高考物理动量定理练习题及答案

合集下载

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。

高中物理动量定理及其解题技巧及练习题(含答案)含解析

高中物理动量定理及其解题技巧及练习题(含答案)含解析

高中物理动量定理及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。

某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。

(忽略发射底座高度,不计空气阻力,g 取10m/s 2)(1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力)(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】(1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则:212h gt =解得6s t =对礼花弹从发射到抛到最高点,由动量定理00()0Ft mg t t -+=其中00.2s t =解得1550N F =(2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得1122m v m v =由能量守恒定律得2211221122E m v m v =+ 其中1214m m = 12m m m =+联立解得1120m/s v =230m/s v =之后两物块做平抛运动,则 竖直方向有212h gt =水平方向有12s v t v t =+由以上各式联立解得s=900m2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。

已知sin37º=0.60,cos37º=0.80,重力加速度g 取10m/s 2,不计空气阻力。

求: (1)物体沿斜面向上运动的加速度大小;(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。

高考物理动量守恒定律解题技巧(超强)及练习题(含答案)

高考物理动量守恒定律解题技巧(超强)及练习题(含答案)

高考物理动量守恒定律解题技巧(超强)及练习题(含答案)一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)dr r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离; (3)当物块a 相对小车静止时在小车上的位置到O 点的距离. 【答案】(1)1m/s (2) (3) x =0.125m【解析】试题分析:(1)对物块a ,由动能定理得:代入数据解得a 与b 碰前速度:;a 、b 碰撞过程系统动量守恒,以a 的初速度方向为正方向, 由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a 以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B 端距挡板的距离:;(3)由能量守恒得:,解得滑块a 与车相对静止时与O 点距离:;考点:动量守恒定律、动能定理。

高考物理动量定理及其解题技巧及练习题(含答案)

高考物理动量定理及其解题技巧及练习题(含答案)

高考物理动量定理及其解题技巧及练习题(含答案)一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。

一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。

已知运动员与网接触的时间为1.2s ,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。

(g 取10m/s 2) 【答案】1.5×103N ;方向向上 【解析】 【详解】设运动员从h 1处下落,刚触网的速度为1128m /s v gh =运动员反弹到达高度h 2,,网时速度为22210m /s v gh ==在接触网的过程中,运动员受到向上的弹力F 和向下的重力mg ,设向上方向为正,由动量定理有()21()F mg t mv mv -=--得F =1.5×103N方向向上3.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.4.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧5.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不分开,C的v-t图象如图乙所示.求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1(3)4—12s内墙壁对物块B的冲量大小I【答案】(1) 2kg (2) 27J (3) 36N s×【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg.(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J(3)取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·s6.如图所示,用0.5kg的铁睡把钉子钉进木头里去,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s(取g=10m/s2),那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力多大?(2)考虑铁锤的重力,铁锤钉钉子的平均作用力又是多大?【答案】(1)200N,方向竖直向下;(2)205N,方向竖直向下【解析】【详解】(1)不计铁锤受的重力时,设铁锤受到钉子竖直向上的平均作用力为1F,取铁锤的速度v的方向为正方向,以铁锤为研究对象,由动量定理得10F t mv-=-则10.5 4.0N200N0.01mvFt ⨯===由牛顿第三定律可知,铁锤钉钉子的平均作用力1F'的大小也为200N,方向竖直向下。

高中物理动量守恒定律专项训练100(附答案)

高中物理动量守恒定律专项训练100(附答案)

最新高中物理动量守恒定律专项训练100( 附答案 )一、高考物理精讲专题动量守恒定律1.如下图,在水平川面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰巧与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【分析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,以后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,所以两物体在这段时间均匀速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)依据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.如下图,一小车置于圆滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg, AO 部分粗拙且长L=2m,动摩擦因数μ=0.3,OB部分圆滑.另一小物块a.放在车的最左端,和车一同以 v0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬时速度变成零,但不与挡板粘连.已知车 OB 部分的长度大于弹簧的自然长度,弹簧一直处于弹性限度内. a、 b 两物块视为质点质量均为 m=1kg,碰撞时间极短且不粘连,碰后一同向右运动.(取 g=10m/s2)求:(1)物块 a 与 b 碰后的速度大小;(2)当物块 a 相对小车静止时小车右端 B 到挡板的距离;(3)当物块 a 相对小车静止时在小车上的地点到O 点的距离.【答案】 (1)1m/s (2)(3) x=0.125m【分析】试题剖析:(1)对物块 a,由动能定理得:代入数据解得 a 与 b 碰前速度:;a、 b 碰撞过程系统动量守恒,以 a 的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分别, a 以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车 B 端距挡板的距离:;(3)由能量守恒得:,解得滑块 a 与车相对静止时与O 点距离:;考点:动量守恒定律、动能定理。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

