平面解析几何测试题及答案

合集下载

高考数学压轴专题专题备战高考《平面解析几何》经典测试题及答案

高考数学压轴专题专题备战高考《平面解析几何》经典测试题及答案

【最新】数学《平面解析几何》高考知识点一、选择题1.已知椭圆1C :22113x y +=,双曲线2C :22221(,0)x y a b a b-=>,若以1C 的长轴为直径的圆与2C 的一条渐近线交于A 、B 两点,且椭圆1C 与该渐近线的两交点将线段AB 三等分,则2C 的离心率是( ) AB .3CD .5【答案】A 【解析】由已知得OA =OA 的方程为()00,0y kx k x =>>,∴可设()00,A x kx ,进一步0=,A AB ∴的一个三分点坐标为⎛⎫,该点在椭圆上,221⎛⎫⎛⎫+=,即()2211391k k+=+,解得22k =,从而有,222222b b a a==,解得c e a ===,故选A. 【 方法点睛】本题主要考查双曲线的渐近线及椭圆的离心率,属于难题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系;离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.2.已知抛物线2:6C x y =的焦点为F 直线l 与抛物线C 交于,A B 两点,若AB 中点的纵坐标为5,则||||AF BF +=( ) A .8 B .11C .13D .16【答案】C 【解析】 【分析】设点A 、B 的坐标,利用线段AB 中点纵坐标公式和抛物线的定义,求得12y y +的值,即可得结果; 【详解】抛物线2:6C x y =中p =3, 设点A (x 1,y 1),B (x 2,y 2),由抛物线定义可得:|AF |+|BF |=y 1+ y 2+p =y 1+ y 2+3, 又线段AB 中点M 的横坐标为122y y +=5, ∴12y y +=10, ∴|AF |+|BF |=13; 故选:C . 【点睛】本题考查了抛物线的定义的应用及中点坐标公式,是中档题.3.设D 为椭圆2215y x +=上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD|=|BD|,则点P 的轨迹方程为( ) A .x 2+(y -2)2=20 B .x 2+(y -2)2=5 C .x 2+(y +2)2=20 D .x 2+(y +2)2=5 【答案】C 【解析】 【分析】由题意得PA PD DA DB DA =+=+=,从而得到点P 的轨迹是以点A 为圆心,半径为 【详解】由题意得PA PD DA DB DA =+=+,又点D 为椭圆2215y x +=上任意一点,且()()0,2,0,2A B -为椭圆的两个焦点,∴DB DA +=,∴PA =∴点P 的轨迹是以点A 为圆心,半径为 ∴点P 的轨迹方程为()22220x y ++=. 故选C . 【点睛】本题考查圆的方程的求法和椭圆的定义,解题的关键是根据椭圆的定义得到PA =然后再根据圆的定义得到所求轨迹,进而求出其方程.考查对基础知识的理解和运用,属于基础题.4.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( ) A.B.C.D.【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+, 因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g ,12||y y -===由题意可知,四边形AA B B ''为直角梯形,所以1211()||822AA B B S AA BB y y ''''=+-=gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.5.已知双曲线2221(0)2x y b b-=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0(3,)P y 在该双曲线上,则12PF PF ⋅u u u r u u u u r=( )A .12-B .2-C .0D .4【答案】C 【解析】 由题知,故,∴12(23,1)(23,1)3410PF PF ⋅=-±⋅±=-+=u u u r u u u u r ,故选择C .6.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,10【答案】D 【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=, 又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.7.已知双曲线22:1124x y C -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,P Q .若POQ ∆为直角三角形,则PQ =( ) A .2 B .4C .6D .8【答案】C 【解析】 【分析】由题意不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒,解三角形即可. 【详解】不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒.则易知30POF ∠=︒,4OF =,∴OP =POQ n 中,60POQ ∠=︒,90OPQ ∠=︒,OP =∴6PQ ==. 故选C 【点睛】本题主要考查双曲线的性质,根据双曲线的特征设出P ,Q 位置,以及POQ V 的直角,即可结合条件求解,属于常考题型.8.过抛物线212x y =的焦点F 的直线交抛物线于点A 、B ,交抛物线的准线于点C ,若3AF FB =uu u r uu r,则BC =( )A .4B .C .6D .8【答案】D 【解析】 【分析】作出图象,作BM CP ⊥,AN CP ⊥,BH AN ⊥,设BF x =,根据抛物线的性质可得BM BF HN x ===,3AN AF x ==,进而得到1sin 2ACN ∠=,则可求出x 的值,进而得到BC 的值.【详解】作BM CP ⊥,AN CP ⊥,BH AN ⊥,如图,因为3AF FB =uu u r uu r,不妨设BF x =,所以33AF BF x ==,4AB x =, 根据抛物线的定义可得BM BF HN x ===,3AN AF x ==,6FP p ==, 则32AH AN HN x x x =-=-=, 所以1sin sin 2AH ABH ACN AB ∠=∠==,则212CF FP ==,2CB x =, 则312CF CB BF x =+==,所以4x =,则28BC x ==, 故选:D . 【点睛】本题考查抛物线的性质,涉及抛物线定义的应用,考查数形结合思想,属于中档题.9.已知双曲线22x a-22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .5B .3C .3D .5【答案】A 【解析】 【分析】 【详解】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1), 即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2px =-,则p=4, 则抛物线的焦点为(2,0);则双曲线的左顶点为(-2,0),即a=2;点(-2,-1)在双曲线的渐近线上,则其渐近线方程为12y x =±, 由双曲线的性质,可得b=1;则c =故选A .10.过双曲线()2222100x y a b a b-=>>,的右焦点且垂直于x 轴的直线与双曲线交于A B ,两点,OAB ∆,则双曲线的离心率为( )A B C D 【答案】D 【解析】 【分析】令x c =,代入双曲线方程可得2by a=±,由三角形的面积公式,可得,a b 的关系,由离心率公式计算可得所求值. 【详解】右焦点设为F ,其坐标为(),0c令x c =,代入双曲线方程可得2by a=±=±OAB V 的面积为2122b c a ⋅⋅= b a ⇒=可得3c e a ==== 本题正确选项:D 【点睛】本题考查双曲线的对称性、考查双曲线的离心率和渐近线方程,属于中档题.11.已知1F ,2F 分别为双曲线C :22221(0,0)x y a b a b-=>>的左,右焦点,点P 是C 右支上一点,若120PF PF ⋅=u u u v u u u u v ,且124cos 5PF F ∠=,则C 的离心率为( ) A .257B .4C .5D .57【答案】C 【解析】 【分析】在12PF F △中,求出1PF ,2PF ,然后利用双曲线的定义列式求解. 【详解】在12PF F △中,因为120PF PF ⋅=u u u r u u u u r ,所以1290F PF ∠=o, 1121248cos 255c PF F F PF F c =⋅∠=⋅=,2121236sin 255cPF F F PF F c =⋅∠=⋅=, 则由双曲线的定义可得128622555c c ca PF PF =-=-= 所以离心率5ce a==,故选C. 【点睛】本题考查双曲线的定义和离心率,解题的关键是求出1PF ,2PF ,属于一般题.12.已知椭圆22:195x y C +=左右焦点分别为12F F 、,直线):2l y x =+与椭圆C 交于A B 、两点(A 点在x 轴上方),若满足11AF F B λ=u u u v u u u v,则λ的值等于( ) A.B .3C .2D【答案】C 【解析】由条件可知,直线l 过椭圆的左焦点()12,0F -.由)222195y x x y ⎧=+⎪⎨+=⎪⎩消去y 整理得232108630x x ++=,解得34x =-或218x =-. 设1122(,),(,)A x y B x y ,由A 点在x 轴上方可得12321,48x x =-=-. ∵11AF F Bλ=u u u v u u u v, ∴1122(2,)(2,)x y x y λ---=+, ∴122(2)x x λ--=+. ∴3212()(2)48λ---=-+, 解得2λ=.选C13.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+= 【答案】C 【解析】 【分析】推导出12PF PF 2a +==2PQ PF =,从而11PFPQ FQ +==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程. 【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a ∴+==2PQ PF =,11PF PQ FQ ∴+==,Q ∴的轨迹是以()1F 2,0-为圆心,为半径的圆, ∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C . 【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.14.已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若121cos 4F MF ∠=,122MF MF =,则此双曲线渐近线方程为( )A .y =B .3y x =±C .y x =±D .2y x =±【答案】A 【解析】 【分析】因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案. 【详解】Q 双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点∴ 121222MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:∴ 12121222122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅可得:2221(2)(4)(2)2424c a a a a =+-⋅⋅⋅ 化简可得:2c a =由双曲线性质可得:22222243b c a a a a =-=-= 可得:b =Q 双曲线渐近线方程为:b y x a=±则双曲线渐近线方程为: y = 故选:A. 【点睛】本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.15.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( ) A.2 B.2C1D1【答案】B 【解析】 【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:1c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得1c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒, 则122F F c =,2QF c =,1QF =.由双曲线的定义可得:122QF QF a-=,41c c -==,,故22c =.方法二:等腰2Rt QOF △中,22b QF a=, ∴2b c a=. 又222b a c =-,∴2240c c --=,得1c =.∴22c =.故选:B .【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.16.若A ,B 分别是直线20x y --=与x 轴,y 轴的交点,圆C :()()22448x y -++=上有任意一点M ,则AMB ∆的面积的最大值是( ) A .6B .8C .10D .12【答案】C【解析】【分析】 先求出AB ,再求出M 到直线的最大距离为点M 到直线20x y --=加上半径,进而可得面积最大值.【详解】由已知()2,0A ,()0,2B -则AB ==,又点M =所以最大面积为1102⨯=. 故选:C.【点睛】 本题考查圆上一点到直线的最大距离问题,是基础题.17.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v ( )A .-16B .0C .16D .32【答案】B【解析】【分析】 先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r ,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点. 由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r ,∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r .故选B【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.已知抛物线22(0)y px p =>的焦点为F ,过点F 作互相垂直的两直线AB ,CD 与抛物线分别相交于A ,B 以及C ,D ,若111AF BF+=,则四边形ACBD 的面积的最小值为( )A .18B .30C .32D .36【答案】C【解析】【分析】【详解】 由抛物线性质可知:112AF BF p +=,又111AF BF+=,∴2p =, 即24y x =设直线AB 的斜率为k (k≠0),则直线CD 的斜率为1k-. 直线AB 的方程为y=k (x ﹣1), 联立214y k x y x=⎧⎨=⎩(﹣),消去y 得k 2x 2﹣(2k 2+4)x+k 2=0, 从而242A B x x k+=+,A B x x =1 由弦长公式得|AB|=244k+,以1k -换k 得|CD|=4+4k 2, 故所求面积为()22221141AB CD 4448222k k k k ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭≥32(当k 2=1时取等号),即面积的最小值为32.故选C19.已知(cos ,sin )P αα,(cos ,sin )Q ββ,则||PQ 的最大值为( )A .2B .2C .4D .22【答案】B【解析】【分析】由两点的距离公式表示PQ ,再运用两角差的余弦公式化简,利用余弦函数的值域求得最值.【详解】∵(cos ,sin )P αα,(cos ,sin )Q ββ,∴22||(cos cos )(sin sin )PQ αβαβ=-+- 2222cos cos 2cos cos sin sin 2sin sin αβαβαβαβ=+-++-()()()2222cos sin cos sin 2cos cos sin sin ααββαβαβ=+++-+22cos()αβ=--.∵cos()[1,1]αβ-∈-,∴||[0,2]PQ ∈.故选B .【点睛】本题综合考查两点的距离公式、同角三角函数的平方关系、两角差的余弦公式和余弦的值域,属于中档题.20.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( )A .B .C .D .【答案】D【解析】试题分析:渐近线的方程为,而,因此渐近线的方程为,选D.考点:双曲线渐近线。

