois λ~,当产生的嘧啶二体个数不小于1时,大肠杆菌就会死亡,下列说法正确的有()(参考数据:3e 0.049-=⋅⋅⋅,恒等式0e !inxi x i ==∑)A .大肠杆菌a 经该种紫外线照射后,存活的概率约为5%B .设()()f k P Y k λ==,则,(1)()0,()f k f k k λ∀∈+->∈N NC .如果()X pois λ~,那么(!)X E X λ=,X 的标准差σλ=D .大肠杆菌a 经该种紫外线照射后,其基因组产生的嘧啶二体个数的数学期望为3公园的距离都是2km.如图所示表示甲同学从家出发到乙同学家经过的路程y (km)与时间x (min)的关系,下列结论正确的是()A .甲同学从家出发到乙同学家走了60minB .甲从家到公园的时间是30minC .甲从家到公园的速度比从公园到乙同学家的速度快D .当0≤x ≤30时,y 与x 的关系式为y =115x 【答案】BD【详解】在A 中,甲在公园休息的时间是10min ,所以只走了50min ,A 错误;由题中图象知,B 正确;甲从家到公园所用的时间比从公园到乙同学家所用的时间长,而距离相等,所以甲从家到公园的速度比从公园到乙同学家的速度慢,C 错误;当0≤x ≤30时,设y =kx (k ≠0),则2=30k ,解得115k =,D 正确.故选:BD地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg E =4.8+1.5M ,则下列说法正确的是()A .地震释放的能量为1015.3焦耳时,地震里氏震级约为七级B .八级地震释放的能量约为七级地震释放的能量的6.3倍C .八级地震释放的能量约为六级地震释放的能量的1000倍D .记地震里氏震级为n (n =1,2,···,9,10),地震释放的能量为an ,则数列{an }是等比数列【答案】ACD【详解】对于A :当15.310E =时,由题意得15.3lg10 4.8 1.5M =+,解得7M =,即地震里氏震级约为七级,故A 正确;对于B :八级地震即8M =时,1lg 4.8 1.5816.8E =+⨯=,解得16.8110E =,所以16.81.5115.3101010 6.310E E ==>≠,所以八级地震释放的能量约为七级地震释放的能量的 1.510倍,故B 错误;对于C :六级地震即6M =时,2lg 4.8 1.5613.8E =+⨯=,解得13.8210E =,。

复习课三 基本初等函数(Ⅰ)

复习课三  基本初等函数(Ⅰ)

①注意公式应用过程中范围的变化,前后要等价.
②熟练地运用对数的三个运算性质并结合对数恒等式、换
底公式是对数计算、化简、证明常用的技巧.
首页
上一页
下一页
末页
结束
[题组训练]
3
1.(

3)6-41469
1 2
=________.
16 16
解析:原式=2 3 ·3 2 -4×
-4×47=101. 答案:101
1或n=-3.当n=1时,f(x)=x-2=
1 x2
关于y轴对称,且在
(0,+∞)上是减函数;当n=-3时,f(x)=x18在(0,+∞)
上是增函数.故n=1符合题意,应选B.
答案:B
首页
上一页
下一页
末页
结束
4.已知函数f(x)=ln 1-2ax 的定义域是(1,+∞),则 实数a的值为________.
3+2 log2
3 3

3+
3 3
=4 3 3.
[答案]
(1)-1
(2)4
3 3
首页
上一页
下一页
末页
[类题通法]
结束
指数、对数的运算应遵循的原则
(1)指数式的运算:
①注意化简顺序,一般负指数先转化成正指数,根式化为
分数指数幂运算.
②若出现分式则要注意分子、分母因式分解以达到约分的
目的.
(2)对数式的运算:
首页
上一页
下一页
末页
结束
[类题通法] (1)识别函数的图象从以下几个方面入手:①单调性: 函数图象的变化趋势;②奇偶性:函数图象的对称性;③特 殊点对应的函数值. (2)已知不能解出的方程或不等式的解求参数的范围常 用数形结合的思想解决.

基本初等函数专题复习(学)

基本初等函数专题复习(学)

基本初等函数专题复习一、函数的奇偶性、单调性1.(2014•新课标I)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数2.(2015•新课标I)若函数f(x)=xln(x+)为偶函数.则a=.3.(2014•湖南)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3+x2+1,则f(1)+g(1)=()A.﹣3 B.﹣1 C.1 D.34.(2010•新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2} 5.(2011•新课标)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|6.(2014•新课标II)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x 的取值范围是.7.(2015•福建)若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于1.8.(2012•新课标文)设函数f(x)=的最大值为M,最小值为m,则M+m=.二、比较大小9.(2014•辽宁)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a 10.(2013•新课标Ⅱ)设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c 11.(2015•天津)已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a 12.(2009•辽宁)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4三、分段函数13.(2015•新课标II)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.1214.(2011•辽宁)设函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2]B.[0,2]C.[1,+∞)D.[0,+∞)15.(2009•宁夏)用min{a ,b ,c}表示a ,b ,c 三个数中的最小值,设f (x )=min{2x ,x+2,10﹣x}(x ≥0),则f (x )的最大值为( )A .7B .6C .5D .416.(2010•新课标)已知函数,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24) 17.(2015•山东)设函数f (x )=,则满足f (f (a ))=2f (a )的a 的取值范围是( )A .[,1]B .[0,1]C .[,+∞)D .[1,+∞) 四、函数图象性质的应用18.(2015•安徽)函数f (x )=的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <019.(2012•新课标)已知函数f (x )=,则y=f (x )的图象大致为( )20.(2013•新课标Ⅰ)函数f (x )=(1﹣cosx )sinx 在[﹣π,π]的图象大致为( )21.(2012•山东)函数y=的图象大致为( )22.(2015•新课标II )如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y=f (x )的图象大致为( )A B CD A B CDA B C DA.B.C.D.五、函数图象的应用23.(2015•北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}24.(2011•新课标)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.2 B.4 C.6 D.8六、函数与方程25.(2013•重庆)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内26.(2015•湖南)若函数f(x)=|2x﹣2|﹣b有两个零点,则实数b的取值范围是.27.(2013•天津)函数f(x)=2x|log0.5x|﹣1的零点个数为()A.1 B.2 C.3 D.428.(2011•北京)已知函数若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是.29.(2015•天津)已知函数f(x)=,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()A.(,+∞)B.(﹣∞,)C.(0,)D.(,2)30.(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.七、函数性质的综合应用31.(2014•辽宁)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3]32.(2013•新课标Ⅰ)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.。

必修一基本初等函数练习题(含详细答案解析)

必修一基本初等函数练习题(含详细答案解析)

