硅酸盐水泥的水化

硅酸盐水泥的水化
硅酸盐水泥的水化

【tips】本文由李雪梅老师精心收编整理,同学们定要好好复习!

硅酸盐水泥的水化

硅酸盐水泥加水后,首先石膏迅速溶解于水,C3A立即发生反应,C4AF与C3S亦很快水化而β-C2S则稍慢。几分钟后在电子显微镜下可以观察到水泥颗粒表面生成针状晶体、立方片状晶体和无定型的水化硅酸钙凝胶(C-S-H)。尺寸相对较大的立方板状晶体是氢氧化钙,针状晶体(或立方棱柱状晶体)是三硫型水化硫铝酸钙晶体(钙矾石AFt)。以后由于不断地生成三硫型水化硫铝酸钙,使液相中SO42-离子逐渐耗尽后,C3A与C4AF和三硫型水化硫铝酸钙作用生成单硫型水化硫铝酸钙(AFm)。生成的

3Ca0·(A1203·Fe203)·CaS04&middo t;12H20可再和

4Ca0·(A1204·Fe304)·13H20形成固溶体,如果石膏不足,还有C3A或C4AF剩留,则会生成单硫型水化硫铝酸钙和C4(AF)H13的固溶体,甚至单独的

C4(AF)H13,而后再逐渐变成稳定的等轴晶体C3(AF)H6。

综上所述,硅酸盐水泥水化生成的主要水化产物有:C-S-H 凝胶、氢氧化钙、水化铝(铁)酸钙和水化硫铝(铁)酸钙晶体。在充分水化的水泥石中,C-S-H凝胶约占70%,Ca(OH)2约占20%,钙矾石和单硫型水化硫铝酸钙约占70%。

水泥石结构是由未水化的水泥颗粒、水化产物以及孔隙组成,水化产物晶体共生和交错,形成结晶网络结构,在水泥石中起重要的骨架作用,水化硅酸钙凝胶填充于其中。C-S-H

普通硅酸盐水泥技术要求

普通硅酸盐水泥 凡由硅酸盐水泥熟料、6%~15%混合材料、适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥(简称普通水泥),代号P.O。 掺活性混合材料时,最大掺量不得超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替。 掺非活性混合材料时,最大掺量不得超过水泥质量10%。 P.C 42.5R水泥 P.C:复合硅酸盐水泥; 42.5:28天抗压强度≥42.5MPa; R :早强型,3天强度较同强度等级水泥高。 如果速凝剂是合格的,以掺加4%为宜,多掺会影响强度 II级粉煤灰,细度小于25%,烧失量小于8%,需水量比小于105% 高效减水剂 高效减水剂对水泥有强烈分散作用,能大大提高水泥拌合物流动性和混凝土坍落度,同时大幅度降低用水量,显著改善混凝土工作性。但有的高效减水剂会加速混凝土坍落度损失,掺量过大则泌水。高效减水剂基本不改变混凝土凝结时间,掺量大时(超剂量掺入)稍有缓凝作用,但并不延缓硬化混凝土早期强度的增长。 能大幅度降低用水量从而显著提高混凝土各龄期强度。在保持强度恒定时,则能节约水泥10%或更多。

氯离子含量微少,对钢筋不产生锈蚀作用。能增强混凝土的抗渗、抗冻融及耐腐蚀性,提高了混凝土的耐久性。 聚羧酸 1、掺量低、减水率高:减水率可高达35%,可用于配制高强以及高性能混凝土。 2、坍落度轻时损失小:预拌混凝土2h坍落度损失小于15%,对于商品混凝土的长距离运输及泵送施工极为有利。 3、混凝土工作性好:用PC聚羧酸系高性能减水剂配制的混凝土即使在高坍落度情况下,也不会有明显的离析、泌水现象,混凝土外观颜色均一。对于配制高流动性混凝土、自流平混凝土、自密实混凝土、清水饰面混凝土极为有利。用于配制高标号混凝土时,混凝土工作性好、粘聚性好,混凝土易于搅拌。 4、与不同品种水泥和掺合料相容性好:与不同品种水泥和掺合料具有很好的相容性,解决了采用其它类减水剂与胶凝材料相容性问题。 5、混凝土收缩小:可明显降低混凝土收缩,显著提高混凝土体积稳定性及耐久性。 6、碱含量极低:碱含量≤0.2%。 7、产品稳定性好:低温时无沉淀析出。 8、产品绿色环保:产品无毒无害,是绿色环保产品,有利于可持续发展。 9、经济效益好:工程综合造价低于使用其它类型产品