阶段性测试题九 平面解析几何

阶段性测试题九 平面解析几何

阶段性测试题九平面解析几何本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(文)(2012·潍坊模拟)若直线x-2y+5=0与直线2x+my-6=0互相垂直,则实数m的值为()A.1B.-1C.1或-1 D.-4[答案] A[解析]∵两直线x-2y+5=0与2x+my-6=0互相垂直.∴1×2+(-2)m=0即m=1.(理)(2012·潍坊模拟)已知两直线l1:x+m2y+6=0,l2:(m-2)x+3my+2m=0,若l1∥l2,则实数m的值为() A.0或3 B.-1或3C.0或-1或3 D.0或-1[答案] D[解析](1)当m=0时,l1:x+6=0,l2:x=0,l1∥l2;(2)当m≠0时,l1:y=-1m2x-6m2,l2:y=2-m3m x-23,由-1m2=2-m3m且-6m2≠-23,∴m=-1.故所求实数m 的值为0或-1.2.(文)(2012·陕西师大第一次模拟)过点P (1,2)的直线l 平分圆C :x 2+y 2+4x +6y +1=0的周长,则直线l 的斜率为( )A.53 B .1 C.85 D.43[答案] A[解析] 圆的方程可化为(x +2)2+(y +3)2=12因为l 平分圆C 的周长,所以l 过圆C 的圆心(-2,-3),又l 过P (1,2),所以k l =-3-2-2-1=53,故选A.(理)(2012·商丘一模)若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为( )A .2x +y -3=0B .x -2y +1=0C .x +2y -3=0D .2x -y -1=0[答案] D[解析] 圆心C (3,0),k CP =-12,由k CP ·k MN =-1,得k MN =2,所以MN 所在直线方程是2x -y -1=0.故选D.3.(2012·温州模拟)若双曲线x 2a 2-y 2=1的一个焦点为(2,0),则它的离心率为( )A.255B.32C.233 D .2[答案] C[解析] 由题意知a 2+1=4,∴a =3, ∴e =c a =23=233.4.(2012·西宁一模)已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA→=AP →,则点P 的轨迹方程为( ) A .y =-2x B .y =2x C .y =2x -8 D .y =2x +4[答案] B[解析] 设点P (x ,y ),R (x 1,y 1), ∵RA→=AP →, ∴(1-x 1,-y 1)=(x -1,y ),∴⎩⎪⎨⎪⎧ 1-x 1=x -1,-y 1=y ,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y .又点R 在直线l 上,∴-y =2(2-x )-4, 即2x -y =0为所求.5.(2012·咸阳调研)若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A.54B.52C.32D.54[答案] B[解析] 因为椭圆离心率e =32,即c a =32,也即a 2-b 2a 2=34,所以b 2a 2=14,则1+b 2a 2=54,即a 2+b 2a 2=54,双曲线离心率e ′=c ′a ′=52,故选B.6.(文)(2011·北京文)已知点A (0,2),B (2,0).若点C 在函数y =x 2的图像上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1[答案] A[解析] 设C (t ,t 2),由A (0,2),B (2,0)易求得直线AB 的方程为y =-x +2. ∴点C 到直线AB 的距离d =|t 2+t -2|2.又∵|AB |=22,∴S △ABC =12×|AB |·d =|t 2+t -2|.令|t 2+t -2|=2得t 2+t -2=±2,∴t 2+t =0或t 2+t -4=0,符合题意的t 值有4个,故满足题意的点C 有4个.(理)(2011·江西理)若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( )A. (-33,33)B. (-33,0)∪(0, 33) C. [-33 ,33]D .( -∞, -33 )∪( 33,+∞) [答案] B[解析] C 1:(x -1)2+y 2=1. C 2:y =0或y =mx +m =m (x +1).当m =0时,C 2:y =0,此时C 1与C 2显然只有两个交点; 当m ≠0时,要满足题意,需圆(x -1)2+y 2=1与直线y =m (x +1)有两交点,当圆与直线相切时,m =±33.即直线处于两切线之间时满足题意,则-33<m <0或0<m <33. 综上知-33<m <0或0<m <33.7.(2012·合肥模拟)已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95 B .3 C.977 D.94[答案] D[解析] 设椭圆短轴的一个端点为M . 由于a =4,b =3,∴c =7<b . ∴∠F 1MF 2<90°,∴只能∠PF 1F 2=90°或∠PF 2F 1=90°. 令x =±7,得y 2=⎝ ⎛⎭⎪⎫1-716×9=9216,∴|y |=94.即P 到x 的距离为94.8.(2012·厦门模拟)若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,抛物线y 2=2bx 的焦点为F .若F 1F →=3FF 2→,则此椭圆的离心率为( )A.12B.22 C.13 D.33[答案] B[解析] ∵F ⎝ ⎛⎭⎪⎫b 2,0,F 1(-c,0),F 2(c,0),且F 1F →=3FF 2→,∴F 1F →=⎝⎛⎭⎪⎫b 2+c ,0,FF 2→=⎝⎛⎭⎪⎫c -b 2,0,∴b 2+c =3c -3b2,即b =c . ∴a 2=b 2+c 2=2c 2, ∴c a =e =22.9.(2012·郑州一模)如下图,F 1和F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该双曲线左支的两个交点,且△F 2AB 是等边三角形,则双曲线的离心率为( )A. 3B. 5C.52 D .1+ 3[答案] D[解析] 连接AF 1,则∠F 1AF 2=90°,∠AF 2B =60°,∴|AF 1|=12|F 1F 2|=c , |AF 2|=32|F 1F 2|=3c ,∴3c-c=2a,∴e=ca=23-1=1+ 3.10.(2012·洛阳调研)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9x B.y2=6xC.y2=3x D.y2=3x[答案] C[解析]如下图所示,分别过点A、B作AA1、BB1与准线垂直,且垂足分别为A1、B1,由已知条件|BC |=2|BF |得|BC |=2|BB 1|,∴∠BCB 1=30°,于是可得直线AB 的倾斜角为60°. 又由|AF |=3得|AF |=|AA 1|=3=12|AC |, 于是可得|CF |=|AC |-|AF |=6-3=3, ∴|BF |=13|CF |=1.∴|AB |=|AF |+|BF |=3+1=4.设直线AB 的方程为y =3(x -p2),代入y 2=2px 得 3x 2-5px +34p 2=0,∵|AB |=|AF |+|BF |=|AA 1|+|BB 1|=x A +p 2+x B +p 2=x A +x B +p =53p +p =83p =4,∴p =32,即得抛物线方程为y 2=3x .故选C.解法二:点F 到抛物线准线的距离为p ,又由|BC |=2|BF |得点B 到准线的距离为|BF |,则|BF ||BC |=12,∴l 与准线夹角为30°,则直线l 的倾斜角为60°. 由|AF |=3,如图作AH ⊥HC ,EF ⊥AH ,则AE =3-p , 则cos60°=3-p 3,故p =32. ∴抛物线方程为y 2=3x .第Ⅱ卷(非选择题共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上)11.(2012·长春模拟)设圆C与圆x2+(y-3)2=1外切,与直线y =0相切,则C的圆心轨迹为________.[答案]抛物线[解析]设圆C的半径为r,则圆心C到直线y=0的距离为r.由两圆外切可得,圆心C到点(0,3)的距离为r+1,也就是说,圆心C 到点(0,3)的距离比到直线y=0的距离大1,故点C到点(0,3)的距离和它到直线y=-1的距离相等,符合抛物线的特征,故点C的轨迹为抛物线.[点评]本题考查用定义法求点的轨迹,考查学生数形结合和转化与化归的思想方法.12.(文)(2011·北京文)已知双曲线x2-y2b2=1(b>0)的一条渐近线的方程为y=2x,则b=________.[答案] 2[解析] 本题主要考查双曲线的基本性质.双曲线的渐近线方程为y =±ba x ,因为a =1,又知一条渐近线方程为y =2x ,所以b =2.(理)(2011·江西文)若双曲线y 216-x 2m =1的离心率e =2,则m =________.[答案] 48[解析] 本题主要考查双曲线的基本性质. c 2=a 2+b 2=16+m ,又∵e =c a ,∴e =2=16+m4,∴m =48.13.(2012·济南一模)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线x ·sin A +ay +c =0与bx -y ·sin B +cos C =0的位置关系是________.[答案] 垂直[解析] 在△ABC 中,由正弦定理得a sin A =b sin B , ∴a sin B -b sin A =0, ∴两直线垂直.14.(文)(2012·伊春一模)已知点A (1,0),B (2,0).若动点M 满足AB →·BM→+2|AM →|=0,则点M 的轨迹方程为________. [答案] x 22+y 2=1[解析] (1)设M (x ,y ),则AB →=(1,0),BM →=(x -2,y ),AM →=(x -1,y ),由AB →·BM→+2|AM →|=0得, (x -2)+2·(x -1)2+y 2=0.整理得x22+y 2=1.(理)(2012·洛阳调研)若焦点在x 轴上的椭圆x 245+y 2b 2=1上有一点,使它与两个焦点的连线互相垂直,则b 的取值范围是________.[答案] -3102≤b ≤3102且b ≠0[解析] 设椭圆的两焦点为F 1(-c,0),F 2(c,0)以F 1F 2为直径的圆与椭圆有公共点时,在椭圆上必存在点满足它与两个焦点的连线互相垂直,此时条件满足c ≥b ,从而得c 2≥b 2⇒a 2-b 2≥b 2⇒b 2≤12a 2=452,解得-3102≤b ≤3102且b ≠0.15.(2012·杭州质检)过抛物线x 2=2py (p >0)的焦点作斜率为1的直线与该抛物线交于A ,B 两点,A ,B 在x 轴上的正射影分别为D ,C .若梯形ABCD 的面积为122,则p =________.[答案] 2[解析] 抛物线的焦点坐标为F (0,p2),则过焦点斜率为1的直线方程为y =x +p2,设A (x 1,y 1),B (x 2,y 2)(x 2>x 1)由题意可知y 1>0,y 2>0.由⎩⎨⎧y =x +p2x 2=2py,消去y 得x 2-2px -p 2=0.由韦达定理得:x 1+x 2=2p ,x 1x 2=-p 2. 所以梯形ABCD 的面积为S =12(y 1+y 2)(x 2-x 1)=12(x 1+x 2+p )(x 2-x 1)=12×3p (x 1+x 2)2-4x 1x 2=12×3p 4p 2+4p 2=32p 2.所以32p 2=122,又p >0.所以p =2.三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)(2012·南京模拟)已知A (x 1,y 1),B (x 2,y 2)分别在直线x +y -7=0及x +y -5=0上,求AB 中点M 到原点距离的最小值.[解析] 设AB 中点为(x 0,y 0),∴⎩⎨⎧x 0=x 1+x 22,y 0=y 1+y22.又∵⎩⎪⎨⎪⎧x 1+y 1-7=0,x 2+y 2-5=0,∴(x 1+x 2)+(y 1+y 2)=12, ∴2x 0+2y 0=12, ∴x 0+y 0=6.∴原点到x 0+y 0=6距离为所求,即d =62=3 2.17.(本小题满分12分)(2012·银川一模)在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求P A →·PB→的取值范围. [解析] (1)依题设,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =41+3=2.得圆 O 的方程为x 2+y 2=4. (2)不妨设A (x 1,0),B (x 2,0),x 1<x 2. 由x 2=4即得A (-2,0),B (2,0).设P (x ,y ),由|P A |、|PO |、|PB |成等比数列, 得(x +2)2+y 2·(x -2)2+y 2=x 2+y 2, 即x 2-y 2=2.P A →·PB →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=2(y 2-1).由于点P 在圆O 内,故⎩⎪⎨⎪⎧x 2+y 2<4,x 2-y 2=2.由此得y 2<1.所以P A →·PB→的取值范围为[-2,0). 18.(本小题满分12分)(2011·福建理)已知直线l :y =x +m ,m ∈R .(1)若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程;(2)若直线l 关于x 轴对称的直线为l ′,问直线l ′与抛物线C :x 2=4y 是否相切?说明理由.[解析]解法一:(1)依题意,点P 的坐标为(0,m ). 因为MP ⊥l ,所以0-m2-0×1=-1,解得m =2,即点P 的坐标为(0,2). 从而圆的半径r =|MP |=(2-0)2+(0-2)2=22, 故所求圆的方程为(x -2)2+y 2=8. (2)因为直线l 的方程为y =x +m , 所以直线l ′的方程为y =-x -m .由⎩⎪⎨⎪⎧y =-x -m ,x 2=4y 得x 2+4x +4m =0. Δ=42-4×4m =16(1-m ).①当m =1时,即Δ=0时,直线l ′与抛物线C 相切; ②当m ≠1,即Δ≠0时,直线l ′与抛物线C 不相切. 综上,当m =1时,直线l ′与抛物线C 相切;当m ≠1时,直线l ′与抛物线C 不相切.解法二:(1)设所求圆的半径为r ,则圆的方程可设为(x -2)2+y 2=r 2.依题意,所求圆与直线l :x -y +m =0相切于点P (0,m ),则⎩⎪⎨⎪⎧4+m 2=r 2,|2-0+m |2=r ,解得⎩⎪⎨⎪⎧m =2,r =2 2.所以所求圆的方程为(x -2)2+y 2=8. (2)同解法一.19.(本小题满分12分)(文)如图,已知抛物线C 1:x 2+by =b 2经过椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)的两个焦点.(1)求椭圆C 2的离心率;(2)设点Q (3,b ),又M ,N 为C 1与C 2不在y 轴上的两个交点,若△QMN 的重心在抛物线C 1上,求C 1和C 2 的方程.[解析] 本题主要考查了抛物线及椭圆的方程和性质,并涉及求离心率问题,重心坐标公式,曲线与曲线的交点等内容,注重运算变形能力的考查,综合性较强.(1)椭圆的焦点为(±a 2-b 2,0),代入抛物线方程a 2-b 2+b ·0=b 2⇒b 2a 2=12,∴e =1-(b a )2=22.(2)由(1)问a 2=2b 2,∴椭圆方程为x 22b 2+y2b 2=1,即x 2+2y 2=2b 2.设N (x 0,y 0),M (-x 0,y 0),Q (3,b ),则重心(1,2y 0+b3),代入抛物线方程,⎩⎪⎨⎪⎧1+2by 0+b 23=b 2x 20+by 0=b 2x 20+2y 20=2b2⇒⎩⎨⎧b 2=1,y 0=-b2或y 0=b (舍),∴抛物线C 1的方程为y =1-x 2, 椭圆C 2的方程为:x 22+y 2=1.(理)(2012·惠州调研)已知点(x ,y )在曲线C 上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程x 2+y 2=8;定点M (2,1),平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A ,B 两个不同点.(1)求曲线C 的方程; (2)求m 的取值范围.[解析] (1)在曲线C 上任取一个动点P (x ,y ), 则点(x,2y )在圆x 2+y 2=8上. 所以有x 2+(2y )2=8.整理得曲线C 的方程为x 28+y 22=1.(2)∵直线l 平行于OM ,且在y 轴上的截距为m ,又k OM =12,∴直线l 的方程为y =12x +m . 由⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,得x 2+2mx +2m 2-4=0.∵直线l 与椭圆交于A 、B 两个不同点, ∴Δ=(2m )2-4(2m 2-4)>0, 解得-2<m <2且m ≠0.∴m 的取值范围是-2<m <0或0<m <2.20.(本小题满分13分)(文)(2012·太原一模)设F 1、F 2分别是椭圆C :x 26m 2+y 22m 2=1(m >0)的左、右焦点.(1)当P ∈C ,且PF 1→·PF 2→=0,|PF 1|·|PF 2|=4时,求椭C 的左、右焦点F 1、F 2;(2)F 1、F 2是(1)中椭圆的左、右焦点,已知⊙F 2的半径为1,过动点Q 作⊙F 2的切线QM ,使得|QF 1|=2|QM |(M 是切点),如图所示,求动点Q 的轨迹方程.[解析] (1)∵c 2=a 2-b 2,∴c 2=4m 2. 又∵PF 1→·PF 2→=0,∴PF 1⊥PF 2, ∴|PF 1→|2+|PF 2→|2=(2c )2=16m 2. 由椭圆定义可知|PF 1|+|PF 2|=2a =26m , (|PF 1|+|PF 2|)2=16m 2+8=24m 2. 从而得m 2=1,c 2=4m 2=4,c =2, ∴F 1(-2,0),F 2(2,0).(2)∵F 1(-2,0),F 2(2,0),已知|QF 1|=2|QM |, 即|QF 1|2=2|QM |2,∴|QF 1|2=2(|QF 2|2-1), 设Q (x ,y ),则(x +2)2+y 2=2[(x -2)2+y 2-1], 即(x -6)2+y 2=34(或x 2+y 2-12x +2=0). 综上所述,所求轨迹方程为(x -6)2+y 2=34.[点评] 基础知识熟练即可顺利解决第(1)问,第(2)问用到了直译法求轨迹方程,运算要细心.(理)(2012·太原一模)如下图所示,等腰三角形ABC 的底边BC 的两端点是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两焦点,且AB 的中点D 在椭圆E 上.(1)若∠ABC =60°,|AB |=4,试求椭圆E 的方程; (2)设椭圆离心率为e ,求cos ∠ABC .[解析] (1)因为∠ABC =60°,且△ABC 为等腰三角形,所以△ABC 是正三角形.又因为点B ,C 是椭圆的两焦点,设椭圆焦距为2c ,则2c =|BC |=|AB |=4,如图所示,连结CD ,由AB 中点D 在椭圆上,得2a =|BD |+|CD |=12|AB |+32|AB |=2+23, 所以a =1+3,从而a 2=4+23,b 2=a 2-c 2=23,故所求椭圆E 的方程为x 24+23+y 223=1. (2)设椭圆的长半轴、短半轴、半焦距分别为a ,b ,c ,且|AD |=|DB |=m ,连结CD ,则|BO |=|OC |=c ,|DC |=2a -m ,在Rt △AOB 中,cos ∠ABC =c 2m . ①在△BCD 中,由余弦定理,得cos ∠ABC =(2c )2+m 2-(2a -m )22×(2c )×m. ② 由①②式得2m =2a 2-c 2a ,代入①式得cos ∠ABC =ac 2a 2-c 2=e 2-e2. 21.(本小题满分14分)(文)(2012·北京东城区模拟)已知椭圆C 的中心在原点,一个焦点为F (-2,0),且长轴长与短轴长的比是2:3.(1)求椭圆C 的方程;(2)设点M (m,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当|MP→|最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围. [解析] (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意,得⎩⎪⎨⎪⎧ a 2=b 2+c 2a :b =2:3,c =2,解得a 2=16,b 2=12.所以椭圆C 的方程为x 216+y 212=1.(2)设P (x ,y )为椭圆上的动点,由于椭圆方程为x 216+y 212=1,故-4≤x ≤4.因为MP→=(x -m ,y ), 所以|MP→|2=(x -m )2+y 2 =(x -m )2+12·(1-x 216)=14x 2-2mx +m 2+12=14(x -4m )2+12-3m 2.因为当|MP→|最小时,点P 恰好落在椭圆的右顶点,即当x =4时,|MP→|2取得最小值.而x ∈[-4,4],故有4m ≥4,解得m ≥1. 又点M 在椭圆的长轴上,所以-4≤m ≤4.故实数m 的取值范围是[1,4].(理)(2011·湖南文)已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1.(1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l 1、l 2,设l 1与轨迹C 相交于点A 、B ,l 2与轨迹C 相交于点D 、E ,求AD →·EB→的最小值. [解析](1)设动点P 的坐标为(x ,y ),由题意有(x -1)2+y 2-|x |=1. 化简得y 2=2x +2|x |.当x ≥0时,y 2=4x ;当x <0时,y =0.所以,动点P 的轨迹C 的方程为y 2=4x (x ≥0)和y =0(x <0).(2)由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得 k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=2+4k 2,x 1x 2=1.因为l 1⊥l 2,所以l 2的斜率为-1k .设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1.故AD →·EB →=(AF →+FD →)·(EF→+FB →) =AF →·EF →+AF →·FB →+FD →·EF →+FD →·FB→=|AF →|·|FB →|+|FD →|·|EF→| =(x 1+1)(x 2+1)+(x 3+1)(x 4+1) =x 1x 2+(x 1+x 2)+1+x 3x 4+(x 3+x 4)+1=1+(2+4k 2)+1+1+(2+4k 2)+1 =8+4(k 2+1k 2)≥8+4×2k 2·1k 2=16. 当且仅当k 2=1k 2,即k =±1时,AD →·EB→取最小值16.。

平面解析几何直线练习题含答案

平面解析几何直线练习题含答案

直线测试题一.选择题(每小题 5 分共 40 分) 1. 下列四个命题中的真命题是( ) A.经过定点 P 0(x 0. y 0)的直线都可以用方程 y -y 0=k (x -x 0)表示; B.经过任意两个不同的点 P 1( x 1. y 1)、P 2(x 2.y 2)的直线都可以用方程 (y -y 1)·(x 2-x 1)=( x -x 1)(y 2-y 1)表示; C.不经过原点的直线都可以用方程 x y1 表示; ab D.经过定点 A (0. b )的直线都可以用方程 y =kx +b 表示。

【答案】 B解析】 A 中过点 P 0( x 0. y 0)与 x 轴垂直的直线 x =x 0不能用 y -y 0=k (x -x 0)表示.因为其斜率 k 不存在; C 中不过 xy原点但在 x 轴或 y 轴无截距的直线 y =b ( b ≠ 0)或 x =a (a ≠0)不能用方程 =1 表示; D 中过 A ( 0. b )的直线 abx =0 不能用方程 y =kx +b 表示 . 评述:本题考查直线方程的知识 . 应熟练掌握直线方程的各种形式的适用范围 2. 图 1中的直线 l 1、l 2、l 3的斜率分别为 k 1、 k 2、 k 3. 则( ) A.k 1<k 2<k 3 B. k 3< k 1<k 2C.k 3<k 2<k 1D.k 1< k 3<k 2【答案】 D 图1解析】直线 l 1的倾斜角 α1是钝角 .故k 1<0.直线 l 2与 l 3的倾斜角 α2、 α3 均为锐角 . 且α2>α3. 所以 k 2> k 3> 0. 因此 k 2> k 3> k 1.故应选 D. 3. 两条直线 A 1x +B 1y +C 1=0. A 2x + B 2y + C 2= 0 垂直的充要条件是( )A. A 1A 2+ B 1B 2=0B. A 1A 2- B 1B 2= 0C. A 1A2 B 1B2 1D. B1B2 =1 A 1A2答案】A解析】法一:当两直线的斜率都存在时A 1B 1 ( A 2 )=- 1. A 1A 2+ B 1B 2= 0.当一直线的斜率不存在. 一直线的斜率为时. B 2 A 1 0或 A 2 0 B 2 0 B 1 0同样适合A1A2+B1B2= 0. 故选 A.法二:取特例验证排除 .如直线x+y=0 与x-y=0 垂直 . A1A2= 1. B1B2=- 1. 可排除B、D. 直线x=1 与y=1 垂直 . A1A2= 0. B1B2= 0. 可排除 C.故选 A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点维能力 .4. 若直线l :y=kx 3 与直线 2x+3y-6=0 的交点位于第一象限 .则直线l 的倾斜角的取值范围是()答案】 B解析】法 1:求出交点坐标 . 再由交点在第一象限求得倾斜角的范围:解得k∈( 3. +∞3∴倾斜角范围为(, )623.0 ) . B(0.2 ).直线l 必过点( 0.-3 ). 当直线过A点时 . 两直线的交点在x 轴. 当直线l 绕C 点逆时针旋转时. 交点进入第一象限 . 从而得出结果 .5. 设a、b、c 分别是△ ABC中∠ A、∠ B、∠ C所对边的边长 . 则直线 sin A·x+ay+c=0 与bx-sin B· y+sin C=0 的位置关系是()3,2D.[6,2]. 重点考查分类讨论的思想及逻辑思y kx 32x 3y 6 03(2 3) x2 3k6k 2 3 y2 3k∵交点在第一象限x03(2 3) 02 3k y0 6k 2 32 3k法 2:如图 . 直线 2x+3y-6=0 过点A.平行B. 重合C. 垂直D.相交但不垂直答案】 CsinA b 解析】由题意知 a ≠ 0.s i n B ≠ 0. 两直线的斜率分别是 k 1=- . k 2=asinBsinA b由正弦定理知 k 1·k 2=-·=- 1. 故两直线垂直 .a sinB评述:本题考查两直线垂直的条件及正弦定理 .6. 已知两条直线 l 1:y =x . l 2: ax - y =0. 其中 a 为实数 . 当这两条直线的夹角在(答案】 C解析】直线 l 1的倾斜角为 . 依题意 l 2的倾斜角的取值范围为4∪( . ), 从而 l 2的斜率 k 2的取值范围为43评述:本题考查直线的斜率和倾斜角 . 两直线的夹角的概念 . 以及分析问题、解决问题的能力 7. 若直线xy1 通过点M (cos ,sin) . 则()ab22221 11 1A . a 2b2≤1 B . a 2b 2≥1C . 22≤ 1 D . 22≥1 a 2 b 2a 2b 2答案】 D 本题是训练思路的极好素材 . 看能否找到 10 种解法?8.已知点 A( 1,0),B(1,0),C(0,1), 直线 y ax b(a 0) 将△ ABC 分割为 面积相等的两部分 , 则 b 的取值范围是-. ) ∪( .+ )即 : ()4 12 44 4 126 4A. (0.1 )B. 33, 3 ) C.33.1 ∪( 1. 3 ) D. (1. 3 )0. )内变动时 . a 的取值范围是3.1 3∪( 1, 3 ) ) A . (0,21B . (1 22 ,12)( C) 21 (1 22 ,13]答案】 B二.填空题(每小题 5分.共30分)9. 过点P(2,3).且在两坐标轴上的截距互为相反数的直线方程是解析】错解:设所求直线方程为xa y 1.过点P(2,3). 则有a231a1aa∴直线的方程为x y 1 0.错因:少了直线经过原点的情况. 故还有y 3x. 即3x 2y 0也适合题意 .210. 与直线2x 3y 5 0平行 .且距离等于13的直线方程是m5 解析】设所求直线方程为2x 3y m 0. 则1322 32 解得m 18 或m∴直线方程为2x 3y 18 0或2x 3y 8 0.11. 直 线 l 经 过 点 P(2,3) . 且 与 两 坐 标 轴 围 成 一 个 等 腰 直 角 三 角 形 . 则 直 线l 的 方 程 为 .【解析】 依题意 . 直线 l 的斜率为± 1. ∴直线 l 的方程为 y 3 x 2 或 y 3 (x 2) . 即 x y 1 0 或 x y 5 0.12. 在△ ABC 中.BC 边上的高所在的直线的方程为 x-2y+1=0. ∠A 的平分线所在的直线方程为 y=0.若点 B 的坐标为 (1.2 ). 则点 A 和点 C 的坐标分别为 。

高中数学平面解析几何初步检测考试题(附答案)

高中数学平面解析几何初步检测考试题(附答案)

