2014-2015湖北襄阳中考数学试题(含答案)
2015年中考襄阳数学
2015年中考襄阳数学一、选择题(12*3=36分)1.-2的绝对值是(A )A.2 B.-2 C.21 D.21- 2.中国人口众多,地大物博,仅领水面积就约为370000km 2,将“370000”这个数用科学记数法表示为(B ) A.3.7×106 B. 3.7×105C. 37×104D. 3.7×1043.在数轴上表示不等式2(1-x)<4的解集,正确的是(A )4.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T 随时间t 变化而变化的关系,观察图象得到下列信息,其中错误的是(C )A.凌晨4时气温最低为-3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降 5.下列运算中正确的是(D ) A.a 3-a 2=aB.a 3×a 4=a 12C.a 6÷a 2=a 3D.(-a 2)3=-a 66.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=60°那么∠1的度数为(D ) A.60°B.50°C.40°D.30°7.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB ,若BE=2,则AE 的长为(B ) A.3 B.1 C.2 D.2 8.下列说法中正确的是(B )A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次。
9.点O 是△ABC 的外心,若∠BOC=80°,则∠BAC 的度数为(C ) A.40° B.100° C.40°或140°D.40°或100°10.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是(A ) A.4 B.5 C.6 D.911.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数xcy =在同一平面直角坐标系中的图象可能是(C )12.如图,矩形纸片ABCD 中,AB=4,BC=8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是(D ) A.AF=AEB. △ABE ≌△AGFC.EF=52D. AF=EF二、填空题(5*3=15分) 13.计算31812--=_0__。
2015年湖北省襄阳市中考数学试卷
2015年湖北省襄阳市中考数学试卷一、选择题,共12小题,每小题3分,共36分1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记数法表示为()A.3.7×106B.3.7×105C.37×104D.3.7×1043.(3分)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.4.(3分)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T 随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降5.(3分)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a66.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°7.(3分)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1 C.D.28.(3分)下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次9.(3分)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°10.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.911.(3分)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.12.(3分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C 与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=2D.AF=EF二、填空题,共5小题,每小题3分,共15分13.(3分)计算:2﹣1﹣=.14.(3分)分式方程﹣=0的解是.15.(3分)若一组数据1,2,x,4的众数是1,则这组数据的方差为.16.(3分)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为.17.(3分)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.三、简单题,共9小题,共69分18.(6分)先化简,再求值:(+)÷,其中x=,y=﹣.19.(6分)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.20.(6分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分布直方图分数段(分手为x分)频数百分比60≤x<70820%70≤x<80a30%80≤x≤9016b%90≤x<100410%请根据图表提供的信息,解答下列问题:(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.21.(6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.23.(7分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A 按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.24.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.26.(12分)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t 秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.2015年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题,共12小题,每小题3分,共36分1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记数法表示为()A.3.7×106B.3.7×105C.37×104D.3.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:370 000=3.7×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.【分析】根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上表示的方法,可得答案.【解答】解:由2(1﹣x)<4,得2﹣2x<4.解得x>﹣1,故选:A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T 随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降【分析】根据函数的图象对各选项进行逐一分析即可.【解答】解:A、∵由图象可知,在凌晨4点函数图象在最低点﹣3,∴凌晨4时气温最低为﹣3℃,故本选项正确;B、∵由图象可知,在14点函数图象在最高点8,∴14时气温最高为8℃,故本选项正确;C、∵由图象可知,从4时至14时,气温随时间增长而上升,不是从0点,故本选项错误;D、∵由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选:C.【点评】本题考查的是函数的图象,能根据函数图象在坐标系中的增减性判断出函数的增减性是解答此题的关键.5.(3分)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a6【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.【解答】解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.6.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°【分析】根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.【解答】解:如图,∵∠3=∠1+30°,∵AB∥CD,∴∠2=∠3=60°,∴∠1=∠3﹣30°=60°﹣30°=30°.故选:D.【点评】本题考查了平行线的性质,关键是根据:两直线平行,内错角相等.也利用了三角形外角性质.7.(3分)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1 C.D.2【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°角所对的直角边等于斜边的一半得出AE=CE=1.【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,∴BE=CE=2,∴∠B=∠DCE=30°,∵CE平分∠ACB,∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,∴∠A=180°﹣∠B﹣∠ACB=90°.在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,∴AE=CE=1.故选:B.【点评】本题考查的是含30度角的直角三角形的性质,线段垂直平分线的性质,等腰三角形的性质,角平分线定义,三角形内角和定理,求出∠A=90°是解答此题的关键.8.(3分)下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、“概率为0.0001的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选:B.【点评】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°【分析】利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.【解答】解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.【点评】此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.10.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.9【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两层3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故选:A.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.11.(3分)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据二次函数图象开口向下得到a<0,再根据对称轴确定出b,根据与y轴的交点确定出c>0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【解答】解:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线x=﹣>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴y=ax+b的图象经过第一、二、四象限,反比例函数y=图象在第一三象限,只有C选项图象符合.故选:C.【点评】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.12.(3分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C 与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=2D.AF=EF【分析】设BE=x,表示出CE=8﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE 中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.【解答】解:设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,∴A正确;在Rt△ABE和Rt△AGF中,,∴△ABE≌△AGF(HL),∴B正确;过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=2,∴C正确;∵△AEF不是等边三角形,∴EF≠AF,故D错误;故选:D.【点评】本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.二、填空题,共5小题,每小题3分,共15分13.(3分)计算:2﹣1﹣=0.【分析】原式第一项利用负整数指数幂法则计算,第二项利用立方根定义计算即可得到结果.