硅酸盐水泥和普通水泥的区别

硅酸盐水泥和普通水泥的区别 硅酸盐水泥和普通硅酸盐水泥(简称普通水泥) 共同特点: 早期强度较高;凝结硬化速度快(前者比后者还要快) 2、水化热较大(前者比后者还要大得多) 3、耐冻性差 4、耐热性较差 5、耐腐蚀及耐水性较差 适用范围:前者适用于快硬早强的工程、高强度等级砼。不适用于大体积砼工程(发热量比普通水泥大得多,不用)、受化学侵蚀、压力水(软水)作用及海水侵蚀的工程。后者适用于地上、地下及水中的大部分砼结构工程。不适用于大体积砼(实际施工时一般视这个大体积到底有多大以及它的重要性,或者采取控温措施后还是经常用的,至少西南地区是这样)、受化学侵蚀、压力水(软水)作用及海水侵蚀的工程。 复合硅酸盐水泥主要特征:早期强度低,耐热性好,抗酸性差。采用粉煤灰和煤矸石做为混合材,系绿色建材产品,享受国家税收优惠,早期和后期强度稳定,水化热低,适用于一般工业与民用建筑,是一种经济型水泥。 普通硅酸盐水泥主要特征:早期强度高,水化热高,耐冻性好,耐热性差,耐腐蚀性差,干缩性较小。适用范围:制造地上、地下及水中的混凝土,钢筋混凝土及预应力混凝土结构,受循环冻融的结构及早期强度要求较高的工程,配制建筑砂浆。不适用于大体积混凝土工程和受化学及海水侵蚀的工程。 凡由硅酸盐水泥熟料、6%-15%的混合材料及适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥,简称普通水泥。国家标准对普通硅酸盐水泥的技术要求有:(1)细度筛孔尺寸为80μm的方孔筛的筛余不得超过10%,否则为不合格。(2)凝结时间初凝时间不得早于45分钟,终凝时间不得迟于10小时。(3)标号根据抗压和抗折强度,将硅酸盐水泥划分为325、425、525、625四个标号。 普通硅酸盐水泥由于混合材料掺量较少,其性质与硅酸盐水泥基本相同,略有差异,主要表现为:(1)早期强度略低(2)耐腐蚀性稍好(3)水化热略低(4)抗冻性和抗渗性好(5)抗炭化性略差(6)耐磨性略差 复合硅酸盐水泥凡由硅酸盐水泥熟料、两种或两种以上规定的混合材料、适量石膏磨细制成的水硬性胶凝材料,称为复合硅酸盐水泥(简称复合水泥)。水泥中混合材料总掺加量按质量百分比应大于15%,不超过50%。水泥中允许用不超过8%的窑灰代替部分混合材料;掺矿渣时混合材料掺量不得与矿渣硅酸盐水泥重复。 水泥一般分普通硅酸盐水泥、掺混合材料的硅酸盐水泥和特殊水泥。普通硅酸盐水泥:由石灰石、粘土、铁矿粉按比例磨细混合,这时候的混合物叫生料。然后进行煅烧,一般温度在1450度左右,煅烧后的产物叫熟料。然后将熟料和石膏一起磨细,按比例混合,才称之为水泥。 掺混合材料的硅酸盐水泥是在普通硅酸盐水泥里按比例和一定的加工程序加入其他物质以达到特殊效果,如矿渣水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥等等。这些水泥的原料就比原来的普通硅酸盐水泥要多一些活性混合材料或非活性混合材料。特殊水泥在材料阶段和制作工艺上有些不同,如高铝水泥(铝酸盐水泥)的材料是铝矾土、石灰石经过煅烧得到熟料,然后磨细成为铝酸盐水泥的。其他有一些特性水泥用途较小,如白色水泥,主要用于装饰工程,材料是纯高岭土、纯石英砂、纯石灰石,在合适的温度煅

石灰石对水泥水化过程的影响

石灰石对水泥水化过程的影响-中国水泥技术网 2010-4-1 作者: 摘要:EN标准(EN 197)规定波特兰水泥中石灰石粉(主要为方解石)的掺加量最多可达5%,而全世界范围内,在特种水泥中石灰石的掺加量都要高得多。然而人们关注着富含石灰石的水泥的性能问题。由于尚未充分了解石灰石粉添加剂的作用:石灰石粉到底是一种活性添加剂还是惰性填充材料,或者是二者共存,所以目前还不能对此做些什么。本文展示如何辅以有针对性的试验进行计算来说明具有活性低含量方解石的作用。本文提供的发现显示了现代热动力学作为研究水泥浆体矿物学的一种有效方法的功能。 1 引言和基本原则 水泥生产商在生产具有较高早期强度和优良耐久性的优质水泥的同时,承受着降低成本和减少排放的压力。在这种情况下,常采用石灰石粉部分地替代水泥,并且经证明含量至少达到5%时是无害的:石灰石粉是EN 197标准允许的一种添加剂。由于按照该标准,所用石灰石中碳酸钙的含量不能低于70%(许多商用石灰石超过了此限值),因此,采用方解石进行模拟分析是合理的。 石灰石通常与熟料共同粉磨,由于其硬度比熟料小,所以粉磨之后的石灰石粒径的分布范围较广,但是其平均粒径明显比熟料的更细。由此产生的石灰石细粉无疑能改善固体颗粒与水混合后的固结性。然而物理堆积的优化过程相当复杂,不仅取决于石灰石粉的掺加量,还取决于所使用的粉磨设备类型以及熟料、石灰石的相对易磨性,由于这些都是变量,因此需要不同工厂各自进行评估。 Ingram和Daugherty对石灰石粉的物理作用作了评述。随后,Livesey等和Vuk等报道了石灰石水泥的强度发展。Tsivilis等人报道了加入石灰石粉后的混合物的渗透性,并将其与混合物基体的碳化速度和钢筋的潜在腐蚀性联系起来进行了分析。Uchikawa 等人在检查混凝土时发现由于石灰石粉的加入会使孔结构细化,并声称石灰石粉不具有火山灰活性,因此,对氢氧钙石含量也没有影响另一面,Catinaud等人指出,由于碳铝酸盐的形成,石灰石粉会阻止AFt(钙矾石)向AFm(单硫型硫铝酸盐)转化。这正与Sawicz、Henig和Kuzel等人的结果相一致,他们认为石灰石粉阻止了钙矾石向单硫酸盐转变,取而代之的则是单碳铝酸盐和半碳铝酸盐的形成。由以上文献可以看出,对于石灰石粉在波特兰水泥混合物中的活性还没有达成统一认识。 借助于选择的几种矿物活性实验以及热力学计算,我们再次对石灰石粉的活性进行检测,实