高中数学平面解析几何初步检测考试题(附答案)试卷分析第2章平面解析几何初步综合检测(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线3a_-y-1=0与直线(a-23)_+y+1=0垂直,则a的值是()A.-1或13 B.1或13C.-13或-1 D.-13或1解析:选D.由3a(a-23)+(-1)1=0,得a=-13或a=1.2.直线l1:a_-y+b=0,l2:b_-y+a=0(a0,b0,ab)在同一坐标系中的图形大致是图中的()解析:选C.直线l1:a_-y+b=0,斜率为a,在y轴上的截距为b,设k1=a,m1=b.直线l2:b_-y+a=0,斜率为b,在y轴上的截距为a,设k2=b,m2=a.由A知:因为l1∥l2,k1=k20,m10,即a=b0,b0,矛盾.由B知:k1k2,m10,即ab,b0,矛盾.由C知:k10,m20,即a0,可以成立.由D知:k10,m2m1,即a0,ab,矛盾.3.已知点A(-1,1)和圆C:(_-5)2+(y-7)2=4,一束光线从A经_轴反射到圆C上的最短路程是()A.62-2 B.8C.46 D.10解析:选B.点A关于_轴对称点A(-1,-1),A与圆心(5,7)的距离为5+12+7+12=10.所求最短路程为10-2=8.4.圆_2+y2=1与圆_2+y2=4的位置关系是()A.相离 B.相切C.相交 D.内含解析:选D.圆_2+y2=1的圆心为(0,0),半径为1,圆_2+y2=4的圆心为(0,0),半径为2,则圆心距02-1=1,所以两圆内含.5.已知圆C:(_-a)2+(y-2)2=4(a0)及直线l:_-y+3=0,当直线l被圆C截得的弦长为23时,a的值等于()A.2B.2-1C.2-2 D.2+1解析:选B.圆心(a,2)到直线l:_-y+3=0的距离d=|a-2+3|2=|a+1|2,依题意|a+1|22+2322=4,解得a=2-1.6.与直线2_+3y-6=0关于点(1,-1)对称的直线是()A.3_-2y-6=0B.2_+3y+7=0C.3_-2y-12=0D.2_+3y+8=0解析:选D.∵所求直线平行于直线2_+3y-6=0,设所求直线方程为2_+3y+c=0,由|2-3+c|22+32=|2-3-6|22+32,c=8,或c=-6(舍去),所求直线方程为2_+3y+8=0.7.若直线y-2=k(_-1)与圆_2+y2=1相切,则切线方程为()A.y-2=34(1-_)B.y-2=34(_-1)C._=1或y-2=34(1-_)D._=1或y-2=34(_-1)解析:选B.数形结合答案容易错选D,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.8.圆_2+y2-2_=3与直线y=a_+1的公共点有()A.0个 B.1个C.2个 D.随a值变化而变化解析:选C.直线y=a_+1过定点(0,1),而该点一定在圆内部.9.过P(5,4)作圆C:_2+y2-2_-2y-3=0的切线,切点分别为A、B,四边形PACB的面积是()A.5 B.10C.15 D.20解析:选B.∵圆C的圆心为(1,1),半径为5.|PC|=5-12+4-12=5,|PA|=|PB|=52-52=25,S=122552=10.10.若直线m_+2ny-4=0(m、nR,nm)始终平分圆_2+y2-4_-2y-4=0的周长,则mn的取值范围是()A.(0,1) B.(0,-1)C.(-,1) D.(-,-1)解析:选C.圆_2+y2-4_-2y-4=0可化为(_-2)2+(y-1)2=9,直线m_+2ny-4=0始终平分圆周,即直线过圆心(2,1),所以2m+2n-4=0,即m+n=2,mn=m(2-m)=-m2+2m=-(m-1)2+11,当m=1时等号成立,此时n=1,与“mn”矛盾,所以mn<1.11.已知直线l:y=_+m与曲线y=1-_2有两个公共点,则实数m的取值范围是()A.(-2,2) B.(-1,1)C.[1,2) D.(-2,2)解析:选C. 曲线y=1-_2表示单位圆的上半部分,画出直线l与曲线在同一坐标系中的图象,可观察出仅当直线l在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点.当直线l过点(-1,0)时,m=1;当直线l为圆的上切线时,m=2(注:m=-2,直线l为下切线).12.过点P(-2,4)作圆O:(_-2)2+(y-1)2=25的切线l,直线m:a_-3y=0与直线l平行,则直线l与m的距离为()A.4 B.2C.85D.125解析:选A.∵点P在圆上,切线l的斜率k=-1kOP=-11-42+2=43.直线l的方程为y-4=43(_+2),即4_-3y+20=0.又直线m与l平行,直线m的方程为4_-3y=0.故两平行直线的距离为d=|0-20|42+-32=4.二、填空题(本大题共4小题,请把答案填在题中横线上)13.过点A(1,-1),B(-1,1)且圆心在直线_+y-2=0上的圆的方程是________.解析:易求得AB的中点为(0,0),斜率为-1,从而其垂直平分线为直线y=_,根据圆的几何性质,这条直线应该过圆心,将它与直线_+y-2=0联立得到圆心O(1,1),半径r=|OA|=2.答案:(_-1)2+(y-1)2=414.过点P(-2,0)作直线l交圆_2+y2=1于A、B两点,则|PA||PB|=________. 解析:过P作圆的切线PC,切点为C,在Rt△POC中,易求|PC|=3,由切割线定理,|PA||PB|=|PC|2=3.答案:315.若垂直于直线2_+y=0,且与圆_2+y2=5相切的切线方程为a_+2y+c=0,则ac的值为________.解析:已知直线斜率k1=-2,直线a_+2y+c=0的斜率为-a2.∵两直线垂直,(-2)(-a2)=-1,得a=-1.圆心到切线的距离为5,即|c|5=5,c=5,故ac =5.答案:516.若直线3_+4y+m=0与圆_2+y2-2_+4y+4=0没有公共点,则实数m的取值范围是__________.解析:将圆_2+y2-2_+4y+4=0化为标准方程,得(_-1)2+(y+2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d=|31+4-2+m|32+42=|m-5|5>1,m<0或m>10.答案:(-,0)(10,+)三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)17.三角形ABC的边AC,AB的高所在直线方程分别为2_-3y+1=0,_+y=0,顶点A(1,2),求BC边所在的直线方程.解:AC边上的高线2_-3y+1=0,所以kAC=-32.所以AC的方程为y-2=-32(_-1),即3_+2y-7=0,同理可求直线AB的方程为_-y+1=0.下面求直线BC的方程,由3_+2y-7=0,_+y=0,得顶点C(7,-7),由_-y+1=0,2_-3y+1=0,得顶点B(-2,-1).所以kBC=-23,直线BC:y+1=-23(_+2),即2_+3y+7=0.18.一束光线l自A(-3,3)发出,射到_轴上,被_轴反射后与圆C:_2+y2-4_-4y+7=0有公共点.(1)求反射光线通过圆心C时,光线l所在直线的方程;(2)求在_轴上,反射点M的横坐标的取值范围.解:圆C的方程可化为(_-2)2+(y-2)2=1.(1)圆心C关于_轴的对称点为C(2,-2),过点A,C的直线的方程_+y=0即为光线l所在直线的方程.(2)A关于_轴的对称点为A(-3,-3),设过点A的直线为y+3=k(_+3).当该直线与圆C相切时,有|2k-2+3k-3|1+k2=1,解得k=43或k=34,所以过点A的圆C的两条切线分别为y+3=43(_+3),y+3=34(_+3).令y=0,得_1=-34,_2=1,所以在_轴上反射点M的横坐标的取值范围是[-34,1].19.已知圆_2+y2-2_-4y+m=0.(1)此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线_+2y-4=0相交于M、N两点,且OMON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解:(1)方程_2+y2-2_-4y+m=0,可化为(_-1)2+(y-2)2=5-m,∵此方程表示圆,5-m>0,即m<5.(2)_2+y2-2_-4y+m=0,_+2y-4=0,消去_得(4-2y)2+y2-2(4-2y)-4y+m=0,化简得5y2-16y+m+8=0.设M(_1,y1),N(_2,y2),则y1+y2=165,①y1y2=m+85. ②由OMON得y1y2+_1_2=0即y1y2+(4-2y1)(4-2y2)=0,16-8(y1+y2)+5y1y2=0.将①②两式代入上式得16-8165+5m+85=0,解之得m=85.(3)由m=85,代入5y2-16y+m+8=0,化简整理得25y2-80y+48=0,解得y1=125,y2=45._1=4-2y1=-45,_2=4-2y2=125.M-45,125,N125,45,MN的中点C的坐标为45,85.又|MN|= 125+452+45-1252=855,所求圆的半径为455.所求圆的方程为_-452+y-852=165.20. 已知圆O:_2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.(1)求a、b间关系;(2)求|PQ|的最小值;(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.解:(1)连接OQ、OP,则△OQP为直角三角形,又|PQ|=|PA|,所以|OP|2=|OQ|2+|PQ|2=1+|PA|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2_+y-3=0上,所以|PQ|min=|PA|min,为A到直线l的距离,所以|PQ|min=|22+1-3|22+12=255.(或由|PQ|2=|OP|2-1=a2+b2-1=a2+9-12a+4a2-1=5a2-12a+8=5(a-1.2)2+0.8,得|PQ|min=255.)(3)以P为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,圆心P为过原点与l垂直的直线l与l的交点P0,所以r=322+12-1=355-1,又l:_-2y=0,联立l:2_+y-3=0得P0(65,35).所以所求圆的方程为(_-65)2+(y-35)2=(355-1)2.21.有一圆与直线l:4_-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.解:法一:由题意可设所求的方程为(_-3)2+(y-6)2+(4_-3y+6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得=-1,所以所求圆的方程为_2+y2-10_-9y+39=0.法二:设圆的方程为(_-a)2+(y-b)2=r2,则圆心为C(a,b),由|CA|=|CB|,CAl,得3-a2+6-b2=r2,5-a2+2-b2=r2,b-6a-343=-1,解得a=5,b=92,r2=254.所以所求圆的方程为(_-5)2+(y-92)2=254.法三:设圆的方程为_2+y2+D_+Ey+F=0,由CAl,A(3,6),B(5,2)在圆上,得32+62+3D+6E+F=0,52+22+5D+2E+F=0,-E2-6-D2-343=-1,解得D=-10,E=-9,F=39.所以所求圆的方程为_2+y2-10_-9y+39=0.法四:设圆心为C,则CAl,又设AC与圆的另一交点为P,则CA的方程为y-6=-34(_-3),即3_+4y-33=0.又因为kAB=6-23-5=-2,所以kBP=12,所以直线BP的方程为_-2y-1=0.解方程组3_+4y-33=0,_-2y-1=0,得_=7,y=3.所以P(7,3).所以圆心为AP的中点(5,92),半径为|AC|=52.所以所求圆的方程为(_-5)2+(y-92)2=254.22.如图在平面直角坐标系_Oy中,已知圆C1:(_+3)2+(y-1)2=4和圆C2:(_-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被C2截得的弦长相等.试求所有满足条件的点P的坐标.解:(1)由于直线_=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(_-4),圆C1的圆心到直线l的距离为d,因为圆C1被直线l截得的弦长为23,所以d=22-32=1.由点到直线的距离公式得d=|1-k-3-4|1+k2,从而k(24k+7)=0,即k=0或k=-724,所以直线l的方程为y=0或7_+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(_-a),k0,则直线l2的方程为y-b=-1k(_-a).因为圆C1和C2的半径相等,且圆C1被直线l1截得的弦长与圆C2被直线l2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即|1-k-3-a-b|1+k2=|5+1k4-a-b|1+1k2,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk 或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,因为k的取值有无穷多个,所以a+b-2=0,b-a+3=0,或a-b+8=0,a+b-5=0,解得a=52,b=-12,或a=-32,b=132.这样点P只可能是点P152,-12或点P2-32,132.经检验点P1和P2满足题目条件.。

第08练-平面解析几何(解析版)

第08练-平面解析几何(解析版)

第08练-平面解析几何一、单选题1.已知点F 为椭圆2221(1)x y a a+=>的一个焦点,过点F 作圆221x y +=的两条切线,若这两条切线互相垂直,则a =( )A .2B .1C .2D .3【答案】D【解析】【分析】根据切线垂直,推导出F 点至坐标原点的距离,即可求得交点坐标和a .【详解】由题可设(),0F c ,根据题意,作图如下:因为过F 点的两条切线垂直,故可得45OFH ∠=︒,则1OH HF ==,故可得2OF =,即点F 坐标为)2,0. 则2,1c b ==,故2223a b c =+=,解得3a =故选:D.【点睛】 本题考查椭圆方程的求解,涉及直线与圆相切时的几何性质,属基础题.2.已知圆C :(x ﹣a )2+(y ﹣2)2=4(a >0)及直线l :x ﹣y+3=0,当直线l 被圆C 截得的弦长为23时,a 的值等于( )A B .2-C 1 D 1【答案】C【解析】【分析】由题意,结合垂径定理算出圆心到直线l :x ﹣y+3=0的距离d =1,利用点到直线的距离公式建立关于a 的方程,求解即可.【详解】∵圆C :(x ﹣a )2+(y ﹣2)2=4的圆心为C (a ,2),半径r =2∴圆心到直线l :x ﹣y+3=0的距离d=∵l 被圆C 截得的弦长为∴2d +2=22,解得d =1,因此,d=1,得1a =或1a =(舍) 故选C .【点睛】本题考查了圆的方程、点到直线的距离公式和直线与圆的位置等知识,属于基础题.3.已知两点()1,0A -,()10B ,以及圆C :222(3)(4)(0)x y r r -+-=>,若圆C 上存在点P ,满足0AP PB ⋅=u u u v u u u v ,则r 的取值范围是( )A .[]3,6B .[]3,5C .[]4,5D .[]4,6【答案】D【解析】【分析】由题意可知:以AB 为直径的圆与圆()()22234(0)x y r r -+-=>有公共点,从而得出两圆圆心距与半径的关系,列出不等式得出r 的范围.【详解】 Q 0AP PB ⋅=u u u v u u u v,∴点P 在以()1,0A -,()1,0B 两点为直径的圆上,该圆方程为:221x y +=,又点P 在圆C 上,∴两圆有公共点.两圆的圆心距5d ==∴151r r -≤≤+解得:46r ≤≤故选D【点睛】本题考查了圆与圆的位置关系,还考查了向量垂直的数量积表示,属于中档题.4.已知椭圆22221(0)x y a b a b+=>>的离心率为35,直线2100x y ++=过椭圆的左顶点,则椭圆方程为( )A .22154x y += B .221259x y += C .221169x y += D .2212516x y += 【答案】D【解析】【分析】直线2100x y ++=过椭圆的左顶点,则椭圆的左顶点为(5,0)-,所以椭圆中5a =,由离心率为35,则3c =,可求出椭圆的b ,从而可得椭圆的方程.【详解】直线2100x y ++=与x 轴的交点为(5,0)-,直线2100x y ++=过椭圆的左顶点,即椭圆的左顶点为(5,0)-.所以椭圆中5a =,由椭圆的离心率为35,则3c =. 则4b =,所以椭圆的方程为:2212516x y +=. 故答案为:D【点睛】本题考椭圆的简单几何性质,根据离心率求,,a b c ,属于基础题.5.已知双曲线的标准方程为2222x y a b-=1(a >0,b >0),若渐近线方程为y =,则双曲线的离心率为( )A .3B .2CD .4【答案】B【解析】【分析】由双曲线22221(0,0)x y a b a b -=>>的渐近线方程是y =,可得b a=c e a == 【详解】Q 双曲线22221(0,0)x y a b a b-=>>的渐近线方程是y =,∴b a=∴双曲线的离心率2c e a ===. 故选:B .【点睛】本题考查双曲线的简单性质,考查学生的计算能力,确定b a= 6.已知点F 是抛物线24x y =的焦点,点P 为抛物线上的任意一点,(1,2)M 为平面上点,则PM PF +的最小值为( )A .3B .2C .4D .【答案】A【解析】【分析】作PN 垂直准线于点N ,根据抛物线的定义,得到+=+PM PF PM PN ,当,,P M N 三点共线时,PM PF +的值最小,进而可得出结果.【详解】如图,作PN 垂直准线于点N ,由题意可得+=+≥PM PF PM PN MN ,显然,当,,P M N 三点共线时,PM PF +的值最小;因为(1,2)M ,(0,1)F ,准线1y =-,所以当,,P M N 三点共线时,(1,1)-N ,所以3MN =.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.7.已知椭圆22221x y a b +=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为( )A .3y x =±B .3y x =C .2y x =D .2y x = 【答案】A【解析】【分析】由题意可得222222a b a b -=+,即223a b =,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆22221(a b 0)x y a b +=>>与双曲线22221(a 0,b 0)2x y a b -=>>即22221(a 0,b 022)x y a b -=>>的焦点相同,可得:22221122a b a b -=+, 即223a b =,∴3b a =3=双曲线的渐近线方程为:3x y x =±=, 故选:A .【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.8.已知双曲线221169x y C -=:的右焦点为F ,过原点O 的直线与双曲线C 交于,A B 两点,且60AFB ∠=︒,则BOF V 的面积为( )A.2 B.2 C .32 D .92【答案】A【解析】【分析】根据题意画出图像,设双曲线的左焦点为1F ,连接11,AF BF ,即可得四边形1AFBF 为平行四边形,从而求出1F BF ∠,利用余弦定理和双曲线的定义联立方程可求出1|BF ||BF|的值,利用面积公式可求出1F BF V 的面积,根据1F BF V 和BOF V 的关系即可得到答案.【详解】如图,设双曲线的左焦点为1F ,连接11,AF BF ,依题可知四边形1AFBF 的对角线互相平分,则四边形1AFBF 为平行四边形,由60AFB ∠=︒可得1120F BF ∠=︒, 依题可知12||2216910F F c ==+=, 由余弦定理可得:2221111|BF |+|BF|-2|BF ||BF|cos |||F BF F F ∠=即2211|BF |+|BF|+|BF ||BF|100=;又因为点B 在椭圆上,则1||BF |-|BF||28a ==,所以2211|BF |+|BF|-2|BF ||BF|64=.两式相减得13|BF ||BF|36=,即1|BF ||BF|12=,所以1F BF V 的面积为:111113||||sin 123322F BF S BF BF F BF =∠=⨯=V 因为O 为1F F 的中点,所以11332OBF F BF S S ==V V 故选:A【点睛】本题主要考查双曲线的几何性质,涉及到了双曲线的定义,余弦定理和面积公式,考查学生转化和化归的能力,属中档题.9.已知椭圆2221(02)4x y b b+=<<的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于A ,B 两点,若22BF AF +的最大值为5,则b 的值为()A .1BCD .3【答案】C【解析】【分析】由题意可知椭圆是焦点在x 轴上的椭圆,利用椭圆定义得到228||BF AF AB +=-,再由过椭圆焦点的弦中通径的长最短,可知当AB 垂直于x 轴时||AB 最小,把||AB 的最小值2b 代入228||BF AF AB +=-,由22BF AF +的最大值等于5可求b 的值.【详解】由02b <<可知,焦点在x 轴上,∴2a =,∵过1F 的直线交椭圆于A ,B 两点,∴22112248BF AF BF AF a a a +++=+== ∴228||BF AF AB +=-.当AB 垂直x 轴时||AB 最小,22BF AF +值最大,此时222||b AB b a==,∴258b =-,解得b =C . 【点睛】 本题主要考查椭圆的定义,解题的关键是得出22114BF AF BF AF a +++=,属于一般题.10.过双曲线2213y x -=的右支上一点P 分别向圆1C :22(2)4x y ++=和圆2C :22(2)1x y -+=作切线,切点分别为,M N ,则22||||PM PN -的最小值为( )A .5B .4C .3D .2【答案】A【解析】【分析】 求得两圆的圆心和半径,设双曲线2213y x -=的左右焦点为1(2,0)F -,2(2,0)F ,连接1PF , 2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【详解】圆221:(2)4C x y ++=的圆心为(2,0)-,半径为12r =;圆222:(2)1C x y -+=的圆心为(2,0),半径为21r =, 设双曲线2213y x -=的左右焦点为1(2,0)F -,2(2,0)F , 连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=---2212(||4)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||32(||||)32232435a PF PF PF PF c =+-=+--=-=g g )….当且仅当P 为右顶点时,取得等号,即最小值5.故选A .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题.二、多选题11.已知点A 是直线:20l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .()0,2B .()1,21-C .()2,0D .()21,1- 【答案】AC【解析】【分析】 设点A 的坐标为(),2t t -,可得知当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值90o ,可得出四边形APOQ 为正方形,可得出2OA =,进而可求出点A 的坐标.【详解】如下图所示:原点到直线l 的距离为222111d ==+,则直线l 与圆221x y +=相切, 由图可知,当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值,连接OP 、OQ ,由于PAQ ∠的最大值为90o ,且90APO AQO ∠=∠=o ,1OP OQ ==,则四边形APOQ 为正方形,所以22OA == 由两点间的距离公式得()2222OA t t =+-=整理得22220t t -=,解得0t =2,因此,点A 的坐标为(2或)2,0. 故选:AC.【点睛】 本题考查直线与圆的位置关系的综合问题,考查利用角的最值来求点的坐标,解题时要找出直线与圆相切这一临界位置来进行分析,考查数形结合思想的应用,属于中等题.12.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,A B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()()2,0,4,0,A B -点12PA P PB=满足.设点P 的轨迹为C ,下列结论正确的是( ) A .C 的方程为()2249x y ++=B .在x 轴上存在异于,A B 的两定点,D E ,使得12PD PE=C .当,,A B P 三点不共线时,射线PO 是APB ∠的平分线D .在C 上存在点M ,使得2||MO MA = 【答案】BC 【解析】 【分析】通过设出点P 坐标,利用12PA PB=即可得到轨迹方程,找出两点,D E 即可判断B 的正误,设出M 点坐标,利用2||MO MA =与圆的方程表达式解出就存在,解不出就不存在. 【详解】设点(),P x y ,则12PA PB=,化简整理得2280x y x ++=,即()22416x y ++=,故A错误;当()()1,0,2,0,D B -时,12PDPE =,故B 正确;对于C 选项,222cos =2AP PO AO APO AP PO+-∠⋅,222cos =2BP PO BO BPO BP PO+-∠⋅,要证PO 为角平分线,只需证明cos =cos APO BPO ∠∠,即证22222222AP PO AO BP PO BO AP PO BP PO+-+-=⋅⋅,化简整理即证2228PO AP =-,设(),P x y ,则222PO x y =+, ()()222222222282828AP x x y x x y x y x y -=++=++++=+,则证cos =cos APO BPO ∠∠,故C 正确;对于D 选项,设()00,M x y ,由2||MO MA =可得()22220000=2x y x y +++,整理得220003316+160x y x ++=,而点M 在圆上,故满足2280x y x ++=,联立解得0=2x ,0y 无实数解,于是D 错误.故答案为BC. 【点睛】本题主要考查阿氏圆的相关应用,轨迹方程的求解,意在考查学生的转化能力,计算能力,难度较大.三、填空题 13.直线与圆交于两点,则________.【答案】【解析】 【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长. 【详解】根据题意,圆的方程可化为,所以圆的圆心为,且半径是,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为.【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.14.已知抛物线()220y px p =>的焦点为F(4,0),过F 作直线l 交抛物线于M ,N 两点,则p=_______,49NF MF-的最小值为______. 【答案】8p =13【解析】 【分析】利用抛物线的定义可得8p =,设直线l 的方程为4x my =+,联立直线与抛物线方程消元,根据韦达定理和抛物线的的定义可得1114MF NF +=,代入到49NF MF-,再根据基本不等式求最值. 【详解】解:∵ 抛物线()220y px p =>的焦点为F(4,0),∴ 8p =,∴ 抛物线的方程为216y x =,设直线l 的方程为4x my =+,设()11,M x y ,()22,N x y ,由2164y x x my ⎧=⎨=+⎩得216640y my --=, ∴1216y y m +=,1264y y =-, 由抛物线的定义得11MF NF +121144x x =+++()()21124444x x x x +++=++()()211244888my my my my ++++=++()()122121216864m y y m y y m y y ++=+++22216166412864m m m +=-++()()22161641m m +=+14=, ∴49NF MF -11494NF NF ⎛⎫=-- ⎪ ⎪⎝⎭419NF NF =+-4?19NF NF ≥13=, 当且仅当49NF NF=即6NF =时,等号成立,故答案为:13. 【点睛】本题主要考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.四、解答题15.已知抛物线21:2(0)C y px p =>与椭圆222:143x y C +=有一个相同的焦点,过点(2,0)A 且与x 轴不垂直的直线l 与抛物线1C 交于P ,Q 两点,P 关于x 轴的对称点为M . (1)求抛物线1C 的方程;(2)试问直线MQ 是否过定点?若是,求出该定点的坐标;若不是,请说明理由. 【答案】(1)24y x =;(2)(2,0)-【解析】 【分析】(1)求出椭圆的焦点,容易求得抛物线的方程.(2)解法一:设直线PQ 的方程为()2y k x =-与抛物线联立,得到,P Q 横坐标关系,设直线MQ 的方程为y mx n =+与抛物线联立,得到,M Q 横坐标关系,从而得到,m n 的关系,找出定点.解法二:直线PQ 的方程为2x ty =+,与抛物线联立,得到,P Q 纵坐标关系,设直线MQ 的方程为x my n =+,与抛物线联立,得到,M Q 纵坐标关系,从而可以解出n ,得到定点.【详解】(1)由题意可知抛物线的焦点为椭圆的右焦点,坐标为()1,0,所以2p =,所以抛物线的方程为24y x =;(2)【解法一】因为点P 与点M 关于x 轴对称 所以设()11,P x y ,()22,Q x y ,()11,M x y -, 设直线PQ 的方程为()2y k x =-,代入24y x =得:()22224140k x k x k -++=,所以124x x =,设直线MQ 的方程为y mx n =+,代入24y x =得:()222240m x mn x n +-+=,所以21224n x x m==,因为10x >,20x >,所以2nm=,即2n m =, 所以直线MQ 的方程为()2y m x =+,必过定点()2,0-. 【解法二】设()11,P x y ,()22,Q x y ,()33,M x y , 因为点P 与点M 关于x 轴对称,所以31y y =-, 设直线PQ 的方程为2x ty =+,代入24y x =得:2480y ty --=,所以128y y =-,设直线MQ 的方程为x my n =+,代入24y x =得:2440y my n --=,所以234y y n =-,因为31y y =-,所以()211248y y y y n -=-=-=,即2n =-, 所以直线MQ 的方程为2x my =-,必过定点()2,0-. 【点睛】本题主要考查直线与抛物线的关系,直线过定点问题,比较综合,对计算能力要求较高,属于难题.16.如图,已知椭圆Γ:()222210x y a b a b +=>>经过点()2,0A ,离心率3e =.(Ⅰ)求椭圆Γ的方程;(Ⅱ)设点B 为椭圆与y 轴正半轴的交点,点C 为线段AB 的中点,点P 是椭圆Γ上的动点(异于椭圆顶点)且直线PA ,PB 分别交直线OC 于M ,N 两点,问OM ON ⋅是否为定值?若是,求出定值;若不是,请说明理由.【答案】(Ⅰ)2214x y +=;(Ⅱ)是定值,52【解析】 【分析】(Ⅰ)根据已知条件列方程组2222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩,求解椭圆方程;(Ⅱ)由(Ⅰ)求得点C 的坐标,并求直线OC 的方程20x y -=,设()00,P x y ,()112,M y y ,()222,N y y ,根据三点共线求1y 和2y,并表示2125OM ON y y y y ==.【详解】(Ⅰ)由题意可知:22222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b =⎧⎨=⎩,所以椭圆Γ的方程:2214x y +=;(Ⅱ)由已知,点C 的坐标为11,2⎛⎫⎪⎝⎭,得直线OC 的方程为20x y -=, 设()00,P x y ,()112,M y y ,()222,N y y ,因P ,A ,M 三点共线,故0110222y y y x =--,整理得0100222y y x y -=--,因P ,B ,N 三点共线,故0220112y y y x --=,整理得020022x y x y =-+, 因点P 在椭圆Γ上,故220044x y +=,从而()000012200000022222224y x x y y y x y x y x y --=⋅=---+--00220000214442x y x y x y -==+--,所以1212552OM ON y y ===为定值.【点睛】本题考查椭圆方程以及椭圆直线与椭圆位置关系的综合问题,本题所涉及直线比较多,分析问题时抓住关键求点,M N 的纵坐标并用点P 的纵坐标表示,并将OM ON 2125y y y ,这样问题迎刃而解.。