【解答】解:原式=﹣=0,故答案为:0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.(3分)分式方程﹣=0的解是x=15.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5﹣10=0,解得:x=15,经检验x=15是分式方程的解.故答案为:x=15.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(3分)若一组数据1,2,x,4的众数是1,则这组数据的方差为 1.5.【分析】根据众数的定义先求出x的值,再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.【解答】解:∵数据1,2,x,4的众数是1,∴x=1,∴平均数是(1+2+1+4)÷4=2,则这组数据的方差为[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=1.5;故答案为:1.5.【点评】本题考查了众数和方差:众数是一组数据中出现次数最多的数;一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].16.(3分)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为﹣π.【分析】连结PO交圆于C,根据切线的性质可得∠OAP=90°,根据含30°的直角三角形的性质可得OA=1,再求出△PAO与扇形AOC的面积,由S阴影=2×(S△PAO﹣S扇形AOC)则可求得结果.【解答】解:连结AO,连结PO交圆于C.∵PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,∴∠OAP=90°,OA=1,∴S阴影=2×(S△PAO﹣S扇形AOC)=2×(×1×﹣)=﹣π.故答案为:﹣π.【点评】此题考查了切线长定理,直角三角形的性质,扇形面积公式等知识.此题难度中等,注意数形结合思想的应用.17.(3分)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.【分析】首先求出∠ADB的度数,再利用三角形内角和定理以及等腰三角形的性质,得出∠A的度数.【解答】解:情形一:当E点在线段AD上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD==55°.情形二:当E点在AD的延长线上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠BDE=70°,∵AD=BD,∴∠A=∠ABD=∠BDE=×70°=35°.故答案为:55°或35°.【点评】此题主要考查了平行四边形的性质以及等腰三角形的性质等知识,得出∠ADB的度数是解题关键.三、简单题,共9小题,共69分18.(6分)先化简,再求值:(+)÷,其中x=,y=﹣.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=•xy(x﹣y)=•xy(x﹣y)=3xy,当x=+,y=﹣时,原式=3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.【分析】(1)把A的坐标代入反比例函数的解析式,求出m的值,从而确定反比例函数的解析式,把B的坐标代入反比例函数解析式求出B的坐标,把A、B 的坐标代入一次函数的解析式,即可求出a,b的值,从而确定一次函数的解析式;(2)根据函数的图象即可得出一次函数的值小于反比例函数的值的x的取值范围.【解答】解:(1)∵反比例函数y=的图象过点A(1,4),∴4=,即m=4,∴反比例函数的解析式为:y=.∵反比例函数y=的图象过点B(n,﹣2),∴﹣2=,解得:n=﹣2∴B(﹣2,﹣2).∵一次函数y=ax+b(k≠0)的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得.∴一次函数的解析式为:y=2x+2;(2)由图象可知:当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.【点评】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式及利用图象比较函数值的大小.解题的关键是:确定交点的坐标.20.(6分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分布直方图分数段(分手为x分)频数百分比60≤x<70820%70≤x<80a30%80≤x≤9016b%90≤x<100410%请根据图表提供的信息,解答下列问题:(1)表中的a=12,b=40;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是108°;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.【分析】(1)首先根据第一小组的频数和频率求得总人数,然后减去其它小组的频数即可求得a值,根据总人数和第三小组的频数即可求得b值;(2)用周角乘以相应分数段所占的百分比即可求得圆心角的度数;(3)列表将所有等可能的结果列举出来利用概率公式求解即可.【解答】解:(1)∵60≤x<70小组的频数为8,占20%,∴8÷20%=40人,∴a=40﹣8﹣16﹣4=12,b=×100%=40%,故答案为:12,40;(2)∵70≤x<80小组所占的百分比为30%,∴70≤x<80对应扇形的圆心角的度数360°×30%=108°,故答案为:108°;(3)用A、B表示男生,用a、b表示女生,列表得:A B a bA AB Aa AbB BA Ba Bba aA aB abb bA bB ba∵共有12种等可能的结果,其中一男一女的有8种,∴P(一男一女)==.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和概率公式.21.(6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.【点评】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.22.(6分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.(1)过点A作AE⊥BC于点E,根据cosC=,求出∠C=45°,求出AE=CE=1,【分析】根据tanB=,求出BE的长即可;(2)根据AD是△ABC的中线,求出BD的长,得到DE的长,得到答案.【解答】解:过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【点评】本题考查的是解直角三角形的知识,正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.23.(7分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A 按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE 求解.【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CF;(2)解:∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=﹣1.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.24.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600(x≥45);(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,=8000元,∴当x=60时,P最大值即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,=﹣20×58+1600=440,∴当x=58时,y最小值即超市每天至少销售粽子440盒.【点评】本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒粽子所获得的利润×销售量,求函数的最值时,注意自变量的取值范围.25.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.【分析】(1)首先连接OC,由PE是⊙O的切线,AE和过点C的切线互相垂直,可证得OC∥AE,又由OA=OC,易证得∠DAC=∠OAC,即可得AC平分∠BAD;(2)由AB是⊙O的直径,PE是切线,可证得∠PCB=∠PAC,即可证得△PCB∽△PAC,然后由相似三角形的对应边成比例与PB:PC=1:2,即可求得答案;(3)首先过点O作OH⊥AD于点H,则AH=AD=,四边形OCEH是矩形,即可得AE=+OC,由OC∥AE,可得△PCO∽△PEA,然后由相似三角形的对应边成比例,求得OC的长,再由△PBC∽△PCA,证得AC=2BC,然后在Rt△ABC中,AC2+BC2=AB2,可得(2BC)2+BC2=52,即可求得BC的长,继而求得答案.【解答】(1)证明:连接OC,∵PE是⊙O的切线,∴OC⊥PE,∵AE⊥PE,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,∴AC平分∠BAD;(2)线段PB,AB之间的数量关系为:AB=3PB.理由:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵OB=OC,。
【精校】2014年湖北省襄阳市中考真题数学
2014年湖北省襄阳市中考真题数学一、选择题(本大题共12小题,每小题3分,共36分)在每小题给出的四个选项总,只有一项是符合题目要求的.1.(3分)有理数-的倒数是( )A.B. -C.D. -解析:,答案:D.2.(3分)下列计算正确的是( )A. a2+a2=2a4B. 4x-9x+6x=1C. (-2x2y)3=-8x6y3D. a6÷a3=a2解析:A、a2+a2=2a2≠2a4,故A选项错误;B,4x-9x+6x=x≠1,故B选项错误;C、(-2x2y)3=-8x6y3,故C选项正确;D、a6÷a3=a3≠a2,故D选项错误.答案:C.3.(3分)我市今年参加中考人数约为42000人,将42000用科学记数法表示为( )A. 4.2×104B. 0.42×105C. 4.2×103D. 42×103解析:将42000用科学记数法表示为:4.2×104.答案:A.4.(3分)如图几何体的俯视图是( )A.B.C.D.解析:从上面看,第一层是三个正方形,第二层右边一个正方形,答案:B.5.(3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于( )A. 35°B. 45°C. 55°D. 65°解析:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.答案:A.6.(3分)五箱梨的质量(单位:kg)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为( )A. 20和18B. 20和19C. 18和18D. 19和18解析:从小到大排列此数据为:18、18、19、20、21,数据18出现了三次最多,所以18为众数;19处在第5位是中位数.所以本题这组数据的中位数是19,众数是18.答案:D.7.(3分)下列命题错误的是( )A. 所有的实数都可用数轴上的点表示B. 等角的补角相等C. 无理数包括正无理数,0,负无理数D. 两点之间,线段最短解析:A、所有的实数都可用数轴上的点表示,所以A选项正确;B、等角的补角相等,所以B选项正确;C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;D、两点之间,线段最短,所以D选项正确.答案:C.8.(3分)若方程mx+ny=6的两个解是,,则m,n的值为( )A. 4,2B. 2,4C. -4,-2D. -2,-4解析:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,答案:A9.(3分)用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为( )A. x(20+x)=64B. x(20-x)=64C. x(40+x)=64D. x(40-x)=64解析:设长为xcm,∵长方形的周长为40cm,∴宽为=(20-x)(cm),得x(20-x)=64.答案:B.10.(3分)如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于( )A. 80°B. 90°C. 100°D. 110°解析:∵DE=DC,∠C=80°,∴∠DEC=80°,∵AB∥DE,∴∠B=∠DEC=80°,∵AD∥BC,∴∠A=180°-80°=100°,答案:C.11.(3分)用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( )A.B. 1C.D. 2解析:扇形的弧长==2π,故圆锥的底面半径为2π÷2π=1.答案:B.12.(3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )A. ①②B. ②③C. ①③D. ①④解析:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°-30°=60°,∴∠BEF=(180°-∠AEP)=(180°-60°)=60°,∴∠EFB=90°-60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠BFE=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°-∠EBQ=90°-30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.