水泥水化反应

水泥原料无水 C3S——硅酸三钙3(CaO·SiO2) C2S——硅酸二钙2(2CaO·SiO2) C3A——铝酸三钙3CaO·Al2O3 C4AF——铁相固溶体4CaO·Al2O3·Fe2O3 水化作用后产物 C-S-H——水化硅酸钙3CaO·2SiO2·3H2O (胶体) CH ——氢氧化钙Ca(OH)2(晶体) C3AH6——水石榴石 3 CaO·Al2O3 ·6 H2O(晶体) AFt ——三硫型水化硫铝酸钙,简称钙矾石Ca6Al2(SO4)3(OH)12·26 H2O AFm——单硫型水化硫铝酸钙Ca4Al2(OH)12 SO4 ·6H2O 水泥在干态时主要由硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙以及少量的硫酸化物(钾盐、钠盐)、石膏(二水硫酸钙)组成。在水泥水化过程中,C3A C3S和C2S与水泥中其它组分发生复杂的水化反应,生成钙矾石即三硫型水化硫酸铝钙型AFt,单硫型水化硫酸铝钙AFm,氢氧化钙CH和硅酸钙C-S-H凝胶。 硅酸盐水泥的水化是一个非常复杂的、非均质的多相化学反应过程。自加水开始,水泥的水化反应就会一直进行,水泥基材料的结构会随着水泥水化反应逐渐演变,由流动状态逐渐变为塑性状态,最后到凝结硬化状态。 通过水泥的水化反应,使得松散的水泥粉体颗粒变成了具有胶结性的水泥浆体,进而粘结各种不同粒径的粗细骨料,形成了混凝土这种水泥基体材料。 水泥的水化作用就是它们之间的复杂化学反应,生成结晶性较好的水化晶体:AFt AFm CH 还有结晶性不好的无定形C—S-H AFt AFm CH 呈针状、棒状、无序态,这是造成水泥脆性的根本原因 水泥混凝土水化过程的化学反应式: 3(CaO·SiO2)+ 6 H2O = 3CaO·2SiO2·3H2O (胶体) +3 Ca(OH)2(晶体) 2(2CaO·SiO2)+4 H2O = 3CaO·2SiO2·3H2O + Ca(OH)2(晶体) 3CaO·Al2O3 + 6 H2O = 3 CaO·Al2O3 ·6 H2O(晶体) 4CaO·Al2O3·Fe2O3+7H2O = 3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O(胶体) 硅酸盐水泥4种熟料矿物成分中,主要的强度贡献者是C3S和C2S,它们在水泥中含量最多,占水泥重量的75%,因此它们的水化进程对水化物组成以及水泥石结构产生决定性影响,它们生成的水化产物主要是:水化硅酸钙和氢氧化钙(游离的对强度有害)。 氢氧化钙CH是一种六方板状晶体,其强度很低,稳定性极差,在侵蚀条件下是首先遭到侵蚀的组成,而且它们多在水泥石和集料的界面处富集,并组晶成粗大晶粒,因此界面的黏结力下降,成为水泥基材料中的最薄弱环节。因此,CH是水泥耐久性差的主要根源,也是水泥裂缝的发源地。(CH是对水泥强度有害的)

硅酸盐水泥的水化与硬化

第七章硅酸盐水泥的水化与硬化 本章主要内容: 1.熟料矿物的水化 2.硅酸盐水泥的水化 3.水化速率 4.硬化水泥浆体 补充: 熟料矿物水化的原因 1.熟料矿物结构不稳定。 造成熟料矿物结构不稳定的原因是: ⑴ 熟料烧成后快速冷却,使其保留了介稳状态的高温型晶体结构; ⑵熟料中的矿物不是纯的C3S和C2S ,而是Alite 和Belite等有限固溶体; ⑶微量元素的掺杂使晶格排列的规律性受到某种程度的影响。 2.熟料矿物中钙离子的氧离子配位不规则。 水泥的水化、凝结、硬化 ? 水化-物质由无水状态变为有水状态,由低含水变为高含水,统称为水化。 ? 凝结-水泥加水拌和初期形成具有可塑性的浆体,然后逐渐变稠并失去可塑性的过程称为凝结。 ? 硬化-此后,浆体的强度逐渐提高并变成坚硬的石状固体(水泥石),这一过程称为硬化。 §7.1 熟料矿物的水化 一.C3S的水化 1.常温下的水化反应 3CaO.SiO2+nH2O=xCaO.SiO2.yH2O+(3-x)Ca(OH)2

简写为:C3S + nH = C-S-H + (3-x)CH 水化产物:水化硅酸钙(也称C-S-H凝胶)和氢氧化钙。 2.C3S水化过程 Ⅰ诱导前期(时间:15分钟 ) 反应:激烈—第一个放热峰,钙离子浓度迅速提高 浆体状态:是具有流动性(Ca(OH)2没有饱和) Ⅱ诱导期又称静止期(时间:2—4小时) 反应:极慢——放热底谷:钙离子浓度增高慢 浆体状态:Ca(OH)2达饱和。此间:具有流动性,结束:失去流动性,达初凝 Ⅲ加速期(时间:4~8小时) 反应:又加快——第二放热高峰 浆体状态:Ca(OH)2过饱和最高:生成Ca(OH)2、填充空隙、 中期:失去可塑性、达终凝,后期:开始硬化 Ⅳ减速期(时间:12—24小时) 反应:随时间的增长而下降 原因:在C3S表面包裹产物—阻碍水化。 Ⅴ稳定期 反应:很慢—基本稳定(只到水化结束) 原因:产物层厚:水很少—产物扩散困难。 3.诱导期的本质 ⑴保护膜理论 ⑵晶核形成延缓理论 ⑶晶格缺陷的类别和数量是决定诱导期长短的主要因素 二.C2S水化 C2S的水化过程与C3S相似,也有静止期,加速期等,但水化速率很慢约为C3S的1/20

水泥水化反应

就是水泥水化反应公式。 硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下: ①硅酸三钙水化 硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙。 3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca(OH)2 ②硅酸二钙的水化 β-C2S的水化与C3S相似,只不过水化速度慢而已。 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2 所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H凝胶。但CH生成量比C3S的少,结晶却粗大些。 ③铝酸三钙的水化 铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,先生成介稳状态的水化铝酸钙,最终转化为水石榴石(C3AH6)。在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。最初形成的三硫型水化硫铝酸钙,简称钙矾石,常用AFt表示。若石膏在C3A完全水化前耗尽,则钙矾石与C3A作用转化为单硫型水化硫铝酸钙(AFm)。 ④铁相固溶体的水化 水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,水化热较低,即使单独水化也不会引起快凝。其水化反应及其产物与C3A很相似。 C3S——硅酸三钙 C3A——铝酸三钙 水泥混凝土水化过程的化学反应式: 3(CaO·SiO2)+ 6 H2O = 3CaO·2SiO2·3H2O (胶体) +3 Ca(OH)2(晶体) 2(2CaO·SiO2)+4 H2O = 3CaO·2SiO2·3H2O + Ca(OH)2(晶体) 3CaO·Al2O3 + 6 H2O = 3 CaO·Al2O3 ·6 H2O(晶体) 4CaO·Al2O3·Fe2O3+7H2O = 3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O(胶体)