平面解析几何经典题(含答案)

平面解析几何经典题(含答案)

平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)倾斜角的范围000180(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1//l2k1k2。

特别地,当直线l1,l2的斜率都不存在时,l1与l2的关系为平行。

(2)两条直线垂直如果两条直线l1,l2斜率存在,设为k1,k2,则l1l2k1k21注:两条直线l1,l2垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。

如果l1,l2中有一条直线的斜率不存在,另一条直线的斜率为0时,l1与l2互相垂直。

二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式不包括垂直于x轴的直线为直线上一定点,k为斜率斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式不包括垂直于x轴和y轴的是直线上两定点直线截距式a是直线在x轴上的非零截距,b是直不包括垂直于x轴和y轴或线在y轴上的非零截距过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式3.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。

4.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知A(x,y),B(x,y),C(x,y),若x1x2x3或k AB k AC,则有A、B、C三点共112233线。

平面解析几何试题 解析

平面解析几何试题 解析

平面解析几何1.(2020届安徽省“江南十校”高三综合素质检测)已知点P是双曲线2222:1(0,0,x y C a b c a b-=>>=上一点,若点P 到双曲线C 的两条渐近线的距离之积为214c ,则双曲线C 的离心率为()ABCD .2【答案】A【解析】设点P 的坐标为(,)m n ,有22221m n a b-=,得222222b m a n a b -=.双曲线的两条渐近线方程为0bx ay -=和0bx ay +=,则点P 到双曲线C的两条渐近线的距离之积为222222222b m a n a b a b c-==+,所以222214a b c c =,则22244()a c a c -=,即()22220c a -=,故2220c a -=,即2222c e a ==,所以e =.故选A 。

2.(2020届河南省濮阳市高三模拟)已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于()A.B .8C.D .4【答案】C【解析】F (1,0),故直线AB 的方程为y =x ﹣1,联立方程组241y xy x ⎧=⎨=-⎩,可得x 2﹣6x+1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1.由抛物线的定义可知:|FA|=x 1+1,|FB|=x 2+1,∴||FA|﹣|FB||=|x 1﹣x 2|==,故选C 。

3.(2020届陕西省西安中学高三第一次模拟)已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B【解析】由题意可得c=F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO ,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得|PF′|=8=,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36,于是b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=,故选B 。

高一数学平面解析几何初步试题答案及解析

高一数学平面解析几何初步试题答案及解析

高一数学平面解析几何初步试题答案及解析1.设A(3,3,1),B(1,0,5),C(0,1,0),AB的中点M,则A.B.C.D.【答案】C【解析】先求得M(2,,3)点坐标,利用两点间距离公式计算得,故选C。

【考点】本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用。

点评:简单题,应用公式计算。

2.已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则点D 的坐标为A.(,4,-1)B.(2,3,1)C.(-3,1,5)D.(5,13,-3)【答案】D【解析】设D的坐标为(x,y,z)。

AC的中点和BD的中点重合,所以有x+2=4+3,y-5=1+7,z+1=3-5所以,x="5," y="13," z=-3,D的坐标为(5,13,-3),故选D。

【考点】本题主要考查空间直角坐标系的概念及两点间距离公式的应用。

点评:本题解法利用了平行四边形的性质,也可利用向量知识。

3.点到坐标平面的距离是A.B.C.D.【答案】C【解析】点在坐标平面的正投影为,所以点到坐标平面的距离是,故选C。

【考点】本题主要考查空间直角坐标系的概念及两点间距离公式的应用。

点评:认识到点在坐标平面的正投影为,结合图形分析。

4.已知点,,三点共线,那么的值分别是A.,4B.1,8C.,-4D.-1,-8【答案】C【解析】因为点,,三点共线,=(3,4,-8),=(x-1,y+2,4),所以,,故选C。

【考点】本题主要考查空间直角坐标系的概念及其应用。

点评:利用空间向量知识,简化解题过程。

5.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是A.B.C.D.【答案】A【解析】依题意,构建正方体。

即求棱长为的正方体对角线长,计算得,故选A。

【考点】本题主要考查空间直角坐标系的概念及其应用。

点评:根据几何体的特征,认识点的坐标。

6.(12分)如图,长方体中,,,,设E为的中点,F为的中点,在给定的空间直角坐标系D-xyz下,试写出A,B,C,D,,,,,E,F各点的坐标.【答案】A(3,0,0),B(3,5,0),C(0,5,0),D(0,0,0);(3,0,3),(3,5,3),(0,5,3),(0,0,3); E();F(,5,)。

高考数学压轴专题2020-2021备战高考《平面解析几何》基础测试题及答案

高考数学压轴专题2020-2021备战高考《平面解析几何》基础测试题及答案

数学高考《平面解析几何》试题含答案一、选择题1.过抛物线212x y =的焦点F 的直线交抛物线于点A 、B ,交抛物线的准线于点C ,若3AF FB =uu u r uu r,则BC =( )A .4B .43C .6D .8【答案】D 【解析】 【分析】作出图象,作BM CP ⊥,AN CP ⊥,BH AN ⊥,设BF x =,根据抛物线的性质可得BM BF HN x ===,3AN AF x ==,进而得到1sin 2ACN ∠=,则可求出x 的值,进而得到BC 的值. 【详解】作BM CP ⊥,AN CP ⊥,BH AN ⊥,如图,因为3AF FB =uu u r uu r,不妨设BF x =,所以33AF BF x ==,4AB x =, 根据抛物线的定义可得BM BF HN x ===,3AN AF x ==,6FP p ==, 则32AH AN HN x x x =-=-=, 所以1sin sin 2AH ABH ACN AB ∠=∠==,则212CF FP ==,2CB x =, 则312CF CB BF x =+==,所以4x =,则28BC x ==, 故选:D . 【点睛】本题考查抛物线的性质,涉及抛物线定义的应用,考查数形结合思想,属于中档题.2.已知抛物线2:6C x y =的焦点为F 直线l 与抛物线C 交于,A B 两点,若AB 中点的纵坐标为5,则||||AF BF +=( )A .8B .11C .13D .16【答案】C 【解析】 【分析】设点A 、B 的坐标,利用线段AB 中点纵坐标公式和抛物线的定义,求得12y y +的值,即可得结果; 【详解】抛物线2:6C x y =中p =3, 设点A (x 1,y 1),B (x 2,y 2),由抛物线定义可得:|AF |+|BF |=y 1+ y 2+p =y 1+ y 2+3, 又线段AB 中点M 的横坐标为122y y +=5, ∴12y y +=10, ∴|AF |+|BF |=13; 故选:C . 【点睛】本题考查了抛物线的定义的应用及中点坐标公式,是中档题.3.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限,∴240 21610 21kkkk-⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k-<<.故选:D.【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.4.已知椭圆C:2212xy+=的右焦点为F,直线l:2x=,点∈A l,线段AF交椭圆C于点B,若3FA FB=u u u v u u u v,则AFu u u v=()A.2B.2C.3D.3【答案】A【解析】【分析】设点()2,A n,()00,B x y,易知F(1,0),根据3FA FB=u u u v u u u v,得43x=,13y n=,根据点B在椭圆上,求得n=1,进而可求得2AF=u u u v【详解】根据题意作图:设点()2,A n,()00,B x y.由椭圆C:2212xy+=,知22a=,21b=,21c=,即1c=,所以右焦点F(1,0).由3FA FB=u u u v u u u v,得()()001,31,n x y=-.所以()131x=-,且3n y=.所以43x=,13y n=.将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =,所以AF u u u v ===故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.5.已知抛物线x 2=16y 的焦点为F ,双曲线22145x y -=的左、右焦点分别为F 1、F 2,点P是双曲线右支上一点,则|PF|+|PF 1|的最小值为( ) A .5 B .7 C .9 D .11 【答案】C 【解析】 【分析】由题意并结合双曲线的定义可得1222(4)44PF PF PF PF PF PF FF +=++=++≥+,然后根据两点间的距离公式可得所求最小值. 【详解】由题意得抛物线216x y =的焦点为()0,4F ,双曲线22145x y -=的左、右焦点分别为()()123,0,3,0F F -.∵点P 是双曲线右支上一点, ∴124PF PF =+.∴1222(4)44549PF PF PF PF PF PF FF +=++=++≥+=+=,当且仅当2,,F P F 三点共线时等号成立,∴1PF PF +的最小值为9. 故选C . 【点睛】解答本题的关键是认真分析题意,然后结合图形借助数形结合的方法求解.另外在解题中注意利用双曲线的定义将所求问题进行转化,考查分析理解能力和解决问题的能力,属于基础题.6.设D 为椭圆2215y x +=上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD|=|BD|,则点P 的轨迹方程为( ) A .x 2+(y -2)2=20 B .x 2+(y -2)2=5 C .x 2+(y +2)2=20 D .x 2+(y +2)2=5 【答案】C 【解析】 【分析】由题意得PA PD DA DB DA =+=+=,从而得到点P 的轨迹是以点A 为圆心,半径为 【详解】由题意得PA PD DA DB DA =+=+,又点D 为椭圆2215y x +=上任意一点,且()()0,2,0,2A B -为椭圆的两个焦点,∴DB DA +=,∴PA =∴点P 的轨迹是以点A 为圆心,半径为 ∴点P 的轨迹方程为()22220x y ++=. 故选C . 【点睛】本题考查圆的方程的求法和椭圆的定义,解题的关键是根据椭圆的定义得到PA =然后再根据圆的定义得到所求轨迹,进而求出其方程.考查对基础知识的理解和运用,属于基础题.7.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, AF BF +=, 则∠AFB 的最大值为( ) A .3π B .34π C .56π D .23π 【答案】D 【解析】 【分析】设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】设|AF |=m ,|BF |=n ,∵AF BF +=,AB ≥∴213mn AB ≤,在△AFB 中,由余弦定理得22222()2cos 22m n ABm n mn AB AFB mnmn+-+--∠==212213222AB mnmn mn mn mn --=≥=-∴∠AFB 的最大值为23π. 故选:D 【点睛】本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.8.已知双曲线2222:1(0,0)x y C a b a b-=>>,过其右焦点F 作渐近线的垂线,垂足为B ,交y轴于点C ,交另一条渐近线于点A ,并且满足点C 位于A ,B 之间.已知O 为原点,且53OA a =,则||||FB FC =( ) A .45B .23C .34D .13【答案】A 【解析】 【分析】设出直线AB 的方程,联立直线AB 方程和渐近线方程,由此求得,A B 两点的坐标,以及求得C 点的坐标,根据53OA a =列方程,求得,,a b c 的关系,由此求得||||FB FC 的值.【详解】由于双曲线渐近线为b y x a =±,不妨设直线AB 的斜率为ab-,故直线AB 的方程为()a y x c b =--.令0x =,得0,ac C b ⎛⎫ ⎪⎝⎭.由()a y x c bb y x a ⎧=--⎪⎪⎨⎪=⎪⎩解得2,a ab B c c ⎛⎫ ⎪⎝⎭,.由()a y x c bb y xa ⎧=--⎪⎪⎨⎪=-⎪⎩解得22222,a c abc A a b a b ⎛⎫- ⎪--⎝⎭,由53OA a =得22222222259a c abc a a b a b ⎛⎫-⎛⎫+= ⎪ ⎪--⎝⎭⎝⎭,化简得()()2222440a b a b --=,解得12b a =或2b a =.由于C 位于,A B 之间,故12b a =舍去,所以2b a=,即2b a =.故22222222||44||45B C aby FB b b a c ac FC y c a b a a b======++. 故选:A.【点睛】本小题主要考查双曲线的渐近线方程,考查直线和直线相交所得交点坐标的求法,考查双曲线的几何性质,考查运算求解能力,考查数形结合的数学思想方法,属于中档题.9.若双曲线223mx my -=3的一个焦点是()0,2,则m 的值是A.-1 B.1 C.1020-D.102【答案】A【解析】双曲线223mx my-=3的标准方程为22113x ym m-=,∵焦点在y轴上,∴134m m+=,且0m<,∴ 1.m=-故选A.10.已知P是双曲线C上一点,12,F F分别是C的左、右焦点,若12PF F∆是一个三边长成等差数列的直角三角形,则双曲线C的离心率的最小值为()A.2 B.3C.4 D.5【答案】A【解析】【分析】设直角三角形三边分别为3,4,5x x x,分23c x=,24c x=和25c x=三种情况考虑,即可算得双曲线离心率的最小值.【详解】如图,易知该直角三角形三边可设为3,4,5x x x.①若23c x=,则254a x x x=-=,得232cea==;②若24c x=,则2532a x x x=-=,得222cea==;③若25c x =,则243a x x x =-=,得252ce a==. 故选:A 【点睛】本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.11.已知P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =,则“4a =”是“217PF =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】化简得到229PF a =+或292PF a =-,故当4a =时,217PF =或21PF =;当217PF =时,4a =,得到答案.【详解】P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =, 则229PF a =+或292PF a =-,当4a =时,217PF =或21PF =;当217PF =时,4a =. 故“4a =”是“217PF =”的必要不充分条件. 故选:B . 【点睛】本题考查了必要不充分条件,意在考查学生的推断能力.12.已知椭圆221259x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个焦点的距离等于( ) A .1 B .3 C .6 D .10 【答案】C 【解析】由椭圆方程可得225210a a =∴= ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C .13.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A B C .2-D 【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.14.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点, 则直线bx ay 4a 0-+=与直线bx ay 0-=的距离224a 4a d ca b ==+, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.15.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以12||F F ==c ⇒=因为2521a x a =-=⇒=,所以b =所以双曲线的渐近线方程为by x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.16.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C .6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.17.若A ,B 分别是直线20x y --=与x 轴,y 轴的交点,圆C :()()22448x y -++=上有任意一点M ,则AMB ∆的面积的最大值是( )A .6B .8C .10D .12【答案】C 【解析】 【分析】先求出AB ,再求出M 到直线的最大距离为点M 到直线20x y --=加上半径,进而可得面积最大值. 【详解】由已知()2,0A ,()0,2B -则AB ==,又点M=所以最大面积为1102⨯=. 故选:C. 【点睛】本题考查圆上一点到直线的最大距离问题,是基础题.18.已知点1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别是1C 和2C 的离心率,点P 为1C 和2C 的一个公共点,且1223F PF π∠=,若22e =,则1e 的值是( ) ABC.7D【答案】D【解析】 【分析】利用椭圆和双曲线的定义以及余弦定理可得到方程2221243c a a =+,由此得到关于离心率的方程求得结果. 【详解】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,焦点坐标为()1,0F c -,()2,0F c , 不妨设P 为第一象限内的点,则1212+=PF PF a ,1222-=PF PF a , 则221212PF PF a a =-,由余弦定理得:2222212121212242cos3c PF PF PF PF PF PF PF PF π=+-=++, ()22222211212443c a a a a a ∴=--=+,2212314e e ∴+=,又22e =,2145e ∴=, 125e ∴=. 故选:D . 【点睛】本题考查共焦点的椭圆与双曲线问题的求解,关键是能够熟练应用椭圆和双曲线的定义,利用余弦定理构造等量关系,配凑出关于椭圆和双曲线离心率的方程.19.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫± ⎪ ⎪⎝⎭B .135322,77⎛⎫± ⎪ ⎪⎝⎭C.3217,3⎛⎫±⎪⎝⎭D.()45,162±【答案】B【解析】【分析】设由船P到B台和到A台的距离差确定的双曲线方程为()22221x yx aa b-=≥,根据双曲线的定义得出15a=,再得出由船P到B台和到A台的距离差所确定的双曲线为()2211522564x yx-=>,与双曲线()222713664x y--=联立,即可得出点P坐标.【详解】设由船P到B台和到A台的距离差确定的双曲线方程为()22221x yx aa b-=≥由于船P到B台和到A台的距离差为30海里,故15a=,又=17c,故8b=故由船P到B台和到A台的距离差所确定的双曲线为()2211522564x yx-=>联立()()()222227121366411522564x yxx yx⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135322,77P⎛⎫±⎪⎪⎝⎭故选:B【点睛】本题主要考查了双曲线的应用,属于中档题.20.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y=+恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于4π;④方程()223221)60(x y x y xy+=<表示的曲线C在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点,(,(,,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.。

解析几何专题练习(带答案)

解析几何专题练习(带答案)

解析几何专题练习一、选择题 1.已知直线l 1:(k -3)x +(4-k)y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是A .1或3B .1或5C .3或5D .1或2 2.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有 A .1条 B .2条 C .3条 D .4条3.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =A. 3 B .2 C .3 D .6 4.“b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.椭圆31222yx+=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M在y 轴上,那么点M 的纵坐标是A .±43B .±23C .±22D .±43二、填空题 6.经过圆0222=++yx x 的圆心C ,且与直线x+y=0垂直的直线方程是___ .7.由直线2+=x y 上的点向圆()()22421x y -++= 引切线,则切线长的最小值为___. 8.若双曲线221x ky +=的离心率是2,则实数k 的值是______.9.已知圆C的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C的交点的直角坐标为 .10.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是__________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点=+不经过任何整点②如果k与b都是无理数,则直线y kx b③直线l经过无穷多个整点,当且仅当l经过两个不同的整点=+经过无穷多个整点的充分必要条件是:k与b都是有理数④直线y kx b⑤存在恰经过一个整点的直线三、解答题11.在△ABC中,已知点A(5,-2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.(1)求点C的坐标;(2)求直线MN的方程.12.求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.13.已知圆x2+y2-4ax+2ay+20(a-1)=0.(1)求证对任意实数a,该圆恒过一定点;(2)若该圆与圆x2+y2=4相切,求a的值.14.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标.15.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:MF 1⊥MF 2; (3)求△F 1MF 2的面积.16.已知直线l 过点P (1,1), 并与直线l 1:x -y+3=0和l 2:2x+y -6=0分别交于点A 、B ,若线段AB 被点P 平分,求: (1)直线l 的方程;(2)以O 为圆心且被l 截得的弦长为558的圆的方程.17.已知点A 的坐标为)4,4(-,直线l 的方程为3x +y -2=0,求: (1)点A 关于直线l 的对称点A ′的坐标;… (2)直线l 关于点A 的对称直线l '的方程.18.已知圆221:(4)1Cx y -+=,圆222:(2)1C x y +-=,动点P到圆1C ,2C 上点的距离的最小值相等.】 (1)求点P 的轨迹方程;(2)点P 的轨迹上是否存在点Q ,使得点Q 到点(22,0)A -的距离减去点Q 到点(22,0)B 的距离的差为4,如果存在求出Q 点坐标,如果不存在说明理由.19.已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:x3-2 42y32--422(1)求12C C 、的标准方程;(2)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥?若存在,求出直线l 的方程;若不存在,说明理由.20.已知椭圆()22220y xC a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,.(1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440xmx y y m -+++-=与D 有公共点,试求实数m 的最小值.参考答案一、选择题 1—5 CBAAA 二、填空题 6.x-y+1=0 7. 318.13-9. (1,1),(1,1)- 10. ①,③,⑤三、解答题11.解:(1)设点C(x ,y),由题意得5+x 2=0,3+y2=0,得x =-5,y =-3.故所求点C 的坐标是(-5,-3).(2)点M 的坐标是⎝⎛⎭⎪⎫0,-52,点N 的坐标是(1,0),直线MN 的方程是y -0-52-0=x -10-1, 即5x -2y -5=0.12. 解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =4-21-3=-1,AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2, 即x -y +1=0.又圆心在直线y =0上, 因此圆心坐标是方程组 ⎩⎪⎨⎪⎧x -y +1=0y =0的解,即圆心坐标为(-1,0). 半径r =-1-12+0-42=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C(-1,0)的距离为2+12+3-02=18,|M 1C|<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C|=2+12+4-02=25>20,所以M 2在圆C 外.13. 解:(1)将圆的方程整理为(x 2+y 2-20)+a(-4x +2y +20)=0,令⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0可得⎩⎪⎨⎪⎧x =4,y =-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x -2a)2+(y +a)2=5a 2-20a +20=5(a -2)2,所以圆心为(2a ,a),半径为5|a -2|.若两圆外切,则2a -02+a -02=2+5|a -2|,即5|a|=2+5|a -2|,由此解得a =1+55.若两圆内切,则2a 2+a 2=|2-5|a -2||,即5|a|=|2-5|a -2||,由此解得a =1-55或a =1+55(舍去).综上所述,两圆相切时,a =1-55或a =1+55.14. 解:(1)抛物线y 2=2px 的准线x =-p 2,于是,4+p2=5,∴p =2.∴抛物线方程为y 2=4x.(2)∵点A 的坐标是(4,4),由题意得B(0,4),M(0,2).又∵F(1,0),∴k FA =43.又MN ⊥FA ,∴k MN =-34,则FA 的方程为y =43(x -1),MN 的方程为y -2=-34x ,解方程组),1(34),432(-=-=-x y x y 得.54),58(==y x ∴N )54,58(. 15. 解:(1)由e =2⇒ca=2⇒c 2=2a 2⇒a 2=b 2.设双曲线方程为x 2-y 2=λ, 将点(4,-10)代入得:λ=6, 故所求双曲线方程为x 2-y 2=6.(2)∵c 2=12,∴焦点坐标为(±23,0) 将M(3,m)代入x 2-y 2=6得:m 2=3.当m =3时,MF 1→=(-23-3,-3), MF2→=(23-3,-3)∴MF1→·MF 2→=(-3)2-(23)2+(-3)2=0, ∴MF 1⊥MF 2,当m =-3时,同理可证MF 1⊥MF 2.(3)S △F 1MF 2=12·|2c|·|m|=12·43·3=6.16. 解:(1)依题意可设A )n ,m (、)n 2,m 2(B --,则 ⎩⎨⎧=--+-=+-06)n 2()m 2(203n m , ⎩⎨⎧=+-=-023n m n m ,解得1m -=,2n =. 即)2,1(A -,又l 过点P )1,1(,易得AB 方程为03y 2x =-+.(2)设圆的半径为R ,则222)554(d R +=,其中d 为弦心距,53d=,可得5R 2=,故所求圆的方程为5yx22=+.17.解:(1)设点A ′的坐标为(x ′,y ′)。