高考物理动量定理解题技巧及练习题及解析

高考物理动量定理解题技巧及练习题及解析

高考物理动量定理解题技巧及练习题及解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,质量为m =245g 的木块(可视为质点)放在质量为M =0.5kg 的木板左端,足够长的木板静止在光滑水平面上,木块与木板间的动摩擦因数为μ= 0.4,质量为m 0 = 5g 的子弹以速度v 0=300m/s 沿水平方向射入木块并留在其中(时间极短),子弹射入后,g 取10m/s 2,求:(1)子弹进入木块后子弹和木块一起向右滑行的最大速度v 1 (2)木板向右滑行的最大速度v 2 (3)木块在木板滑行的时间t【答案】(1) v 1= 6m/s (2) v 2=2m/s (3) t =1s 【解析】 【详解】(1)子弹打入木块过程,由动量守恒定律可得:m 0v 0=(m 0+m )v 1解得:v 1= 6m/s(2)木块在木板上滑动过程,由动量守恒定律可得:(m 0+m )v 1=(m 0+m +M )v 2解得:v 2=2m/s(3)对子弹木块整体,由动量定理得:﹣μ(m 0+m )gt =(m 0+m )(v 2﹣v 1)解得:物块相对于木板滑行的时间211s v v t gμ-==-3.甲图是我国自主研制的200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P 喷注入腔室C 后,被电子枪G 射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C 中飘移过栅电极A 的速度大小可忽略不计,在栅电极A 、B 之间的电场中加速,并从栅电极B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极A 、B 之间的电压为U ,氙离子的质量为m 、电荷量为q .(1)将该离子推进器固定在地面上进行试验.求氙离子经A 、B 之间的电场加速后,通过栅电极B 时的速度v 的大小;(2)配有该离子推进器的飞船的总质量为M ,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv ,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B .推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N .(3)可以用离子推进器工作过程中产生的推力与A 、B 之间的电场对氙离子做功的功率的比值S 来反映推进器工作情况.通过计算说明采取哪些措施可以增大S ,并对增大S 的实际意义说出你的看法. 【答案】(1)(2)(3)增大S 可以通过减小q 、U 或增大m 的方法.提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】试题分析:(1)根据动能定理有解得:(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv 解得:(3)设单位时间内通过栅电极A 的氙离子数为n ,在时间t 内,离子推进器发射出的氙离子个数为N nt =,设氙离子受到的平均力为F ',对时间t 内的射出的氙离子运用动量定理,F t Nmv ntmv ='=,F '= nmv根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F=F '= nmv 电场对氙离子做功的功率P= nqU 则根据上式可知:增大S 可以通过减小q 、U 或增大m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. (说明:其他说法合理均可得分) 考点:动量守恒定律;动能定理;牛顿定律.4.两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20m ,两根质量均m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行,大小0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过T=5.0s ,金属杆甲的加速度为a=1.37 m/s 2,求此时两金属杆的速度各为多少?【答案】8.15m/s 1.85m/s 【解析】设任一时刻两金属杆甲、乙之间的距离为,速度分别为和,经过很短时间,杆甲移动距离,杆乙移动距离,回路面积改变由法拉第电磁感应定律,回路中的感应电动势:回路中的电流:杆甲的运动方程:由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(时为0)等于外力F的冲量:联立以上各式解得代入数据得=8.15m/s =1.85m/s【名师点睛】两杆同向运动,回路中的总电动势等于它们产生的感应电动势之差,即与它们速度之差有关,对甲杆由牛顿第二定律列式,对两杆分别运用动量定理列式,即可求解.5.正方体密闭容器中有大量运动粒子,每个粒子质量为m,单位体积内粒子数量n为恒量。

动量定理练习题含答案及解析

动量定理练习题含答案及解析

动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。

用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。

另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。

求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。

【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。

(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。

2.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;3.如图所示,质量的小车A静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。

高考物理动量守恒定律题20套(带答案)含解析

高考物理动量守恒定律题20套(带答案)含解析

高考物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A 、B 、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A 、B 在前,C 在后.此后C 向左加速,A 、B 的加速度沿杆向右,直到弹簧恢复原长,故A 、B 继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A 、B 的速度,C 的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s4.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m 、厚度为2d 的钢板静止在水平光滑桌面上.质量为m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d 、质量均为m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解6.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。