答案:D.二、填空题(本大题共5个小题,每小题3分,共15分)请把答案填在答题卡的相应位置上13.(3分)计算:÷= .解析:原式=·=.答案:.14.(3分)从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是.解析:∵从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;∴能构成三角形的概率是:=.答案:.15.(3分)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为m(结果保留根号)解析:作CE⊥AB于点E,在Rt△BCE中,BE=CD=5m,CE==5m,在Rt△ACE中,AE=CE·tan45°=5m,AB=BE+AE=(5+5)m.答案:(5+5).16.(3分)若正数a是一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,则a的值是.解析:∵a是一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,∴a2-5a+m=0①,a2-5a-m=0②,①+②,得2(a2-5a)=0,∵a>0,∴a=5.答案:5.17.(3分)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于. 解析:如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴AD=BC=5,∴▱ABCD的周长等于:20,如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴BC=3-2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.答案:12或20.三、解答题(本大题共9小题,共69分)解答应写出文字说明,证明过程或演算步骤.18.(5分)已知:x=1-,y=1+,求x2+y2-xy-2x+2y的值.解析:根据x、y的值,先求出x-y和xy,再化简原式,代入求值即可.答案:∵x=1-,y=1+,∴x-y=(1-)-(1+)=-2,xy=(1-)(1+)=-1,∴x2+y2-xy-2x+2y=(x-y)2-2(x-y)+xy=(-2)2-2×(-2)+(-1)=7+4.19.(6分)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?解析:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360-135)km所用的时间相同,列方程求解.答案:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:设特快列车的平均速度为90km/h,则动车的速度为144km/h.20.(7分)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率.解析:(1)由A的人数除以所占的百分比求出总人数,进而求出D的人数,得到C占的百分比,补全统计图即可;(2)根据题意列出算式,计算即可得到结果;(3)列表得出所有等可能的情况数,找出粽子馅料不同的结果,即可求出所求的概率. 答案:(1)根据题意得:6÷15%=40(人),D的人数为40×40%=16(人),C占的百分比为1-(10%+15%+40%)=35%,补全统计图,如图所示:(2)根据题意得:(6×4+4×5+14×6+16×7)÷40=6(个),则该班学生制作粽子个数的平均数是6个;故答案为:6个;(3)列表如下:所有等可能的情况有12种,其中粽子馅料不同的结果有8种,则P==.21.(6分)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.解析:(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.答案:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.22.(6分)如图,一次函数y1=-x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.解析:(1)作BD⊥x轴于D,如图,在Rt△OBD中,根据正切的定义得到tan∠BOC==,则=,即m=-2n,再把点B(m,n)代入y1=-x+2得n=-m+2,然后解关于m、n的方程组得到n=-2,m=4,即B点坐标为(4,-2),再把B(4,-2)代入y2=可计算出k=-8,所以反比例函数解析式为y2=-;(2)观察函数图象得到当x<4,y2的取值范围为y2>0或y2<-2.答案:(1)作BD⊥x轴于D,如图,在Rt△OBD中,tan∠BOC==,∴=,即m=-2n,把点B(m,n)代入y1=-x+2得n=-m+2,∴n=2n+2,解得n=-2,∴m=4,∴B点坐标为(4,-2),把B(4,-2)代入y2=得k=4×(-2)=-8,∴反比例函数解析式为y2=-;(2)当x<4,y2的取值范围为y2>0或y2<-2.23.(7分)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.解析:(1)根据正方形的性质可得AB=BC=AD=2,∠ABC=90°,再根据旋转变化只改变图形的位置不改变图形的形状可得△ABF和△CBE全等,根据全等三角形对应角相等可得∠FAB=∠ECB,∠ABF=∠CBE=90°,全等三角形对应边相等可得AF=EC,然后求出∠AFB+∠FAB=90°,再求出∠CFG=∠FAB=∠ECB,根据内错角相等,两直线平行可得EC∥FG,再根据一组对边平行且相等的四边形是平行四边形判断出四边形EFGC是平行四边形,然后根据平行四边形的对边平行证明;(2)求出FE、BE的长,再利用勾股定理列式求出AF的长,根据平行四边形的性质可得△FEC和△CGF全等,从而得到S△FEC=S△CGF,再根据S阴影=S扇形BAC+S△ABF+S△FGC-S扇形FAG列式计算即可得解.答案:(1)在正方形ABCD中,AB=BC=AD=2,∠ABC=90°,∵△BEC绕点B逆时针旋转90°得到△ABF,∴△ABF≌△CBE,∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=CE,∴∠AFB+∠FAB=90°,∵线段AF绕点F顺时针旋转90°得线段FG,∴∠AFB+∠CFG=∠AFG=90°,∴∠CFG=∠FAB=∠ECB,∴EC∥FG,∵AF=CE,AF=FG,∴EC=FG,∴四边形EFGC是平行四边形,∴EF∥CG;(2)∵AD=2,E是AB的中点,∴BF=BE=AB=×2=1,∴AF===,由平行四边形的性质,△FEC≌△CGF,∴S△FEC=S△CGF,∴S阴影=S扇形BAC+S△ABF+S△FGC-S扇形FAG,=+×2×1+×(1+2)×1-,=-.24.(10分)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?解析:(1)根据利润等于价格减去成本,可得答案;(2)根据利润不低于中标价16%,可得不等式,根据解不等式,可得答案;(3)分类讨论,成活率不低于93%且低于94%时,成活率达到94%以上(含94%),可得相应的最大值,根据有理数的比较,可得答案.答案:(1)y=260000-[20x+32(6000-x)+8×6000]=12x+20000,自变量的取值范围是:0<x≤3000;(2)由题意,得12x+20000≥260000×16%,解得:x≥1800,∴1800≤x≤3000,购买甲种树苗不少于1800棵且不多于3000棵;(3)①若成活率不低于93%且低于94%时,由题意得,解得1200<x≤2400在y=12x+20000中,∵12>0,∴y随x的增大而增大,∴当x=2400时,y最大=48800,②若成活率达到94%以上(含94%),则0.9x+0.95(6000-x)≥0.94×6000,解得:x≤1200,由题意得y=12x+20000+260000×6%=12x+35600,∵12>0,∴y随x的增大而增大,∴当x=1200时,y最大值=50000,综上所述,50000>48800∴购买甲种树苗1200棵,乙种树苗4800棵,可获得最大利润,最大利润是50000元.25.(10分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.(1)求证:△ADP∽△BDA;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)若AD=2,PD=1,求线段BC的长.解析:(1)首先作⊙O的直径AE,连接PE,利用切线的性质以及圆周角定理得出∠PAD=∠PBA进而得出答案;(2)首先在线段PC上截取PF=PB,连接BF,进而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;(3)利用△ADP∽△BDA,得出==,求出BP的长,进而得出△ADP∽△CAP,则=,则AP2=CP·PD求出AP的长,即可得出答案.答案:(1)作⊙O的直径AE,连接PE,∵AE是⊙O的直径,AD是⊙O的切线,∴∠DAE=∠APE=90°,∴∠PAD+∠PAE=∠PAE+∠E=90°,∴∠PAD=∠E,∵∠PBA=∠E,∴∠PAD=∠PBA,∵∠PAD=∠PBA,∠ADP=∠BDA,∴△ADP∽△BDA;(2)PA+PB=PC,证明:在线段PC上截取PF=PB,连接BF,∵PF=PB,∠BPC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°-∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,∴∠BPA=∠BFC,在△BPA和△BFC中,,∴△BPA≌△BFC(AAS),∴PA=FC,AB=CB,∴PA+PB=PF+FC=PC;(3)∵△ADP∽△BDA,∴==,∵AD=2,PD=1,∴BD=4,AB=2AP,∴BP=BD-DP=3,∵∠APD=180°-∠BPA=60°,∴∠APD=∠APC,∵∠PAD=∠E,∠PCA=∠E,∴PAD=∠PCA,∴△ADP∽△CAP,∴=,∴AP2=CP·PD,∴AP2=(3+AP)·1,解得:AP=或AP=(舍去),∴BC=AB=2AP=1+.26.(12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为 .(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t 为何值时,△ACQ的面积最大?最大值是多少?解析:(1)根据抛物线的对称轴与矩形的性质可得点A坐标,根据待定系数法可得抛物线的解析式;(2)先根据勾股定理可得CE,再分两种情况:当∠QPC=90°时;当∠PQC=90°时;讨论可得△PCQ为直角三角形时t的值;(3)根据待定系数法可得直线AC的解析式,根据S△ACQ=S△AFQ+S△CPQ可得S△ACQ=-(t-2)2+1,依此即可求解.答案:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,∴点A坐标为(1,4),设抛物线的解析式为y=a(x-1)2+4,把C(3,0)代入抛物线的解析式,可得a(3-1)2+4=0,解得a=-1.故抛物线的解析式为y=-(x-1)2+4,即y=-x2+2x+3;(2)依题意有:OC=3,OE=4,∴CE===5,当∠QPC=90°时,∵cos∠QCP==,∴=,解得t=;当∠PQC=90°时,∵cos∠QCP==,∴=,解得t=.∴当t=或t=时,△PCQ为直角三角形;(3)∵A(1,4),C(3,0),设直线AC的解析式为y=kx+b,则,解得.故直线AC的解析式为y=-2x+6.∵P(1,4-t),将y=4-t代入y=-2x+6中,得x=1+,∴Q点的横坐标为1+,将x=1+代入y=-(x-1)2+4中,得y=4-.∴Q点的纵坐标为4-,∴QF=(4-)-(4-t)=t-,∴S△ACQ=S△AFQ+S△CFQ=FQ·AG+FQ·DG=FQ(AG+DG)=FQ·AD=×2(t-)=-(t-2)2+1,∴当t=2时,△ACQ的面积最大,最大值是1.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2015年襄阳中考数学
备考建议:
1.第一轮系统复习注重对各知识点的梳理,知识 系统化,并进行查漏补缺。
2.第二轮专题复习中归纳订正各种试卷中的错题, 不断改错,规范答题。
3.第三轮的模拟冲刺复习中认真领悟老师讲授的 知识、方法和题型以及易错点,对解答题认真 审题,全面思考,注意分类讨论。
中考数学试卷(2014年襄阳) 12.(3分)(2014•襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC 上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接 BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④ △PBF是等边三角形.其中正确的是( D )
A.①②B.②③C.①③D.①④
17.(3分)(2014•襄阳)在▱ABCD中,BC边上的高为4,AB=5,AC=2, 则▱ABCD的周长等于 12或20 .
