沪教版九年级数学思维导图
九年级数学知识点框架图
九年级数学知识点框架图在九年级的学习中,数学作为一门重要的学科,扮演着至关重要的角色。
它不仅是培养学生逻辑思维和分析问题的能力的重要工具,还为他们以后更高层次的学习打下坚实基础。
为了更好地理解和掌握九年级数学的知识点,一个框架图的建立可以帮助我们更清晰地了解整个知识结构。
首先,我们可以将九年级数学知识点分为四个大的类别:代数与函数、几何与图形、概率与统计以及数与量的关系。
代数与函数是数学中的基础。
在这个类别中,我们可以学习到整式的运算、方程与不等式、函数的概念与性质等内容。
整式的运算包括加减乘除,掌握好这些基本运算可以帮助我们更好地解决实际问题。
同时,方程与不等式是解决数学问题的重要方法,通过学习解方程和不等式的方法能够培养我们的逻辑思维和问题解决能力。
函数是数学中的重要概念,理解函数的基本性质和图像变化规律可以帮助我们更好地理解和应用数学知识。
几何与图形是数学中的另一个重要领域。
在这个类别中,我们可以学习到平面图形的性质、立体图形的性质、相似三角形和等比例线段等内容。
通过几何学习,我们可以更好地理解和应用几何概念,学会使用几何知识来解决实际问题。
同时,图形的变换也是几何学习的重要内容之一,通过学习平移、旋转、翻转等变换,我们可以更好地理解图形的特性和性质。
概率与统计是数学中的实际运用领域。
在这个类别中,我们可以学习到事件的概率、统计图表的分析、抽样调查等内容。
通过学习概率和统计,我们可以了解到日常生活中的一些概率问题和统计数据的分析方法。
这对我们在解决实际问题时具有重要的指导作用。
最后,我们还需要了解数与量的关系。
数与量的关系是数学中的基本概念,我们需要学习和掌握一些重要的数学模型和单位换算方法。
例如,我们需要了解到整数与分数的关系,并且学习如何进行数值计算和单位换算,这对我们在日常生活中的实际应用中至关重要。
总之,在九年级的数学学习中,以上四个大的类别构成了九年级数学知识点的框架图。
通过建立这样一个框架图,我们可以更清晰地了解整个九年级数学知识点的结构和重点。
沪教版(上海)-初中数学七年级、八年级、九年级数学全册章节知识点结构思维导图集
- 14 -
第二十六章 二次函数的章节知识点结构思维导图 第二十七章 圆与正多边形的章节知识点结构思维导图
- 15 -
第二十八章 统计初步的章节知识点结构思维导图
- 16 -
-7-
第十四章 三角形的章节知识点结构思维导图 第十五章 平面直角坐标系的章节知识点结构思维导图
-8-
上海市(沪教版)八年级数学全册章节思维导图 共八个章节
第十六章 二次根式的章节知识点结构思维导图
-9-
第十七章 一元二次方程的章节知识点结构思维导图
- 10 -
第十八章 正比例函数和反比例函数的章节知识点结构思维导图 第十九章 几何证明的章节知识点结构思维导图
-3-
第七章 线段与角的画法的章节知识点结构思维导图 第八章 长方体的再认识的章节知识点结构思维导图
-4-
上海市(沪教版)七年级数学全册章节思维导图 共七章
第九章 整式的章节知识点结构思维导图
-5-
第十章 分式的章节知识点结构思维导图 第十一章 图形的运动的章节知识点结构思维导图
-6-
第十二章 实数的章节知识点结构思维导图 第十三章 相交线 平行线的章节知识点结构思维导图
- 11 -
第二十章 一次函数的章节知识点结构思维导图 第二十一章 代数方程的章节知识点结构思维导图
- 12 -
第二十二章 四边形的章节知识点结构思维导图 第二十三章 概率初步的章节知识点结构思维导图
- 13 -
上海市(沪教版)ቤተ መጻሕፍቲ ባይዱ年级数学全册章节思维导图 共五章
第二十四章 相似三角形的章节知识点结构思维导图