水泥水化反应公式

水泥水化反应公式

水泥水化反应公式 硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下: ①硅酸三钙水化 硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙。 3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca( OH)2 ②硅酸二钙的水化 β-C2S的水化与C3S相似,只不过水化速度慢而已。 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca( OH)2 所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H凝胶。但CH生成量比C3S的少,结晶却粗大些。 ③铝酸三钙的水化 铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,

先生成介稳状态的水化铝酸钙,最终转化为水石榴石(C3AH6)。 在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。最初形成的三硫型水化硫铝酸钙,简称钙矾石,常用AFt表示。若石膏在C3A完全水化前耗尽,则钙矾石与C3A作用转化为单硫型水化硫铝酸钙(AFm)。 ④铁相固溶体的水化 水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,水化热较低,即使单独水化也不会引起快凝。其水化反应及其产物与C3A很相似。

(1)单质与氧气的反应: 1. 镁在空气中燃烧:2Mg + O2 点燃2MgO 2. 铁在氧气中燃烧:3Fe + 2O2 点燃Fe3O4 3. 铜在空气中受热:2Cu + O2 加热2CuO 4. 铝在空气中燃烧:4Al + 3O2 点燃2Al2O3 5. 氢气中空气中燃烧:2H2 + O2 点燃2H2O 6. 红磷在空气中燃烧:4P + 5O2 点燃2P2O5 7. 硫粉在空气中燃烧:S + O2 点燃SO2 8. 碳在氧气中充分燃烧:C + O2 点燃CO2 9. 碳在氧气中不充分燃烧:2C + O2 点燃2CO (2)化合物与氧气的反应: 10. 一氧化碳在氧气中燃烧:2CO + O2 点燃2CO2 11. 甲烷在空气中燃烧:CH4 + 2O2 点燃CO2 + 2H2O 12. 酒精在空气中燃烧:C2H5OH + 3O2 点燃2CO2 + 3H2O

水泥水化反应公式

水泥水化反应公式 硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下: ①硅酸三钙水化 硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙。 3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca(OH)2 ②硅酸二钙的水化 β-C2S的水化与C3S相似,只不过水化速度慢而已。 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2 所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H 凝胶。但CH生成量比C3S的少,结晶却粗大些。 ③铝酸三钙的水化 铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,先生成介稳状态的水化铝酸钙,最终转化为水石榴石(C3AH6)。 在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。最初形成的三硫型水化硫铝酸钙,简称钙矾石,常用AFt表示。若石膏在C3A完全水化前耗尽,则钙矾石与C3A 作用转化为单硫型水化硫铝酸钙(AFm)。 ④铁相固溶体的水化 水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,水化热较低,即使单独水化也不会引起快凝。其水化反应及其产物与C3A很相似。

(1)单质与氧气的反应: 1. 镁在空气中燃烧:2Mg + O2 点燃2MgO 2. 铁在氧气中燃烧:3Fe + 2O2 点燃Fe3O4 3. 铜在空气中受热:2Cu + O2 加热2CuO 4. 铝在空气中燃烧:4Al + 3O2 点燃2Al2O3 5. 氢气中空气中燃烧:2H2 + O2 点燃2H2O 6. 红磷在空气中燃烧:4P + 5O2 点燃2P2O5 7. 硫粉在空气中燃烧:S + O2 点燃SO2 8. 碳在氧气中充分燃烧:C + O2 点燃CO2 9. 碳在氧气中不充分燃烧:2C + O2 点燃2CO (2)化合物与氧气的反应: 10. 一氧化碳在氧气中燃烧:2CO + O2 点燃2CO2 11. 甲烷在空气中燃烧:CH4 + 2O2 点燃CO2 + 2H2O 12. 酒精在空气中燃烧:C2H5OH + 3O2 点燃2CO2 + 3H2O 二.几个分解反应: 13. 水在直流电的作用下分解:2H2O 通电2H2↑+ O2 ↑ 14. 加热碱式碳酸铜:Cu2(OH)2CO3 加热2CuO + H2O + CO2↑ 15. 加热氯酸钾(有少量的二氧化锰):2KClO3 ==== 2KCl + 3O2 ↑ 16. 加热高锰酸钾:2KMnO4 加热K2MnO4 + MnO2 + O2↑ 17. 碳酸不稳定而分解:H2CO3 === H2O + CO2↑ 18. 高温煅烧石灰石:CaCO3 高温CaO + CO2↑ 三.几个氧化还原反应: 19. 氢气还原氧化铜:H2 + CuO 加热Cu + H2O 20. 木炭还原氧化铜:C+ 2CuO 高温2Cu + CO2↑ 21. 焦炭还原氧化铁:3C+ 2Fe2O3 高温4Fe + 3CO2↑ 22. 焦炭还原四氧化三铁:2C+ Fe3O4 高温3Fe + 2CO2↑ 23. 一氧化碳还原氧化铜:CO+ CuO 加热Cu + CO2 24. 一氧化碳还原氧化铁:3CO+ Fe2O3 高温2Fe + 3CO2 25. 一氧化碳还原四氧化三铁:4CO+ Fe3O4 高温3Fe + 4CO2 =========================================================== ============= 四.单质、氧化物、酸、碱、盐的相互关系 (1)金属单质+ 酸-------- 盐+ 氢气(置换反应) 26. 锌和稀硫酸Zn + H2SO4 = ZnSO4 + H2↑ 27. 铁和稀硫酸Fe + H2SO4 = FeSO4 + H2↑