高中物理动量守恒定律试题(有答案和解析)含解析

高中物理动量守恒定律试题(有答案和解析)含解析

高中物理动量守恒定律试题(有答案和解析)含解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

高考物理动量守恒定律专题训练答案及解析

高考物理动量守恒定律专题训练答案及解析

高考物理动量守恒定律专题训练答案及解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r rα-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.4.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。

最新高考物理动量定理专项训练及答案

最新高考物理动量定理专项训练及答案

最新高考物理动量定理专项训练及答案一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N 【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:221002v v L m a-==(2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2Cv N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B Cmv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2CN v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.3.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。

高考物理动量定理解题技巧及练习题(含答案)含解析

高考物理动量定理解题技巧及练习题(含答案)含解析

高考物理动量定理解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I .【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有:mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上 ⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt 1-I=0,∴I=mgt 1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。

现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。

若忽略空气阻力,重力加速度为g 。

(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。

请通过计算,说明你的观点。

【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2H L =时小球抛的最远 【解析】【分析】【详解】 (1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒= 小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移 212H L gt -=解得 2()x L H L =-当2H L =时小球抛的最远3.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F .【答案】(1)0.32μ= (2)F =130N【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv ,代入数据解得:F=130N .4.一个质量为60千克的蹦床运动员从距离水平蹦床网面上3.2米的高处自由下落,触网后沿竖直方向蹦回到离水平网面5米高处.已知运动员与网接触的时候为1.2秒。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。

比荷为c 的带正电的粒子在点(0,l )以初速度v 0沿+x 方向射入磁场,不计粒子重力。

(1)若在t =0时刻,粒子射入;在t <02T 的某时刻,粒子从点(l ,2l )射出磁场,求B 0大小。

(2)若B 0=02c v l ,且粒子从0≤l ≤02T的任一时刻入射时,粒子离开磁场时的位置都不在y 轴上,求T 0的取值范围。

(3)若B 0=02c v l ,00l T v π=,在x >l 的区域施加一个沿-x 方向的匀强电场,在04T t =时刻入射的粒子,最终从入射点沿-x 方向离开磁场,求电场强度的大小。

【答案】(1)00v B cl =;(2)00l T v π≤;(3)()20421v E n cl π=+()0,1,2n =L . 【解析】 【详解】设粒子的质量为m ,电荷量为q ,则由题意得qc m=(1)粒子在磁场中做匀速圆周运动,设运动半径为R ,根据几何关系和牛顿第二定律得:R l =2000v qv B m R=解得0v B cl=(2)设粒子运动的半径为1R ,由牛顿第二定律得20001v qv B m R =解得12l R =临界情况为:粒子从0t =时刻射入,并且轨迹恰好过()0,2l 点,粒子才能从y 轴射出,如图所示设粒子做圆周运动的周期为T ,则002m lT qB v ππ== 由几何关系可知,在02T t =内,粒子轨迹转过的圆心角为 θπ=对应粒子的运动时间为1122t T T ππ== 分析可知,只要满足012T t ≥,就可以使粒子离开磁场时的位置都不在y 轴上。

联立解得0T T ≤,即00lT v π≤;(3)由题意可知,粒子的运动轨迹如图所示设粒子的运动周期为T ,则002m lT qB v ππ== 在磁场中,设粒子运动的时间为2t ,则21144t T T =+由题意可知,还有00244T T t =+ 解得0T T =,即00lT v π=设电场强度的大小为E ,在电场中,设往复一次所用的时间为3t ,则根据动量定理可得302Eqt mv =其中3012t n T ⎛⎫=+ ⎪⎝⎭()0,1,2n =L解得()2421v E n cl π=+()0,1,2n =L2.在某次短道速滑接力赛中,质量为50kg 的运动员甲以6m/s 的速度在前面滑行,质量为60kg 的乙以7m/s 的速度从后面追上,并迅速将甲向前推出,完成接力过程.设推后乙的速度变为4m/s ,方向向前,若甲、乙接力前后在同一直线上运动,不计阻力,求: ⑴接力后甲的速度大小;⑵若甲乙运动员的接触时间为0.5s ,乙对甲平均作用力的大小.【答案】(1)9.6m/s ;(2)360N ; 【解析】 【分析】 【详解】(1)由动量守恒定律得+=+m v m v m v m v ''甲甲乙乙甲甲乙乙 =9.6/v m s '甲; (2)对甲应用动量定理得-Ft m v m v '=甲甲甲甲 =360F N3.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W . 【答案】(1)0.32μ=(2)130F N =(3)9W J = 【解析】(1)由动能定理,有:2201122mgs mv mv μ-=-可得0.32μ=. (2)由动量定理,有'F t mv mv ∆=-可得130F N =. (3)'2192W mv J ==. 【考点定位】本题考查动能定理、动量定理、做功等知识4.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值.(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值.(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的.(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=,求此过程中物块所受合力对时间t 的平均值.【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π=. 【解析】 【详解】解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv =g解得:1 1.0 2.0N 1.0N 2.0t mv F t ⨯=== 物块在加速运动过程中,应用动能定理有:2212t F x mv =g 解得:222 1.0 2.0N 0.8N 22 2.5t mv F x ⨯===⨯(2)物块在运动过程中,应用动量定理有:10Ft mv mv =- 解得:01()m v v F t-=物块在运动过程中,应用动能定理有:22201122F x mv mv =- 解得:2202()2m v v F x-=当12F F =时,由上两式得:02v v x v t +== (3)由图2可求得物块由0x =运动至x A =过程中,外力所做的功为:21122W kA A kA =-=-g设物块的初速度为0v ',由动能定理得:20102W mv '=-解得:0kv A m'= 设在t 时间内物块所受平均力的大小为F ,由动量定理得:00Ft mv -=-' 由题已知条件:2m t kπ= 解得:2kAF π=5.如图所示,真空中有平行正对金属板A 、B ,它们分别接在输出电压恒为U =91V 的电源两端,金属板长L =10cm 、两金属板间的距离d =3.2cm ,A 、B 两板间的电场可以视为匀强电场。