必修一基本初等函数练习题(含详细答案解析)一、选择题1.对数式log32-(2+3)的值是().A.-1 B.0 C.1 D.不存在1.A解析:log32-(2+3)=log32-(2-3)-1,故选A.2.当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是().A B C D2.A解析:当a>1时,y=log a x单调递增,y=a-x单调递减,故选A.3.如果0<a<1,那么下列不等式中正确的是().A.(1-a)31>(1-a)21B.log1-a(1+a)>0C.(1-a)3>(1+a)2D.(1-a)1+a>13.A解析:取特殊值a=21,可立否选项B,C,D,所以正确选项是A.4.函数y=log a x,y=log b x,y=log c x,y=log d x的图象如图所示,则a,b,c,d的大小顺序是().A.1<d<c<a<bB.c<d<1<a<bC.c<d<1<b<aD.d<c<1<a<b4.B解析:画出直线y=1与四个函数图象的交点,它们的横坐标的值,分别为a,b,c,d的值,由图形可得正确结果为B.(第4题)5.已知f (x 6)=log 2 x ,那么f (8)等于( ). A .34 B .8 C .18 D .21 5.D6.如果函数f (x )=x 2-(a -1)x +5在区间⎪⎭⎫⎝⎛121 ,上是减函数,那么实数a 的取值范围是( ).A . a ≤2B .a >3C .2≤a ≤3D .a ≥36.D7.函数f (x )=2-x -1的定义域、值域是( ). A .定义域是R ,值域是RB .定义域是R ,值域为(0,+∞)C .定义域是R ,值域是(-1,+∞)D .定义域是(0,+∞),值域为R7.C+∞).8.已知-1<a <0,则( ).A .(0.2)a <a⎪⎭⎫⎝⎛21<2aB .2a <a⎪⎭⎫⎝⎛21<(0.2)aC .2a <(0.2)a <a⎪⎭⎫⎝⎛21D .a⎪⎭⎫⎝⎛21<(0.2)a <2a8.B9.已知函数f (x )=⎩⎨⎧+-1 log 1≤413> ,,)(x x x a x a a是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1)B .⎪⎭⎫ ⎝⎛310,C .⎪⎭⎫⎢⎣⎡3171,D .⎪⎭⎫⎢⎣⎡171,9.C解析:由f (x )在R 上是减函数,∴ f (x )在(1,+∞)上单减,由对数函数单调性,即0上是减函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最小值7a -1要大于等于f (x )在[1,+∞)上的最大值0,才能保证f (x )在R 上是减函数.10.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ). A .(0,1) B .(1,2) C .(0,2) D .[2,+∞)10.B解析:先求函数的定义域,由2-ax >0,有ax <2,因为a 是对数的底,故有a >0且若0<a <1,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )增大,即函数 y =log a (2-ax )在[0,1]上是单调递增的,这与题意不符.若1<a <2,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )减小,即函数 y =log a (2-ax )在[0,1]上是单调递减的.所以a 的取值范围应是(1,2),故选择B . 二、填空题11.满足2-x >2x 的 x 的取值范围是 .11.参考答案:(-∞,0). 解析:∵ -x >x ,∴ x <0.12.已知函数f (x )=log 0.5(-x 2+4x +5),则f (3)与f (4)的大小关系为 . 12.参考答案:f (3)<f (4).解析:∵ f (3)=log 0.5 8,f (4)=log 0.5 5,∴ f (3)<f (4). 13.64log 2log 273的值为_____.14.已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x 则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为_____.15.函数y =)-(34log 5.0x 的定义域为 .16.已知函数f (x )=a -121+x,若f (x )为奇函数,则a =________. 解析:∵ f (x )为奇函数,三、解答题17.设函数f (x )=x 2+(lg a +2)x +lg b ,满足f (-1)=-2,且任取x ∈R ,都有f (x )≥2x ,求实数a ,b 的值.17.参考答案:a =100,b =10.解析:由f (-1)=-2,得1-lg a +lg b =0 ①,由f (x )≥2x ,得x 2+x lg a +lg b ≥0 (x ∈R ).∴Δ=(lg a )2-4lg b ≤0 ②.联立①②,得(1-lg b )2≤0,∴ lg b =1,即b =10,代入①,即得a =100.18.已知函数f (x )=lg (ax 2+2x +1) .(1)若函数f (x )的定义域为R ,求实数a 的取值范围; (2)若函数f (x )的值域为R ,求实数a 的取值范围.18.参考答案:(1) a 的取值范围是(1,+∞) ,(2) a 的取值范围是[0,1]. 解析:(1)欲使函数f (x )的定义域为R ,只须ax 2+2x +1>0对x ∈R 恒成立,所以有⎩⎨⎧0 <440a -a >,解得a >1,即得a 的取值范围是(1,+∞); (2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞) 的所有值.②当a ≠0时,应有⎩⎨⎧0 ≥440a -a =>Δ⇒ 0<a ≤1.当x ∈(-∞,x 1)∪(x 2,+∞)时满足要求(其中x 1,x 2是方程ax 2+2x +1=0的二根).综上,a 的取值范围是[0,1].19.求下列函数的定义域、值域、单调区间: (1)y =4x +2x +1+1; (2)y =2+3231x -x ⎪⎭⎫⎝⎛.19.参考答案:(1)定义域为R .令t =2x (t >0),y =t 2+2t +1=(t +1)2>1, ∴ 值域为{y | y >1}.t =2x 的底数2>1,故t =2x 在x ∈R 上单调递增;而 y =t 2+2t +1在t ∈(0,+∞)上单调递增,故函数y =4x +2x +1+1在(-∞,+∞)上单调递增.20.已知函数f(x)=log a(x+1),g(x)=log a(1-x),其中a>0,a≠1.(1)求函数f(x)-g(x)的定义域;(2)判断f(x)-g(x)的奇偶性,并说明理由;(3)求使f(x)-g(x)>0成立的x的集合.20.参考答案:(1){x |-1<x<1};(2)奇函数;(3)当0<a<1时,-1<x<0;当a>1时,0<x<1.(2)设F(x)=f(x)-g(x),其定义域为(-1,1),且F(-x)=f(-x)-g(-x)=log a(-x+1)-log a(1+x)=-[log a(1+x)-log a(1-x)]=-F(x),所以f(x)-g(x)是奇函数.(3)f(x)-g(x)>0即log a(x+1)-log a(1-x)>0有log a(x+1)>log a(1-x).。

基本初等函数、函数与方程及函数的应用(题型归纳)

基本初等函数、函数与方程及函数的应用(题型归纳)