硅酸盐水泥的技术要求

硅酸盐水泥的技术要求 1、细度:水泥颗粒越细,比表面积越大,水化反应越快越充分,早期和后期强度都较高。国家规定:比表面积应大于300平方米/千克,否则为不合格。 2、凝结时间:为保证在施工时有充足的时间来完成搅拌、运输、成型等各种工艺,水泥的初凝时间不宜太短;施工完毕后,希望水泥能尽快硬化,产生强度,所以终凝时间不宜太长。硅酸盐水泥的初凝时间不得早于45分钟,终凝时间不得迟于390分钟。 3、体积安定性:水泥浆体在凝结硬化过程中,体积变化的均匀性称为体积安定性。如果体积变化不均匀即体积安定性不良,容易产生翘曲和开裂,降低工程质量甚至出现事故。引起体积安定性不良的原因有:(1)水泥石中含有过多的游离氧化钙和游离氧化镁。它们属于过火的氧化钙和氧化镁,熟化很慢,在水泥凝结硬化后才逐渐熟化,熟化时体积膨胀,使已硬化的水泥产生开裂和翘曲。(2)石膏掺量过多,在硬化的水泥石中,石膏继续与水化铝酸钙作用,产生很大的膨胀性,引起水泥石开裂。 4、强度与标号:硅酸盐水泥的强度主要取决于水泥熟料矿物的比例和水泥的细度。根据3天和28天的抗折强度和抗压强度将硅酸盐水泥分为42 5、525、625、725等四个标号。 2、凝结时间:为保证在施工时有充足的时间来完成搅拌、运输、成型等各种工艺,水泥的初凝时间不宜太短;施工完毕后,希望水泥能尽快硬化,产生强度,所以终凝时间不宜太长。硅酸盐水泥的初凝时间不得早于45分钟,终凝时间不得迟于390分钟。 3、体积安定性:水泥浆体在凝结硬化过程中,体积变化的均匀性称为体积安定性。如果体积变化不均匀即体积安定性不良,容易产生翘曲和开裂,降低工程质量甚至出现事故。 硅酸盐水泥与普通硅酸盐水泥有哪些强度等级 水泥强度等级是按规定龄期(3d、28d)的水泥标准试块的抗压强度和抗折强度划分的。 水泥强度等级值是水泥标准试块28d抗压强度(MPa)的数值,例如:水泥标准试块28d抗压强度值为42.5MPa,则其强度等级为42.5。某一强度等级水泥同时要达到规定抗压强度与抗折强度。如果其中一项小于规定值,则水泥应降低一级使用,例如:普通水泥52.5强度等级,3d抗压强度达不到22MPa,则应降为42.5强度等级使用。 硅酸盐水泥分42.5R、52.5、52.5R、62.5、六个强度等级,各强度等级水泥各龄期强度列表硅酸盐水泥各龄期强度列表1-1。 硅酸盐水泥各龄期强度值表1—1 水泥强度等级抗压强度(MPa)抗折强度(MPa) 3d 28d 3d 28d

矿渣水泥和普通硅酸盐水泥的优缺点

矿渣水泥和普通硅酸盐水泥的优缺点 矿渣硅酸盐水泥: 优点:凝结时间稳定,初凝一般在2:30~4:00小时;终凝一般在4:30~6:30小时,强度稳定,水化热低,耐水性和抗碳酸盐性能与硅酸盐水泥相近,在淡水和硫酸盐水泥中的稳定性优于硅酸盐水泥,耐热性较好,与钢筋的粘结力也很好。缺点:抗大气性及抗冻性不及硅酸盐水泥;和易性较差,泌水量大,所以不宜于冬天露天施工使用,因此在施工中要采取相应措施:加强保潮养护,严格控制加水量,低温施工时采用保温养护等,也可以加入一些外加剂。如:减水剂、元明粉(Na2SO4)、明矾石粉、三乙醇胺等,以提高矿渣水泥的早期强度。 根据上述矿渣水泥的性能特点,矿渣水泥可代替硅酸盐水泥广泛使用于地面及地下建筑,制造各种混凝土和钢筋混凝土制品构件。由于抗蚀性较好,可用于水工及海工建筑;由于水化热低,可用于大体积混凝土工程;由于耐热性较好,可用于高温车间,温度达300~400℃的热气体通道等。普通硅酸盐水泥: 优点:早期强度高,凝结时间早于矿渣硅酸盐水泥,抗大气性及抗冻性优于矿渣水泥,泌水量小,因此冬季使用较矿渣水泥好。由于凝结时间快、早期强度发挥好,适用于高层建筑及大体积砼工程、重要工程等。运输、贮存当中应注意的

事项: 由于水泥是水硬性胶凝材料,因此在运输和贮存中要注意防淋、防潮、要妥善保管,施工现场库存量不易太多,存放时间不易过长,检验合格存放期达一个月后,应经复检合格再使用,以免超期变质、强度降低、凝结时间变长,给施工质量带来不必要的损失。 石膏矿渣水泥砂浆、砼表面易起砂、石灰矿渣水泥强度低、碱—矿渣水泥易吸湿性、施工不方便问题、Na+易产生碱骨料反应问题、在空气中干缩大等用矿渣等工业废渣与碱性和硫酸盐激发剂,磨制成的碱—矿渣水泥(或称碱—矿渣胶凝材料)。它有一些优良性能和节能特点,但却存在一些难以克服的缺点,例如碱骨料反应问题、干缩性大的问题、水泥本身的易吸湿性问题,施工中由于其砂浆和砼粘性大、难以操作问题,对人身和设备的腐蚀问题以及原材料(工业废渣)的来源问题等,故不可能广泛地推广生产和使用。 [此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]

普通硅酸盐水泥与复合硅酸盐水泥的区别

请教一下,工地上常用的水泥是普通硅酸盐水泥(PO),那么复合硅酸盐水泥(PC)能否在主体结构中使用呢?如果不可以,那么复合硅酸盐水泥主要应用在什么地方? 有没有相关的规范或标准 复合硅酸盐水泥用在抹灰.铺贴地板砖这些部位比较好 凡由硅酸盐水泥熟料、两种或两种以上规定的混合材料、适量石膏磨细制成的水硬性胶凝材料,称为复合硅酸盐水泥(简称复合水泥)。水泥中混合材料总掺加量按质量百分比应大于15%,不超过50%。 适用于工业和民用建筑等工程以及港航工程及地下隧道等. 产品性能稳定,后期强度增进率大,和易性好,干缩率小.水化热低,耐腐蚀性好. 既然复合硅酸盐水泥和普通硅酸盐水泥都能在工业和民用建筑中使用,而现实情况由于复合硅酸盐水泥水泥熟料较少而价格便宜,那么为何目前工地施工大部分还是使用普通硅酸盐水泥?是否更应采用使用复合硅酸盐水泥呢? 我们工地之前曾经发现包商在主体结构中使用价格更加低廉的复合硅酸盐水泥而责令其停止使用,如真如上述所说,复合硅酸盐水泥不仅价格低廉而且产品性能稳定,那么我们之前的做法是否欠妥了呢? 可能是地区差别吧我们这的PC要比PO贵啊 PC的性能要比PO强请仔细研读两种材料的性能说明. PO早期强度高,有利于模板周转;PC晚期强度可利用,工民建中大体积混凝土可以考虑。 PO早期强度高比较适合砌筑;PC做砌筑使用就要注意一次砌筑墙体的高度要控制好,也不能说一定不可以用,相对来说,PC干縮率小,对墙体裂缝的控制也很有益啊。 复合水泥不够稳定,所以一直以来很少用到结构上,但是从去年水泥新规出来以后,对复合水泥的掺料种类和量都做了规定,相信在不久的将来,肯定会用的越来越多, 08年6月1日实施水泥新规,PO32.5水泥取消了,复合硅酸盐总体的特点是:水化热低、抗渗好但耐磨性差、后期强度增强、保养时间、条件要更好,普通硅酸盐的早期强度高、耐磨,适用的范围更广,现在公路水稳层适用32.5是没有了,适用PC32.5更要注意保养