高考物理考点《动量守恒定律的理解和应用》真题练习含答案

高考物理考点《动量守恒定律的理解和应用》真题练习含答案

高考物理考点《动量守恒定律的理解和应用》真题练习含答案1.[2024·江苏省无锡市教学质量调研]如图所示,曲面体P 静止于光滑水平面上,物块Q 自P 的上端静止释放.Q 与P 的接触面粗糙,在Q 下滑的过程中,关于P 和Q 构成的系统,下列说法正确的是( )A .机械能守恒、动量守恒B .机械能不守恒、动量守恒C .机械能守恒、动量不守恒D .机械能不守恒、动量不守恒答案:D解析:系统在水平方向所受合外力为零,系统在水平方向动量守恒,但系统在竖直方向所受合外力不为零,系统在竖直方向动量不守恒,系统动量不守恒.Q 与P 的接触面粗糙,克服阻力做功产热,所以机械能不守恒,D 正确.2.(多选)如图所示,在光滑水平面上,一速度大小为v 0的A 球与静止的B 球正碰后,A 球的速率为v 03 ,B 球的速率为v 02,A 、B 两球的质量之比可能是( )A .3∶4B .4∶3C .8∶3D .3∶8答案:AD解析:两球碰撞过程动量守恒,以A 的初速度方向为正方向,如果碰撞后A 球的速度方向不变,有m A v 0=m A ·v 03 +m B ·v 02,解得m A ∶m B =3∶4,如果碰撞后A 的速度反向,有m A v 0=-m A ·v 03 +m B ·v 02,解得m A ∶m B =3∶8,A 、D 正确. 3.如图水平桌面上放置一操作台,操作台上表面水平且光滑.在操作台上放置体积相同,质量不同的甲、乙两球,质量分别为m 1、m 2,两球用细线相连,中间有一个压缩的轻质弹簧,两球分别与操作台左右边缘距离相等.烧断细线后,由于弹簧弹力的作用,两球分别向左、右运动,脱离弹簧后在操作台面上滑行一段距离,然后平抛落至水平桌面上.则下列说法中正确的是()A.刚脱离弹簧时,甲、乙两球的动量相同B.刚脱离弹簧时,甲、乙两球的动能相同C.甲、乙两球不会同时落到水平桌面上D.甲、乙两球做平抛运动的水平射程之比为m1∶m2答案:C解析:脱离弹簧的过程满足动量守恒定律,以甲的运动方向为正方向可得m1v1-m2v2=0,故刚脱离弹簧时,甲、乙两球的动量大小相等,方向相反,A错误;动能与动量的关系为E k=12m v2=p22m,由于质量不同,故刚脱离弹簧时,甲、乙两球的动能不相同,B错误;甲、乙两球在操作台滑行时,距台边缘距离相等但速度不等,故在操作台滑行时间不相等,之后做平抛运动的竖直位移相同,由h=12gt2可知,两球做平抛运动的时间相等,因此甲、乙两球不会同时落到水平桌面上,C正确;由A的解析可得v1v2=m2m1,平抛的水平位移为x=v0t,故甲、乙两球做平抛运动的水平射程与初速度成正比,即与质量成反比,可得x1∶x2=m2∶m1,D错误.4.[2024·江西省萍乡市阶段练习]在光滑水平地面上放置一辆小车,车上放置有木盆,在车与木盆以共同的速度向右运动时,有雨滴以极小的速度竖直落入木盆中而不溅出,如图所示,则在雨滴落入木盆的过程中,小车速度将()A.保持不变B.变大C.变小D.不能确定答案:C解析:雨滴落入木盆的过程中,小车、木盆、雨滴组成的系统水平方向满足动量守恒,设小车、木盆的总质量为M ,雨滴的质量为m ,则有M v =(M +m )v 共,解得v 共=M v M +m<v ,在雨滴落入木盆的过程中,小车速度将变小,C 正确.5.[2024·山东省普高大联考]如图所示,A 、B 两木块紧靠在一起且静止于光滑水平面上,一颗子弹C 以一定的速度v 0向右从A 的左端射入,穿过木块A 后进入木块B ,最后从B 的右端射出,在此过程中下列叙述正确的是( )A .当子弹C 在木块A 中运动时,A 、C 组成的系统动量守恒B .当子弹C 在木块B 中运动时,B 、C 组成的系统动量守恒C .当子弹C 在木块A 中运动时,A 、B 、C 组成的系统动量不守恒D .当子弹C 在木块B 中运动时,A 、B 、C 组成的系统动量不守恒答案:B解析:当子弹C 在木块A 中运动时,B 对A 、C 组成的系统有力的作用,则A 、C 组成的系统动量不守恒,A 错误;当子弹C 在木块B 中运动时,A 已经和B 脱离,则B 、C 组成的系统受合外力为零,则B 、C 组成的系统动量守恒,因此时A 的动量也守恒,则A 、B 、C 组成的系统动量守恒,B 正确,D 错误;当子弹C 在木块A 中运动时,A 、B 、C 组成的系统受合外力为零,则动量守恒,C 错误.6.