上海市(沪教版)初中数学全册思维导图集 共二十八章
九年级上数学全册内容总复习(思维导图)(K12教育文档)
(完整word版)九年级上数学全册内容总复习(思维导图)(word版可编辑修改)
(完整word版)九年级上数学全册内容总复习(思维导图)(word版可编辑修改) 编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)九年级上数学全册内容总复习(思维导图)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)九年级上数学全册内容总复习(思维导图)(word版可编辑修改)的全部内容。
沪教版九年级数学思维导图
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载沪教版九年级数学思维导图地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第二十四章相似三角形(上册)思维导图1、中考分值15分左右,中考常见题型为填空题,综合题。
【考纲要求】(1)掌握比例的性质,了解黄金分割的意义。
(2)理解两条线段的比和比例线段的概念。
(3)掌握平行线分线段成比例定理;掌握三角形一边的平行线的判定方法。
(4)理解相似三角形的概念,掌握判定两个三角形相似的基本方法(5)掌握两个相似三角形的周长比、面积比以及对应的角平分线比、对应的中线比、对应的高的比的性质。
(6)会用相似三角形的判定和性质解决简单的几何问题和实际问题。
(7)知道三角形的中心及其性质。
2、重点和难点重点是平行线分线段成比例定理、相似三角形的判定和性质难点是运用平行线分线段成比例定理,相似三角形的判定和性质解决有关的问题。
3、相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。
相似三角形是初中数学中的重点也是难点,中考24题(压轴)中常结合函数四边形等知识点考察。
建议课时6次。
第二十五章锐角三角比(上册)思维导图1、中考分值12~16分,常考题型填空题和综合题(21或22题)【考纲要求】(1)理解锐角三角比的概念。
(2)会求特殊锐角(30°、45°、60°)的三角比的值。
(3)会用计算器求锐角的三角比的值;能根据锐角三角比的值,利用计算器求锐角的大小。
(4)会解直角三角形。
(5)理解仰角、俯角、坡度、坡角等概念,并能解决有关的实际问题。
初一数学章节思维导图(全)
沪科版初中数学-全章思维导图
5
沪科版初中数学-全章思维导图
• 第 7 章 一元一次不等式与不等式组 • 第 8 章 整式乘法与因式分解
6
• 第 9 章 分式
沪科版初中数学-全章思维导图
• 第 10 章 相交线、平行线和平移
7
初一上·第一学期 • 第 1 章 有理数
沪科版初中数学-全章思维导图
1
沪科版初中数学-全章思维导图
• 第 2 章 整式加减
沪科版初中数学-全章思维导图
• 第 3 章 一次方程与方程组
3
沪科版初中数学-全章思维导图
• 第 4 章 直线与角
• 第 5 章 数据的收集与整理
4
七年级下-第二学期 • 第 6 章 实数
沪教版(上海市) 初中数学思维导图 九年级数学全册章节思维导图集
你现在的努力要对得起别人对你的好!
第二十八章 统计初步的章节知识点结构思维导图
-3Math 实验室
你现在的努力要对得起别人对你的好!
上海市(沪教版)九年级数学全册章节思维导图 共五章
第二十四章 相似三角形的章节知识点结构思维导图
第二十五章 锐角三角比的章节知识点结构思维导图
-1Math 实验室
你现在的努力要对得起别人对你的好!