硅酸盐水泥水化机理研究方法

硅酸盐水泥水化机理研究方法 陈灏 唐山今实达科贸有限公司河北063020 摘要:水泥的水化是水泥的重要特性,水泥水化机理的研究对水泥的生产和使用、对水泥成功应用于复杂建筑体系都有着十分重要的作用,对混凝土和外加剂的研究也有着重要的指导意义。本文介绍了硅酸盐水泥的基本性能及几个水泥水化机理的研究方法并指出其中一些方法优缺点及未来研究方向。 关键词:硅酸盐水泥;水泥水化研究方法 中图分类号:TQ172文献标识码:A文章编号: 随着国际水泥产业的不断发展,人们对硅酸盐水泥及其各矿物的水化反应机理、水化反应产物、水化反应热力学、水化反应动力学以及各反应物的特性和环境条件对水化作用等进行了深人的研究和探讨。 一、硅酸盐水泥的基本性能 凡以硅酸钙为主的硅酸盐水泥熟料,5%以下的石灰石或粒化高炉矿渣,适量石膏磨细制成的水硬性胶凝材料,统称为硅酸盐水泥。国际上统称为波特兰水泥。硅酸盐水泥的主要矿物组成是:硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙。硅酸盐水泥有以下基本性能与应用: 1、凝结硬化快,早期强度及后期强度高,适用于有早强要求的混凝土、冬季施工混凝土,地上地下重要结构的高强混凝土和预应力混凝土工程。 2、抗冻性好,适用于严寒地区水位升降范围内遭受反复冻融循环的混凝土工程。 3、水化热大,不宜用于大体积混凝土工程,但可用于低温季节或冬期施工。 4、耐腐蚀性差,不宜用于经常与流动淡水或硫酸盐等腐蚀介质接触的工程,也不宜用于经常与海水、矿物水等腐蚀介质接触的工程。 5、耐热性差,不宜用于有耐热要求的混凝土工程。 二、硅酸盐水泥水化机理的研究方法 水泥加适量水拌和后,便形成能粘结砂石料的可塑性浆体,随后通过凝结硬化逐渐变成有强度的石状体。同时还伴随着水化放热和体积变化的现象。这说明产生了复杂的物理、化学与物理化学力学的变化。这个过程比较复杂,因此叫水化理论。下面从不同角度介绍水化机理的研究方法: 1、从动态的角度研究水泥浆体的性质和水泥水化进程。 很多研究者通过测定水泥浆体的物理、化学性质随时间的变化来跟踪和纪录水化进程,并分析这些性质与水化进程、反应速率等的相关性,进而对水化特性及机理进行解释。经过努力研究,目前已经找到了水化浆体中与水化历程相关的许多性质,如:力学性质、电动学性质、离子浓度、放热量和水化产物的物相生成、胶凝程度、结晶度、孔分布、微观结构、体积变化等,从而使得测定研究水化的方法多种多样。 (1)水化动力学法 水泥和水拌和后,硬化水泥浆体中固、液、气三相同时存在,并发生一系列物理化学变化。基于前人研究出的用于描述多相体系中物理化学变化特征的数学方程,Bezjak等研究得出了硬化水泥浆体中各主要组分水化的数学模型。基于前人建立的硬化水泥浆体各组分的水化模型,nabic、Krstulovie等进一步研究了水泥的水化过程,并建立数学模型来描述水化程度与水化速率的关系进而得出水化程度与时间的关系。

硅酸盐水泥的水化和硬化

第七章硅酸盐水泥的水化和硬化 第一节硅酸盐水泥熟料的形成 一、硅酸盐水泥熟料的形成 水泥熟料矿物为什么能与水发生反应?主要原因是: 1. 硅酸盐水泥熟料矿物结构的不稳定性,可以通过与水反应,形成水化产物而 达到稳定性。造成熟料矿物结构不稳定的原因是:<1) 熟料烧成后的快速冷却,使其保留了介稳状态的高温型晶体结构;<2) 工业熟料中的矿物不是纯的C,S,CZS 等,而是Alite 和Belite 等有限固溶体;(3) 微量元素的掺杂使晶格排列的规律性受到某种程度的影响。 2. 熟料矿物中钙离子的氧离子配位不规则,晶体结构有“空洞”,因而易于起 水化反应。例如,C,S 的结构中钙离子的配位数为 6 ,但配位不规则,有 5 个氧离子集中在一侧而另一侧只有 1 个氧离子,在氧离子少的一侧形成“空 洞”,使水容易进入与它反应。户CZS 中钙离子的配位数有一半是 6 ,一半是8 ,其中每个氧离子与钙离子的距离不等,配位不规则,因而也不稳定,可以水化,但速度较慢。 C 3A 的晶体结构中,铝的配位数为 4 与6, 而钙离子的配位数为 6 与9 ,配位数为9 的钙离子周围的氧离子排列极不规则,距离不等,结构有巨大的“空洞”,故水化很快。C,AF 中钙的配位数为10 与 6 ,结构也有“空洞”,故也易水化。有些矿物如Y-CZS 和CZ AS 几乎是惰 性的,主要是钙离子的配位有规则的缘故.例如: Y-CZS 中钙离子的氧配位为 6 , 6 个氧离子等距离地排列在钙离子的周围,形成八面体,结构没有“空洞”,因此不易与水反应。这里要特别指出,水化作用快的矿物,其最终强度不一定高。例如,C,A 水化快,但强度绝对值并不高,而户CZS 虽然水化慢,但最终强度却很高,因为水化速度只与矿物水化快慢有关,而强度则与浆体结构形成有关。 二、熟料单矿物的水化 (一)硅酸三钙的水化 硅酸三钙在水泥熟料中的含量约占50 %,有时高达60 %,因此它的水化作用、产物及其所形成的结构对硬化水泥浆体的性能有很重要的影响硅酸三钙在常温下的水化反应,大体上可用下面的方程式表示: 3Ca0 。SiOz +nHzO =xCaO .SiOz .yHzO +(3-x )Ca (OH )z 简写为: C 3 S +nH=C-S-H +( 3 一 x)CH 上式表明,其水化产物为C-S-H 凝胶和氢氧化钙,C-S-H 有时也被笼统地称之为水化硅酸钙,它的组成不定(其字母之间的横线就表示组成不定),其Ca0/Si0 :分子比(简写成C/S) 和H20/SiO2 分子比(简写为H/S )都在较大范围内变动。C-S-H 凝胶的组成与它所处的液相的Ca (OH) :浓度有关,如图1-7-1 所示。当溶液的CaO 浓度小于lmmol/L(0. 06g /L) 时,生成氢氧化钙和硅酸凝胶。当溶液的CaO 浓度小于 1 一2mmo1/L (0. 06 一 0. 112g /L )时,生成水化硅酸钙和硅酸凝胶。当溶液的CaO 浓度为2-20mmo1/L (0. 112-1-12 g/L) 时,生成C/S 比为0. 8 一 1 . 5 的水化硅酸钙,其