[2024·广东省深圳市实验学校期中考试]滑板运动是青少年比较喜欢的一种户外运动.现有一个质量为m 的小孩站在一辆质量为λm 的滑板车上,小孩与滑板车一起在光滑的水平路面上以速度v 0匀速运动,突然发现前面有一个小水坑,由于来不及转向和刹车,该小孩立即以对地2v 0的速度向前跳离滑板车,滑板车速度大小变为原来的12,且方向不变,则λ为( )A .1B .2C .3D .4答案:B解析:小孩跳离滑板车时,与滑板车组成的系统在水平方向的动量守恒,由动量守恒定律有(m +λm )v 0=m ·2v 0+λm ·v 02,解得λ=2,B 正确. 7.[2024·湖南省邵阳市期中考试]如图所示,设车厢长为L ,质量为M ,静止在光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来回碰撞n 次后,最终相对车厢静止,这时车厢速度是( )A .v 0,水平向右B .0C .m v 0M +m ,水平向右D .m v 0M +m,水平向左 答案:C解析:物块在车辆内和车发生碰撞满足动量守恒,最后物块和车共速,由动量守恒得m v 0=(m +M )v ,解得v =m v 0m +M,方向水平向右,C 正确. 8.[2024·河北省邯郸市九校联考]如图所示,在粗糙水平面上,用水平轻绳相连的物体A 、B ,在水平恒力F 作用下以速度v 做匀速运动,某时刻轻绳断开,A 在F 作用下继续前进.已知物体A 的质量为2m ,物体B 的质量为m ,则下列说法正确的是( )A .当物体B 的速度大小为12 v 时,物体A 的速度大小为12v B.当物体B 的速度大小为12 v 时,物体A 的速度大小为54v C .当物体B 的速度大小为0时,物体A 的速度大小一定为32v D .当物体B 的速度大小为0时,物体A 的速度大小可能为54v 答案:B解析:A 、B 匀速运动时,对A 、B 整体受力分析可得F =f A +f B ,物体B 的速度大小在减小到0的过程中,A 和B 所组成的系统所受的合外力为零,该系统的动量守恒,当物体B的速度大小为12 v 时,有(m A +m B )v =m A v A +m B v B ,解得v A =54v ,A 错误,B 正确;当物体B 的速度大小为0时,有(m A +m B )v =m A v ′A ,解得v ′A =32v ,A 在F 作用下继续前进,物体A 继续加速,当物体B 的速度大小为0时,物体A 的速度大小不一定为32v ,C 、D 错误.9.[2024·江苏省盐城一中、大丰中学联考]如图所示,一质量为M=3.0 kg的长木板B放在光滑水平地面上,在其右端放一个质量为m=1.0 kg的小木块A.给A和B以大小均为5.0 m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B.在A 做加速运动的时间内,B的速度大小可能是()A.1.8 m/s B.2.4 m/sC.2.8 m/s D.3.5 m/s答案:C解析:以A、B组成的系统为研究对象,因为系统不受外力,则系统动量守恒,选择水平向右的方向为正方向,从A开始运动到A的速度为零,根据动量守恒定律可得(M-m)v0=M v B1,解得v B1=103m/s,当从开始运动到A、B共速,根据动量守恒定律可得(M-m)v0=(M+m)v B2,解得v B2=2.5 m/s,木块A加速运动的过程为其速度减为零到与B共速,此过程中B始终减速,则在木块A正在做加速运动的时间内,B的速度范围为2.5 m/s≤v B≤103 m/s,C正确,A、B、D错误.10.[2024·吉林卷]如图,高度h=0.8 m的水平桌面上放置两个相同物块A、B,质量m A=m B=0.1 kg.A、B间夹一压缩量Δx=0.1 m的轻弹簧,弹簧与A、B不栓接.同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程x A=0.4 m;B 脱离弹簧后沿桌面滑行一段距离x B=0.25 m后停止.A、B均视为质点,取重力加速度g=10 m/s2.不计空气阻力,求:(1)脱离弹簧时A、B的速度大小v A和v B;(2)物块与桌面间的动摩擦因数μ;(3)整个过程,弹簧释放的弹性势能ΔE p.