基本初等函数、函数与方程及函数的应用【考情分析】1.考查特点:基本初等函数作为高考的命题热点,多考查指数式与对数式的运算、利用函数的性质比较大小,难度中等;函数的应用问题多体现在函数零点与方程根的综合问题上,题目有时较难,而与实际应用问题结合考查的指数、对数函数模型也是近几年考查的热点,难度中等.2.关键能力:逻辑思维能力、运算求解能力、数学建模能力、创新能力.3.学科素养:数学抽象、逻辑推理、数学建模、数学运算.【题型一】基本初等函数的图象与性质【典例分析】【例1】(2021•焦作一模)若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则函数log ||a y x =的图象大致是()A .B .C .D .【答案】B【解析】若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则1a >,故函数log ||a y x =的图象大致是:故选:B .【例2】(2021·陕西西安市·西安中学高三模拟)若1(,1)x e -∈,ln a x =,ln 1()2xb =,ln 2xc =,则a ,b ,c 的大小关系为()A .c b a >>B .b a c >>C .a b c >>D .b c a>>【答案】D【解析】因1(,1)x e -∈,且函数ln y x =是增函数,于是10a -<<;函数2x y =是增函数,1ln 0ln 1x x -<<<-<,而ln ln 1()22xx -=,则ln 11()22x <<,ln 1212x<<,即1122c b <<<<,综上得:b c a >>故选:D【例3】(2021·湖南长沙长郡中学高三模拟)若函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,则实数m 的取值范围为()A .[)3,0-B .[)1,0-C .[)0,1D .[)3,-+∞【答案】A【解析】因函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,当且仅当f (x )在(-∞,1]有一个零点,x≤1时,()03x f x m =⇔=-,即函数3x y =-在(-∞,1]上的图象与直线y =m 有一个公共点,在同一坐标系内作出直线y =m 和函数3(1)x y x =-≤的图象,如图:而3x y =-在(-∞,1]上单调递减,且有330x -≤-<,则直线y =m 和函数3(1)x y x =-≤的图象有一个公共点,30m -≤<.故选:A【提分秘籍】1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如求f(x)=ln(x 2-3x+2)的单调区间,易只考虑t=x 2-3x+2与函数y=ln t 的单调性,而忽视t>0的限制条件.3.指数、对数、幂函数值的大小比较问题的解题策略:(1)底数相同,指数不同的幂用指数函数的单调性进行比较.(2)底数相同,真数不同的对数值用对数函数的单调性进行比较.(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.【变式演练】1.【多选】(2021·山东省实验中学高三模拟)已知函数()2121x x f x -=+,则下列说法正确的是()A .()f x 为奇函数B .()f x 为减函数C .()f x 有且只有一个零点D .()f x 的值域为[)1,1-【答案】AC【解析】()2121x x f x -=+ ,x ∈R ,2121x=-+2112()()2112x xx xf x f x ----∴-===-++,故()f x 为奇函数,又()21212121x x xf x -==-++ ,()f x ∴在R 上单调递增,20x> ,211x ∴+>,20221x∴<<+,22021x∴-<-<+,1()1f x ∴-<<,即函数值域为()1,1-令()21021x x f x -==+,即21x =,解得0x =,故函数有且只有一个零点0.综上可知,AC 正确,BD 错误.故选:AC2.(2021·山东潍坊市·高二一模(理))设函数()322xxf x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是【答案】(),1-∞-【解析】函数的定义域为R ,()()322xx f x x f x --=--=-,所以函数是奇函数,并由解析式可知函数是增函数原不等式可化为()()213f x f -<-,∴213x -<-,解得1x <-,∴x 的取值范围是(),1-∞-.【题型二】函数与方程【典例分析】【例4】(2021·宁夏中卫市·高三其他模拟)函数3()9x f x e x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】由x e 为增函数,3x 为增函数,故3()9x f x e x =+-为增函数,由(1)80f e =-<,2(2)10f e =->,根据零点存在性定理可得0(1,2)x ∃∈使得0()0f x =,故选:B.【例5】(2021·北京高三一模)已知函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,则常数t 的一个取值为______.【答案】2(不唯一).【解析】由220x x +=可得0x =或2x =-由ln 0x =可得1x =因为函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,所以1e t >≥,故答案为:2(不唯一)【提分秘籍】1.判断函数零点个数的方法直接法直接求零点,令f(x)=0,则方程解的个数即为函数零点的个数定理法利用零点存在性定理,利用该定理只能确定函数的某些零点是否存在,必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点数形结合法对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题2.利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.【变式演练】1.(2021·湖北十堰市高三模拟)函数()()()23log 111f x x x x =+->-的零点所在的大致区间是()A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【解析】易知()f x 在()1,+∞上是连续增函数,因为()22log 330f =-<,()33202f =->,所以()f x 的零点所在的大致区间是()2,3.故选:B2.(2021·天津高三二模)设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩,若1a =,则()f x 的最小值为______;若()f x 恰有2个零点,则实数a 的取值范围是__________.【答案】1-112a ≤<或2a ≥【解析】当1a =时,()()211()4(1)(2)1x x f x x x x ⎧-<⎪=⎨--≥⎪⎩,1x <,()211xf x =-<,1≥x ,()()()234124112f x x x x ⎛⎫=--=--≥- ⎪⎝⎭所以()f x 的最小值为1-.设()f x 的零点为1x 、2x ,若()1,1x ∈-∞,[)21x ∈+∞,,则20012a a a a->⎧⎪>⎨⎪<≤⎩,得112a ≤<若[)12,1,x x ∈+∞,则0201a a a >⎧⎪-≤⎨⎪≥⎩,得2a ≥,综上:112a ≤<或2a ≥.故答案为:1-;112a ≤<或2a ≥.【题型三】函数的实际应用【典例分析】1.(2021·北京高三二模)20世纪30年代,里克特制定了一种表明地震能量大小的尺度,就是使用地震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是标准地震的振幅,2008年5月12日,我国四川汶川发生了地震,速报震级为里氏7.8级,修订后的震级为里氏8.0级,则修订后的震级与速报震级的最大振幅之比为()A .0.210-B .0.210C .40lg39D .4039【答案】B【解析】由0lg lg M A A =-,可得01AM gA =,即10M A A =,010M A A =⋅,当8M =时,地震的最大振幅为81010A A =⋅,当7.8M =时,地震的最大振幅为7.82010A A =⋅,所以,修订后的震级与速报震级的最大振幅之比是887.80.2017.82010101010A A A A -⋅===⋅.故选:B.2.为加强环境保护,治理空气污染,某环保部门对辖区内一工厂产生的废气进行了监测,发现该厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量(mg /L)P 与时间(h)t 的关系为0ktP P e -=.如果在前5个小时消除了10%的污染物,那么污染物减少19%需要花的时间为()A .7小时B .10小时C .15小时D .18小时【答案】B【解析】因为前5个小时消除了10%的污染物,所以()50010.1kP P P e -=-=,解得ln 0.95k =-,所以ln 0.950tP P e =,设污染物减少19%所用的时间为t ,则()0010.190.81P P -=()()ln 0.92ln 0.955500000.90.9t t t P P e P eP ====,所以25t=,解得10t =,故选:B 3.(2021·山东滕州一中高三模拟)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是A .9:40B .9:30C .9:20D .9:10【答案】9:30【解析】根据函数的图象,可得函数的图象过点(10,1),代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102t t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.故选:B.【提分秘籍】1.构建函数模型解决实际问题的失分点:(1)不能选择相应变量得到函数模型;(2)构建的函数模型有误;(3)忽视函数模型中变量的实际意义.2.解决新概念信息题的关键:(1)依据新概念进行分析;(2)有意识地运用转化思想,将新问题转化为我们所熟知的问题.【变式演练】(2020·湖北黄冈市·黄冈中学高三模拟)“百日冲刺”是各个学校针对高三学生进行的高考前的激情教育,它能在短时间内最大限度激发一个人的潜能,使成绩在原来的基础上有不同程度的提高,以便在高考中取得令人满意的成绩,特别对于成绩在中等偏下的学生来讲,其增加分数的空间尤其大.现有某班主任老师根据历年成绩在中等偏下的学生经历“百日冲刺”之后的成绩变化,构造了一个经过时间()30100t t ≤≤(单位:天),增加总分数()f t (单位:分)的函数模型:()()1lg 1kPf t t =++,k 为增分转化系数,P 为“百日冲刺”前的最后一次模考总分,且()1606f P =.现有某学生在高考前100天的最后一次模考总分为400分,依据此模型估计此学生在高考中可能取得的总分约为()(lg 61 1.79≈)A .440分B .460分C .480分D .500分【答案】B【解析】由题意得:()1601lg 61 2.796kP kP f P ===+, 2.790.4656k ∴≈=;∴()0.465400186186100621lg1011lg100lg1.013f ⨯==≈=+++,∴该学生在高考中可能取得的总分约为40062462460+=≈分.故选:B.1.