第二十六章 二次函数的章节知识点结构思维导图
第二十七章 圆ห้องสมุดไป่ตู้正多边形的章节知识点结构思维导图
九年级数学知识点导图
九年级数学知识点导图
数学是一门需要系统性学习和理解的学科,随着学习的深入,九年级的数学内容也愈加复杂和广泛。
为了帮助同学们更好地掌握九年级数学的知识点,本文将为大家提供一份九年级数学知识点导图,以便同学们系统地了解和复习这些知识。
1. 整式与分式
- 整式
- 分式
2. 代数式与方程式
- 代数式的概念
- 方程式的概念
- 一次方程与二次方程
3. 平面图形的性质和计算
- 三角形
- 四边形
4. 比例与相似
- 比例的概念
- 相似的概念
- 相似三角形的性质
5. 统计与概率
- 统计学的基本概念 - 概率的基本概念
- 概率的计算方法
6. 几何变换
- 平移
- 旋转
- 翻转
7. 勾股定理与三角函数
- 三角函数的定义和性质
- 三角函数的应用
8. 数列与函数
- 数列的概念
- 函数的概念
- 一次函数与二次函数
9. 推理与证明
- 数学推理的方法
- 数学证明的基本步骤
- 常用的证明方法
10. 九年级数学综合练习
- 知识点综合运用
- 解决实际问题的数学建模与计算
通过以上九年级数学知识点导图,我们可以清晰地看到九年级数学学科的重要内容和知识点。
同学们可以根据导图进行有序的学习和复习,确保对每个知识点都有全面的理解和掌握。
同时,在学习过程中,同学们也要注重应用,灵活运用数学知识解决实际问题,提高数学思维和解决问题的能力。
希望本文提供的九年级数学知识点导图对同学们的学习有所帮助,祝愿大家在九年级数学的学习中取得优异的成绩!。
九年级上册数学知识点思维导图
九年级上册数学知识点思维导图+考点梳理〔开学前新初三必看〕一元二次方程二次函数知识点梳理:1.定义:一般地,如果y=ax²+bx+c〔其中a,b,c是常数,a≠0〕,那么y叫做x的二次函数.2.二次函数y=ax²的性质〔1〕抛物线y=ax²的顶点是坐标原点,对称轴是y轴.〔2〕函数y=ax²的图像与a的符号关系.①当a>0时Û抛物线开口向上Û顶点为其X点;②当a<0时Û抛物线开口向下Û顶点为其X点.〔3〕顶点是坐标原点,对称轴是轴的抛物线的解析式形式为y=ax²〔a≠0〕.3.二次函数y=ax²+bx+c的图像是对称轴平行于〔包含重合〕y轴的抛物线.4.二次函数y=ax²+bx+c用成分法可化成:y=a〔x - h〕²+k的形式,其中5.二次函数由特别到一般,可分为以下几种形式:①y=ax²;②y=ax²+k;③y=a〔x - h〕²;④y=a〔x - h〕²+k;⑤y=ax²+bx+c.6.抛物线的三要素:开口方向、对称轴、顶点.①a的符号决定抛物线的开口方向:当a>0时,开口向上;当a<0时,开口向下;|a|相等,抛物线的开口大小、形状相同.②平行于y轴〔或重合〕的直线记作x=h.特别地,y轴记作直线x=0.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法〔1〕公式法:∴顶点是:对称轴是直线:〔2〕成分法:运用成分的方法,将抛物线的解析式化为y=a 〔x-h〕²+k的形式,得到顶点为(h,k),对称轴是直线x=h.〔3〕运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用成分法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线y=ax²+bx+c中,a、b、c的作用〔1〕a决定开口方向及开口大小,这与y=ax²中的a完全一样.〔2〕b和a共同决定抛物线对称轴的位置.由于抛物线y=ax²+bx+c的对称轴是直线,故:①b=0时,对称轴为y轴;②〔即a、b同号〕时,对称轴在y轴左侧;③〔即a、b异号〕时,对称轴在y轴右侧.〔3〕的大小决定抛物线y=ax²+bx+c与y轴交点的位置.当x=0时,y=c,∴抛物线y=ax²+bx+c与y轴有且只有一个交点〔0,c〕:①c=0,抛物线经过原点;②c>0,与y轴交于正半轴;③c<0,与y轴交于负半轴.以上三点当结论和条件互换时仍成立.如抛物线的对称轴在y轴右侧,则10.几种特别的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式〔1〕一般式:y=ax²+bx+c.已知图像上三点或三对x、y的值,通常选择一般式.