答案:(1)1 m/s 1 m/s(2)0.2(3)0.12 J解析:(1)对A物块由平抛运动知识得h =12gt 2 x A =v A t代入数据解得,脱离弹簧时A 的速度大小为v A =1 m/sA 、B 与弹簧相互作用的过程中,A 、B 所受水平桌面的摩擦力等大反向,所受弹簧弹力也等大反向,又A 、B 竖直方向上所受合力均为零,故A 、B 组成的系统所受合外力为零,动量守恒,则有m A v A =m B v B解得脱离弹簧时B 的速度大小为v B =1 m/s(2)对物块B 由动能定理有-μm B gx B =0-12m B v 2B 代入数据解得,物块与桌面的动摩擦因数为μ=0.2(3)由能量守恒定律ΔE p =12 m A v 2A +12m B v 2B +μm A g Δx A +μm B g Δx B 其中m A =m B ,Δx =Δx A +Δx B解得整个过程中,弹簧释放的弹性势能ΔE p =0.12 J11.如图所示,甲、乙两名宇航员正在离静止的空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v 0=2 m/s 的速度相向运动,甲、乙和空间站在同一直线上且可视为质点.甲和他的装备总质量为M 1=90 kg ,乙和他的装备总质量为M 2=135 kg ,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg 的物体A 推向甲,甲迅速接住A后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站.(1)乙要相对空间站以多大的速度v将物体A推出;(2)设甲与物体A作用时间为t=0.5 s,求甲与A的相互作用力F的大小.答案:(1)5.2 m/s(2)432 N解析:(1)规定水平向左为正方向,甲、乙两宇航员最终的速度大小均为v1,对甲、乙以及物体A组成的系统根据动量守恒定律可得M2v0-M1v0=(M1+M2)v1对乙和A组成的系统根据动量守恒定律可得M2v0=(M2-m)v1+m v联立解得v=5.2 m/s,v1=0.4 m/s.(2)对甲根据动量定理有Ft=M1v1-M1(-v0)解得F=432 N.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理动量定理练习题及答案一、高考物理精讲专题动量定理1.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小球A 以速度v 0=2m/s 向右运动与B 球发生弹性正碰,取重力加速度g =10m/s 2.求:(1)碰撞结束时A 球的速度大小及方向;(2)碰撞过程A 对B 的冲量大小及方向.【答案】(1)-1m/s ,方向水平向左(2)3N·s ,方向水平向右 【解析】【分析】A 与B 球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向;碰撞过程对B 应用动量定理求出碰撞过程A 对B 的冲量;解:(1)碰撞过程根据动量守恒及能量守恒得:0A B mv mv Mv =+2220111222A B mv mv Mv =+ 联立可解得:1m/s B v =,1m/s A v =- 负号表示方向水平向左(2)碰撞过程对B 应用动量定理可得:0B I Mv =-可解得:3I N s =⋅ 方向水平向右2.质量为0.2kg 的小球竖直向下以6m/s 的速度落至水平地面,再以4m/s 的速度反向弹回,取竖直向上为正方向,(1)求小球与地面碰撞前后的动量变化;(2)若小球与地面的作用时间为0.2s ,则小球受到地面的平均作用力大小?(取g=10m/s 2).【答案】(1)2kg•m/s ;方向竖直向上;(2)12N ;方向竖直向上;【解析】【分析】【详解】(1)小球与地面碰撞前的动量为:p 1=m (-v 1)=0.2×(-6) kg·m/s=-1.2 kg·m/s 小球与地面碰撞后的动量为p 2=mv 2=0.2×4 kg·m/s=0.8 kg·m/s 小球与地面碰撞前后动量的变化量为Δp =p 2-p 1=2 kg·m/s (2)由动量定理得(F -mg )Δt =Δp所以F =p t ∆∆+mg =20.2N +0.2×10N=12N ,方向竖直向上.3.如图所示,木块A 和四分之一光滑圆轨道B 静置于光滑水平面上,A 、B 质量m A =m B =2.0kg 。