(2021·江苏金陵中学高三模拟)函数()2ln 1xf x x =+-的零点所在的区间为().A .31,2⎛⎫⎪⎝⎭B .3,22⎛⎫⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D【解析】函数()2ln 1xf x x =+-为()0,∞+上的增函数,由()110f =>,1311112ln 21ln 21ln 2ln 0222222f e ⎛⎫=-<--=-<-=⎪⎝⎭,可得函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:D.2.(2021·山东潍坊一中高三模拟)若函数()1af x x x =+-在(0,2)上有两个不同的零点,则a 的取值范围是()A .1[2,]4-B .1(2,)4-C .1[0,]4D .1(0,)4【答案】D【解析】函数()1a f x x x=+-在(0,2)上有两个不同的零点等价于方程10ax x +-=在(0,2)上有两个不同的解,即2a x x =-+在(0,2)上有两个不同的解.此问题等价于y a =与2(02)y x x x =-+<<有两个不同的交点.由下图可得104a <<.故选:D.3.(2021·长沙市·湖南师大附中高三三模)已知函数()()()ln 2ln 4f x x x =-+-,则().A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+-函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增,在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A4.(2021·辽宁本溪高级中学高三模拟高三模拟)设函数2ln(1)ln(1)()1x x f x x +--=-,则函数的图象可能是()A .B .C .D .【答案】D【解析】2ln(1)ln(1)()1x x f x x +--=-,定义域为()1,1-,且()()f x f x -=-,故函数为奇函数,图象关于原点对称,故排除A,B,C ,故选:D.5.(2021·新安县第一高级中学高三模拟)被誉为信息论之父的香农提出了一个著名的公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,其中C 为最大数据传输速率,单位为bit /s :W 为信道带宽,单位为Hz :SN为信噪比.香农公式在5G 技术中发挥着举足轻重的作用.当99SN=,2000Hz W =时,最大数据传输速率记为1C ;在信道带宽不变的情况下,若要使最大数据传输速率翻一番,则信噪比变为原来的多少倍()A .2B .99C .101D .9999【答案】C【解析】当99S N =,2000Hz W =时,()1222log 12000log 1994000log 10S C W N ⎛⎫=+=+= ⎪⎝⎭,由228000log 102000log 1S N ⎛⎫=+⎪⎝⎭,得224log 10log 1S N ⎛⎫=+ ⎪⎝⎭,所以9999S N =,所以999910199=,即信噪比变为原来的101倍.故选:C .6.(2021·浙江温州市·瑞安中学高三模拟)已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是()A .2B .3C .4D .5【答案】B【解析】由()()2f x f x +=-可得()f x 关于1x =对称,由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,由图像可得共有3个交点,故共有3个零点,故选:B.7.(2021·珠海市第二中学高三模拟)设21()log (1)f x x a=++是奇函数,若函数()g x 图象与函数()f x 图象关于直线y x =对称,则()g x 的值域为()A .11(,)(,)22-∞-+∞ B .11(,22-C .(,2)(2,)-∞-+∞D .(2,2)-【答案】A【解析】因为21()log (1)f x x a=++,所以1110x a x a x a+++=>++可得1x a <--或x a >-,所以()f x 的定义域为{|1x x a <--或}x a >-,因为()f x 是奇函数,定义域关于原点对称,所以1a a --=,解得12a =-,所以()f x 的定义域为11(,)(,)22-∞-+∞ ,因为函数()g x 图象与函数()f x 图象关于直线y x =对称,所以()g x 与()f x 互为反函数,故()g x 的值域即为()f x 的定义域11(,)(,)22-∞-+∞ .故选:A .8.(2021·浙江杭州高级中学高三模拟)已知函数22log ,0,()44,0.x x f x x x x ⎧>=⎨--+<⎩若函数()()g x f x m =-有四个不同的零点1234,,,x x x x ,则1234x x x x 的取值范围是()A .(0,4)B .(4,8)C .(0,8)D .(0,)+∞【答案】A【解析】函数()g x 有四个不同的零点等价于函数()f x 的图象与直线y m =有四个不同的交点.画出()f x 的大致图象,如图所示.由图可知(4,8)m ∈.不妨设1234x x x x <<<,则12420x x -<<-<<,且124x x +=-.所以214x x =--,所以()()212111424(0,4)x x x x x =--=-++∈,则3401x x <<<,因为2324log log x x =,所以2324log log x x -=,所以12324log log x x -=,所以341x x ⋅=,所以123412(0,4)x x x x x x ⋅⋅⋅=∈⋅.故选:A9.(2021·天津南开中学高三模拟)若函数()1x f x e =-与()g x ax =的图象恰有一个公共点,则实数a 可能取值为()A .2B .1C .0D .1-【答案】BCD【解析】函数()1x f x e =-的导数为()x f x e '=;所以过原点的切线的斜率为1k =;则过原点的切线的方程为:y x =;所以当1a 时,函数()1x f x e =-与()g x ax =的图象恰有一个公共点;故选BCD10.(2021·广东佛山市·高三模拟)函数()()()ln 1ln 1xxf x e e =+--,下列说法正确的是()A .()f x 的定义域为(0,)+∞B .()f x 在定义域内单调递増C .不等式(1)(2)f m f m ->的解集为(1,)-+∞D .函数()f x 的图象关于直线y x =对称【答案】AD【解析】要使函数有意义,则10(0,)10x xe x e ⎧+>⇒∈+∞⎨->⎩,故A 正确;()()12()ln 1ln 1ln ln(111x xxx x e f x e e e e +=+--==+--,令211xy e =+-,易知其在(0,)+∞上单调递减,所以()f x 在(0,)+∞上单调递减,故B 不正确;由于()f x 在(0,)+∞上单调递减,所以对于(1)(2)f m f m ->,有1020(1,)12m m m m m ->⎧⎪>⇒∈+∞⎨⎪-<⎩,故C 不正确;令()ln(211x y f x e +=-=,解得11ln()11y xy y y e e e x e e ++=⇒=--,所以()f x 关于直线y x =对称,故D 正确.故选:AD11.(2021·福建厦门市高三模拟)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则()A .3a =B .注射一次治疗该病的有效时间长度为6小时C .注射该药物18小时后每毫升血液中的含药量为0.4微克D .注射一次治疗该病的有效时间长度为31532时【答案】AD【解析】由函数图象可知()4(01)112t at t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,当1t =时,4y =,即11()42a-=,解得3a =,∴()34(01)112t t t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,故A 正确,药物刚好起效的时间,当40.125t =,即132t =,药物刚好失效的时间31()0.1252t -=,解得6t =,故药物有效时长为131653232-=小时,药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为140.58⨯=微克,故C 错误,故选:AD .12.(2021·辽宁省实验中学高三模拟)(多选题)已知函数()f x ,()g x 的图象分别如图1,2所示,方程(())1f g x =,(())1g f x =-,1(())2g g x =-的实根个数分别为a ,b ,c ,则()A .a b c +=B .b c a+=C .b a c=D .2b c a+=【答案】AD【解析】由图,方程(())1f g x =,1()0g x -<<,此时对应4个解,故4a =;方程(())1g f x =-,得()1f x =-或者()1f x =,此时有2个解,故2b =;方程1(())2g g x =-,()g x 取到4个值,如图所示:即2()1g x -<<-或1()0g x -<<或0()1g x <<或1()2g x <<,则对应的x 的解,有6个,故6c =.根据选项,可得A ,D 成立.故选AD .13.(2021·山东淄博实验中学高三模拟)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.【答案】3或13【解析】令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈1,a a ⎡⎤⎢⎥⎣⎦,又函数y =(t +1)2-2在1,a a ⎡⎤⎢⎥⎣⎦上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈1a a ⎡⎤⎢⎥⎣⎦,,又函数y =(t +1)2-2在1a a ⎡⎤⎢⎥⎣⎦,上单调递增,则y max =211a ⎛⎫+ ⎪⎝⎭-2=14,解得a =13(负值舍去).综上,a =3或a =13.14.(2021·北京高三一模)已知函数22,1,()log ,1,x x f x x x ⎧<=⎨-⎩则(0)f =________;()f x 的值域为_______.【答案】1(),2-∞【解析】0(0)2=1=f ;当1x <时,()()20,2=∈xf x ,当1x ≤时,()2log 0=-≤f x x ,所以()f x 的值域为(),2-∞故答案为:1;(),2-∞.15.(2021·重庆南开中学高三模拟)已知定义域为[4,4]-的函数()f x 的部分图像如图所示,且()()0f x f x --=,函数(lg )1f a ≤,则实数a 的取值范围为______.【答案】1,1010⎡⎤⎢⎥⎣⎦【解析】由题意知()()f x f x -=,且函数()f x 的定义域为[4,4]-,所以()f x 是偶函数.由图知()11f =,且函数()f x 在[0,4]上为增函数,则不等式(lg )1f a ≤等价于(|lg |)(1)f a f ≤,即|lg |1a ≤,所以1lg 1a -≤≤,解得11010a ≤≤.故实数a 的取值范围为1,1010⎡⎤⎢⎥⎣⎦.故答案为:1,1010⎡⎤⎢⎥⎣⎦16.(2021·湖南长沙市·长沙一中高三其他模拟)设函数()222,034,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.【答案】41,3⎛⎤ ⎥⎝⎦【解析】作出函数()f x 图像如下互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==不妨设123x x x <<,则23,x x 关于1x =对称,所以232x x +=根据图像可得1213x -<≤-所以123413x x x <++≤,所以123x x x ++的取值范围为41,3⎛⎤ ⎥⎝⎦。