高考数学经典试题与解析 专题八 平面解析几何

高考数学经典试题与解析 专题八 平面解析几何

专题八平面解析几何——2025届高考数学考点剖析精创专题卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知点(3)1,A -,(3,1)B ,若直线:20l mx y ++=与线段AB 有公共点,则实数m 的取值范围为()A.(,5][1,)-∞-+∞ B.[5,1]-C.(,1][5,)-∞-+∞ D.[1,5]-1.答案:C解析:由题意知直线l 过定点(0,2)P -,易求直线PA 的斜率3(2)510PA k --==---,直线PB 的斜率1(2)130PB k --==-,直线l 的斜率l k m =-,作出线段AB 及直线PA ,PB ,如图,由图知,1m -≥或5m -≤-,即1m ≤-或5m ≥,故选C.2.若直线10x my ++=是2221:(1)(2)(0)C x y r r -++=> 与222:(2)(2)4C x y -+-= 的公切线,则实数r 的值为()A.3413B.1712C.127D.922.答案:A解析:已知1C 的圆心1(1,2)C -,半径是r ;2C 的圆心是2(2,2)C ,半径是2.由题知直线10x my ++=是1C 和2C 的公切线,当0m =时,直线为1x =-,此时直线1x =-与圆2C 不相切,所以0m ≠,由2=,解得512m =-,则有3413r ==.故选A.3.已知双曲线22:22C x y -=,过点(1,2)P 的直线l 与双曲线C 交于M ,N 两点,若P 为线段MN 的中点,则弦长MN 等于()A.3B.4C.D.3.答案:D解析:由题设,直线l 的斜率必存在,设过(1,2)P 的直线MN 的方程为2(1)y k x -=-,联立直线与双曲线的方程并化简得()()22222(2)460k xk k x k k -+---+=,设()11,M x y ,()22,N x y ,0∆>,则1222(2)22P k k x x x k -+=-=-,所以22(2)22k k k--=-,解得1k =,则122x x +=,123x x =-.弦长MN ===.故选D.4.[2023届·全国·模拟考试联考]阿基米德在他的著作《关于圆锥体和球体》中计算了一个椭圆的面积.当我们垂直地缩小一个圆时,我们得到一个椭圆.椭圆的面积等于圆周率π与椭圆的长半轴长与短半轴长的乘积.已知椭圆2222:1(0)x y C a b a b+=>>的面积为21π,点P 在椭圆C 上,且点P 与椭圆C 左、右顶点连线的斜率之积为949-,记椭圆C 的两个焦点分别为1F ,2F ,则1PF 的值不可能为()A.4 B.7 C.10 D.144.答案:D解析:因为椭圆C 的面积为21π,所以π21πab =,即21ab =.①设()()000,P x y x a ≠±,则2200221x y a b +=,则()2220202b x a y a-=-,所以点P 与椭圆C 左、右顶点连线的斜率之积为22000222000949y y y b x a x a x a a ⋅==-=--+-.②联立①②可得7a =,3b =,则c ==177a c PF c a -=-<<+=,故选D.5.已知双曲线2222:1x y C a b -=(0a >,0b >)的左、右焦点分别为1F ,2F ,点M 在C上,且12MF MF ⊥,1OMF △的面积为218a (O 为坐标原点),则双曲线C 的离心率为() A.103B.52C.102D.3835.答案:A解析:不妨设点M 在双曲线的右支上,如图所示.设1MF m =,2MF n =,则22222,4,1,418m n a m n c a mn ⎧⎪-=⎪⎪+=⎨⎪⎪=⎪⎩①②③由①得22224m n mn a +-=.将②③代入即可得2224449c a a -=,故224049c a =,所以22109c a =,所以离心率103c e a ==.故选A.6.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的交点,若4FP FQ =,则||FQ =()A.4B.52C.2D.326.答案:D 解析:依题意得12p=,(1,0)F ,准线l 的方程为1x =-.因为点P 是l 上一点,所以设点(1,)P t -,()00,Q x y ,则(2),FP t =-,()001,FQ x y =-,因为4FP FQ = ,所以()0241x -=-,解得012x =.又Q 是直线PF 与C 的交点,所以由抛物线的定义可得03||12FQ x =+=.故选D.7.已知抛物线22(0)y px p =>的焦点为F ,抛物线上一点A 在F 的正上方,过点A 的直线l 与抛物线交于另一点B ,满足||2||BF AF =,则钝角AFB ∠=()A.7π12B.2π3C.3π4D.5π67.答案:D解析:由题知,抛物线的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-.因为点A 在F 的正上方,所以点A 的坐标为,2p p ⎛⎫⎪⎝⎭.因为AFB ∠为钝角,则点B 在x 轴下方,所以||2||22B p x BF AF p +===,解得32B x p =,即点B 的坐标为332p ⎛⎫ ⎪⎝⎭(舍去)或3,32p ⎛⎫⎪⎝⎭.因为直线BF 的斜率33322BF k p p ==-,所以直线BF 的倾斜角为2π3,故钝角π2π5ππ236AFB ∠=+-=.故选D.8.[2024春·高二·四川眉山·开学考试校考]已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,左顶点是A ,左、右焦点分别是1F ,2F ,M 是C 在第一象限上的一点,直线1MF 与C 的另一个交点为N .若2//MF AN ,则直线MN 的斜率为()A.52B.311C.12D.1578.答案:A解析:因为椭圆C 的离心率为12,故可设2a k =,(0)c k k =>,故3b k =,因此椭圆C 的方程为22243x y k +=,而1AF a c k =-=,122F F k =,故11212AF F F =,因为2//MF AN ,所以1112NF MF =.因为直线MN 与x 轴不垂直也不重合,故可设:(0)MN x my k m =->,()11,M x y ,()22,N x y ,则122y y =-,由222,3412x my k x y k=-⎧⎨+=⎩可得()22243690m y mky k +--=,因为1F 在椭圆C 的内部,所以0∆>恒成立,且1222122126,439,432,km y y mk y y m y y ⎧+=⎪+⎪-⎪=⎨+⎪=-⎪⎪⎩故22226129434343km km k m m m --⨯=+++,因为0k ≠,所以255m =,此时112355012445k y k ⨯==>+,1452k x k k =⨯-=>故M 在第一象限,符合条件,因此直线MN 的斜率为152m =.故选A.二、多项选择题9.已知双曲线22:2(0)C mx y m -=>的左、右焦点分别为1F ,2F ,若圆22(4)8x y -+=与双曲线C 的渐近线相切,则下列说法正确的是()A.双曲线C的离心率e =B.若双曲线C 上一点P 满足1PF x ⊥轴,则1PF =C.若双曲线C 上一点P 满足122PF PF =,则12PF F △的周长为4+D.双曲线C 上存在一点P ,使得点P 到C9.答案:BC解析:对于A 项,由220mx y -=,可得双曲线的渐近线方程为y =.圆22(4)8x y -+=的圆心为(4,0),半径r =因为双曲线的渐近线与圆相切,所以圆心(4,0)0y -=的距离=1m =,所以双曲线的方程为22122x y -=,a b ==,24c =,2c =,所以离心率ce a==A 项错误.对于B 项,由A 知,1(2,0)F -,所以直线1PF 的方程为2x =-.代入双曲线方程可得22y =,则y =,所以1PF =B 项正确.对于C 项,由已知1222PF PF PF =>,根据双曲线的定义可知,1222PF PF PF a -===,所以1PF =又1224F F c ==,所以12PF F △的周长为12124PF PF F F ++=+,故C 项正确.对于D 项,设()00,P x y ,双曲线的渐近线方程为y x =±,则点()00,P x y 到直线0x y -=的距离1d =,到直线0x y +=的距离2d =2200122x y d d -=.又点()00,P x y 在双曲线222x y -=上,所以22002x y -=,所以121d d =,故D 项错误.故选BC.10.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点(3,1)M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是()A.34PQ k =- B.121x x =C.25||4PQ =D.1l 与2l 之间的距离为410.答案:BC解析:由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =中得2440y my --=,则124y y =-,所以()212121616y y x x ==,所以121x x =,故B 正确;点P 与M 均在直线1l 上,则点P 的坐标为1,14⎛⎫⎪⎝⎭,由124y y =-得24y =-,则点Q 的坐标为(4,4)-,则4141344PQ k --==--,故A 错误;由抛物线的定义可知,12125||4244PQ x x p =++=++=,故C 正确;因为1l 与2l 平行,所以1l 与2l 之间的距离125d y y =-=,故D 错误.故选BC.11.[2024春·高二·山西·月考联考]已知椭圆2222:1(0)x y C a b a b +=>>过点32⎫⎪⎪⎭,直线1:2l y x m =-+与椭圆C 交于M ,N 两点,且线段MN 的中点为P ,O 为坐标原点,直线OP 的斜率为32,则下列结论正确的是()A.椭圆C 的离心率为12B.椭圆C 的方程为22112x y += C.若1m =,则35||2MN =D.若12m =,则椭圆C 上存在E ,F 两点,使得E ,F 关于直线l 对称11.答案:AC解析:设()11,M x y ,()22,N x y ,则1212,22x x y y P ++⎛⎫⎪⎝⎭,即121232OP y y k x x +==+因为点M ,N 在椭圆C 上,所以2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减,得()()()()12121212220x x x x y y y y a b +-+-+=,即()()()()121222121210y y y y a b x x x x +-+=+-,由题得121212MN y y k x x -==--,所以221304a b -=,即2234b a =,又222a b c =+,所以2214c a =,则离心率12c e a ==,故A 正确.因为椭圆C过点32⎫⎪⎪⎭,所以223314a b +=,又由A 选项知,2234b a =,联立解得24a =,23b =,所以椭圆C 的标准方程为22143x y +=,故B 错误.若1m =,则直线l 的方程为112y x =-+,由2211,21,43y x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得220x x --=,所以11x =-,22x =,则|||21|2MN =+=,故C 正确.若12m =,则直线l 的方程为1122y x =-+.假设椭圆C 上存在E ,F 两点,使得E ,F 关于直线l 对称,则设()33,E x y ,()44,F x y ,线段EF 的中点为()00,Q x y ,则3402x x x +=,3402y y y +=.因为E ,F 关于直线l 对称,所以2EF k =,且点Q 在直线l上,即001122y x =-+.又E ,F 两点在椭圆C 上,所以223322441,431,43x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减,得()()()()34343434043x x x x y y y y +-+-+=,即()()()34343434043y y y y x x x x +-++=-,所以()343438x x y y ++=-,即0038y x =-.联立000011,223,8y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩解得004,3,2x y =⎧⎪⎨=-⎪⎩即34,2Q ⎛⎫- ⎪⎝⎭.因为22342143⎛⎫- ⎪⎝⎭+>,所以点Q 在椭圆C 外,这与Q 是弦EF 的中点矛盾,所以椭圆C 上不存在E ,F 两点,使得E ,F 关于直线l 对称,故D 错误.故选AC.三、填空题12.已知椭圆22122:1(0)x y C a b a b +=>>和双曲线22222:1x y C m n-=(0m >,0n >)的焦点相同,1F ,2F 分别为左、右焦点,P 是椭圆和双曲线在第一象限的交点.若2PF x ⊥轴,则椭圆和双曲线的离心率之积为___________.12.答案:1解析:设122F F c =,由题可知122PF PF a +=,122PF PF m -=.因为2PF x ⊥轴,所以21PF -22212PF F F =,所以椭圆和双曲线的离心率之积为2121212221212121F F F F F F c ca m PF PF PF PF PF PF ⋅=⋅==+--.13.[2023年全国高考真题]已知双曲线2222:1x y C a b-=(0a >,0b >)的左、右焦点分别为1F ,2F .点A 在C 上,点B 在y 轴上,11F A F B ⊥ ,2223F A F B =-,则C 的离心率为__________.13.答案:355解析:法一:建立如图所示的坐标系,依题意设1(,0)F c -,2(,0)F c ,(0,)B n .由2223F A F B =- ,得52,33A c n ⎛⎫- ⎪⎝⎭.又11F A F B ⊥ ,且182,33F A c n ⎛⎫=- ⎪⎝⎭ ,1(,)F B c n = ,则22118282,(,)03333F A F B c n c n c n ⎛⎫⋅=-⋅=-= ⎪⎝⎭ ,所以224n c =.又点A 在双曲线C 上,则2222254991c n a b -=,整理得22222549c na b-=,将224n c =,222b c a =-代入,得2222225169c c a c a -=-,即222162591e e e -=-,解得295e =或215e =(舍去),故355e =.法二:由2223F A F B =-得2223F A F B =,设22F A x =,则23F B x =,||5AB x =.由双曲线的对称性可得13F B x =,由双曲线的定义可得122AF x a =+.设12F AF θ∠=,则33sin 55x x θ==,所以422cos 55x axθ+==,解得x a =,所以14AF a =,22AF a =.在12AF F △中,由余弦定理可得222216444cos 165a a c a θ+-==,即2259c a =,可得355e =.14.已知F 为抛物线22y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,8OA OB ⋅=(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值是__________.14.答案:12解析:由题意可知)1(,02F ,设直线AB 的方程为x ty m =+,点211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,直线AB 与x 轴的交点为(,0)C m ,联立方程2,2,x ty m y x =+⎧⎨=⎩消去x 得2220y ty m --=,则2480t m ∆=+>,122y y m =-.因为8OA OB ⋅= ,所以()21212804y y y y +-=,解得124y y =或128y y =-,由点A ,B 在该抛物线上且位于x 轴的两侧,可知120y y <,所以1228y y m =-=-,故4m =,此时0∆>,即218y y =-.不妨设点A 在x 轴上方,则10y >,120y y ->,且1,02F ⎛⎫⎪⎝⎭,(4,0)C ,则12111||||22ABO AFO S S OC y y OF y +=⨯⨯-+⨯⨯△△12112111119916421222244y y y y y y y =⨯⨯-+⨯⨯=-=+≥=,当且仅当119164y y =,即183y =时,等号成立.所以ABO △与AFO △面积之和的最小值是12.四、解答题15.[2023年全国高考真题]已知双曲线C的中心为坐标原点,左焦点为(-,离(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0)-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,证明:点P 在定直线上.15.答案:(1)221416x y -=(2)证明见解析解析:(1)因为双曲线C的左焦点为(-,所以c =.由离心率25c e a a===2a =,所以4b ==,所以C 的方程为221416x y -=.(2)证明:设()11,M x y (10x <,10y >),()22,N x y ,显然直线MN 的斜率不为0,故设直线MN 的方程为4x my =-.因为1(2,0)A -,2(2,0)A ,所以直线1MA 的方程为1122)(y y x x =++,直线2NA 的方程为22(2)2y y x x =--,联立1122(2),2(2),2y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩消去y 得12122222y x x x y x --⋅=++.联立224,1,416x my x y =-⎧⎪⎨-=⎪⎩消去x 整理得()224132480m y my --+=,则2410m -≠,22561920m ∆=+>,则1223241m y y m +=-,1224841y y m =-,所以()121232my y y y =+,所以211212112122123926223312222y y y x my y y x y my y y y y---⋅===-+--,所以232x x -=-+,解得1x =-,所以点P 在定直线1x =-上.16.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,上顶点为B ,其长轴长是短轴长的2倍,P 是C 上任意一点,12F PF S △.(1)求椭圆C 的方程;(2)过(,)E a b 作一直线与C 交于M ,N 两点,直线BM ,BN 与x 轴分别交于点R ,S ,求证:RS 的中点是定点.16.答案:(1)2214x y +=(2)证明见解析解析:(1)由题意知2a b =,12F PF S △,而()122max122F PF S b c bc =⋅⋅====△,则21b =,即1b =,2a =,则椭圆C 的方程为2214x y +=.(2)证明:根据(1)知(2,1)E ,(0,1)B ,设()11,M x y ,()22,N x y ,由题意知直线EM 斜率存在,且不为0,设直线EM 的方程为(2)1y k x =-+.则由22(2)1,14y k x x y =-+⎧⎪⎨+=⎪⎩得()222148(21)16160k x k k x k k +--+-=.则有1228(21)14k k x x k -+=+,12216(1)14k k x x k-=+.直线BM 的方程为1111y y x x --=,则111R xx y =-;直线BN 的方程为2211y y x x --=,则221s xx y =-.取RS 的中点为()0,0x ,则有120121211xx x y y ⎛⎫=+ ⎪--⎝⎭12121222x x k x x ⎛⎫=-+ ⎪--⎝⎭()121212411224x x k x x x x ⎡⎤-=-+⎢⎥-++⎣⎦22216(1)4114116(1)16(21)241414k k k k k k k k k k -⎡⎤-⎢⎥+=-+⎢⎥--⎢⎥-+++⎣⎦2=.即RS的中点是定点(2,0).17.已知抛物线C的顶点为坐标原点O,焦点F在坐标轴上,且过(2,A,1,2B⎛⎝两点.(1)求C的方程;(2)设过点F的直线l与C交于M,N两点,P,Q两点分别是直线AM,BN与x轴的交点,证明:||||OP OQ⋅为定值.17.答案:(1)24y x=(2)证明见解析解析:(1)由题意可知抛物线C过第一、四象限,故可设抛物线C的方程为22(0)y px p=>,代入(2,A得84p=,则2p=,故抛物线C的方程为24y x=.(2)证明:由(1)可得(1,0)F,易得直线l的斜率不为0,则可设直线:1l x my=+,211,4yM y⎛⎫⎪⎝⎭,222,4yN y⎛⎫⎪⎝⎭.联立方程得21,4,x myy x=+⎧⎨=⎩消去x得2440y my--=,则216160m∆=+>,124y y m+=,124y y=-.当直线AM的斜率不存在时,(2,M-,此时直线:14l x y=-+,则12N⎛⎝,(2,0)P∴,1,02Q⎛⎫⎪⎝⎭,则1||||212OP OQ⋅=⨯=;当直线AM的斜率存在时,12124AMyky-==-,则直线AM的方程为2)y x-=-,令0y=,则2)x-=-,解得122x=-,12,02P⎛⎫∴- ⎪⎪⎝⎭,同理可得22,04Q ⎛⎫ ⎪ ⎪⎝⎭,故121||||14OP OQ y y ⋅===(定值).综上,||||OP OQ ⋅为定值1.18.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为(2,0)A -,焦距为动圆D 的圆心坐标是(0,2),过点A 作圆D 的两条切线,分别交椭圆于M ,N 两点,记直线AM ,AN 的斜率分别为1k ,2k .(1)求证:121k k =.(2)若O 为坐标原点,作OP MN ⊥,垂足为P .问:是否存在定点Q ,使得PQ 为定值?18.答案:(1)证明见解析(2)存在点5,03Q ⎛⎫- ⎪⎝⎭,使得PQ 为定值解析:(1)证明:由题意知,椭圆C 的左顶点为(2,0)A -,焦距为,可得2222,2,a c abc =⎧⎪=⎨⎪=+⎩解得224,1,a b ⎧=⎨=⎩所以椭圆C 的方程为2214x y +=.若过点A 作圆D 的一条切线的斜率不存在,则其方程为2x =-,其与椭圆只有点A 一个交点,此时圆D 半径为2,与题干矛盾,所以设过点A 且与圆D 相切的直线方程为(2)y k x =+,动圆D 的半径为(2)r r ≠,则r =,化简得()2224840r k k r --+-=,()2264440r ∆=-->,即208r <<,所以1k 和2k 是方程()2224840r k k r --+-=的两个实数根,由一元二次方程根与系数的关系知,121k k =.(2)存在点5,03Q ⎛⎫- ⎪⎝⎭,使得PQ 为定值,理由如下:设点()11,M x y ,()22,N x y ,联立方程得22(2),1,4y k x x y =+⎧⎪⎨+=⎪⎩整理得2222(14161640)k x k x k +++-=,0'∆>,则212164241k x k --=+,得2122841k x k -=+,12441ky k =+,所以222284,4141k k M k k ⎛⎫- ⎪++⎝⎭.因为121k k =,所以将k 换成1k ,可得222284,44k k N k k ⎛⎫- ⎪++⎝⎭.易知直线MN 的斜率存在,则直线MN 的斜率为()2222222443414282841414k kk k k k k k k k -++=--+-++,所以直线MN 的方程为()22224328414141k k k y x k k k ⎛⎫--=- ⎪+++⎝⎭.直线MN 的方程可化为()22224328414141k k k y x k k k ⎛⎫-=+- ⎪+++⎝⎭,即()()222224134284134141k k kk y x k k k k ⎡⎤+-⎢⎥=⋅+⨯-+++⎢⎥⎣⎦,即()2310341k y x k ⎛⎫=+ ⎪+⎝⎭,所以直线MN 过定点10,03E ⎛⎫- ⎪⎝⎭.因为OP MN ⊥,所以点P 的轨迹是以OE 为直径的圆上的一段弧,故存在点5,03Q ⎛⎫- ⎪⎝⎭,使得PQ 为定值.19.已知抛物线2:2(0)C x py p =>,C 的焦点是F .(1)若过原点O 作两条直线交曲线C 于A ,B 两点,且OA OB ⊥,求证:直线AB 过定点;(2)若过曲线C 上一点(2,1)P 作两条直线交曲线C 于A ,B 两点,且0FA FB ⋅=,求AFB △的面积的取值范围.19.答案:(1)证明见解析(2)[12)-+∞解析:(1)证明:因为A ,B 是两直线与抛物线C 的交点,所以OA ,OB 的斜率均存在,且不为零,故可设直线:(0)OA y kx k =≠,则直线1:OB y x k =-.由12,02y kx x x py =⎧⇒=⎨=⎩,22x pk =,所以()22,2A pk pk .同理得222,p p B k k ⎛⎫- ⎪⎝⎭.则2222122ABppk k k k p k pk k -==-+,则直线AB 的方程为2112(2)2y pk k x pk y k x p k k ⎛⎫⎛⎫-=--⇒=-+ ⎪ ⎪⎝⎭⎝⎭,所以直线AB 过定点(0,2)p .(2)因为点(2,1)P 在曲线C 上,所以将点P 的坐标代入曲线C 的方程可得2p =,即24x y =,则(0,1)F .设()11,A x y ,()22,B x y ,由题意可知直线AB 的斜率存在,则可设直线AB 的方程为y kx t =+.则由24,x y y kx t ⎧=⎨=+⎩得2440x kx t --=,则124x x k +=,124x x t =-,()2160k t ∆=+>.所以()()1122,1,1FA FB x y x y ⋅=-⋅-,()()()222212121(1)(1)41(1)4(1)0k x x t k x x t t k k t k t =++-++-=-++-+-=,得()22161034k t t t =-+≥⇒≥+3t ≤-0∆>.而点F 到AB 的距离d =,||AB ==则211||2|1|(1)22AFB S d AB t t =⋅==-=-△.所以12AFB S ≥-△.所以AFB △的面积的取值范围为[12)-+∞.。