通用硅酸盐水泥的特性与应用

通用硅酸盐水泥的特性与应用 2013级土木工程系土木工程专业1班*** 摘要 通用硅酸盐类水泥的品种很多,不同的水泥间的差别也较大,可以满足各种工程的不同需要。其主要区别是混合材料的品种和掺量不同。合理选择水泥种类有助于质量保证。 关键词:硅酸盐水泥特性应用 1前言 水泥按照其用途和性能,可分为通用水泥、专用水泥、特性水泥。通用水泥是指大量用于一般土木建筑工程的水泥。工程中最常用的硅酸盐类水泥,主要有硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐类水泥六大类,统称为通用硅酸盐水泥。 2硅酸盐水泥(波特兰水泥) 2.1定义 根据国家标准《通用硅酸盐水泥》(GB175-2007)[1]规定,凡由硅酸盐水泥熟料、0-5%石灰石或粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料,统称为硅酸盐水泥。硅酸盐水泥分两种类型,不掺加混合材料的称I型硅酸盐水泥,其代号为P·I;在硅酸盐水泥熟料粉磨时掺加不超过水泥质量5%的石灰石或粒化高炉矿渣混合材料的称II型硅酸盐水泥,其代号为P·II。 2.2硅酸盐水泥特点 2.2.1硅酸盐水泥的优点与应用 硅酸盐水泥强度等级较高,主要用于重要结构的高强度混凝土和预应力混凝土工程。硅酸盐水泥凝结硬化较快,硬化后的水泥石密实,耐冻性优于其他通用水泥,适用于要求凝结快、早期强度高、冬季施工及严寒地区遭受反复冻融的工程。抗碳化能力强。空气中的二氧化碳与水泥石中的氢氧化钙反应生成碳酸钙的

过程叫碳化。硅酸盐水泥碱性强,密实度高,因此抗碳化能力强,适用于二氧化碳浓度较高的环境,如翻砂、铸造车间等,特别适用于重要的钢筋混凝土结构及预应力混凝土及工程。干缩小。硅酸盐水泥加硬化过程中形成大量的水化硅酸钙凝胶,使水泥石密实,游离水分少,不易产生干缩裂纹,可用于干燥环境中的混凝土工程。耐磨性好。硅酸盐水泥强度高,耐磨性好,适用于有耐磨要求的混凝土工程,比如路面与地面工程。 2.2.2硅酸盐水泥的缺点与分析 1腐蚀性差。硅酸盐水泥石中含有大量的氢氧化钙和水化铝酸钙,易引起软水、酸类和盐类的腐蚀。因此,它不适用于经常与流动的淡水接触及有水压作用的工程,也不适用于受海水、其它腐蚀性介质等作用的工程。2水化热高。硅酸盐水泥熟料中硅酸三钙和铝酸三钙含量高,早期放热量大,放热速度快,早期强度高,用于冬季施工常可避免冻害。但高放热量对大体积混凝土工程不利,如无可靠的降温措施,不宜用于大体积混凝土工程3耐热性差。硅酸盐水泥石在温度为250摄氏度时,水化物开始脱水,水泥石强度下降,当温度达到七百摄氏度以上时,水化产物分解,水泥石结构开始破坏。因此硅酸盐水泥不宜单独用于有耐热、高温要求的混凝土工程。3湿热养护效果差。硅酸盐水泥,在常规养护条件下硬化快、强度高,但是经过蒸汽养护后再经自然养护28天测得的抗压强度往往低于未经蒸汽养护的28天的抗压强度。 3普通硅酸盐水泥 3.1定义 普通硅酸盐水泥简称为普通水泥、普通硅酸盐水泥是指熟料和石膏组分大于或等于80%且小于95%,掺加大于5%且不超过20%的粒化高炉矿渣、火山灰质混合材料、粉煤灰、石灰石等活性混合材料,其中允许用不超过水泥质量8%的非活性混合材料或不超过水泥质量5%的窑灰代替活性混合材料,共同磨细制成的水硬性胶凝材料,其代号为P·O。 3.2特点与应用 普通硅酸盐水泥由于掺入了少量混合材料,故某些活性性能与硅酸盐水泥相比稍有差异。普通硅酸盐水泥被广泛用于各种混凝土和钢筋混凝土工程,是我国目前主要的水泥品种之一。 4矿渣硅酸盐水泥 4.1定义