基本初等函数的题型归纳

基本初等函数的题型归纳

基本初等函数的题型归纳题型一:指对数的运算1.若210,5100==b a ,则b a +2=…………………………………………2.指数函数y=a x 的图像经过点(2,16)则a 的值是3.若329log =x ,则x 等于 4.5log 2139-的值是 5. 若y x y x lg lg )2lg(2+=-,则x 、y 的关系是题型二: 指对数的图像1.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是2.已知3.0log a 2=,3.02b =,2.03.0c =,则c b a ,,三者的大小关系是 题型三:求值1.已知(1),32121=+-a a求221,--++a a a a 的值 7 ,47 2.(2)若32121=+-xx ,求23222323-+-+--x x x x 的值. 18题型四 求范围 1.指数函数(2)x y a =-在定义域内是减函数,则a 的取值范围是2.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .3.函数)x 2x (log y 221-=的单调递减区间是_________________.4.在(2)log (5)a b a -=-中,实数a 的取值范围是 。

题型五 反函数1.设函数()[]()242,4f x x x =-∈,则()1f x -的定义域为 ( )2、函数y =1-1-x (x ≥1)的反函数是( ) A .y =(x -1)2+1,x ∈R B .y =(x -1)2-1,x ∈RC .y =(x -1)2+1,x ≤1D .y =(x -1)2-1,x ≤1 3.若f (x -1)= x 2-2x +3 (x ≤1),则f -1(4)等于( )A .2B .1-2C .-2D .2-函数与方程 零点题型一:零点的个数确定1、方程062=-+x x的实数解的个数有_______个. 2.已知定义在R 上的函数f(x)的图像是连续不断的,且有如下部分对应值表: x1 2 3 4 5 6 f(x) 136.135 15.552 -3.92 10.88 -52.488 -232.064可以看出函数至少有 个零点.题型二:零 点存在性定理的应用1. 函数2ln f x x x的零点所在的大致区间是 ( )A.1,2B.2,3C. 3,4D.,e 2.关于x 的方程27+=x x 的解所在的区间是( )A.0(,1)B.(1, 2)C.(2, 3)D.(3, 4)题型三:求参数的范围1.若一元二次方程2350x x a -+=的一根大于2-且小于0,另一根大于1而小于3,则实数a 取值范围 ( )A .()12,0-B .15,14⎛⎫-∞ ⎪⎝⎭C .15,14⎛⎫+∞ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭2.若关于x 的方程35+=a x 有根,则实数a 的取值范围是 .3. 若关于x 的方程210x ax -+=在1(,3)2x ∈上有实数根,则实数a 的取值范围是 4.已知函数2()(1)43f x a x ax =++-.当0a >时,若方程()0f x =有一根大于1,一根小于1,则a 的取值范围是。

完整版)基本初等函数经典复习题+答案

完整版)基本初等函数经典复习题+答案

完整版)基本初等函数经典复习题+答案1、幂的运算性质1) $a^r\cdot a^s=a^{r+s}$,其中$r,s\in R$;2) $(a^r)^s=a^{rs}$,其中$r,s\in R$;3) $a^r\cdot b^r=(ab)^r$,其中$r\in R$;4) $a^{-n}=\dfrac{1}{a^n}$,其中$a>0,n\in N^*,n>1$。

2、对数的运算性质若$a>0$且$a\neq 1$,$M>0,N>0$,则有:1) $a^x=N\iff \log_a N=x$;2) $\log_a(MN)=\log_a M+\log_a N$;3) $\log_a\dfrac{M}{N}=\log_a M-\log_a N$;4) $\log_a M^n=n\log_a M$,其中$n\in R$;5) $\log_a 1=0$;6) 换底公式:$\log_a b=\dfrac{\log_c b}{\log_c a}$,其中$a>0,a\neq 1,c>0,c\neq 1,b>0$。

3、函数的定义域能使函数式有意义的实数$x$的集合称为函数的定义域。

求函数的定义域时,需要注意以下几点:1) 偶次方根的被开方数不小于零;2) 对数式的真数必须大于零;3) 分式的分母不等于零;4) 指数、对数式的底必须大于零且不等于1.4、函数单调区间与单调性的判定方法A) 定义法:1.任取$x_1,x_2\in D$,且$x_1<x_2$;2.作差$f(x_1)-f(x_2)$;3.变形(通常是因式分解和配方);4.定号(即判断差$f(x_1)-f(x_2)$的正负);5.下结论(指出函数$f(x)$在给定的区间$D$上的单调性)。

B) 图象法(从图象上看升降)。

C) 复合函数的单调性:复合函数$f[g(x)]$的单调性与构成它的函数$u=g(x),y=f(u)$的单调性密切相关,其规律为“同增异减”。

基本初等函数题型总结

基本初等函数题型总结

基本初等函数题型总结题型1 指数幂、指数、对数的相关计算【例1】 计算: (1)12lg 3249-43lg 8+lg 245;(2)lg 25+23lg 8+lg 5×lg 20+(lg 2)2. (3)353log 1+-232log 4++103lg3+⎝⎛⎭⎫1252log .变式:1.计算下列各式的值:(1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27. (3)lg 5(lg 8+lg 1 000)+(lg 2 3)2+lg 16+lg 0.06.题型2指数与对数函数的概念【例1】(1)若函数y =(4-3a )x 是指数函数,则实数a 的取值范围为________.(2)指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________.(3)函数y =a x -5+1(a ≠0)的图象必经过点________.题型3 指数与对数函数的图象【例1】如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c【例2】函数y =2x+1的图象是( )【例3】函数y =|2x -2|的图象是( )【例4】直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.【例5】方程|2x -1|=a 有唯一实数解,则a 的取值范围是____________.变式:1.如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110,则相应于c 1,c 2,c 3,c 4的a 值依次为( )A.3,43,35,110B.3,43,110,35C.43,3,35,110D.43,3,110,352.函数y =log a (x +2)+1的图象过定点( )A .(1,2)B .(2,1)C .(-2,1)D .(-1,1)3.如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1 D .b >a >14.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( )A .0B .1C .2D .35.函数y =x 33x -1的图象大致是( )题型4指数与对数型函数的定义域、值域、单调性、奇偶性例 1函数f (x )=1-2x +1x +3的定义域为____________.2判断f (x )=x -x )(2231的单调性,并求其值域.3设0≤x ≤2,y =421-x -3·2x +5,试求该函数的最值.4求y =(log 21x )2-12log 21x +5在区间[2,4]上的最大值和最小值.变式:(1)函数f (x )=11-x+lg(1+x )的定义域是( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)∪(1,+∞) D .(-∞,+∞)(2)若f (x )=1log 21(2x +1),则f (x )的定义域为( ) A.⎝⎛⎭⎫-12,0 B.⎝⎛⎭⎫-12,+∞ C.⎝⎛⎭⎫-12,0∪(0,+∞) D.⎝⎛⎭⎫-12,2 3.求下列函数的定义域与单调性.(1)y =log 2(x 2-4x -5); (2)y =log 0.5(4x -3)4.讨论函数f (x )=log a (3x 2-2x -1)的单调性.5.函数f (x )=|log 21x |的单调递增区间是( )A.⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞) D .[1,+∞)6.已知x ∈[2.8],求函数f (x )=⎝⎛⎭⎫log 2x 4·⎝⎛⎭⎫log 2x 2的最大值和最小值.7.已知f (x )=2+log 3x ,x ∈[1,9],求y =[f (x )]2+f (x 2)的最大值以及y 取最大值时x 的值.题型5 指数与对数基本性质的应用【例1】求下列各式中x 的值:(1)log 2(log 4x )=0; (2)log 3(lg x )=1; (3)log (2-1)12+1=x .【例2】比较下列各组中两个值的大小:(1)ln 0.3,ln 2; (2)log a 3.1,log a 5.2(a >0,且a ≠1);(3)log 30.2,log 40.2; (4)log 3π,log π3.变式:(1)设a =log 32,b =log 52,c =log 23,则( )A .a >c >bB .b >c >aC .c >b >aD .c >a >b(2)已知a =log 23.6,b =log 43.2,c =log 43.6,则( )A .a >b >cB .a >c >bC .b >a >cD .c >a >b3.设a =log 213,b =⎝⎛⎭⎫130.2,c =231,则()A .a <b <cB .c <b <aC .c <a <bD .b <a <c4.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( ) A .x >y >z B .z >y >x C .y >x >z D .z >x >y5.若函数f (x )=⎩⎪⎨⎪⎧a x ,x >1,(4-a 2)x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8) D .[4,8)题型6 指数与对数函数的综合应用【例1】已知函数f (x )=log a x +1x -1(a >0且a ≠1), (1)求f (x )的定义域;(2)判断函数的奇偶性和单调性.2已知函数f (x )=log a 1-mx x -1(a >0,a ≠1,m ≠1)是奇函数. (1)求实数m 的值;(2)探究函数f (x )在(1,+∞)上的单调性.题型7方程的根与函数的零点【例1】已知函数f (x )=x 2-2x -3,x ∈[-1,4].(1)画出函数y =f (x )的图象,并写出其值域;(2)当m 为何值时,函数g (x )=f (x )+m 在[-1,4]上有两个零点?【例2】在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可断定该根所在的区间为________.【例3】设函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥0,-x ,x <0. (1)f (x )有零点吗?(2)设g (x )=f (x )+k ,为了使方程g (x )=0有且只有一个根,k 应该怎样限制?(3)当k =-1时,g (x )有零点吗?如果有,把它求出来,如果没有,请说明理由.变式(1)若函数f (x )=mx 2-2x +3只有一个零点,则实数m 的取值是________.(2)函数y =⎝⎛⎭⎫12|x |-m 有两个零点,则m 的取值范围是________.(3)下列函数图象与x 轴均有交点,其中不能用二分法求函数零点近似值的是( )题型8 探究与创新【例1】(1)求2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1的值;(2)若log 2[log 3(log 4x )]=0,log 3[log 4(log 2y )]=0,求x +y 的值.【例2】对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1,设函数f (x )=(x 2-2)*(x -1),x ∈R ,若方程f (x )=c 恰有两个不同的解,则实数c 的取值范围是________.【巩固训练】1.化简(log 23)2-4log 23+4+log 213,得( ) A .2 B .2-2log 23 C .-2 D .2log 23-22.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C. f (x )与g (x )均为奇函数 D .f (x )为奇函数,g (x )为偶函数3.若函数f (x )= 2a -ax x 22+-1的定义域为R ,则实数a 的取值范围是________.4.lg 5+lg 20的值是________.5.已知2m =5n =10,则1m +1n =________.。