高中数学平面解析几何真题(解析版)

高中数学平面解析几何真题(解析版)

专题09平面解析几何真题汇编1.设A,B为椭圆的长轴顶点,E,F为的两个焦点,|ABl=4,,P为上一点,满足,则△PEF的面积为.【答案】1【解析】由题意知该椭圆可设为.由余弦定理,.所以.2.在平面直角坐标系xOy中,椭圆的左、右焦点分别是,椭圆C的弦ST与UV分别平行于x轴与y轴,且相交于点P.已知线段PU,PS,PV,PT的长分别为1,2,3,6,则的面积为【答案】【解析】由对称性,不妨设在第一象限,则由条件知.即P(2,1).进而由得U(2,2)),S(4,1),代入椭圆C的方程知,解得a2=20,b2=5.从而.3.在平面直角坐标系中,椭圆C的方程为,F、A分别为椭圆C的上焦点、右顶点.若P为椭圆C上位于第一象限内的动点,则四边形面积的最大值为___________。

【答案】【解析】易知,,设则其中,当时,四边形OAPF面积的最大值为.故答案为:4.在平面直角坐标系中,点集,在点集K中随机取出三个点,则这三点中存在两点之间距离为的概率为___________。

【答案】【解析】易知,点集K中有9个点,故在点集K中随机取出三个点的种数为。

将点集K中的点按图标记为其中有8对点之间的距离为。

由对称性,考虑取两点的情形.则剩下的一个点有7种取法,这样有个三点组(不计每组中三点的次序)。

对每个,点集中恰有两点与距离为,因而,恰有这8个三点组被计算了两次。

故满足条件的三点组个数为从而所求概率为.故答案为:5.已知双曲线C:,左、右焦点分别为F1、F2.过点F2作一直线与双曲线C的右半支交于点P、Q,使得.则的内切圆半径为________.【答案】【解析】如图所示.由双曲线的性质知:.由.从而,的内切圆半径为:.6.设椭圆的两个焦点为,过点的直线与椭圆交于点P、Q.若,且,则椭圆的短轴与长轴的比值为__________.【答案】【解析】不妨设.设椭圆的长轴、短轴的长度分别为,焦距为.则,且由椭圆的定义知.故.如图所示,设H为线段的中点.则,且.由勾股定理知:7.抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.【答案】1【解析】根据抛物线的定义可知,,故,在三角形中,根据余弦定理有,由于,所以,即,故.点睛:本题主要考查直线与抛物线的位置关系,考查基本不等式求最值的方法,考查化归与转化的数学思想方法.抛物线的定义是:动点到定点的距离等于到定直线的距离,这是在有关抛物线的小题中常考考知识点.本题中利用抛物线的定义,进行转化后,利用余弦定理和基本不等式来求解最值.8.直线与抛物线交于两点,为抛物线上的一点,.则点的坐标为______.【答案】【解析】设.由.则①又,则②因为,所以,.故.将方程组①、②代入上式并整理得.显然,.否则,.于是,点在直线上,即点重合.所以,.故所求点.故答案为:9.双曲线的右半支与直线围成的区域内部(不含边界)整点(横纵坐标均为整数的点)的个数是________. 【答案】9800 【解析】由对称性知,只需先考虑轴上方的情况. 设与双曲线右半支交于点,与直线交于点.则线段内部的整点的个数为.从而,在轴上方区域内部整点的个数为. 又轴上有98个整点,则所求整点的个数为.10.已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】[]36,【解析】设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得342d ≤. 解得36a ≤≤. 11.椭圆上任意两点,若,则乘积的最小值为 .【答案】【解析】 设,.由在椭圆上,有①②得.于是当时,达到最小值.12.在平面直角坐标系xOy中,圆与抛物线:y2=4x恰有一个公共点,且圆与x轴相切于的焦点F.求圆的半径.【答案】【解析】设圆的半径为R,圆心为(1,R)(-1,R),则圆的方程可写作.不妨设圆与抛物线相切于点,则过该切点的切线方程:以圆为对象,得以抛物线为对象,得.于是可得①②又切点在抛物线y2=4x上,③由①得,由②得.解得:.故圆半径为.13.如图,在锐角△ABC中,M是BC边的中点.点P在△A BC内,使得AP平分∠BAC.直线MP与△ABP,△ACP的外接圆分别相交于不同于点P的两点D,E.证明:若DE=MP,则BC=2BP.【答案】证明见解析【解析】如图:只要证明两小黄全等△DBP,△EMC。

高考数学《平面解析几何》练习题及答案

高考数学《平面解析几何》练习题及答案

平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。

高中数学平面解析几何练习题(含解析)

高中数学平面解析几何练习题(含解析)

高中数学平面解析几何练习题(含解析)一、单选题1.若曲线C :2224100x y ax ay a ++--=表示圆,则实数a 的取值范围为( ) A .()2,0- B .()(),20,-∞-⋃+∞ C .[]2,0-D .(][),20,-∞-+∞2.过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x =B .24y x =-C .212=-x yD .212x y =3.过 ()()1320A B --,,,两点的直线的倾斜角是( )A .45︒B .60︒C .120D .1354.已知()3,3,3A ,()6,6,6B ,O 为原点,则OA 与BO 的夹角是( ) A .0B .πC .π2D .2π35.已知抛物线2:4C y x =与圆22:(1)4E x y -+=交于A ,B 两点,则||AB =( )A .2B .C .4D .6.已知抛物线2x my =焦点的坐标为(0,1)F ,P 为抛物线上的任意一点,(2,2)B ,则||||PB PF +的最小值为( )A .3B .4C .5D .1127.动点P ,Q 分别在抛物线24x y =和圆228130+-+=x y y 上,则||PQ 的最小值为( )A .B C D 8.直线2360x y +-=关于点(1,1)对称的直线方程为( ) A .3220x y -+= B .2370x y ++= C .32120x y --=D .2340x y +-=9.已知椭圆2222:1()0x c bb y a a +>>=的上顶点为A ,左、右焦点分别为12,F F ,连接2AF 并延长交椭圆C 于另一点B ,若12:7:3F B F B =,则椭圆C 的离心率为( )A .14B .13C .12D 10.“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题11.直线2310x y -+=与5100x y +-=的夹角为________.12.已知圆:C 2220x y x ++=,若直线y kx =被圆C 截得的弦长为1,则k =_______. 13.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________. 14.写出与圆221x y +=和圆()()224316x y -++=都相切的一条切线方程___________.三、解答题15.已知△ABC 底边两端点(0,6)B 、(0,6)C -,若这个三角形另外两边所在直线的斜率之积为49-,求点A 的轨迹方程.16.已知1F 、2F 是椭圆()2222:10x yC a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F △的面积为9,求实数b 的值.17.已知圆C :22120x y Dx Ey +++-=关于直线x +2y -4=0对称,且圆心在y 轴上,求圆C 的标准方程.18.已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ λ⋅+⋅为定值?若存在,求出λ的值;若不存在,说明理由.参考答案:1.B【分析】根据圆的一般式变形为标准式,进而可得参数范围. 【详解】由2224100x y ax ay a ++--=, 得()()2222510x a y a a a ++-=+, 由该曲线表示圆, 可知25100a a +>, 解得0a >或2a <-, 故选:B. 2.C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C 3.D【分析】根据两点坐标求出直线的斜率,结合直线倾斜角的范围即可得出结果. 【详解】由已知直线的斜率为 ()03tan 1018021k αα--===-≤<--,,所以倾斜角135α=. 故选:D. 4.B【分析】求出OA 和BO ,利用向量关系即可求出.【详解】因为()3,3,3A ,()6,6,6B ,则()3,3,3OA =,()6,6,6BO =---, 则3cos ,1OA BO OA BO OA BO⨯⋅<>===-⋅,所以OA 与BO 的夹角是π. 故选:B. 5.C【分析】先联立抛物线与圆求出A ,B 横坐标,再代入抛物线求出纵坐标即可求解.【详解】由对称性易得A ,B 横坐标相等且大于0,联立()222414y xx y ⎧=⎪⎨-+=⎪⎩得2230x x +-=,解得123,1x x =-=,则1A B x x ==,将1x =代入24y x =可得2y =±,则||4AB =. 故选:C. 6.A【分析】先根据焦点坐标求出m ,结合抛物线的定义可求答案. 【详解】因为抛物线2x my =焦点的坐标为()0,1,所以14m=,解得4m =. 记抛物线的准线为l ,作PN l ⊥于N ,作BAl 于A ,则由抛物线的定义得||||||||||3PB PF PB PN BA +=+=,当且仅当P 为BA 与抛物线的交点时,等号成立.故选:A. 7.B【分析】设2001,4P x x ⎛⎫⎪⎝⎭,根据两点间距离公式,先求得P 到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设2001,4P x x ⎛⎫⎪⎝⎭,圆化简为22(4)3x y +-=,即圆心为(0,4)所以点P 到圆心的距离d = 令20t x =,则0t ≥, 令21()1616f t t t =-+,0t ≥,为开口向上,对称轴为8t =的抛物线, 所以()f t 的最小值为()812f =,所以min d所以||PQ的最小值为min d =故选:B 8.D【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,以(2,2)x y --代换原直线方程中的(,)x y 得()()223260x y -+--=,即2340x y +-=.故选:D. 9.C【分析】根据椭圆的定义求得12,F B F B ,在1ABF 中,利用余弦定理求得22cos F AF ∠,在12AF F △中,再次利用余弦定理即可得解.【详解】解:由题意可得122F B F B a +=, 因为12:7:3F B F B =, 所以1273,55F B a F B a ==, 因为A 为椭圆的上顶点,所以12AF AF a ==,则85AB a =,在1ABF 中,22222211221644912525cos 82225a a a AF AB BF F AF AF ABa a +-+-∠===⨯⨯,在12AF F △中,122212121222cos F F AF AF A F A F A F F =+∠-, 即222224c a a a a =+-=,所以12c a =,即椭圆C 的离心率为12. 故选:C.10.A【分析】根据给定直线方程求出12l l ⊥的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】依题意,12(4)(2)0l l m m m m ⊥⇔-++=,解得0m =或1m =,所以“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的充分不必要条件. 故选:A 11.4π##45︒ 【分析】根据直线方程可得各直线斜率,进而可得倾斜角之间的关系,从而得夹角. 【详解】直线2310x y -+=的斜率123k ,即倾斜角α满足2tan 3α=, 直线5100x y +-=的斜率215k =-,即倾斜角β满足1tan 5β=-,所以()12tan tan 53tan 1121tan tan 153βαβαβα----===-+⎛⎫+-⨯ ⎪⎝⎭, 所以34βαπ-=,又两直线夹角的范围为0,2π⎡⎤⎢⎥⎣⎦,所以两直线夹角为4π,故答案为:4π. 12.【分析】将圆C 一般方程化为标准方程,先求圆心到直线的距离,再由圆的弦长公式即可解出k 的值.【详解】解:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1;圆心()1,0-到直线y kx =,由弦长为1可得1=,解得k =故答案为:13.()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心) 设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒===22(2)(3)13x y -+-=; (2)若圆过A B D 、、三点, 设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==22(2)(1)5x y -+-=;(3)若圆过 A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程 为25y x =-+,联立得47,33x y r ==⇒,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =, 线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=. 故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.14.1y =或247250x y ++=或4350x y --=【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123,,l l l , 易得切线1l 的方程为1y =,因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=,可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上, 在1l 上任取一点()0,1,设其关于OC 的对称点为()00,x y , 则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=, 综上,切线方程为1y =或247250x y ++=或4350x y --=. 故答案为:1y =或247250x y ++=或4350x y --=.15.()22108136x y x +=≠【分析】设(,)A x y ,利用斜率的两点式列方程并整理可得轨迹方程,注意0x ≠. 【详解】设(,)A x y 且0x ≠,则22663649AB ACy y y k k x x x -+-=⋅==-, 整理得:A 的轨迹方程()22108136x y x +=≠. 16.3b =【分析】由题意以及椭圆的几何性质列方程即可求解. 【详解】因为12PF PF ⊥,所以1290F PF ∠=︒, 所以12F PF △为直角三角形,22212(2)PF PF c +=,122PF PF a +=, ()2221212122PF PF PF PF PF PF +=+-⋅,即()()221212242c a PF PF =-⨯⋅, 1212192F PF S PF PF =⋅=△, 所以2244490c a =-⨯=,所以2449b =⨯.所以3b =; 综上,b =3.17.22(2)16x y +-=. 【分析】由题设知圆心(,)22D EC --,且在已知直线和y 轴上,列方程求参数D 、E ,写出一般方程,进而可得其标准方程. 【详解】由题意知:圆心(,)22D EC --在直线x +2y -4=0上,即-2D -E -4=0. 又圆心C 在y 轴上,所以-2D=0. 由以上两式得:D =0, E =-4,则224120x y y +--=, 故圆C 的标准方程为22(2)16x y +-=.18.(1)2211222x y ⎛⎫+-= ⎪⎝⎭ (2)存在,1λ=【分析】(1)①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,利用点差法求解; ②当直线l 不存在斜率时,易知()0,0M ,验证即可;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,与椭圆方程联立,结合韦达定理,利用数量积运算求解; ②当直线l 不存在斜率时,直线l 的方程为:0x =,易得(P、(0,Q ,验证即可.【详解】(1)解:①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,则应用点差法:22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式联立作差得:12121212()()()()042x x x x y y y y -+-++=, ∴()()()()121200121212121212002122PQ PQ PQ OM y y y y y y y y y y k k k k x x x x x x x x x x -+-+=⋅=⋅=⋅=⋅=--+-+, 又∵001PQ MA y k k x -==, ∴0000112y y x x -⋅=-,化简得22000220x y y +-=(00x ≠), ②当直线l 不存在斜率时,()0,0M ,综上,无论直线是否有斜率,M 的轨迹方程为2211222x y ⎛⎫+-= ⎪⎝⎭;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,联立221142y kx x y =+⎧⎪⎨+=⎪⎩并化简得:22(21)420k x kx ++-=,∴0∆>恒成立,∴122421k x x k +=-+,122221x x k ⋅=-+,又AP ()11,x k x =⋅,AQ ()22,x k x =⋅,OP ()11,1x k x =⋅+,OQ ()22,1x k x =⋅+,∴AP AQ OP OQ λ⋅+⋅()()()22121212111k x x k x x k x x λ=+⋅⋅++⋅⋅+++,()()()222222211222141212121k k k k k k λλλ-+++++=-+=-+++, 若使AP AQ OP OQ λ⋅+⋅为定值, 只需()222121λλ++=,即1λ=,其定值为3-, ②当直线l 不存在斜率时,直线l 的方程为:0x =,则有(P、(0,Q , 又AP ()1=,AQ ()0,1=,OP (=,OQ (0,=, ∴2λλ⋅+⋅=--AP AQ OP OQ ,当1λ=时,AP AQ OP OQ λ⋅+⋅也为定值3-, 综上,无论直线是否有斜率,一定存在一个常数1λ=, 使AP AQ OP OQ λ⋅+⋅为定值3-.。

高考数学-平面解析几何(含22年真题讲解)

高考数学-平面解析几何(含22年真题讲解)