〔2〕顶点式:y=a〔x - h〕²+k .已知图像的顶点或对称轴,通常选择顶点式.〔3〕交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y=a(x-x1)(x-x2).12.直线与抛物线的交点〔1〕y轴与抛物线y=ax²+bx+c得交点为(0, c).〔2〕与y轴平行的直线X=h与抛物线y=ax²+bx+c有且只有一个交点〔h, ah²+bh+c〕〔3〕抛物线与轴的交点二次函数y=ax²+bx+c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程ax²+bx+c=0的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点Û△>0Û抛物线与x轴相交;②有一个交点〔顶点在x轴上〕Û△=0Û抛物线与x轴相切;③没有交点Û△<0Û抛物线与轴相离.〔4〕平行于轴的直线与抛物线的交点同〔3〕一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是ax²+bx+c=k的两个实数根.〔5〕一次函数y=kx+n(k≠0)的图像L与二次函数y=ax²+bx+c(a≠0)的图像G的交点,由方程组的解的数目来确定:①方程组有两组不同的解时L与G有两个交点;②方程组只有一组解时L与G只有一个交点;③方程组无解时L与G没有交点.〔6〕抛物线与x轴两交点之间的距离:假设抛物线y=ax²+bx+c与x 轴两交点为A(x1,0),B(x2,0),由于x1、x2是方程ax²+bx+c=0的两个根,故。
九年级数学的思维导图
九年级数学的思维导图推荐文章•九年级上第一二单元历史思维导图热度:•九年级上册历史第一课思维导图热度:•九年级上历史的思维导图热度:•北师大版历史九年级上册思维导图热度:•九年级上册历史第一单元思维导图热度:九年级数学的思维导图在九年级学数学的时候,运用数学思维导图,可以帮助我们更好的复习。
下面小编精心整理了九年级数学的思维导图,供大家参考,希望你们喜欢!九年级数学的思维导图汇总九年级数学:分组分解法知识点我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)?(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:① 列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2, (x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
沪科版九年级上册数学精品课件 第21章 二次函数与反比例函数 本章总结提升21
14.(鞍山中考)如图,在平面直角坐标系中,一次函数 y=x+1 的图 象与 x 轴,y 轴的交点分别为点 A,点 B,与反比例函数 y=kx(k≠0)的图 象交于 C,D 两点,CE⊥x 轴于点 E,连接 DE,AC=3 2.
• A.23.5 m
B.22.5 m
C
• C.21. 5m
D.20.5m
• 4.(娄底中考)二次函数y=(x-a)(x-b)-2(a<b)与x轴的两个
交• 点A的.横m坐<标a<分n别<为b m和n,且Bm.<an<,m下<列b<结n论正确的是C (
)
• C.m<a<b<n
D.a<m<n<b
5.如图,在平面直角坐标系中,直线 y=x 与反比例函数 y=x4(x> 0)的图象交于点 A,将直线 y=x 沿 y 轴向上平移 b 个单位,交 y 轴于点
15.(赤峰中考)阅读理解: 材料一:若三个非零实数 x,y,z 满足:只要其中一个数的倒数等 于另外两个数的倒数的和,则称这三个实数 x,y,z 构成“和谐三数组”. 材料二:若关于 x 的一元二次方程 ax2+bx+c=0(a≠0)的两根分别 为 x1,x2,则有 x1+x2=-ba,x1·x2=ac. 问题解决: (1)请你写出三个能构成“和谐三数组”的实数_答__案__不__唯__一__,__如__21_,__ ___13_,__15____;
第21章
二次函数与反比例函数 本章总结提升
思维导图 整合训练
思维导图
• 方法总结 • 方法一 比较同一个二次函数的函数值的大小 • (1)代入法:直接代入自变量求值,适用于给出解析式,