24.(10分)(2014•襄阳)我市为创建“国家级森林城市”政府将对江边一 处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树 苗不得多于乙种树苗,.某承包商以26万元的报价中标承包了这项工程.根 据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的 购买价及成活率如表: 品种购买价甲20(元/棵)成活率90%,乙32(元/棵) 成活率95%。设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息 解答下列问题:
26.(12分)(2014•襄阳)如图,在平面直角坐标系中,矩形OCDE的三个顶 点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛 物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动 时间为t秒. (1)填空:点A坐标为 (1,4) ;抛物线的解析式为 y=﹣(x﹣1) 2+4 . (2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时, 点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时, 另一个点随之停止运动.当t为何值时,△PCQ为直角三角形? (3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过 点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接 AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?
2015年湖北省襄阳市中考数学试卷-答案
湖北省襄阳市2015年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】2-的绝对值是2,即|22|-=。
【考点】绝对值的概念2.【答案】B【解析】370000 3.7105=⨯,故选:B 。
【考点】科学计数法3.【答案】A【解析】解:由2(1)4x -<,得224x -<,解得1x ->,故选:A 。
【考点】一元一次不等式的解法4.【答案】C【解析】A ,∵由图象可知,在凌晨4点函数图象在最低点3-,∴凌晨4时气温最低为3-℃,故本选项正确;B ,∵由图象可知,在14点函数图象在最高点8,∴14时气温最高为8℃,故本选项正确;C ,∵由图象可知,从4时至14时,气温随时间增长而上升,不是从0点,故本选项错误;D ,∵由图象可知,14时至24时,气温随时间增长而下降,故本选项正确。
故选C 。
【考点】函数的图像5.【答案】D【解析】A ,合并同类项系数相加字母部分不变,故A 错误;B ,同底数幂的乘法底数不变指数相加,故B 错误;C ,同底数幂的除法底数不变指数相减,故C 错误;D ,积的乘方等于乘方的积,故D 正确;故选D 。
【考点】整式的运算6.【答案】D【解析】∵3103∠=∠+︒,∵AB CD ∥,∴2360∠=∠=︒,∴1330603030∠=∠-=-︒=︒︒︒。
故选D 。
【考点】平行线的性质7.【答案】B【解析】∵在ABC △中,30∠︒=B ,BC 的垂直平分线交AB 于E ,2BE =,∴2BE CE ==,∴30∠=∠=︒B DCE 。
∵CE 平分ACB ∠,∴260∠=∠︒=ACB DCE ,30∠=∠=︒ACE DCE 。
∴18090︒-∠∠=-∠︒=A B ACB 。
在Rt CAE △中,∵90∠︒=A ,30∠︒=ACE ,2CE =,∴ 1AE CE ==,故选B 。
【考点】垂直平分线,角平分线8.【答案】B【解析】A ,“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B ,“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C ,“概率为0.0001的事件”是随机事件,选项错误;D ,任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误。
2015年湖北省襄阳市中考数学试卷
绝密★启用前-------------湖北省襄阳市2015 年初中毕业生学业水平考试在---------------- 数学-------------------- 本试卷满分120 分 , 考试时间120 分钟 ._ 第 I 卷(选择题共 36 分)此____ 一、选择题 ( 本大题共 12 小题 , 每题 3 分 , 共 36 分 . 在每题给出的四个选项中, 只有___ 一项为哪一项切合题目要求的)_____ 1. 2 的绝对值是__ --------------------)_ 卷(号_1 1生_ A . 2 B . 2 D.考_ C._ 2 2_2_ 2. 中国人口众多, 地大物博, 仅领水面积就约为370 000 km , 将“370 000 ”这个数用科__ _ _ 学记数法表示为_ __ _ --------------------_ _ ( )_ 上_6 5 4 4_ B . 3.7 10 C. 37_ _ A. 3.7 10 10 D. 3.7 10__ _2(1 x)< 4的解集,正确的选项是_ _3. 在数轴上表示不等式_ __ __ _ ( )_ __ _名_ _ --------------------姓_ _答____ __ A B C D ___ 4. 如图 , 是一台自动测温仪记录的图象, 它反应了我市冬___ 季某天气温T 随时间 t 变化而变化的关系, 察看图象_ _ --------------------_ 题获取以下信息 , 此中错误的选项是( )__A . 清晨4时气温最低为3℃校学B . 14时气温最高为8℃业毕 C. 从0 时至14时,气温随时间增加而上涨D . 从14时至24时, 气温随时间增加而降落--------------------无5. 以下运算中正确的选项是( )A . a3 a2 aB . a3a4 a12 C. a6 a2 a3 D. ( a2)3 a66.如图 , 将一块含有30角的直角三角形的两个极点放在矩-------------------- 第 1页(共 6页)效数学试卷形直尺的一组对边上, 假如 2 60 ,那么 1 的度数为( )A . 60 B. 50 C. 40 D. 307. 如图 , 在△ABC中, B 30 , BC 的垂直均分线交AB于点E ,垂足为 D,CE均分ACB,若BE 2 ,则AE的长为( )A . 3 B. 1C. 2 D . 28.以下说法中正确的选项是()A . “随意画出一个等边三角形, 它是轴对称图形”是随机事件B. “随意画出一个平行四边形, 它是中心对称图形”是必定事件C. “概率为的事件”是不行能事件D. 随意掷一枚质地平均的硬币10 次,正面向上的必定是 5 次9. 点O是△ABC的外心 , 若BOC 80 ,则BAC 的度数为()A. 40B. 100C. 40或140D. 40或10010. 由若干个同样的小正方体组合而成的一个几何体的三视图以下图, 则构成这个几何体的小正方体的个数是()A.4B.5C.6D.911. 二次函数y ax2 bx c 的图象在平面直角坐标系中的地点以下图 , 则一次函数y ax b 与反比率函数 y c在同一x平面直角坐标系中的图象可能是()A B C D12.如图 , 矩形纸片ABCD中 , AB 4 , BC 8 , 将纸片沿着EF 折叠.使点C与点 A 重合,则以下结论错误的选项是数学试卷第 2页(共 6页)()A. AF AEB . △ ABE ≌△AGFC.EF 2 5D. AFEF第Ⅱ卷( 非选择题共 84分)二、填空题 ( 本大题共 5 小题, 每题3 分 , 共 15 分 . 请把答案填在题中的横线上)313. 计算:211 .814. 分式方程1 10 0 的解是.5 x210x 25x15. 若一组数据 1,2, x,4 的众数是 1, 则这组数据的方差为 .16. 如图, P 为O 外一点 , PA,PB 是 O 的切线 , A,B 为切点 ,PA3,P 60 ,则图中暗影部分的面积为.17. 在□ ABCD 中,AD BD , BE 是 AD 边上的高,EBD 20 , 则 A 的度数为 .三、解答题 ( 本大题共 9小题,共69 分, 解答应写出文字说明、证明过程或演算步骤 )18.( 本小题满分6 分)先化简 , 再求值: 5x3y 2 x2)1, 此中 x32, y32 .( 2 y 2y 2x 2y xy 2xx19.( 本小题满分 6 分)如图 , 已知反比率函数 ym的图象与一次函数y ax b 的图象订交于点 A(1,4) 和x点 B(n, 2) .( 1) 求反比率函数和一次函数的分析式; ( 2) 当一次函数的值小于反比率函数的值时, 直接写出 x 的取值范围 .20.( 本小题满分 6 分)为配合全市“严禁燃烧秸秆”工作, 某学校举行了“严禁燃烧秸秆 , 保护环境 , 从我做起”为主题的演讲比赛 . 赛后组委会整理参赛同学的成绩 , 并制作了以下不完好的频数散布表和频数散布直方图 .分数段 ( 分数为 x 分 ) 频数 百分比60 ≤ x < 70 8 20% 70≤ x < 80a 30% 80≤ x < 9016b%数学试卷第3页(共 6页)数学试卷第 4页(共 6页)90 ≤ x < 100410%-------------在------------------------------------_ 此___ 请依据图表供给的信息, 解答以下问题:____ ( 1) 表中的 a , b . 请补全频数散布直方图;___ ( 2) 若用扇形统计图来描绘成绩散布状况, 则分数段70≤x<80对应扇形的圆心角的__ --------------------_ ;_卷度数是_号_ ( 3) 比赛成绩不低于 90 分的 4 名同学中正好有 2 名男同学 , 2 名女同学 . 学校从这 4 名生_考_ 同学中随机抽 2 名同学接受电视台记者采访, 则正好抽到一名男同学和一名女同学的____ 概率为.__ _ __ _ 21.( 本小题满分 6 分)_ _ --------------------_ _ 上如图 , 一田户要建一个矩形猪舍, 猪舍的一边利用长为12 m 的住宅墙,此外三边用____ _ 25 m 长的建筑资料围成,为方便出入,在垂直于住宅墙的一边留一个1m 宽的门,所__ _2_ _ 围矩形猪舍的长、宽分别多少时, 猪舍面积为?_ _ 80 m_ __ __ __ _名_ _ --------------------姓_ _ 答____ ________ --------------------__ 题___22.( 本小题满分 6 分)校学如图 , AD是△ABC的中线 , tan B 1, cosC2, AC2,求:业毕 3 2( 1)BC 的长;--------------------无( 2) sin ADC的值 .--------------------第 5页(共 6页)效数学试卷23.( 本小题满分7 分 )如图 , △ABC中, AB AC 1, BAC 45 ,△ AEF 是由△ABC绕点A按顺时针方向旋转获取的 , 连结BE, CF订交于点D .( 1) 求证: BE CF ;( 2) 当四边形 ACDE 为菱形时,求BD的长.24.( 本小题满分10 分 )为知足市场需求, 某商场在五月初五“端午节”到临前夜, 购进一种品牌粽子, 每盒进价是 40 元 , 商场规定每盒售价不得少于45 元. 依据过去销售经验发现:当售价定为每盒 45 元时 , 每日可卖出700 盒 , 每盒售价每提升 1 元, 每日要少卖出20 盒.( 1) 试求出每日的销售量y (盒)与每盒售价x ( 元 ) 之间的函数关系式;( 2) 当每盒售价定为多少元时, 每日销售的收益P (元)最大?最大收益是多少?( 3) 为稳固物价 , 相关管理部门限制:有种粽子的每盒售价不得高于58 元. 假如商场想要每日获取不低于 6 000 元的收益,那么商场每日起码销售粽子多少盒?数学试卷第 6页(共 6页)25.( 本小题满分10 分)如图 , AB是O的直径,点C为O 上一点, AE 和过点C的切线相互垂直, 垂足为26.( 本小题满分 12 分)E, AE交O 于点 D ,直线EC交 AB 的延伸线于点P ,连结 AC,BC,PB : PC 1: 2 . 边长为 2 的正方形OABC在平面直角坐标系中的地点以下图,点D是边OA的中点, ( 1) 求证: AC 均分BAD;连结 CD,点E在第一象限,且DE DC , DE DC,DE DC .以直线AB为对称( 2) 研究线段 PB, AB 之间的数目关系.并说明原因;轴的抛物线过 C, E 两点.( 3) 若 AD 3,求△ABC的面积. ( 1) 求抛物线的分析式;( 2) 点 P从点C出发,沿射线CB以每秒1 个单位长度的速度运动 , 运动时间为t秒. 过点 P 作PF CD于点 F .当 t 为什么值时, 以点 P, F, D 为极点的三角形与△COD 相似?( 3) 点 M 为直线 AB 上一动点,点N为抛物线上一动点,能否存在点 M ,N , 使得以点M ,N , D, E 为极点的四边形是平行四边形?若存在, 请直接写出知足条件的点的坐标;若不存在 , 请说明原因 .数学试卷第7页(共 6页)数学试卷第8页(共6页)。