高考数学-平面解析几何(含22年真题讲解)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1 C .x 23+y 22=1 D .x 22+y 2=1【答案】B 【解析】 【分析】根据离心率及BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1,解得关于a 2,b 2的等量关系式,即可得解.【详解】解:因为离心率e =c a =√1−b 2a 2=13,解得b 2a 2=89,b 2=89a 2,A 1,A 2分别为C 的左右顶点,则A 1(−a,0),A 2(a,0),B 为上顶点,所以B(0,b).所以BA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(−a,−b),BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =(a,−b),因为BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1 所以−a 2+b 2=−1,将b 2=89a 2代入,解得a 2=9,b 2=8, 故椭圆的方程为x 29+y 28=1.故选:B.2.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .13【答案】A 【解析】 【分析】设P (x 1,y 1),则Q (−x 1,y 1),根据斜率公式结合题意可得y 12−x 12+a 2=14,再根据x 12a 2+y 12b 2=1,将y 1用x 1表示,整理,再结合离心率公式即可得解. 【详解】解:A(−a,0),设P(x1,y1),则Q(−x1,y1),则k AP=y1x1+a ,k AQ=y1−x1+a,故k AP⋅k AQ=y1x1+a ⋅y1−x1+a=y12−x12+a2=14,又x12a2+y12b2=1,则y12=b2(a2−x12)a2,所以b2(a2−x12)a2−x12+a2=14,即b2a2=14,所以椭圆C的离心率e=ca =√1−b2a2=√32.故选:A.3.【2022年全国乙卷】设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=()A.2 B.2√2C.3 D.3√2【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A的横坐标,进而求得点A坐标,即可得到答案.【详解】由题意得,F(1,0),则|AF|=|BF|=2,即点A到准线x=−1的距离为2,所以点A的横坐标为−1+2=1,不妨设点A在x轴上方,代入得,A(1,2),所以|AB|=√(3−1)2+(0−2)2=2√2.故选:B4.【2022年全国乙卷】(多选)双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.√52B.32C.√132D.√172【答案】AC 【解析】【分析】依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,利用正弦定理结合三角变换、双曲线的定义得到2b=3a或a=2b,即可得解,注意就M,N在双支上还是在单支上分类讨论.【详解】解:依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,若M,N分别在左右支,因为OG⊥NF1,且cos∠F1NF2=35>0,所以N在双曲线的右支,又|OG|=a,|OF1|=c,|GF1|=b,设∠F1NF2=α,∠F2F1N=β,在△F1NF2中,有|NF2|sinβ=|NF1|sin(α+β)=2csinα,故|NF1|−|NF2|sin(α+β)−sinβ=2csinα即asin(α+β)−sinβ=csinα,所以asinαcosβ+cosαsinβ−sinβ=csinα,而cosα=35,sinβ=ac,cosβ=bc,故sinα=45,代入整理得到2b=3a,即ba =32,所以双曲线的离心率e=ca =√1+b2a2=√132若M,N均在左支上,同理有|NF 2|sinβ=|NF 1|sin (α+β)=2c sinα,其中β为钝角,故cosβ=−bc ,故|NF 2|−|NF 1|sinβ−sin (α+β)=2c sinα即a sinβ−sinαcosβ−cosαsinβ=csinα, 代入cosα=35,sinβ=ac ,sinα=45,整理得到:a4b+2a =14, 故a =2b ,故e =√1+(b a)2=√52,故选:AC.5.【2022年北京】若直线2x +y −1=0是圆(x −a)2+y 2=1的一条对称轴,则a =( ) A .12 B .−12C .1D .−1【答案】A 【解析】 【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解. 【详解】由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a +0−1=0,解得a =12. 故选:A .6.【2022年新高考1卷】(多选)已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1B .直线AB 与C 相切C .|OP|⋅|OQ|>|OA |2D .|BP|⋅|BQ|>|BA|2【答案】BCD 【解析】 【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D. 【详解】将点A 的代入抛物线方程得1=2p ,所以抛物线方程为x 2=y ,故准线方程为y =−14,A 错误; k AB =1−(−1)1−0=2,所以直线AB 的方程为y =2x −1,联立{y =2x −1x 2=y ,可得x 2−2x +1=0,解得x =1,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点, 所以,直线l 的斜率存在,设其方程为y =kx −1,P(x 1,y 1),Q(x 2,y 2), 联立{y =kx −1x 2=y,得x 2−kx +1=0,所以{Δ=k 2−4>0x 1+x 2=k x 1x 2=1,所以k >2或k <−2,y 1y 2=(x 1x 2)2=1,又|OP|=√x 12+y 12=√y 1+y 12,|OQ|=√x 22+y 22=√y 2+y 22, 所以|OP|⋅|OQ|=√y 1y 2(1+y 1)(1+y 2)=√kx 1×kx 2=|k|>2=|OA|2,故C 正确; 因为|BP|=√1+k 2|x 1|,|BQ|=√1+k 2|x 2|,所以|BP|⋅|BQ|=(1+k 2)|x 1x 2|=1+k 2>5,而|BA|2=5,故D 正确. 故选:BCD7.【2022年新高考2卷】(多选)已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°【答案】ACD 【解析】 【分析】由|AF |=|AM |及抛物线方程求得A(3p 4,√6p2),再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得B(p 3,−√6p3),即可求出|OB |判断B 选项;由抛物线的定义求出|AB |=25p 12即可判断C 选项;由OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ <0,MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ <0求得∠AOB ,∠AMB 为钝角即可判断D 选项. 【详解】对于A ,易得F(p2,0),由|AF |=|AM |可得点A 在FM 的垂直平分线上,则A 点横坐标为p2+p2=3p 4,代入抛物线可得y 2=2p ⋅3p 4=32p2,则A(3p 4,√6p2),则直线AB 的斜率为√6p23p 4−p2=2√6,A 正确; 对于B ,由斜率为2√6可得直线AB 的方程为x =2√6+p2,联立抛物线方程得y 2−√6−p 2=0,设B(x 1,y 1),则√62p +y 1=√66p ,则y 1=−√6p3,代入抛物线得(−√6p 3)2=2p ⋅x 1,解得x 1=p3,则B(p 3,−√6p3),则|OB |=√(p 3)2+(−√6p 3)2=√7p 3≠|OF |=p 2,B 错误; 对于C ,由抛物线定义知:|AB |=3p 4+p 3+p =25p 12>2p =4|OF |,C 正确;对于D ,OA⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =(3p 4,√6p 2)⋅(p 3,−√6p 3)=3p 4⋅p 3+√6p 2⋅(−√6p 3)=−3p 24<0,则∠AOB 为钝角, 又MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ =(−p 4,√6p 2)⋅(−2p 3,−√6p 3)=−p 4⋅(−2p 3)+√6p 2⋅(−√6p 3)=−5p 26<0,则∠AMB 为钝角,又∠AOB +∠AMB +∠OAM +∠OBM =360∘,则∠OAM +∠OBM <180∘,D 正确. 故选:ACD.8.【2022年全国甲卷】设点M在直线2x+y−1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M 的方程为______________.【答案】(x−1)2+(y+1)2=5【解析】【分析】设出点M的坐标,利用(3,0)和(0,1)均在⊙M上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M在直线2x+y−1=0上,∴设点M为(a,1−2a),又因为点(3,0)和(0,1)均在⊙M上,∴点M到两点的距离相等且为半径R,∴√(a−3)2+(1−2a)2=√a2+(−2a)2=R,a2−6a+9+4a2−4a+1=5a2,解得a=1,∴M(1,−1),R=√5,⊙M的方程为(x−1)2+(y+1)2=5.故答案为:(x−1)2+(y+1)2=59.【2022年全国甲卷】记双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值______________.【答案】2(满足1<e≤√5皆可)【解析】【分析】根据题干信息,只需双曲线渐近线y=±ba x中0<ba≤2即可求得满足要求的e值.【详解】解:C:x2a2−y2b2=1(a>0,b>0),所以C的渐近线方程为y=±bax,结合渐近线的特点,只需0<ba ≤2,即b2a2≤4,可满足条件“直线y=2x与C无公共点”所以e=ca =√1+b2a2≤√1+4=√5,又因为e>1,所以1<e≤√5,故答案为:2(满足1<e≤√5皆可)10.【2022年全国甲卷】若双曲线y 2−x 2m 2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =_________.【答案】√33【解析】 【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可. 【详解】解:双曲线y 2−x 2m2=1(m >0)的渐近线为y =±xm ,即x ±my =0,不妨取x +my =0,圆x 2+y 2−4y +3=0,即x 2+(y −2)2=1,所以圆心为(0,2),半径r =1,依题意圆心(0,2)到渐近线x +my =0的距离d =√1+m 2=1,解得m =√33或m =−√33(舍去).故答案为:√33.11.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.【答案】(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x−85)2+(y −1)2=16925;【解析】 【分析】设圆的方程为x 2+y 2+Dx +Ey +F =0,根据所选点的坐标,得到方程组,解得即可; 【详解】解:依题意设圆的方程为x 2+y 2+Dx +Ey +F =0,若过(0,0),(4,0),(−1,1),则{F =016+4D +F =01+1−D +E +F =0 ,解得{F =0D =−4E =−6 ,所以圆的方程为x 2+y 2−4x −6y =0,即(x −2)2+(y −3)2=13;若过(0,0),(4,0),(4,2),则{F =016+4D +F =016+4+4D +2E +F =0 ,解得{F =0D =−4E =−2 , 所以圆的方程为x 2+y 2−4x −2y =0,即(x −2)2+(y −1)2=5; 若过(0,0),(4,2),(−1,1),则{F =01+1−D +E +F =016+4+4D +2E +F =0 ,解得{F =0D =−83E =−143 ,所以圆的方程为x 2+y 2−83x −143y =0,即(x −43)2+(y −73)2=659;若过(−1,1),(4,0),(4,2),则{1+1−D +E +F =016+4D +F =016+4+4D +2E +F =0,解得{F =−165D =−165E =−2 , 所以圆的方程为x 2+y 2−165x −2y −165=0,即(x −85)2+(y −1)2=16925;故答案为:(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x −85)2+(y −1)2=16925;12.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________.【答案】y =−34x +54或y =724x −2524或x =−1 【解析】 【分析】先判断两圆位置关系,分情况讨论即可. 【详解】圆x 2+y 2=1的圆心为O (0,0),半径为1,圆(x −3)2+(y −4)2=16的圆心O 1为(3,4),半径为4,两圆圆心距为√32+42=5,等于两圆半径之和,故两圆外切, 如图,当切线为l 时,因为k OO 1=43,所以k l =−34,设方程为y =−34x +t(t >0)O 到l 的距离d =√1+916=1,解得t =54,所以l 的方程为y =−34x +54,当切线为m 时,设直线方程为kx +y +p =0,其中p >0,k <0,由题意{√1+k 2=1√1+k2=4 ,解得{k =−724p =2524,y =724x −2524 当切线为n 时,易知切线方程为x =−1, 故答案为:y =−34x +54或y =724x −2524或x =−1.13.【2022年新高考1卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________. 【答案】13 【解析】 【分析】利用离心率得到椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,根据离心率得到直线AF 2的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,利用弦长公式求得c =138,得a =2c =134,根据对称性将△ADE 的周长转化为△F 2DE 的周长,利用椭圆的定义得到周长为4a =13. 【详解】∵椭圆的离心率为e =ca =12,∴a =2c ,∴b 2=a 2−c 2=3c 2,∴椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,不妨设左焦点为F 1,右焦点为F 2,如图所示,∵AF 2=a ,OF 2=c ,a =2c ,∴∠AF 2O =π3,∴△AF 1F 2为正三角形,∵过F 1且垂直于AF 2的直线与C 交于D ,E 两点,DE 为线段AF 2的垂直平分线,∴直线DE 的斜率为√33,斜率倒数为√3, 直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,判别式∆=(6√3c)2+4×13×9c 2=62×16×c 2, ∴|CD |=√1+(√3)2|y 1−y 2|=2×√∆13=2×6×4×c 13=6,∴ c =138, 得a =2c =134,∵DE 为线段AF 2的垂直平分线,根据对称性,AD =DF 2,AE =EF 2,∴△ADE 的周长等于△F 2DE 的周长,利用椭圆的定义得到△F 2DE 周长为|DF 2|+|EF 2|+|DE|=|DF 2|+|EF 2|+|DF 1|+|EF 1|=|DF 1|+|DF 2|+|EF 1|+|EF 2|=2a +2a =4a =13. 故答案为:13.14.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 【答案】[13,32] 【解析】 【分析】首先求出点A 关于y =a 对称点A ′的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可; 【详解】解:A (−2,3)关于y =a 对称的点的坐标为A ′(−2,2a −3),B (0,a )在直线y =a 上, 所以A ′B 所在直线即为直线l ,所以直线l 为y =a−3−2x +a ,即(a −3)x +2y −2a =0;圆C:(x +3)2+(y +2)2=1,圆心C (−3,−2),半径r =1, 依题意圆心到直线l 的距离d =√(a−3)2+22≤1,即(5−5a )2≤(a −3)2+22,解得13≤a ≤32,即a ∈[13,32]; 故答案为:[13,32]15.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 【答案】x +√2y −2√2=0 【解析】 【分析】令AB 的中点为E ,设A (x 1,y 1),B (x 2,y 2),利用点差法得到k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据|MN |求出k 、m ,即可得解; 【详解】解:令AB 的中点为E ,因为|MA |=|NB |,所以|ME |=|NE |, 设A (x 1,y 1),B (x 2,y 2),则x 126+y 123=1,x 226+y 223=1,所以x 126−x 226+y 123−y 223=0,即(x 1−x 2)(x 1+x 2)6+(y 1+y 2)(y 1−y 2)3=0所以(y 1+y 2)(y 1−y 2)(x 1−x 2)(x 1+x 2)=−12,即k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,令x =0得y =m ,令y =0得x =−m k ,即M (−m k ,0),N (0,m ),所以E (−m 2k ,m2), 即k ×m2−m 2k=−12,解得k =−√22或k =√22(舍去),又|MN |=2√3,即|MN |=√m 2+(√2m)2=2√3,解得m =2或m =−2(舍去), 所以直线AB:y =−√22x +2,即x +√2y −2√2=0;故答案为:x+√2y−2√2=016.【2022年北京】已知双曲线y2+x2m =1的渐近线方程为y=±√33x,则m=__________.【答案】−3【解析】【分析】首先可得m<0,即可得到双曲线的标准方程,从而得到a、b,再跟渐近线方程得到方程,解得即可;【详解】解:对于双曲线y2+x2m =1,所以m<0,即双曲线的标准方程为y2−x2−m=1,则a=1,b=√−m,又双曲线y2+x2m =1的渐近线方程为y=±√33x,所以ab =√33,即√−m=√33,解得m=−3;故答案为:−317.【2022年浙江】已知双曲线x2a2−y2b2=1(a>0,b>0)的左焦点为F,过F且斜率为b4a的直线交双曲线于点A(x1,y1),交双曲线的渐近线于点B(x2,y2)且x1<0<x2.若|FB|=3|FA |,则双曲线的离心率是_________.【答案】3√64【解析】【分析】联立直线AB 和渐近线l 2:y =ba x 方程,可求出点B ,再根据|FB|=3|FA|可求得点A ,最后根据点A 在双曲线上,即可解出离心率. 【详解】过F 且斜率为b4a 的直线AB:y =b4a (x +c),渐近线l 2:y =ba x , 联立{y =b4a (x +c)y =b a x,得B (c 3,bc 3a ),由|FB|=3|FA|,得A (−5c 9,bc 9a), 而点A 在双曲线上,于是25c 281a 2−b 2c 281a 2b 2=1,解得:c 2a 2=8124,所以离心率e =3√64. 故答案为:3√64.18.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3. (1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程. 【答案】(1)y 2=4x ; (2)AB:x =√2y +4. 【解析】 【分析】(1)由抛物线的定义可得|MF|=p +p2,即可得解;(2)设点的坐标及直线MN:x =my +1,由韦达定理及斜率公式可得k MN =2k AB ,再由差角的正切公式及基本不等式可得k AB =√22,设直线AB:x =√2y +n ,结合韦达定理可解.(1)抛物线的准线为x =−p2,当MD 与x 轴垂直时,点M 的横坐标为p , 此时|MF|=p +p2=3,所以p =2, 所以抛物线C 的方程为y 2=4x ; (2)设M(y 124,y 1),N(y 224,y 2),A(y 324,y 3),B(y 424,y 4),直线MN:x =my +1,由{x =my +1y 2=4x 可得y 2−4my −4=0,Δ>0,y 1y 2=−4,由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2,k AB =y 3−y 4y 324−y 424=4y3+y 4,直线MD:x =x 1−2y 1⋅y +2,代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0,Δ>0,y 1y 3=−8,所以y 3=2y 2,同理可得y 4=2y 1, 所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β, 所以k AB =tanβ=k MN 2=tanα2,若要使α−β最大,则β∈(0,π2), 设k MN =2k AB=2k >0,则tan(α−β)=tanα−tanβ1+tanαtanβ=k 1+2k 2=11k+2k ≤2√1k⋅2k=√24,当且仅当1k =2k 即k =√22时,等号成立,所以当α−β最大时,k AB =√22,设直线AB:x =√2y +n ,代入抛物线方程可得y 2−4√2y −4n =0, Δ>0,y 3y 4=−4n =4y 1y 2=−16,所以n =4, 所以直线AB:x =√2y +4. 【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.19.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点.(1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 【答案】(1)y 24+x 23=1(2)(0,−2) 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为mx 2+ny 2=1,过A (0,−2),B (32,−1), 则{4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.(2)A(0,−2),B(32,−1),所以AB:y +2=23x ,①若过点P(1,−2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63),代入AB 方程y =23x −2,可得T(√6+3,2√63),由MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ 得到H(2√6+5,2√63).求得HN 方程:y =(2−2√63)x −2,过点(0,−2).②若过点P(1,−2)的直线斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2). 联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,可得{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4 ,{y 1+y 2=−8(2+k)3k 2+4y 2y 2=4(4+4k−2k 2)3k 2+4 , 且x 1y 2+x 2y 1=−24k3k 2+4(∗) 联立{y =y 1y =23x −2 ,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1).可求得此时HN:y−y2=y1−y23y1+6−x1−x2(x−x2),将(0,−2),代入整理得2(x1+x2)−6(y1+y2)+x1y2+x2y1−3y1y2−12=0,将(∗)代入,得24k+12k2+96+48k−24k−48−48k+24k2−36k2−48=0,显然成立,综上,可得直线HN过定点(0,−2).【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20.【2022年新高考1卷】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】(1)−1;(2)16√29.【解析】【分析】(1)由点A(2,1)在双曲线上可求出a,易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q (x2,y2),再根据k AP+k BP=0,即可解出l的斜率;(2)根据直线AP,AQ的斜率之和为0可知直线AP,AQ的倾斜角互补,再根据tan∠PAQ=2√2即可求出直线AP,AQ的斜率,再分别联立直线AP,AQ与双曲线方程求出点P,Q的坐标,即可得到直线PQ的方程以及PQ的长,由点到直线的距离公式求出点A到直线PQ的距离,即可得出△PAQ的面积.(1)因为点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,所以4a2−1a2−1=1,解得a2=2,即双曲线C:x22−y2=1易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q(x2,y2),联立{y =kx +m x 22−y 2=1可得,(1−2k 2)x 2−4mkx −2m 2−2=0,所以,x 1+x 2=−4mk 2k 2−1,x 1x 2=2m 2+22k 2−1,Δ=16m 2k 2+4(2m 2+2)(2k 2−1)>0⇒m 2−1+2k 2>0.所以由k AP +k BP =0可得,y 2−1x2−2+y 1−1x 1−2=0,即(x 1−2)(kx 2+m −1)+(x 2−2)(kx 1+m −1)=0, 即2kx 1x 2+(m −1−2k )(x 1+x 2)−4(m −1)=0, 所以2k ×2m 2+22k 2−1+(m −1−2k )(−4mk2k 2−1)−4(m −1)=0,化简得,8k 2+4k −4+4m (k +1)=0,即(k +1)(2k −1+m )=0, 所以k =−1或m =1−2k ,当m =1−2k 时,直线l:y =kx +m =k (x −2)+1过点A (2,1),与题意不符,舍去, 故k =−1. (2)不妨设直线PA,PB 的倾斜角为α,β(α<β),因为k AP +k BP =0,所以α+β=π, 因为tan∠PAQ =2√2,所以tan (β−α)=2√2,即tan2α=−2√2, 即√2tan 2α−tanα−√2=0,解得tanα=√2,于是,直线PA:y =√2(x −2)+1,直线PB:y =−√2(x −2)+1, 联立{y =√2(x −2)+1x 22−y 2=1可得,32x 2+2(1−2√2)x +10−4√2=0,因为方程有一个根为2,所以x P =10−4√23,y P = 4√2−53,同理可得,x Q =10+4√23,y Q = −4√2−53.所以PQ:x +y −53=0,|PQ |=163,点A 到直线PQ 的距离d =|2+1−53|√2=2√23, 故△PAQ 的面积为12×163×2√23=16√29.21.【2022年新高考2卷】已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1> x2>0,y1>0.过P且斜率为−√3的直线与过Q且斜率为√3的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.=1【答案】(1)x2−y23(2)见解析【解析】【分析】(1)利用焦点坐标求得c的值,利用渐近线方程求得a,b的关系,进而利用a,b,c的平方关系求得a,b的值,得到双曲线的方程;(2)先分析得到直线AB的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到x0+ky0=8k2;由直线PM和QM的斜率得到直线方程,结合双曲线的方k2−3,由②PQ//AB等价转化为ky0=3x0,由程,两点间距离公式得到直线PQ的斜率m=3x0y①M在直线AB上等价于ky0=k2(x0−2),然后选择两个作为已知条件一个作为结论,进行证明即可.