【揭秘混凝土】第24篇:普通硅酸盐水泥熟料的矿物成分和水化性能

【揭秘混凝土】第24篇:普通硅酸盐水泥熟料的矿物成分和水化性能 普通硅酸盐水泥熟料含有四种主要矿物成分: 1.阿利特(Alite)或称A矿:主要成分是硅酸三钙(C3S)及少量其他氧化物。A矿晶体是细长的, 截面为六边形,长度一般为20μm--60μm。 2.贝利特(Belite)或称B矿:主要成分是硅酸二钙(C2S)及少量其他氧化物。B矿晶体多数是圆 形,直径为10μm—30μm。 3.铝酸三钙(C2A) 4.铁铝酸四钙(C4AF) 铝酸相和铝铁酸相晶体的形状不固定,变化很大。有时这两种晶体交织生长在一起。 阿利特—硅酸三钙(C3S): C3S具有很强的反应活性和较快的水化速度,是普通硅酸盐水泥中的主要成分,通常占到50%--70%左右(重量比)。它是水泥强度的主要贡献者,28天可以水化约70%,强度达到一年强度的70%-80%。 C3S的水化热较高。 贝利特—硅酸二钙(C2S):

C2S的反应活性比C3S稍差。在普通硅酸盐水泥中,它的含量一般在10%--30%左右。C2S的水化速度较慢,28天仅水化20%左右,早期强度较低。但强度可持续增长,一年后和C3S持平。C2S的水化热低,抗腐蚀性好。 铝酸三钙(C3A): C3A是普通硅酸盐水泥熟料中反应活性最强的成分,但其强度很低。由于其反应速度快,能造成普通硅酸盐水泥速凝,因此必须加入石膏控制它的凝结速度。C3A的水化过程放热量大,干缩变形大,抗硫酸盐腐蚀的能力差。 铁铝酸四钙(C4AF): C4AF的反应速度介于C3S和C3A之间,但强度不高。水化热较C3A小,抗冲磨性能和抗硫酸盐腐蚀性能较好。 既然铝酸盐和铁铝酸盐对普通硅酸盐水泥的强度贡献不大且有很多的负面作用,那为什么还要添加它们?简单来说,添加铝酸盐和铁铝酸盐的目的是为了促进C3S的形成。在熟料烧成过程中,只有四分之一的原料能熔融成液体,而其他四分之三的原料保持固体状态不变。离子在液体中的转移速度要比在固体中的转移速度快很多,有利于C3S的形成。而添加铝酸盐和铁铝酸盐的目的就是促进液体的形成。液体冷却后,就形成了C3A晶体和C4AF晶体。

水泥水化反应

精心整理水泥原料无水 C3S——硅酸三钙3(CaO? SiO2) C2S ——硅酸二钙2(2CaO- SiO2) C3A——铝酸三钙3CaO- A12O3 C4AF ――铁相固溶体4CaO- A12O3 ? Fe2O3 水化作用后产物 C-S-H――水化硅酸钙3CaO- 2SiO2 ? 3H2O胶体) Ca(0H)2(晶体) CH――氢氧化钙 C3AH6 ――水石榴石3CaO- A12O3 ? 6H2O(晶体) AFt ――三硫型水化硫铝酸钙,简称钙矶石Ca6AI2(SO4)3(OH)12 ? 26H2O AFm——单硫型水化硫铝酸钙Ca4AI2(OH)12SO4 6H2O 水泥在干态时主要由硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙以及少量的硫酸 化物(钾盐、钠盐)、石膏(二水硫酸钙)组成。在水泥水化过程中,C3AC3罰C2S 与水泥中其它组分发生复杂的水化反应,生成钙矶石即三硫型水化硫酸铝钙型___ AFt, 单硫型水化硫酸铝钙AFm氢氧化钙CH和硅酸钙C- S- H凝胶。 I I 硅酸盐水泥的水化是一个非常复杂的、非均质的多相化学反应过程。自加水开始, 水泥的水化反应就会一直进行,水泥基材料的结构会随着水泥水化反应逐渐演变, 由流动状态逐渐变为塑性状态,最后到凝结硬化状态。 通过水泥的水化反应,使得松散的水泥粉体颗粒变成了具有胶结性的水泥浆体,进 而粘结各种不同粒径的粗细骨料,形成了混凝土这种水泥基体材料。 水泥的水化作用就是它们之间的复杂化学反应,生成结晶性较好的水化晶体:

AFtAFmCH 还有结晶性不好的无定形C- S- H 精心整理 AFtAFmC呈针状、棒状、无序态,这是造成水泥脆性的根本原因 水泥混凝土水化过程的化学反应式: 3(CaO - SiO2)+6H2O=3CaO2SiO2 ? 3H20胶体)+3Ca(OH)2(晶体) 2(2CaO? SiO2)+4H2O=3CaO2SiO2 - 3H2O+Ca(OH)2晶体) 3CaO- Al2O3+6H2O=3CaOAl2O3 - 6H2O(晶体) 4CaO? A12O3 ? Fe2O3+7H2O=3CaO\l2O3 ? 6H2O+CaOFe2O3- H20胶体) 硅酸盐水泥4种熟料矿物成分中,主要的强度贡献者是C3S和C2S它们在水泥中含量最多,占水泥重量的75%因此它们的水化进程对水化物组成以及水泥石结构产生决定性影响,它们生成的水化产物主要是:水化硅酸钙和氢氧化钙(游离的对强度有害)。 氢氧化钙CH是一种六方板状晶体,其强度很低,稳定性极差,在侵蚀条件下是首先遭到侵蚀的组成,而且它们多在水泥石和集料的界面处富集,并组晶成粗大晶粒,因此界面的黏结力下降,成为水泥基材料中的最薄弱环节。因此,CH是水泥耐久性 差的主要根源,也是水泥裂缝的发源地。(CH是对水泥强度有害的) 硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下: ①硅酸三钙水化C3S —— C-S-H+CH 硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙CH。 3CaO- SiO2 +nH2O=xCaO SiO2 ?yH2O+(3-x)Ca(OH)2 ②硅酸二钙的水化C2S —— C —S —H+CH 3-C2S的水化与C3S相似,只不过水化速度慢而已。 2CaO- SiO2 +nH2O=xCaO SiO2 ?yH2O+(2-x)Ca(OH)2 所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H凝胶。但CH生成量比C3S的少,结晶却粗大些。

相关文档
最新文档