2014-2015湖北襄阳中考数学试题(含答案)
2015年襄阳市初中毕业生学业水平考试数 学 试 题一、选择题(本大题共12个小题,每小题3分,共36分) 1.的绝对值是( ▲ ).A .2B .C .12D .2.中国人口众多,地大物博,仅领水面积就约为370 000km 2,将“370 000”这个数用科学记数法表示为( ▲ ). A .3.7×106 B .3.7×105 C .37×104 D .3.7×104 3.在数轴上表示不等式2(1-x )<4的解集,正确的是( ▲ ).A .B .C .D .4.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T 随时间t 变化而变 化的关系,观察图象得到下列信息,其中错误的是( ▲ ). A .凌晨4时气温最低为-3°C B .14时气温最高为8°CC .从0时至14时,气温随时间增长而上升D .从14时至24时,气温随时间增长而下降5.下列运算中正确的是( ▲ ). A .a 3-a 2=a B .a 3·a 4=a 12 C .a 6÷a 2=a 3 D .(-a 2)3=-a 6 6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=60°,那么∠1的度数为( ▲ ). A .60° B .50° C .40° D .30° 7.如图,在△ABC 中,∠B =30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB ,若BE =2,则AE 的长为( ▲ ). A .3 B .1 C .2 D .28.下列说法中正确的是( ▲ ).A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 9.点O 是△ABC 的外心,若∠BOC =80°,则∠BAC 的度数为( ▲ ). A .40°B .100°C .40°或140°D .40°或100°10.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( ▲ ).A .4B .5C .6D .9第10题图 主视图俯视图左视图第7题图第6题图 0T /°C t /时24144-38第4题图11.二次函数y =ax 2+bx +c 的图象在平面直角坐标系中的位置如图所示,则一次函数y =ax +b 与反比例函数在同一平面直角坐标系中的图象可能是( ▲ ).12.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( ▲ ). A .AF =AE B .△ABE ≌△AGF C .EF =2 5 D .AF =EF二、填空题(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的相应位置上. 13.计算: ▲ .14.分式方程的解是 ▲ .15.若一组数据1,2,x ,4的众数是1,则这组数据的方差为 ▲ .16.如图,P 为⊙O 外一点,P A ,PB 是⊙O 的切线,A ,B 为切点,P A =3,∠P =60°,则图中阴影部分的面积为 ▲ .17.在□ ABCD 中,AD =BD ,BE 是AD 边上的高,∠EBD =20°,则∠A 的度数为 ▲ .三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内. 18.(本小题满分6分)先化简,再求值:,其中x =3+2,y =3- 2.第16题图GF E DCB A第12题图xyO第11题图OyxxyOA . B. C. D.xx x xx19.(本小题满分6分)如图,已知反比例函数的图象与一次函数y =ax +b 的图象相交于点A (1,4)和点B (n ,-2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x 的取值范围.20.(本小题满分6分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布分数段(分数为x 分)频数 百分比 60≤x <70 8 20% 70≤x <80 a 30% 80≤x <90 16 b % 90≤x <100410%请根据图表提供的信息,解答下列问题:(1)表中的a = ▲ ,b = ▲ ;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x <80对应扇形的圆心角的度数是 ▲ ;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学. 学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 ▲ .第19题图yA (1,4)OxB (n ,-2)第20题图21.(本小题满分6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门. 所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?22.(本小题满分6分)如图,AD 是△ABC 的中线,,,AC= 2. 求:(1)BC 的长;(2)sin ∠ADC 的值.23.(本小题满分7分)如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D . (1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.45°FED CBA第21题图1m住房墙24.(本小题满分10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元. 根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元. 如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(本小题满分10分)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB∶PC=1∶2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.第25题图26.(本小题满分12分)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点 E在第一象限,且DE⊥DC,DE=DC. 以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB以每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F. 当t为何值时,以点P,F,D为顶点的三角形与△COD 相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.第26题图11 /11。
2014年湖北省襄阳市中考数学试卷附详细答案(原版+解析版)
2014年湖北省襄阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)在每小题给出的四个选项总,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.(3分)(2014•襄阳)有理数﹣的倒数是()A.B.﹣C.D.﹣2.(3分)(2014•襄阳)下列计算正确的是()A.a2+a2=2a4B.4x﹣9x+6x=1 C.(﹣2x2y)3=﹣8x6y3D.a6÷a3=a2 3.(3分)(2014•襄阳)我市今年参加中考人数约为42000人,将42000用科学记数法表示为()A.4.2×104B.0.42×105C.4.2×103D.42×103 4.(3分)(2014•襄阳)如图几何体的俯视图是()A.B.C.D.5.(3分)(2014•襄阳)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°6.(3分)(2014•襄阳)五箱梨的质量(单位:kg)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为()A.20和18 B.20和19 C.18和18 D.19和18 7.(3分)(2014•襄阳)下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短8.(3分)(2014•襄阳)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4 9.(3分)(2014•襄阳)用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为()A.x(20+x)=64 B.x(20﹣x)=64 C.x(40+x)=64 D.x(40﹣x)=64 10.(3分)(2014•襄阳)如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()A.80°B.90°C.100°D.110°11.(3分)(2014•襄阳)用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.B.1C.D.212.(3分)(2014•襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④二、填空题(本大题共5个小题,每小题3分,共15分)请把答案填在答题卡的相应位置上13.(3分)(2014•襄阳)计算:÷= .14.(3分)(2014•襄阳)从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是.15.(3分)(2014•襄阳)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为m(结果保留根号)16.(3分)(2014•襄阳)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是.17.(3分)(2014•襄阳)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于.三、解答题(本大题共9小题,共69分)解答应写出文字说明,证明过程或演算步骤,并且写出在答题卡上每题对应的答题区域内.18.(5分)(2014•襄阳)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.19.(6分)(2014•襄阳)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?20.(7分)(2014•襄阳)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率.21.(6分)(2014•襄阳)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.22.(6分)(2014•襄阳)如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.23.(7分)(2014•襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF 绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.24.