九年级数学知识点思维导图
九年级数学知识点思维导图数学作为一门学科,对于九年级学生来说,涵盖的知识点众多,而且难度逐渐加深。
为了更好地理解和掌握这些知识,我们可以尝试使用思维导图的方式来整理和归纳相关概念。
下面,我将以九年级数学的各个模块为基础,为大家呈现一份九年级数学知识点思维导图。
一、代数与方程代数与方程是九年级数学的重要模块,其中包括了一元一次方程、一元一次不等式、整式的加减乘除、因式分解等等内容。
在这个模块中,学生需要掌握解方程、化简式子等技巧,同时需要理解方程与不等式的意义和应用。
思维导图中的第一层则可以是代数与方程这个主题,下一层则可以分为一元一次方程、一元一次不等式、整式的加减乘除和因式分解这四个分支。
每个分支下可以再分为具体的知识点和技巧。
二、直线与函数直线与函数是九年级数学另一个重要的模块,其中包括了直线的斜率、函数的概念、函数的图像、函数的性质等内容。
这个模块的重点是理解和应用函数的概念,并能够绘制函数的图像以及分析函数的性质。
思维导图中的第一层可以是直线与函数这个主题,下一层则可以分为直线的斜率、函数的概念、函数的图像和函数的性质这四个分支。
每个分支下可以再分为具体的知识点和技巧。
三、几何与空间几何与空间是九年级数学中的另一个重要模块,其中包括了平面图形的性质、空间图形的性质、平行线与垂直线等内容。
学生需要掌握图形的性质,能够判断图形的特点,并能够运用几何知识解决实际问题。
思维导图中的第一层可以是几何与空间这个主题,下一层则可以分为平面图形的性质、空间图形的性质、平行线与垂直线这三个分支。
每个分支下可以再分为具体的知识点和技巧。
四、数据和概率数据和概率是九年级数学的最后一个模块,其中包括了统计与概率的基本概念、统计思想与方法、带权平均数和概率的概念等内容。
学生需要学会收集和整理数据,并能够利用统计和概率的方法进行分析和判断。
思维导图中的第一层可以是数据和概率这个主题,下一层则可以分为统计与概率的基本概念、统计思想与方法、带权平均数和概率的概念这四个分支。
初三数学知识的思维导图
初三数学知识的思维导图汇总初三数学知识:因式分解法(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子: a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点1①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
初三数学知识:初三数学复习常见误区题海战术其实不然。
每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度,新的层面上设计问题。
但是考查的知识点和数学思想方法是恒久不变的。
所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。
解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章相似三角形(上册)
思维导图
1、中考分值15分左右,中考常见题型为填空题,综合题。
【考纲要求】
(1)掌握比例的性质,了解黄金分割的意义。
(2)理解两条线段的比和比例线段的概念。
(3)掌握平行线分线段成比例定理;掌握三角形一边的平行线的判定方法。
(4)理解相似三角形的概念,掌握判定两个三角形相似的基本方法(5)掌握两个相似三角形的周长比、面积比以及对应的角平分线比、对应的中线比、对应的高的比的性质。
(6)会用相似三角形的判定和性质解决简单的几何问题和实际问题。
(7)知道三角形的中心及其性质。
2、重点和难点
重点是平行线分线段成比例定理、相似三角形的判定和性质
难点是运用平行线分线段成比例定理,相似三角形的判定和性质解决有关的问题。
3、相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及及固有关的比例线段等知识打下良好的基础。
相似三角形是初中数学中的重点也是难点,中考24题(压轴)中常结合函数四边形等知识点考察。
建议课时6次。
第二十五章锐角三角比(上册)
思维导图
1、中考分值12~16分,常考题型填空题和综合题(21或22题)【考纲要求】
(1)理解锐角三角比的概念。
(2)会求特殊锐角(30°、45°、60°)的三角比的值。