现让A 以v 0=4m/s 的速度水平向右运动,之后与墙壁发生弹性碰撞(碰撞过程中无机械能损失),碰撞时间为t =0.2s 。

取重力加速度g =10m/s 2.求:①A 与墙壁碰撞过程中,墙壁对木块平均作用力的大小;②A 滑上圆轨道B 后,到达最大高度时与B 的共同速度大小.【答案】(1) F =80N (2) v 1=2m/s【解析】【详解】①以水平向左为正方向,A 与墙壁碰撞过程,无机械能能损失,则以原速率弹回,对A ,由动量定理得:Ft =m A v 0﹣m A •(﹣v 0),代入数据解得:F =80N ;②A 滑上圆轨道B 后到达最大高度时,AB 速度相等,设A 、B 的共同速度为v ,系统在水平方向动量守恒,以向左为正方向,由动量守恒得:m A v 0=(m A +m B )v 1,代入数据解得:v 1=2m/s ;4.质量为m=0.2kg 的小球竖直向下以v 1=6m/s 的速度落至水平地面,再以v 2=4m/s 的速度反向弹回,小球与地面的作用时间t=0.2s ,取竖直向上为正方向,(取g=10m/s 2).求 (1)小球与地面碰撞前后的动量变化?(2)小球受到地面的平均作用力是多大?【答案】(1)2kg•m/s ,方向竖直向上;(2)12N .【解析】(1)取竖直向上为正方向,碰撞地面前小球的动量11 1.2./p mv kg m s ==- 碰撞地面后小球的动量220.8./p mv kg m s ==小球与地面碰撞前后的动量变化212./p p p kg m s ∆=-= 方向竖直向上(2)小球与地面碰撞,小球受到重力G 和地面对小球的作用力F ,由动量定理()F G t p -=∆得小球受到地面的平均作用力是F=12N5.如图,有一个光滑轨道,其水平部分MN 段和圆形部分NPQ 平滑连接,圆形轨道的半径R =0.5m ;质量为m 1=5kg 的A 球以v 0=6m/s 的速度沿轨道向右运动,与静止在水平轨道上质量为m 2=4kg 的B 球发生碰撞,两小球碰撞过程相互作用的时为t 0=0.02s ,碰撞后B 小球恰好越过圆形轨道最高点。

两球可视为质点,g =10m/s 2。

求:(1)碰撞后A 小球的速度大小。

(2)碰撞过程两小球间的平均作用力大小。

【答案】(1)2m/s (2)1000N【解析】【详解】(1)B 小球刚好能运动到圆形轨道的最高点:222v m g m R= 设B 球碰后速度为2v ,由机械能守恒可知:22222211222m v m gR m v =+ A 、B 碰撞过程系统动量守恒:101122m v m v m v =+碰后A 速度12/v m s =(2)A 、B 碰撞过程,对B 球:022Ft m v =得碰撞过程两小球间的平均作用力大小 1000F N =6.如图所示,质量为m =0.5kg 的木块,以v 0=3.0m/s 的速度滑上原来静止在光滑水平面上的足够长的平板车,平板车的质量M =2.0kg 。

若木块和平板车表面间的动摩擦因数μ=0.3,重力加速度g =10m/s 2,求:(1)平板车的最大速度;(2)平板车达到最大速度所用的时间.【答案】(1)0.6m/s (2)0.8s【解析】【详解】(1)木块与平板车组成的系统动量守恒,以向右为正方向,由动量守恒定律得: mv 0=(M +m )v ,解得:v =0.6m/s(2)对平板车,由动量定律得:μmgt =Mv解得:t =0.8s7.用动量定理处理二维问题时,可以在相互垂直的x 、y 两个方向上分别进行研究。