(10分)(2014•襄阳)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,.某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:品种购买价(元/棵)成活率甲20 90%乙32 95%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)设y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则城府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?25.(10分)(2014•襄阳)如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.(1)求证:△ADP∽△BDA;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)若AD=2,PD=1,求线段BC的长.26.(12分)(2014•襄阳)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C (3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?2014年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)在每小题给出的四个选项总,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.(3分)(2014•襄阳)有理数﹣的倒数是()A.B.﹣C.D.﹣考点:倒数.分析:根据倒数的定义:乘积是1的两数互为倒数,可得出答案.解答:解:,故答案选D.点评:本题考查了倒数的知识,属于基础题,解答本题的关键是掌握倒数的定义.2.(3分)(2014•襄阳)下列计算正确的是()A.a2+a2=2a4B.4x﹣9x+6x=1 C.(﹣2x2y)3=﹣8x6y3D.a6÷a3=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:运用同底数幂的加法法则,合并同类项的方法,积的乘法方的求法及同底数幂的除法法则计算.解答:解:A、a2+a2=2a2≠2a4,故A选项错误;B,4x﹣9x+6x=x≠1,故B选项错误;C、(﹣2x2y)3=﹣8x6y3,故C选项正确;D、a6÷a3=a3≠a2故D选项错误.故选:C.点评:本题主要考查了同底数幂的加法法则,合并同类项的方法,积的乘方的求法及同底数幂的除法法则,解题的关键是熟记法则进行运算.3.(3分)(2014•襄阳)我市今年参加中考人数约为42000人,将42000用科学记数法表示为()A.4.2×104B.0.42×105C.4.2×103D.42×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将42000用科学记数法表示为:4.2×104.故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•襄阳)如图几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看,第一层是三个正方形,第二层右边一个正方形,故选:B.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.(3分)(2014•襄阳)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°考点:平行线的性质;直角三角形的性质分析:利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.解答:解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠B=35°.故选:A.点评:本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.6.(3分)(2014•襄阳)五箱梨的质量(单位:kg)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为()A.20和18 B.20和19 C.18和18 D.19和18考点:众数;中位数分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:从小到大排列此数据为:18、18、19、20、21,数据18出现了三次最多,所以18为众数;19处在第5位是中位数.所以本题这组数据的中位数是19,众数是18.故选D.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)(2014•襄阳)下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短考点:命题与定理.专题:计算题.分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解答:解:A、所有的实数都可用数轴上的点表示,所以A选项的说法正确;B、等角的补角相等,所以B选项的说法正确;C、无理数包括正无理数和负无理,所以C选项的说法错误;D、两点之间,线段最短,所以D选项的说法正确.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.8.(3分)(2014•襄阳)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4考点:二元一次方程的解.专题:计算题.分析:将x与y的两对值代入方程计算即可求出m与n的值.解答:解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选A点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.(3分)(2014•襄阳)用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为()A.x(20+x)=64 B.x(20﹣x)=64 C.x(40+x)=64 D.x(40﹣x)=64考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:本题可根据长方形的周长可以用x表示宽的值,然后根据面积公式即可列出方程.解答:解:设长为xcm,∵长方形的周长为40cm,∴宽为=(20﹣x)(cm),得x(20﹣x)=64.故选B.点评:本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S=ab来解题的方法.10.(3分)(2014•襄阳)如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()A.80°B.90°C.100°D.110°考点:梯形;等腰三角形的性质;平行四边形的判定与性质.分析:根据等边对等角可得∠DEC=80°,再根据平行线的性质可得∠B=∠DEC=80°,∠A=180°﹣80°=100°.解答:解:∵DE=DC,∠C=80°,∴∠DEC=80°,∵AB∥DE,∴∠B=∠DEC=80°,∵AD∥BC,∴∠A=180°﹣80°=100°,故选:C.点评:此题主要考查了等腰三角形的性质,以及平行线的性质,关键是掌握两直线平行,同位角相等,同旁内角互补.11.(3分)(2014•襄阳)用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.B.1C.D.2考点:圆锥的计算分析:易得扇形的弧长,除以2π即为圆锥的底面半径.解答:解:扇形的弧长==2π,故圆锥的底面半径为2π÷2π=1.故选B.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.12.(3分)(2014•襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④考点:翻折变换(折叠问题);矩形的性质分析:求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,判断出④正确.解答:解:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF>2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选D.点评:本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.二、填空题(本大题共5个小题,每小题3分,共15分)请把答案填在答题卡的相应位置上13.(3分)(2014•襄阳)计算:÷=.考点:分式的乘除法专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=.故答案为:点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.14.(3分)(2014•襄阳)从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是.考点:列表法与树状图法;三角形三边关系.分析:由从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;直接利用概率公式求解即可求得答案.解答:解:∵从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;∴能构成三角形的概率是:=.故答案为:.点评:此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2014•襄阳)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为(5+5)m(结果保留根号)考点:解直角三角形的应用-仰角俯角问题分析:作CE⊥AB于点E,则△BCE和△BCD都是直角三角形,即可求得CE,BE的长,然后在Rt△ACE中利用三角函数求得AE的长,进而求得AB的长,即为大树的高度.解答:解:作CE⊥AB于点E,在Rt△BCE中,BE=CD=5m,CE==5m,在Rt△ACE中,AE=CE•tan45°=5m,AB=BE+AE=(5+5)m.故答案为:(5+5).点评:本题考查解直角三角形的应用﹣仰角俯角问题的应用,要求学生能借助仰角构造直角三角形并解直角三角形.16.(3分)(2014•襄阳)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是5.考点:一元二次方程的解分析:把x=a代入方程x2﹣5x+m=0,得a2﹣5a+m=0①,把x=﹣a代入方程方程x2+5x﹣m=0,得a2﹣5a﹣m=0②,再将①+②,即可求出a的值.解答:解:∵a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,∴a2﹣5a+m=0①,a2﹣5a﹣m=0②,①+②,得2(a2﹣5a)=0,∵a>0,∴a=5.故答案为5.点评:本题主要考查的是一元二次方程的根即方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.17.(3分)(2014•襄阳)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于12或20.考点:平行四边形的性质.专题:分类讨论.分析:根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.解答:解:如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴AD=BC=5,∴▱ABCD的周长等于:20,如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴BC=3﹣2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.故答案为:12或20.