(3)会用计算器求锐角的三角比的值;能根据锐角三角比的值,利用计算器求锐角的大小。
(4)会解直角三角形。
(5)理解仰角、俯角、坡度、坡角等概念,并能解决有关的实际问
题。
2、重点和难点
重点是应用锐角三角比的意义及运用解直角三角形的方法进行有关几何计算。
难点是解直角三角形的应用。
3、《锐角三角函数》是初中数学九年级的重要内容。
锐角三角函数在解决现实问题中有着重要的作用,在测量、建筑、物理学中,人们常常遇到距离、角度、高度的计算,这些都归结到直角三角形中边角的关系问题。
锐角三角函数也是历年中考的热点,所以对于这些备战中考的学生们来说是必须要掌握好的内容,上海中考综合题部分21题或22题必考一道锐角三角比。
建议课时4次。
第二十六章二次函数(上册)思维导图
1、中考分值18分,中考常考题型填空题综合题(24题)
【考纲要求】
1)理解二次函数的概念,会用描点法画二次函数的图像;知道二次
函数的图像是抛物线,会用二次函数的解析式来表达相应的抛物线。
(2)掌握二次函数2
=+、
y ax c
=的图像平移后得到二次函数2
y ax
2
y a x m k
=++的图像的规律,并根据图像认识并归纳图
()
()
=+和2
y a x m
像的对称轴、顶点坐标、开口方向和升降情况等特征。
能体会解析式中字母系数的意义。
(3)会用配方法把形如2
y ax bx c
=++的二次函数解析式化为2
=++的形式;会用待定系数法确定二次函数的解析式。
()
y a x m k
(4)能利用二次函数及图像特征等知识解决简单的实际问题。
2、重点和难点
重点是二次函数的图像特征。
难点是画二次函数的图像及二次函数知识的实际应用。
3、二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例,上海中考24题结合一次函数或四边形进行考察。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。
进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。
第二十七章圆及正多边形(下册)
思维导图
1、中考分值8分左右,常考题型为选择、填空、综合。
【考纲要求】
(1)会用圆的周长、面积、弧长和扇形面积的公式进行简单计算,体会近似及精确的数学思想。
(2)理解圆的旋转不变性,理解圆心角、弧、弦、弦心距的概念以及它们之间的关系。
(3)掌握垂径定理及其推论。
(4)初步掌握点及圆、直线及圆、圆及圆的各种位置关系及其相应的数量关系。
(5)掌握正多边形的有关概念和基本性质,会画正三、四、六边形。
2、重点和难点
重点是圆心角、弧、弦、弦心距之间的关系,垂径定理及其推论,点及圆、直线及圆、圆及圆的位置关系及其数量关系。
难点是通过操作、实验、归纳得出位置或数量的关系、有关定理和计算方法,以及证明。
3、正多边形是和圆是在学生学习了三角形、四边形、多边形以及圆的相关知识后的内容,是前一阶段知识的运用和提高。
正多边形是一种特殊的多边形,它有一些类似于圆的特性;研究正多边形和圆的关系,掌握有关正多边形的计算是进一步学习数学及其它学科的重要基础。
上海中考,选择题最后一题常考察圆的性质,同时也会和锐角三角比结合作为21题,也可能和三角形四边形知识结合作为压轴题。
建议课时4次。
第28章统计初步(下册)
思维导图
1、中考分值4分,常考题型填空题。
【考纲要求】
(2)知道统计的意义,理解统计中的总体、个体、样本、普查、抽样调查、随机样本等有关概念;知道用随机样本推断总体是重要的统计思想,并初步体会这一统计思想的运用。
(3)理解平均数、加权平均数、中位数和众数等概念,会求一组数据的平均数或加权平均数;会确定一组数据的中位数和众数;能根据实际问题,在平均数、中位数和众数种选择合适的量来表示一组数据的平均水平。
(4)理解方差、标准差的概念,会计算一组数据的方差和标准差;能根据一组数据的方差或标准差来解释数据的波动性。
(5)理解组频率的概念;对一组数据,在给定分组的情况下会制作频数分布表、频率分布表,会绘制频率数分布直方图和频率分布直方图;能从频数分布直方图和频率分布直方图中获取有关信息以及判断数据分布情况。
(6)具有初步的统计意识,能运用所学的统计知识解决现实生活中的简单的统计问题。
2、重点和难点
重点是认识统计的意义,会求出统计量,并能用于解释简单的统计问题。
难点是能通过图表获取有关信息。