基本初等函数综合复习

基本初等函数综合复习

基本初等函数综合复习题型一 幂函数的定义及应用例1.已知y =(m 2+2m -2)·211m x -+(2n -3)是幂函数,求m 、n 的值.探究提升 (1)判断一个函数是否为幂函数,只需判断该函数的解析式是否满足:①指数为常数;②底数为自变量;③幂系数为1.(2)若一个函数为幂函数,则该函数解析式也必具有以上的三个特征.已知f (x )=(m 2+2m )21m m x +-,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.2.【江西省2014届高三新课程适合性考试文科数学】由幂函数n y x =的图像过点(8,2),则这个幂函数的定义域是( )A .[0,)+∞B .(,0)(0,)-∞+∞C .(0,)+∞D .R题型二 指数式与根式,对数式的化简,求值问题例2. 【2014届新余一中宜春中学高三年级联考数学(文)】已知函数)241(log )(22x x x f -+=,则4(tan )(tan )55f f ππ+=( ) A .1- B .0 C .1 D .2变式训练:1.【安徽省池州一中2014届高三第一次月考数学(文)】求值:()70log 23log lg 25lg 472013++++-= .2. 【江西师大附中高三年级2013-2014开学考试】已知函数,则 . 题型三 基本初等函数的单调性问题例3.【安徽省示范高中2014届高三上学期第一次联考数学(文)】已知函数3,0()2,0x x a x f x a x --<⎧=⎨-≥⎩,(0a >且1a ≠)是R 上的减函数,则a 的取值范围是( ) A .2(0,]3 B .1(0,]3C .(0,1)D .(0,2]变式训练 1.【宁夏银川一中2014届高三年级第一次月考文科】已知函数),1,0(,,ln )(21ex x x x f ∈=且21x x <则下列结论准确的是( ) A .0)]()()[(2121<--x f x f x x B .2)()()2(2121x f x f x x f +<+ 2log ,0,()2,0x x x f x x >⎧=⎨<⎩1()(2)4f f +-=C .)()(1221x f x x f x >D .)()(1122x f x x f x >2.【广东省珠海市2014届高三9月摸底考试数学(文)】下列函数中,既是偶函数又在区间上单调递增的函数为( )A .B .C .D . 3. 【江西省2014届高三新课程适合性考试文科数学】函数()f x 的定义域为{|1}x R x ∈≠,对定义域中任意的x ,都有(2)()f x f x -=,且当1x <时,2()2f x x x =-,那么当1x >时,()f x 的递减区间是( ) A .5[,)4+∞ B .5(1,]4 C .7[,)4+∞ D .7(1,)4 题型四 基本初等函数的奇偶性与周期性问题例4【宁夏银川一中2014届高三年级第一次月考文科】已知函数)2cos()(ϕ+=x x f 满足)1()(f x f ≤对R x ∈恒成立,则( )A. 函数)1(+x f 一定是偶函数B.函数)1(-x f 一定是偶函数C. 函数)1(+x f 一定是奇函数D.函数)1(-x f 一定是奇函数变式训练1.【2014届吉林市普通高中高中毕业班复习检测】给出下列函数①②③④,其中是奇函数的是( ) A. ①② B. ①④ C. ②④ D. ③④2.【广东省广州市海珠区2014届高三入学摸底考试数学文】已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为 ( )A.1-B. 2-C. 2D.13.【吉林省白山市第一中学2014届高三8月摸底考试文】已知定义在R 上的偶函数f (x )满足:∀x ∈R 恒有f (x +2)=f (x )-f (1).且当x ∈[2,3]时,f (x )=-2(x -3)2.若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则实数a 的取值范围为( )A .(0,22)B .(0,33)C .(1,2)D .(1,3)题型五 函数的零点问题例5.【广东省汕头四中2014届高三第一次月考数学(文)】函数f (x )=x121x 2⎛⎫- ⎪⎝⎭的零点个数为( ) 0,+∞()1y x -=2log y x =||y x =2y x =-cos y x x=2sin y x =2y x x =-x xy e e -=-A .0 B.1 C.2 D.3变式训练1.【安徽省池州一中2014届高三第一次月考数学(文)】定义在R 上的偶函数()f x ,满足(3)()f x f x +=,(2)0f =,则函数()y f x =在区间()0,6内零点的个数为( )A .2个B .4个C .6个D .至少4个2.【山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考文】在下列区间中函数()24x f x e x =+-的零点所在的区间为( ) A.1(0,)2 B.1(,1)2 C.(1,2) D.⎪⎭⎫ ⎝⎛23,1 3.【江西省2014届高三新课程适应性考试文科数学】已知函数()y f x =是周期为2的周期函数,且当[1,1]x ∈-时,||()21x f x =-,则函数()()|lg |F x f x x =-的零点个数是( )A .9B .10C .11D .12 题型六 函数的图象问题例6【吉林省白山市第一中学2014届高三8月摸底考试文】象是 ( )变式训练1.【安徽省示范高中2014届高三上学期第一次联考数学(文)】函数()f x 的图像如图所示,若函数()y f x c =-与x 轴有两个不同交点,则c 的取值范围是( )A .(2,0.5)--B .[2,0.5)--C .(1.1,1.8)D .[2,0.5)(1.1,1.8)--2.【成都外国语学校2014级高三开学检测试卷】设()f x 是定义在R 上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图像,则(2013)f +(2014)f =( )A 、3B 、2C 、1D 、03.【2014届新余一中宜春中学高三年级联考数学(文)】已知在函数()的图象上有一点,该函数的图象与 x 轴、直线x =-1及 x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )题型七 基本初等函数的函数值大小比较问题例7.【宁夏银川一中2014届高三年级第一次月考文科】下列大小关系正确的是( )A. 3log 34.044.03<< B. 4.03434.03log << C. 4.04333log 4.0<< D. 34.044.033log <<变式训练1.【成都外国语学校2014级高三开学检测试卷】 设0.33log 3,2,log sin 6a b c ππ===,则( )A 、a b c >>B 、c a b >>C 、b a c >>D 、b c a >>2.【广东省广州市海珠区2014届高三入学摸底考试数学文】设||y x =[1,1]x ∈-(,||)P tt0.220.20.2log 2,log 3,2,0.2a b c d ====,则这四个数的大小关系是 ( )A.a b c d <<<B.d c a b <<<C.b a c d <<<D.b a d c <<<题型八 基本初等函数的定义域,值域,取值范围问题例8 【吉林市普通中学2013—2014学年度高中毕业班摸底测试文】设函数的最小值为,则实数的取值范围是( )变式训练1.【江西省2014届高三新课程适应性考试文科数学】已知函数32,0()2,04x a x f x x x x ⎧≤<=⎨-+≤≤⎩的值域是[8,1]-,则实数a 的取值范围是( ) A .(,2]-∞- B .[2,0)- C .[2,1]-- D .{2}-2.【江苏省苏州市2014届高三九月测试试卷】已知函数2, 0,()2, 0x x f x x x x -≤⎧⎪=⎨->⎪⎩,则满足()1f x <的x 的取值范围是______.【宁夏银川一中2014届高三年级第一次月考文科】已知函数x a x f 2log )(-=的图象经过点A (1,1),则不等式1)(>x f 的解集为______.3.【成都外国语学校2014级高三开学检测试卷】函数x x f 6log 21)(-=的定义域为____.4.【安徽省望江四中2014届高三上学期第一次月考数学(文)】函数的定义域为 。