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用分类讨论得出是解题关键.三、解答题(本大题共9小题,共69分)解答应写出文字说明,证明过程或演算步骤,并且写出在答题卡上每题对应的答题区域内.18.(5分)(2014•襄阳)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.考点:二次根式的化简求值;因式分解的应用分析:根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.解答:解:∵x=1﹣,y=1+,∴x﹣y=(1﹣)(1+)=﹣2,xy=(1﹣)(1+)=﹣1,∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.点评:本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.19.(6分)(2014•襄阳)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?考点:分式方程的应用专题:应用题.分析:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km 与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.解答:解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:设特快列车的平均速度为90km/h,则动车的速度为144km/h.点评:本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km 与特快列车行驶(360﹣135)km所用的时间相同.20.(7分)(2014•襄阳)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是6个;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率.考点:条形统计图;扇形统计图;列表法与树状图法专题:计算题.分析:(1)由A的人数除以所占的百分比求出总人数,进而求出D的人数,得到C占的百分比,补全统计图即可;(2)根据题意列出算式,计算即可得到结果;(3)列表得出所有等可能的情况数,找出粽子馅料不同的结果,即可求出所求的概率.解答:解:(1)根据题意得:6÷15%=40(人),D的人数为40×40%=16(人),C占的百分比为1﹣(10%+15%+40%)=35%,补全统计图,如图所示:(2)根据题意得:(6×4+4×5+14×6+16×7)÷40=6(个),则该班学生制作粽子个数的平均数是6个;故答案为:6个;(3)列表如下:M M N N M ﹣﹣﹣(M,M)(N,M)(N,M)M (M,M)﹣﹣﹣(N,M)(N,M)N (M,N)(M,N)﹣﹣﹣(N,N)N (M,N)(M,N)(N,N)﹣﹣﹣所有等可能的情况有12种,其中粽子馅料不同的结果有8种,则P==.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.21.(6分)(2014•襄阳)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.考点:全等三角形的判定与性质;等腰三角形的判定专题:开放型.分析:(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.解答:解:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.点评:本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ACB.22.(6分)(2014•襄阳)如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.考点:反比例函数与一次函数的交点问题专题:计算题.分析:(1)作BD⊥x轴于D,如图,在Rt△OBD中,根据正切的定义得到tan∠BOC==,则=,即m=﹣2n,再把点B(m,n)代入y1=﹣x+2得n=﹣m+2,然后解关于m、n的方程组得到n=﹣2,m=4,即B点坐标为(4,﹣2),再把B(4,﹣2)代入y2=可计算出k=﹣8,所以反比例函数解析式为y2=﹣;(2)观察函数图象得到当x<4,y2的取值范围为y2>0或y2<﹣2.解答:解:(1)作BD⊥x轴于D,如图,在Rt△OBD中,tan∠BOC==,∴=,即m=﹣2n,把点B(m,n)代入y1=﹣x+2得n=﹣m+2,∴n=2n+2,解得n=﹣2,∴m=4,∴B点坐标为(4,﹣2),把B(4,﹣2)代入y2=得k=4×(﹣2)=﹣8,∴反比例函数解析式为y2=﹣;(2)当x<4,y2的取值范围为y2>0或y2<﹣2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.23.(7分)(2014•襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.考点:正方形的性质;全等三角形的判定与性质;勾股定理;扇形面积的计算分析:(1)根据正方形的性质可得AB=BC=AD=2,∠ABC=90°,再根据旋转变化只改变图形的位置不改变图形的形状可得△ABF和△CBE全等,根据全等三角形对应角相等可得∠FAB=∠ECB,∠ABF=∠CBE=90°,全等三角形对应边相等可得AF=EC,然后求出∠AFB+∠FAB=90°,再求出∠CFG=∠FAB=∠ECB,根据内错角相等,两直线平行可得EC∥FG,再根据一组对边平行且相等的四边形是平行四边形判断出四边形EFGC是平行四边形,然后根据平行四边形的对边平行证明;(2)求出FE、BE的长,再利用勾股定理列式求出AF的长,根据平行四边形的性质可得△FEC和△CGF全等,从而得到S△FEC=S△CGF,再根据S阴影=S扇形BAC+S△ABF+S△FGC﹣S扇形FAG 列式计算即可得解.解答:(1)证明:在正方形ABCD中,AB=BC=AD=2,∠ABC=90°,∵△BEC绕点B逆时针旋转90°得到△ABF,∴△ABF≌△CBE,∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=EC,∴∠AFB+∠FAB=90°,∵线段AF绕点F顺时针旋转90°得线段FG,∴∠AFB+∠CFG=∠AFG=90°,∴∠CFG=∠FAB=∠ECB,∴EC∥FG,∵AF=EC,AF=FG,∴EC=FG,∴四边形EFGC是平行四边形,∴EF∥CG;(2)解:∵AD=2,E是AB的中点,∴FE=BE=AB=×2=1,∴AF===,由平行四边形的性质,△FEC≌△CGF,∴S△FEC=S△CGF,∴S阴影=S扇形BAC+S△ABF+S△FGC﹣S扇形FAG,=+×2×1+×(1+2)×1﹣,=﹣.点评:本题考查了正方形的性质,全等三角形的判定与性质,旋转变换的性质,勾股定理的应用,扇形的面积计算,综合题,但难度不大,熟记各性质并准确识图是解题的关键.24.(10分)(2014•襄阳)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,.某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:品种购买价(元/棵)成活率甲20 90%乙32 95%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)设y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则城府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?考点:一次函数的应用;一元一次不等式组的应用分析:(1)根据利润等于价格减去成本,可得答案;(2)根据利润不低于中标价16%,可得不等式,根据解不等式,可得答案;(3)分类讨论,成活率不低于93%且低于94%时,成活率达到94%以上(含94%),可得相应的最大值,根据有理数的比较,可得答案.解答:解:(1)y=260000﹣[20x+32(6000﹣x)+8×6000=12x+20000,自变量的取值范围是:0<x≤3000;(2)由题意,得12x+20000≥260000×16%,解得:x≥1800,∴1800≤x≤3000,购买甲种树苗不少于1800棵且不多于3000棵;(3)①若成活率不低于93%且低于94%时,由题意得,解得1200<x≤2400在y=12x+20000中,∵12>0,∴y随x的增大而增大,∴当x=2400时,y最大=48800,②若成活率达到94%以上(含94%),则0.9x+0.95(6000﹣x)≥0.94×6000,解得:x≤1200,由题意得y=12x+20000+260000×6%=12x+35600,∵12>0,∴y随x的增大而增大,∴当x=1200时,y最大值=5000,综上所述,50000>48800∴购买甲种树苗1200棵,一种树苗4800棵,可获得最大利润,最大利润是50000元.点评:本题考查了一次函数的应用,利用了价格减成本等于利润,分类讨论是解题关键.25.(10分)(2014•襄阳)如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.(1)求证:△ADP∽△BDA;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)若AD=2,PD=1,求线段BC的长.。
襄阳中考数学
2015年襄阳中考数学试卷一、选择题(本大题共12个小题,每题3分,共36分)在每题给出的四个选项中,只有一项为哪一项符合题目要求的,请将其序号在答题卡上涂黑作答.1.2的绝对值是 A. 2 B. 2 C. 12 D. 122.中国人口众多,地大物博,仅领水面积就约为370 000km 2,将“370 000”这个数用科学记数法表示为 A. 3.7×106 B. 3.7×105 C. 37×104 D. 3.7×1043.在数轴上表示不等式2(1-x )<4的解集,准确的是A.B.C. D.4.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T 随时间t 变化而变化的关系,观察图象得到以下信息,其中错误的选项是A.凌晨4时气温最低为-3°C B. 14时气温最高为8°C C.从0时至14时,气温随时间增长而上升 D. 从14时至24时,气温随时间增长而下降5.以下运算中准确的是 A.a 3-a 2=a B. a 3·a 4=a 12 C. a 6÷a 2=a 3 D. (-a 2)3=-a 6 6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,假如∠2=60°,那么∠1的度数为 A.60° B. 50° C. 40° D. 30° 7.如图,在△ABC 中,∠B =30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB ,若BE =2,则AE 的长为 A. 3 B. 1 C. 2D. 2 8.以下说法中准确的是A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B . “任意画出一个平行四边形,它是中心对称图形”是必然事件C . “概率为0.0001的事件”是不可能事件D . 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次9点O 是△ABC 的外心,若∠BOC =80°,则∠BAC 的度数为A.40° B. 100° C. 40°或140° D. 40°或100° 10由若干个相同的小正方体组合而成的一个几何体的三视图如下图,则组成这个几何体的小正方体的个数是A. 4B. 5C. 6D. 9 11.二次函数y =ax 2+bx +c 的图象在平面直角坐标系中的位置如下图,则一次函数y =ax +b 与反比例函数c y x 在同一平面直角坐标系中的图象可能是2130°第6题图 E A D C B 第7题图 第10题图 主视图俯视图左视图x12.