(1)=√3,∴b=√3a,∴c2=a2+右焦点为F(2,0),∴c=2,∵渐近线方程为y=±√3x,∴bab2=4a2=4,∴a=1,∴b=√3.=1;∴C的方程为:x2−y23(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而x1=x2,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为y=k(x−2),则条件①M在AB上,等价于y0=k(x0−2)⇔ky0=k2(x0−2);两渐近线的方程合并为3x2−y2=0,联立消去y并化简整理得:(k2−3)x2−4k2x+4k2=0设A(x3,y3),B(x3,y4),线段中点为N(x N,y N),则x N=x3+x42=2k2k2−3,y N=k(x N−2)=6kk2−3,设M(x0,y0),则条件③|AM|=|BM|等价于(x0−x3)2+(y0−y3)2=(x0−x4)2+(y0−y4)2, 移项并利用平方差公式整理得:(x3−x4)[2x0−(x3+x4)]+(y3−y4)[2y0−(y3+y4)]=0,[2x0−(x3+x4)]+y3−y4x3−x4[2y0−(y3+y4)]=0,即x−x N+k(y0−y N)=0,即x0+ky0=8k2k2−3;由题意知直线PM的斜率为−√3, 直线QM的斜率为√3, ∴由y1−y0=−√3(x1−x0),y2−y0=√3(x2−x0), ∴y1−y2=−√3(x1+x2−2x0),所以直线PQ的斜率m=y1−y2x1−x2=−√3(x1+x2−2x0)x1−x2,直线PM:y=−√3(x−x0)+y0,即y=y0+√3x0−√3x,代入双曲线的方程3x2−y2−3=0,即(√3x+y)(√3x−y)=3中,得:(y0+√3x0)[2√3x−(y0+√3x0)]=3,解得P的横坐标:x1=2√3(y+√3x+y0+√3x0),同理:x2=2√3(y−√3xy0−√3x0),∴x1−x2=√3(3y0y02−3x02+y0),x1+x2−2x0=−3x0y02−3x02−x0,∴m=3x0y,∴条件②PQ//AB等价于m=k⇔ky0=3x0,综上所述:条件①M在AB上,等价于ky0=k2(x0−2);条件②PQ//AB等价于ky0=3x0;条件③|AM|=|BM|等价于x0+ky0=8k2k2−3;选①②推③:由①②解得:x 0=2k 2k 2−3,∴x 0+ky 0=4x 0=8k 2k 2−3,∴③成立;选①③推②:由①③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3, ∴ky 0=3x 0,∴②成立; 选②③推①:由②③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3,∴x 0−2=6k 2−3, ∴ky 0=k 2(x 0−2),∴①成立. 22.【2022年北京】已知椭圆:E:x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A(0,1),焦距为2√3. (1)求椭圆E 的方程;(2)过点P(−2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN|=2时,求k 的值. 【答案】(1)x 24+y 2=1(2)k =−4 【解析】 【分析】(1)依题意可得{b =12c =2√3c 2=a 2−b 2,即可求出a ,从而求出椭圆方程;(2)首先表示出直线方程,设B (x 1,y 1)、C (x 2,y 2),联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出x M 、x N ,根据|MN |=|x N −x M |得到方程,解得即可; (1)解:依题意可得b =1,2c =2√3,又c 2=a 2−b 2, 所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P (−2,1)的直线为y −1=k (x +2),设B (x 1,y 1)、C (x 2,y 2),不妨令−2≤x 1<x 2≤2,由{y −1=k (x +2)x 24+y 2=1 ,消去y 整理得(1+4k 2)x 2+(16k 2+8k )x +16k 2+16k =0, 所以Δ=(16k 2+8k )2−4(1+4k 2)(16k 2+16k )>0,解得k <0,所以x 1+x 2=−16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k 1+4k 2,直线AB 的方程为y −1=y 1−1x 1x ,令y =0,解得x M =x11−y 1, 直线AC 的方程为y −1=y 2−1x 2x ,令y =0,解得x N =x21−y 2, 所以|MN |=|x N −x M |=|x21−y 2−x11−y 1|=|x 21−[k (x 2+2)+1]−x 11−[k (x 1+2)+1]| =|x 2−k (x 2+2)+x 1k (x 1+2)| =|(x 2+2)x 1−x 2(x 1+2)k (x 2+2)(x 1+2)|=2|x 1−x 2||k |(x 2+2)(x 1+2)=2,所以|x 1−x 2|=|k |(x 2+2)(x 1+2),即√(x 1+x 2)2−4x 1x 2=|k |[x 2x 1+2(x 2+x 1)+4] 即√(−16k 2+8k1+4k 2)2−4×16k 2+16k 1+4k 2=|k |[16k 2+16k 1+4k 2+2(−16k 2+8k 1+4k 2)+4]即81+4k 2√(2k 2+k )2−(1+4k 2)(k 2+k )=|k |1+4k2[16k 2+16k −2(16k 2+8k )+4(1+4k 2)]整理得8√−k =4|k |,解得k =−4 23.【2022年浙江】如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P(0,1)的两点,且点Q (0,12)在线段AB 上,直线PA,PB 分别交直线y =−12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD|的最小值.【答案】(1)12√1111;(2)6√55.【解析】 【分析】(1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,再根据两点间的距离公式求出|PQ|2,再根据二次函数的性质即可求出;(2)设直线AB:y =kx +12与椭圆方程联立可得x 1x 2,x 1+x 2,再将直线y =−12x +3方程与PA 、PB 的方程分别联立,可解得点C,D 的坐标,再根据两点间的距离公式求出|CD |,最后代入化简可得|CD |=3√52⋅√16k 2+1|3k+1|,由柯西不等式即可求出最小值. (1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,P(0,1),则|PQ|2=12cos 2θ+(1−sinθ)2=13−11sin 2θ−2sinθ=−11(sinθ+111)2+14411≤14411,当且仅当sinθ=−111时取等号,故|PQ|的最大值是12√1111.(2)设直线AB:y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得(k 2+112)x 2+kx −34=0,设A (x 1,y 1),B (x 2,y 2),所以{x 1+x 2=−kk 2+112x 1x 2=−34(k 2+112), 因为直线PA:y =y 1−1x 1x +1与直线y =−12x +3交于C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1,同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1.则|CD|=√1+14|x C −x D |=√52|4x 1(2k +1)x 1−1−4x 2(2k +1)x 2−1|=2√5|x 1−x 2[(2k +1)x 1−1][(2k +1)x 2−1]|=2√5|x 1−x 2(2k +1)2x 1x 2−(2k +1)(x 1+x 2)+1|=3√52⋅√16k 2+1|3k+1|=6√55⋅√16k 2+1√916+1|3k+1|≥6√55×√(4k×34+1×1)2|3k+1|=6√55, 当且仅当k =316时取等号,故|CD |的最小值为6√55.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.1.(2022·全国·模拟预测)设M 是椭圆C :()222210x y a b a b+=>>的上顶点,P 是C 上的一个动点,当P 运动到下顶点时,PM 取得最大值,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【解析】 【分析】设()00,P x y ,由()0,M b ,求出()2220PM x y b =+-消元可得,22342220222c b b PM y a b b c c⎛⎫=-++++ ⎪⎝⎭,再根据0b y b -≤≤以及二次函数的性质可知,32b bc -≤-,即可解出. 【详解】设()00,P x y ,()0,M b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PM x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,0b y b -≤≤,由题意知当0y b =-时,2PM 取得最大值,所以32b b c -≤-,可得222a c ≥,即0e 2<≤故选:C .2.(2022·福建·三明一中模拟预测)已知圆229:4O x y +=,圆22:()(1)1M x a y -+-=,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得π3APB ∠=,则实数a的取值范围是( )A .[B .[C .D .[[3,15]【答案】D【解析】 【分析】由题意求出OP 的距离,得到 P 的轨迹,再由圆与圆的位置关系求得答案. 【详解】由题可知圆O 的半径为32,圆M 上存在点P ,过点P 作圆 O 的两条切线,切点分别为A ,B ,使得60APB ∠=︒,则30APO ∠=︒, 在Rt PAO △中,3PO =, 所以点 P 在圆229x y +=上,由于点 P 也在圆 M 上,故两圆有公共点. 又圆 M 的半径等于1,圆心坐标(),1M a , 3131OM -≤≤+∴,∴24≤≤,∴a ∈[[3,15]. 故选:D.3.(2022·全国·模拟预测(文))已知双曲线22221x y a b-=(0a >,0b >)一个虚轴的顶点为()0,B b ,右焦点为F ,分别以B ,F 为圆心作圆与双曲线的一条斜率为正值的渐近线相切于M ,N 两点,若ON =,则该渐近线的斜率为( )A .12 B .1 C D 【答案】A 【解析】 【分析】根据渐近线倾斜角的正切值表达出ON =,再化简得到4224200b a b a --=求解即可 【详解】由题意,如图,设NOF θ∠=,则因为该渐近线的斜率为ba ,故tanb aθ=,cos acθ==,sin bcθ==,又因为圆与渐近线相切,故BM OM ⊥,FN ON ⊥,故2cos sin 2b OM OB OB c π-θθ⎛⎫=== ⎪⎝⎭,cos ON OF a θ==,所以a =,即2,所以4224200b a b a --=,即()()2222450b a b a -+=,故2240b a -=,即2a b =,故该渐近线的斜率为12b k a ==故选:A4.(2022·河南·开封市东信学校模拟预测(理))已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F △的内切圆半径为1r ,12BF F △的内切圆半径为2r ,若12r r >,且直线l 的倾斜角为60︒,则12r r 的值为( ) A .2 B .3CD.【答案】B 【解析】 【分析】根据内切圆的性质及双曲线的定义求出两内切圆圆心的横坐标,由正切函数求解即可. 【详解】记12AF F △的内切圆圆心为C ,边1212,,AF AF F F 上的切点分别为M ,N ,E ,则C ,E 横坐标相等,则1122||||,,AM AN F M F E F N F E ===,由122AF AF a -=,即()12||||2AM MF AN NF a +-+=,得122MF NF a -=,即122F E F E a -=,记C 的横坐标为0x ,则()0,0E x ,于是()002x c c x a +--=,得0x a =,同理12BF F △的内心D 的横坐标也为a , 则有CD x ⊥轴,由直线的倾斜角为60︒,则230OF D ∠=︒,260CF O ∠=︒, 在2CEF △中,122tan tan 60r CF O EF ∠=︒=,可得12r =, 在2DEF △中,222tan tan 30r DF O EF ∠=︒=,可得22r =,可得123r r ==.故选:B5.(2022·贵州·贵阳一中模拟预测(文))已知双曲线22214x y b-=的左、右焦点分别为12,,F F 过左焦点1F 作斜率为2的直线与双曲线交于A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为14,则b 的值是( )A .2 BC .32D【答案】D 【解析】 【分析】利用点差法设()11,A x y 、()22,B x y ,作差即可得到2121212124y y y y b x x x x -+⋅=-+,再根据斜率公式,从而得到2124b =,即可得解;【详解】解:设()11,A x y 、()22,B x y ,则2211214x y b -=,2222214x y b-=, 两式相减可得()()()()1212121221104x x x x y y y y b-+--+=,P 为线段AB 的中点,122p x x x ∴=+,122p y y y =+, 2121212124y y y y b x x x x -+∴⋅=-+,又12122AB y y k x x -==-,121214y y x x +=+, 2124b ∴=,即22b =,b ∴= 故选:D.6.(2022·全国·模拟预测(理))已知双曲线2222:1(0,0)x y C a b a b-=>>的左、有焦点分别为1F ,2F ,实轴长为4,离心率2e =,点Q 为双曲线右支上的一点,点(0,4)P .当1||QF PQ +取最小值时,2QF 的值为( ) A.1) B.1) C.1 D.1【答案】B 【解析】 【分析】由题意求得a,b,c ,即可得双曲线的方程,结合双曲线的定义确定当1||QF PQ +取最小值时Q 点的位置,利用方程组求得Q 点坐标,再利用两点间的距离公式求得答案. 【详解】由题意可得24,2a a == ,又2e =,故4c = , 所以22212b c a =-= ,则双曲线方程为221412x y -= ,结合双曲线定义可得221||4||||4QF PQ QF PQ QF PQ +=++=++, 如图示,连接2PF ,交双曲线右支于点M ,即当2,,P Q F 三点共线, 即Q 在M 位置时,1||QF PQ +取最小值,此时直线2PF 方程为4y x =-+ ,联立221412x y-=,解得点Q的坐标为2,6-,( Q 为双曲线右支上的一点),故21)QF =, 故选:B7.(2022·上海市七宝中学模拟预测)若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线222222222:1(0,0)x y C a b a b -=>>的焦点相同,且12a a >给出下列四个结论:①22221221a a b b -=-;②1221a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2112a a b b +>+;其中所有正确的结论序号是( ) A .①② B .①③C .②③D .①④【答案】B 【解析】 【分析】对于①,根据双曲线的焦点相同,可知焦距相同,可判断22221221a a b b -=-;对于②,举反例可说明1122a b a b <;对于③,根据120a a >>可推得12<b b ,继而推得1212b ba a <,可判断双曲线1C 与双曲线2C 一定没有公共点;对于④,举反例可判断.【详解】对于①:∵两双曲线的焦点相同,∴焦距相同,∴22221122a b a b +=+,即22221221a a b b -=-,故①正确;对于②:若1a =,2a =11b =,2b 1122a b a b <,故②错误; 对于③:∵120a a >>,∴22221221a a b b -=->0,∴2221b b > ,即12<b b ,即1212b b a a <,双曲线1C 与双曲线2C 一定没有公共点,故③正确; 对于④:∵22221221a a b b -=-,∴12121221()()()()a a a a b b b b +-=+-,∵12a a >且12<b b ,∴12211212a ab b b b a a +-=+- , 若12a =,21a =,11b =,22b =,则1212a a b b +=+,故④错误. 故选:B8.(2022·陕西·宝鸡中学模拟预测(理))已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,M 为双曲线右支上的一点,若M 在以12F F 为直径的圆上,且215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,则该双曲线离心率的取值范围为( ) A.(B.)+∞C.()1D.1⎤⎦【答案】D 【解析】 【分析】由12MF MF ⊥可得1212sin MF c MF F =∠、2212cos MF c MF F =∠,由双曲线定义可构造方程得到2114caMF F π=⎛⎫∠- ⎪⎝⎭;由正弦型函数值域的求法可求得离心率的取值范围.【详解】M 在以12F F 为直径的圆上,12MF MF ∴⊥,12112sin MF MF F F F ∴∠=,22112cos MF MF F F F ∠=,1212sin MF c MF F ∴=∠,2212cos MF c MF F =∠, 由双曲线定义知:122MF MF a -=,即21212sin 2cos 2c MF F c MF F a ∠-∠=,21212111sin cos 4c a MF F MF F MF F π∴==∠-∠⎛⎫∠- ⎪⎝⎭; 215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,21,4126MF F πππ⎡⎤∴∠-∈⎢⎥⎣⎦,211sin 42MF F π⎤⎛⎫∴∠-∈⎥ ⎪⎝⎭⎣⎦,214MF F π⎛⎫∠-∈ ⎪⎝⎭⎣⎦,1c a ⎤∴∈⎦,即双曲线离心率的取值范围为1⎤⎦.故选:D.9.(2022·河南·通许县第一高级中学模拟预测(文))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 的直线l 与C 的左、右两支分别交于点,A B ,若2ABF 是边长为4的等边三角形,则C 的离心率为( ) A .3 BCD .2【答案】B 【解析】 【分析】由双曲线定义可推导得244AF a ==,求得1a =;在12BF F △中,利用余弦定理可求得12F F ,进而得到c ,由ce a=可求得离心率. 【详解】224AB BF AF ===,1212BF BF AF a ∴-==,又212AF AF a -=,244AF a ∴==,解得:1a =,16BF ∴=, 在12BF F △中,由余弦定理得:2221212122cos 283F F BF BF BF BF π=+-⋅=,解得:12F F =2c =,c ∴=∴双曲线C 的离心率ce a==故选:B.10.(2022·四川省泸县第二中学模拟预测(文))已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】由题可知六个P 点,有两个是短轴端点,因此在四个象限各一个,设(,)P x y 是第一象限内的点,分112PF F F =或212PF F F =,列方程组求得P 点横坐标x ,由0x a <<可得离心率范围;或结合椭圆的性质列出不等关系即得. 【详解】法一:显然,P 是短轴端点时,12PF PF =,满足12F F P 为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,设(,)P x y 是第一象限内使得12F F P 为等腰三角形的点,若112PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a +-+=, 解得22a ac x c --=(舍去)或22a acx c -+=, 由0x a <<得220a aca c-+<<,所以112c a <<,即112e <<,若212PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a --+=, 解得22a ac x c -=或22a ac x c +=,22a aca c +>舍去.所以220a aca c-<<,所以1132c a <<,即1132e <<,12e =时,2a c =,12PF F △是等边三角形,P 只能是短轴端点,只有2个,不合题意. 综上,e 的范围是111(,)(,1)322⋃.法二:①当点P 与短轴的顶点重合时,12F F P 构成以12F F 为底边的等腰三角形,此种情况有2个满足条件的12F F P ;②当12F F P 构成以12F F 为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足12F F P 为等腰三角形即可,则1122PF F F c ==或2122PF F F c == 当12PF c =时,则2c a >,即12c e a =>,则112e <<,当22PF c =时,则有22c a c c a>-⎧⎨<⎩,则1132e <<,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面解析几何测试题
一、选择题(本大题20个小题,每小题3分,共60分) 1.直线3x+4y-24=0在x 轴,y 轴上的截距为 ( ) A.6,8 B.-6,8 C.8,6 D.-8,6 2.x=29y -表示的曲线是 ( )
A.一条直线
B.两条直线
C.半个圆
D.一个圆
3.已知直线x-ay+8=0与直线2x-y-2=0垂直,则a 的值是 ( )
A.-1
B.2
C.1
D.-2
4.已知圆x 2+y 2+ax+by=0的圆心为(-4,3),则a,b 的值分别是 ( )
A.8,6
B.8,-6
C.-8,-6
D.-8,6 5.已知A (3,-6),B (-5,2),C (6,y )三点共线,则点C 的纵坐标是 ( )
A.-13
B.9
C.-9
D.13
6.已知过点P (2,2)的直线与圆(x-1)2
+y 2 =5相切,且与直线ax-y+1=0
垂直,则a 的值为( )
A.2
B.1
C.-21
D.2
1 7. 直线2x-y=0与圆x 2+y 2-2x-4y-1=0的位置关系为 ( ) A. 相交但不过圆心 B.相离 C.相切 D.相交过圆心
8.已知双曲线22a x -22b y =1的渐近线的斜率k=±3
4,则离心率等于 ( )
A.53
B.45
C.34
D.3
5
9.若椭圆22a x +22
b
y =1(a>b>0)的左右焦点分别为F 1,F 2,点A 是椭圆
上一点,若▲AF 1F 2为正三角形,则椭圆的离心率为 ) A.
22 B.21 C.4
1
D.3-1 10.已知双曲线22x -22
b
y =1(b>0)的左右焦点分别为F 1,F 2,其中一条
渐近线方程为y=x ,点P (3,y 0)在双曲线上,则1PF •2PF 等于 ( ) A.-12 B.-2 C.0 D.4 11.已知椭圆焦点在x 轴上,长轴长为18,且焦点将长轴三等分,则椭圆的方程为( )
A.812x +722y =1
B.812x +92
y =1 C.812x +452y =1 D.812x +16
2y
12.设点F 为抛物线y 2=3x 的焦点,过点F 且倾斜角为30°的直线交抛物线于A ,B 两点,则|AB|等于 ( ) A.
3
30
B.6
C.12
D.37 13.已知圆x 2+y 2-4x-4y=0与x 轴相交于A ,B 两点,则弦AB 所对的圆心角的大小为( )
A.6
π B.3
π C.2
π D.
3
π2 14.已知椭圆的中心在原点,焦点在x 轴上,长轴是短轴的3倍,且过点(-3,1),则椭圆的方程为 ( )
A.92x +y 2
=1 B.121822=+x y .121822=+y x D.9
2
y +x 2=1 15.关于x ,y 的方程x 2+my 2=1,给出下列命题: ①当m<0时,方程表示双曲线; ②当m=0时,方程表示抛物线; ③当0<m<1时,方程表示椭圆; ④当m=1时,方程表示等轴双曲线; ⑤当m>1时,方程表示椭圆. 其中真命题的个数是 ( )
A.2个
B.3个
C.4个
D.5个
x-y-1≦0
16.已知变量x ,y 满足的约束条件是 x+y ≦1,目标函数z=10x+y 的最优解是 ( ) x ≧0 A. (0,1),(1,0) B.(0,1),(0,-1) C.(0,-1),(1,0) D.(0,-1),(0,0) 17.
已知双曲线17
92
2=-y x ,直线AB 过焦点F 1,且|AB|=4,则▲ABF 2
的周长是 ( )
A.12
B.20
C.24
D.48 18.
已知椭圆的焦点F 1(0,-1),F 2(0,1),P 是椭圆上一点,
且|PF 1|,|F 1F 2|,|PF 2|,构成等差数列,则椭圆的方程为 ( )
A.
191622=+y x B.112
162
2=+y x C.13422=+x y D.13
42
2=+y x 19. 已知点P 是等轴双曲线上除顶点外的任一点,A 1,A 2是双曲线
的顶点,则直线PA 1与PA 2的斜率之积是( )
A.1
B.-1
C.2
D.-2 20.
圆(x+1)2+(y+2)2=8上到直线x+y+1=0的距离等于2的点
共有 ( )
A.1个
B.2个
C.3个
D.4个 二、填空题(本大题5个小题,每小题4分,共20分) 21.圆x 2+y 2=1上的点到直线3x+4y-25=0的最大距离为 . 22.已知点(2,-1)与点(a ,-2)在直线3x+y-4=0的两侧,则a 的取值范围是 .
23.物线的顶点在原点,焦点是双曲线3x 2-y 2=12的左顶点,则其标准方程为 .
24.若方程1422
22=-+
-m y m x 表示椭圆,则m 的取值范围是 . 25.设点F 1,F 2为双曲线14
22
=-y x 的两焦点,点P 在双曲线上,且∠
F 1PF 2=90°,则▲F 1F 2P 的面积等于 . 三、解答题(本大题5个小题,共40分)
26.(本小题6分)已知抛物线y=24
1x ,点P (0,2)作直线l 交抛物线A ,B 两点,O 为坐标原点.
(1)求证:OA •OB 为定值;
(2)直线l 与向量n=(1,2)平行,求▲AOB 的面积.
27.(本小题8分)已知点P 是椭圆164
1002
2=+y x 上一点,点F 1,F 2是左、右焦点,若∠F 1PF 2=60°,求▲PF 1F 2的面积.
28.(本小题8分)在抛物线y=2x 2上求一点P ,使P 到直线l :y=2x-3的距离最短,求P 点的坐标.
29.(本小题8分)已知椭圆22a x +22
b
y =1(a>b>0)经过点(0,3),
离心率为2
1
.
(1)求椭圆的标准方程;
(2)已知直线l :y=2x+m 与椭圆相交于A ,B 两点,以OA ,OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆上,O 为坐标原点,求直线l 的方程.
30.(本小题10分)已知双曲线22a x -22
b
y =1(a>0,b>0)的离心率为2,
两顶点的距离为4.
(1)求双曲线的标准方程;
(2)已知直线l 过圆x 2+y 2-6x+2y+6=0的圆心并与双曲线交于A ,B 两点,且点A ,B 关于点M 对称,求直线l 的方程.
第八章 平面解析几何测试题答案
一、选择题
1.C
2.C
3.D
4.B
5.C
6.A
7.D
8.D
9.B 10.C 11.A 12.C 13.C 14.C 15.B 16.C 17.B 18.C 19.A 20.C 二、填空题 21. 6 22. (2,∞-) 23. y 2=-8x
24. (2,3)U (3,4) 25. 1
三、解答题 26.(1)-4 (2)46
27.
3
3
64 28.(
21,2
1) 29.(1)13
42
2=+y x (2)y=2x+
219或y=2x -2
19
30.(1)
112
422=-y x (2)0269=-+y x。

相关文档
最新文档