高频考点之基本初等函数及性质题型归纳

高频考点之基本初等函数及性质题型归纳

基本初等函数及性质题型归纳一、零点存在性问题解题思想:①.<0;②f(x)在(a,b )上连续不断。

则f(x)在(a,b )上有零点。

例1.(2022·安徽·安庆一中高三期末(理))函数2()log f x x x =+的零点所在的区间为()A.11,32⎛⎫ ⎪⎝⎭B.12,23⎛⎫⎪⎝⎭C.23,34⎛⎫ ⎪⎝⎭D.3,14⎛⎫ ⎪⎝⎭练习:1.(2019·全国卷Ⅲ)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为()A.2 B.3 C.4 D.52.在下列区间中,函数f (x )=e x +3x -4的零点所在的区间为()A.10,4⎛⎫ ⎪⎝⎭ B.11,42⎛⎫ ⎪⎝⎭ C.1,12⎛⎫ ⎪⎝⎭D.312⎛⎫ ⎪⎝⎭,二、初等函数例2.(2021·四川省绵阳第一中学一模(文))函数27x y a -=+(0a >,且1a ≠)的图象恒过定点P ,P 在幂函数()f x x α=的图象上,则(3)f =_______;练习:(2021·广东·湛江二十一中高三阶段练习)若函数()25log 212a f x x ax a ⎛⎫=-+- ⎪⎝⎭有最大值,则a的取值范围为()A.10,2⎛⎫ ⎪⎝⎭B.1,12⎛⎫ ⎪⎝⎭C.21,52⎛⎫ ⎪⎝⎭D.()1,2三、函数性质例3.(2022·北京密云·高三期末)下列函数中,既是偶函数,又在()0,∞+上单调递增的是()A.cos y x =B.211y x =+C.22x x y -=-D.ln y x=练习:2.(2022·湖北·十堰市教育科学研究院高三期末)已知()y f x =是定义在R 上的奇函数,且当0x ≥时,()21x a x a f x =+++,则()2f -=()A.﹣2B.2C.﹣6D.62.(2022·河南南乐·高三阶段练习(文))已知函数()2f x +是R 上的偶函数,且()f x 在[)2,+∞上恒有()()()1212120f x f x x x x x -<≠-,则不等式()()ln 1f x f >的解集为()A.()()3,e e ,∞∞-⋃+B.1,e 2C.()3e,eD.()e,∞+3.(2022·海南·模拟预测)若函数22,,()4,x x m f x x x x m-⎧=⎨+>⎩ 是定义在R 上的增函数,则实数m 的取值范围是()A.(,2]-∞-B.[1,)-+∞C.(]{},21∞--⋃-D.{}[)21,∞-⋃-+四、函数零点问题解题思路:①分参法;②换元法;③分类讨论法;④初等函数图像交点法例4.(2021·安徽·淮南第一中学高三阶段练习(理))已知函数()()()24,532,3x x f x f x x ⎧+-≤<-⎪=⎨-≥-⎪⎩,若函数()()log a g x f x x =-有9个零点,则实数a 的取值范围为()A.()5,7B.(]5,7C.(]9,11D.()9,11练习:1.(2022·河南·温县第一高级中学高三开学考试(文))已知函数()22,0lg ,0x x x f x x x ⎧+≤⎪=⎨>⎪⎩,则函数()()11g x f x =--的零点个数为().A.1B.2C.3D.42.(2022·安徽淮北·一模(文))已知函数()2ln ,12,1x x f x x x >⎧=⎨+≤⎩,若m n <,且()()f m f n =,则n m -的取值范围是()A.3242ln2,e 1⎡⎫--⎪⎢⎣⎭B.3242ln2,e 1⎡⎤--⎢⎥⎣⎦C.323,e 1⎡⎤-⎢⎥⎣⎦D.323,e 1⎡⎫-⎪⎢⎣⎭五、函数图像问题解题思路:①看定义域;②奇偶性;③赋值法例5.(2022·山东菏泽·高三期末)已知函数()2e e 2x xf x x x --=+-的图象可能为()A.B.C.D.六、抽象函数的性质例6.(2022·安徽淮北·一模(理))已知函数()f x 的定义域为R ,()2f x +为奇函数,()21f x +为偶函数,则()A.()20f -=B.()10f -=C.()10f =D.()30f =练习:(2021·安徽·高三阶段练习(理))已知定义域为R 的函数()f x 满足()()13f x f x +=,且当(]0,1x ∈时,()()41f x x x =-,则当[)2,1x ∈--时,()f x 的最小值是()A.181-B.127-C.19-D.13-七、比较大小解题思想:①指数、对数、幂函数的基本性质;②构造函数;③作出函数图像例8.(2022·辽宁丹东·高三期末)设345log 5,log 9,log 7a b c ===,则()A .c b a <<B .b a c <<C .a c b <<D .c a b<<练习:1.(2021·安徽·泾县中学高三阶段练习(文))已知11231111,,log 23ea b c π-⎛⎫⎛⎫==-= ⎪ ⎝⎭⎝⎭,则,,a b c 的大小关系为()A .c b a <<B .b a c <<C .a c b <<D .b c a<<2.(2022·广东茂名·一模)已知,,x y z 均为大于0的实数,且523log x yz ==,则,,x y z 大小关系正确的是()A .x y z >>B .x z y >>C .z x y >>D .z y x >>3.(2022·江西赣州·高三期末(理))实数a ,b ,c 满足22,ln e,33+=+=+=a c a b b c ,则()A .a b c <<B .a c b <<C .c a b <<D .c b a<<4.(2022·江西上饶·一模(理))设150a =,ln 7100b =,512ln 50c =,则,,a b c 的大小关系正确的是()A .a b c <<B .b c a <<C .c a b <<D .b a c <<八、函数综合问题解题思想:数形结合思想;分类讨论思想;函数思想等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数复习一、基础复习:1、a 的次方根: , x 叫a 的n 次方根根式的性质:(1)n n a )(= ,(),1+∈>N n n 且;(2)⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,2、分数指数幂与根式:=mna =-n a =1a =0a3、幂的运算性质:=⋅s r a a =÷s r a a =s r a )( =r ab )(4、指数式与对数式的互化:⇒=N a b5、对数的性质:(1)N (2)=1log a (3)=a a log6、对数恒等式:=Naa log=b a a log7、对数的运算法则:=⋅)(log N M a =)(log NMa =αM a log 8、换底公式:=b a log =b a log =n a b mlog 9、常用对数:=N 10log 自然对数:=N e log 10、幂、指、对函数函数的性质 二、典型例题: 1、指数、对数运算: 1、下列各式中,正确的是( )A .100= B .1)1(1=-- C .74471aa=-D .53531aa=-2. 计算:210319)41()2(4)21(----+-⋅- = ;3.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 6B .a -C .a 9-D .29a4.已知2x =72y =A ,且1x +1y=2,则A 的值是A .7B .7 2C .±7 2D .985.若a 、b 、c ∈R +,则3a =4b =6c ,则( )A .bac111+=B .b a c 122+=C .b a c 221+= D .ba c 212+=6. 若a<12,则化简4(2a -1)2的结果是A.2a -1 B .-2a -1 C.1-2a D .-1-2a7、计算下列各式的值(1 (2);21lg5(lg8lg1000)(lg lg lg 0.066++++8、设1245100,2()a b a b==+求的值.9、已知4(),01,42xx f x a =<<+且(1)()(1)f a f a +-求的值;1231000(2)()()()...()1001100110011001f f f f ++++求的值.说明:如果函数()xx f x a a=+,则函数()f x 满足()(1)1f x f x +-=2、指数函数、对数、幂函数的图像: (1)定义考察:1、下列函数中指数函数的个数是 ( ). ①②③④A .0个 B.1个 C.2个 D.3个 2.下列函数是指数函数的是( )A. x y 5=B. x y +=25C. x y 52⋅=D. 15-=x y(2)定点问题1.函数0.(12>+=-a a y x 且)1≠a 的图像必经过点( ))1,0.(A )1,1.(B )0,2.(C )2,2.(D2. 函数恒3()25x f x a -=+过定点 ( )A .(3 , 5)B .( 3, 7 )C .( 0, 1 )D .( 1, 0 ) 3.函数1log )()2(2+=-x x f 恒过定点___________ (3)图像问题1.当a >1时,函数y=log a x 和y=(1-a)x 的图像只可能是( )2如图中函数21-=xy 的图象大致是( )图3-73.在统一平面直角坐标系中,函数ax x f =)(与x a x g =)(的图像可能是( )4.设d c b a ,,,都是不等于1的正数,x x x x d y c y b y a y ====,,,在同一坐标系中的图像如图所示,则d c b a ,,,的大小顺序是( d c b a A <<<. c d b a B <<<. c d a b C <<<. d c a b D <<<.5.图中所示曲线为幂函数n x y =在第一象限的图象,则1c 、2c 、3c 、4c 大小关系为 ( )A.4321c c c c >>>B.3412c c c c >>>xyo 1Axyo1B xyo1Cxyo1Dxa =xby =xc y =xd y =yoC.3421c c c c >>>D.2341c c c c >>> 3、指数函数、对数函数的单调性、奇偶性 (1)单调性1、比较下列每组中两个数的大小0.30.4 1.3 1.60.3 1.3111(1)2.1_____2.1; (2)()_____(); (3)2.1_____()555-550.70.543(4)log 1.9_____log 2; (5)log 0.2_____log 2; (6)log 2_____log 42、已知031log 31log >>b a ,则a 、b 的关系是 ( )A .1<b <aB .1<a <bC .0<a <b <1D .0<b <a <1 3.设10<<a ,使不等式531222+-+->x x x x a a 成立的x 的集合是4.下列函数中,在区间(0,1)上是增函数的是 ( ) A.y=-xB.y=log 21xC.y=31x D.y=-x 2+2x+15.(1)函数)26(log 21.0x x y -+=的单调增区间是________(2)已知log (2)a y ax =-在[0,1]是减函数,则a 的取值范围是_________ 6.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 ( )(A )(0,1)(B )1(0,)3(C )11[,)73(D )1[,1)77、 解下列不等式:(1)22332<-+x x ; (2)2332)21(2--+<x x x ; (3))1,0(5213222≠>>-++-a a a a x x x x8.如果函数2()(1)x f x a R a =-在上是减函数,求实数的取值范围 9、求下列函数的单调区间。