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则以下结论错误的选项是 A. AF =AE B. △ABE ≌△AGF C. EF =2 5 D. AF =EF二、填空题(本大题共5个小题,每题3分,共15分)把答案填在答题卡的相对应位置上.13.计算:13128 . 14.分式方程2110051025x x x 的解是 .15.若一组数据1,2,x ,4的众数是116.如图,P 为⊙O 外一点,PA ,PB 是⊙O 的切线,A ,B P =60°,则图中阴影局部的面 .17.在□ ABCD 中,AD =BD ,BE 是AD 边上的高,∠EBD =的度数为 .三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(本小题满分6分)先化简,再求值:2222221)235(xy y x x y x y x y x -÷-+-+,其中x =3+2,y =3- 2.19.(本小题满分6分)如图,已知反比例函数m yx的图象与一次函数y =ax +b 的图象相交于点A (1,4)和点B (n ,-2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x 的取值范围.第16题图P G F E D C B A 第12题图 第11题图20.(本小题满分6分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图.分数段(分数为x分)频数百分比60≤x<70 8 20%70≤x<80 a30%80≤x<90 16 b%90≤x<100 4 10%请根据图表提供的信息,解答以下问题:(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描绘成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学. 学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 .21.(本小题满分6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门. 所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?第20题图第21题图1m住房墙22.(本小题满分6分)如图,AD 是△ABC 的中线,13tanB =,22cosC =,AC = 2. 求:(1)BC 的长;(2)sin ∠ADC 的值.23.(本小题满分7分)如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.第22题图45°F E D A24.(本小题满分10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元. 根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提升1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,相关管理部门限定:这种粽子的每盒售价不得高于58元. 假如超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(本小题满分10分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC ,PB ∶PC =1∶2.(1)求证:AC 平分∠BAD ;(2)探究线段PB ,AB 之间的数量关系,并说明理由;(3)若AD =3,求△ABC 的面积.第25题图 A第25题图A26.(本小题满分12分)边长为2的正方形OABC在平面直角坐标系中的位置如下图,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC. 以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB以每秒1个单位长度的速度运动,运动时间为t秒. 过点P作PF⊥CD于点F. 当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存有点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存有,请直接写出满足条件的点的坐标;若不存有,请说明理由.第26题图第26题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年襄阳市初中毕业生学业水平考试
数 学 试 题
一、选择题(本大题共12个小题,每小题3分,共36分) 1.2的绝对值是( ▲ ).
A .2
B .2
C .12
D .1
2
2.中国人口众多,地大物博,仅领水面积就约为370 000km 2,将“370 000”这个数用科学记数法表示为( ▲ ). A .3.7×106 B .3.7×105 C .37×104 D .3.7×104 3.在数轴上表示不等式2(1-x )<4的解集,正确的是(
A B C D 4.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T 随时间t 变化而变 化的关系,观察图象得到下列信息,其中错误的是( ▲ ). A .凌晨4时气温最低为-3°C B .14时气温最高为8°C
C .从0时至14时,气温随时间增长而上升
D .从14时至24时,气温随时间增长而下降
5.下列运算中正确的是( ▲ ). A .a 3-a 2=a B .a 3·a 4=a 12 C .a 6÷a 2=a 3 D .(-a 2)3=-a 6 6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=60°,那么∠1的度数为( ▲ ). A .60° B .50° C .40° D .30° 7.如图,在△ABC 中,∠B =30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB ,若BE =2,则AE 的长为( ▲ ). A .3 B .1 C .2 D .2
8.下列说法中正确的是( ▲ ).
A .“任意画出一个等边三角形,它是轴对称图形”是随机事件
B .“任意画出一个平行四边形,它是中心对称图形”是必然事件
C .“概率为0.0001的事件”是不可能事件
D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 9.点O 是△ABC 的外心,若∠BOC =80°,则∠BAC 的度数为( ▲ ). A .40°
B .100°
C .40°或140°
D .40°或100°
10.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体
的小正方体的个数是( ▲ ).
A .4
B .5
C .6
D .9
第10题图 主视图俯视图
左视图
E
A
D C
B
第7题图
2
130°
第6题图
11.二次函数y =ax 2+bx +c
的图象在平面直角坐标系中的位置如图所示,则一次函数y =
ax +b 与反比例函数c
y x
在同一平面直角坐标系中的图象可能是( ▲ ).
12.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,
使点C 与点A 重合,则下列结论错误的是( ▲ ). A .AF =AE B .△ABE ≌△AGF C .EF =2 5 D .AF =EF
二、填空题(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的相应位置上.
13.计算:131
28 ▲ .
14.分式方程
2110
051025x x x 的解是 ▲ .
15.若一组数据1,2,x ,4的众数是1,则这组数据的方差为 ▲ .
16.如图,P 为⊙O 外一点,P A ,PB 是⊙O 的切线,A ,B 为切点,P A =3,∠P =60°,则图中阴影部分的面积为 ▲ .
17.在□ ABCD 中,AD =BD ,BE 是AD 边上的高,∠EBD =20°,则∠A 的度数为 ▲ .
三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并
且写在答题卡上每题对应的答题区域内. 18.(本小题满分6分)
先化简,再求值:2
222221
23xy y x x y x y x y x -÷---+,其中x =3+2,y =3- 2.
第16题图
P
G
F
E D
C
B A
第12题图
第11题图
A . B. D.
x
x x x
x
19.(本小题满分6分)
如图,已知反比例函数m
y
x
的图象与一次函数y =ax +b 的图象相交于点A (1,4)和点B (n ,-2).
(1)求反比例函数和一次函数的解析式;
(2)当一次函数的值小于反比例函数的值时,直接写出x 的取值范围.
20.(本小题满分6分)
为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图.
分数段(分数为x 分)
频数 百分比 60≤x <70 8 20% 70≤x <80 a 30% 80≤x <90 16 b % 90≤x <100
4
10%
请根据图表提供的信息,解答下列问题:
(1)表中的a = ▲ ,b = ▲ ;请补全频数分布直方图;
(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x <80对应扇形的圆心角的度
数是 ▲ ;
(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学. 学校从这4
名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 ▲ .
第19题图
y
A (1,4)
O
x
B (n ,-2)
第20题图
21.(本小题满分6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门. 所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?
22.(本小题满分6分)如图,AD 是△ABC 的中线,1
3
tanB =,22cosC =,AC = 2. 求:
(1)BC 的长;(2)sin ∠ADC 的值.
23.(本小题满分7分)如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D . (1)求证:BE =CF ;
(2)当四边形ACDE 为菱形时,求BD 的长.
45°
F
E
D C
B
A
第21题图
1m
住房墙
24.(本小题满分10分)
为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元. 根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒. (1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少? (3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元. 如果超市
想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
25.(本小题满分10分)
如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P , 连接AC ,BC ,PB ∶PC =1∶2. (1)求证:AC 平分∠BAD ;
(2)探究线段PB ,AB 之间的数量关系,并说明理由; (3)若AD =3,求△ABC 的面积.
第25题图
A
26.(本小题满分12分)
边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点 E在第一象限,且DE⊥DC,DE=DC. 以直线AB为对称轴的抛物线过C,E两点.
(1)求抛物线的解析式;
(2)点P从点C出发,沿射线CB以每秒1个单位长度的速度运动,运动时间为t秒.
过点P作PF⊥CD于点F. 当t为何值时,以点P,F,D为顶点的三角形与△COD 相似?
(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.
第26题图。