(1)26171()()2x x f x -+=; (2)求函数25log (23)y x x =--的单调区间(2)奇偶性1.当1>a 时,函数11-+=x x a a y 是( ).A 奇函数 .B 偶函数 .C 既奇又偶函数 .D 非奇非偶函数2 。

已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数。

(Ⅰ)求,a b 的值;(Ⅱ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围;3:已知函数1().21xf x a =-+,若()f x 为奇函数,则a =________。

4:已知函数3)21121()(x x f x +-=(1)求函数的定义域;(2)讨论函数的奇偶性; (3)证明:0)(>x f 5、已知函数)10)(1(log )(),1(log )(≠>-=+=a a x x g x x f a a 且,(1)求函数)()(x g x f +的定义域;(2)判断)()(x g x f +的奇偶性,并说明理由; (3)求不等式()()0f x g x +>的解集.6、已知xx x x x f --+-=10101010)(,①判断函数f(x)的奇偶性;②证明f(x)是定义域中的增函数;③求f(x)值域。

4、定义域、值域问题 1、求下列函数的定义域(1)1218x y -=; (2)y = ( 3)12log (32)y x =-; (4)y =2、求下列函数的值域(1)12,[1,4]x y x =-∈; (2) 23log ,[1,)y x x =+∈+∞;(3)已知函数)2lg(2a x x y ++=,①若定义域为R,求a 的取值范围;②若值域为R ,求a 的取值范围。

3、解下列不等式(1)11242x -<<;(2)0.70.7log (2)log (1)x x <-练习:设函数2,(0)()1,(0)x x f x x x -⎧≤=⎨+>⎩,若0()2f x <,求0x 的取值范围4、()log ,[2,4](01)1a f x x x a a =∈<≠函数的最大值比最小值大,求实数的值练习:函数[0,1]x y a =在上的最大值与最小值的和为3,求函数13()[0,1]x y a=在上的最大值5、求函数1423[0,1]x x y +=++在区间上的最大值与最小值。

5、对数换底公式的应用1、已知3log log 4a b a ⋅=,求b 的值2:若56789log 6log 7log 8log 9log 10y =⋅⋅⋅⋅,则有( )(A )y ∈(0,1) (B )y ∈(1,2) (C )y ∈(2,3) (D )y ∈(3,4) 三、练习巩固: 1、计算下列各式的值:(1)(1log (3+; (2)2lg 5lg 2lg 50+•; (3)643log [log (log 81)]2、设1125100,a b a b==+求3、求下列函数的定义域:(1)y = (2)y =(3)311log (1)y x =--;(4)2log (1),(01)a y x a =-<≠;(5)(1)log (164)x x y +=-4、求下列函数值域:(1) 1()2,[1,2]3x y x =+∈-; (2) 22log (45)y x x =--5、求函数])8,1[(4log 2log 22∈⋅=x x x y 的最大值和最小值6、函数()log (1)[0,1]x a f x a x =++在上的最大值与最小值之和为a ,求实数a 的值7、求下列函数的单调区间(1)228()2x x f x -++=;(2))32(log )(24x x x f -+=;(3)223()(01)x x f x a a +-=<≠8、(1)2(1)log a y x -=是减函数,求实数a 的取值范围;(2)若函数20.5()log (3)[2,)f x x ax a =-++∞在区间上是减函数,求实数a 的取值范围;(3)()log (2)[0,1]a f x ax a =-已知函数在区间上是减函数,求实数的取值范围(4)已知(31)4,1()log ,1a a x a x f x x x -+≤⎧=⎨>⎩是(,)-∞+∞上的减函数,求实数a 的取值范围;9、log (27)log (41)(01)a a x x a x +>-<≠求不等式中的取值范围10、已知62()log ,f x x =求(8)f11、判断函数())f x x =的奇偶性12、已知函数1()log (01)1axf x a x+=<≠- (1)求函数()f x 的定义域;(2)判断函数()f x 的的奇偶性;(3)求是不等式()0f x >的解集.。

相关文档
最新文档