如图所示,质量为m 的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是v 。

碰撞过程中忽略小球所受重力。

若小球与木板的碰撞时间为∆t ,求木板对小球的平均作用力的大小和方向。

【答案】2cos mv F tθ=∆,方向沿y 轴正方向 【解析】【详解】 小球在x 方向的动量变化为sin sin 0x p mv mv θθ∆=-=小球在y 方向的动量变化为cos (cos )2cos y p mv mv mv θθθ∆=--=根据动量定理y F t p ∆=∆解得2cos mv F tθ=∆,方向沿y 轴正方向8.如图,质量分别为m 1=10kg 和m 2=2.0kg 的弹性小球a 、b 用弹性轻绳紧紧的把它们捆在一起,使它们发生微小的形变,该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动,某时刻轻绳突然自动断开,断开后,小球b 停止运动,小球a 继续沿原方向直线运动。

求:① 刚分离时,小球a 的速度大小v 1;② 两球分开过程中,小球a 受到的冲量I 。

【答案】① 0.12m/s ;②【解析】【分析】根据“弹性小球a 、b 用弹性轻绳紧紧的把它们捆在一起,使它们发生微小的形变”、“光滑水平面”“某时刻轻绳突然自动断开”可知,本题考察类“碰撞”问题。

据类“碰撞”问题的处理方法,运用动量守恒定律、动量定理等列式计算。

【详解】① 两小球组成的系统在光滑水平面上运动,系统所受合外力为零,动量守恒,则:代入数据求得:② 两球分开过程中,对a ,应用动量定理得:9.如图所示,长度为 l 的轻绳上端固定在O 点,下端系一质量为 m 的小球(小球的大小可以忽略、重力加速度为g ).(1) 在水平拉力F 的作用下,轻绳与竖直方向的夹角为α,小球保持静止.画出此时小球的受力图,并求力F 的大小;(2)由图示位置无初速释放小球,不计空气阻力.求小球通过最低点时:a .小球的动量大小;b .小球对轻绳的拉力大小.【答案】(1);mg tan α;(2)21cos m gl α-();()32cos mg α-【解析】【分析】(1)小球受重力、绳子的拉力和水平拉力平衡,根据共点力平衡求出力F 的大小.(2)根据机械能守恒定律求出小球第一次到达最低点的速度,求出动量的大小,然后再根据牛顿第二定律,小球重力和拉力的合力提供向心力,求出绳子拉力的大小.【详解】(1)小球受到重力、绳子的拉力以及水平拉力的作用,受力如图根据平衡条件,得拉力的大小:tan F mg α=(2)a .小球从静止运动到最低点的过程中,由动能定理:()211cos 2mgL mv α-= ()21cos v gL α=-则通过最低点时,小球动量的大小:()21cos P mv m gL α==-b .根据牛顿第二定律可得:2v T mg m L-= ()232cos v T mg m mg Lα=+=- 根据牛顿第三定律,小球对轻绳的拉力大小为:()32cos T T mg α'==-【点睛】本题综合考查了共点力平衡,牛顿第二定律、机械能守恒定律,难度不大,关键搞清小球在最低点做圆周运动向心力的来源.10.质量为200g 的玻璃球,从1.8m 高处自由下落,与地面相碰后,又弹起1.25m ,若球与地面接触的时间为0.55s ,不计空气阻力,取g=10m/s 2。

求:(1)在与地面接触过程中,玻璃球动量变化量的大小和方向;(2)地面对玻璃球的平均作用力的大小。

【答案】(1),竖直向上(2)【解析】【详解】(1)小球下降过程中只受重力,机械能守恒,根据机械能守恒,有:mgH =m v 12 解得: 小球上升过程中只受重力,机械能守恒,根据机械能守恒,有:mgh =m v 22解得:假设竖直向下为正方向,则;负号表示方向竖直向上;(2)根据动量定理有:Ft+mgt=∆p代入已知解得:F=-6 N“-”表示F 的方向竖直向上;【点睛】 本题关键是明确乒乓球上升和下降过程机械能守恒,然后结合机械能守恒定律和动量定理列式求解,注意正方向的选取.11.高空作业须系安全带.如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,求:(1)整个过程中重力的冲量;(2)该段时间安全带对人的平均作用力大小.【答案】(1)(2)【解析】 试题分析:对自由落体运动,有: h= 解得:, 则整个过程中重力的冲量I=mg (t+t 1)=mg (t+)(2)规定向下为正方向,对运动的全程,根据动量定理,有:mg (t 1+t )﹣Ft=0解得: F=12.根据牛顿第二定律及运动学相关方程分别推导动能定理和动量定理的表达式.【答案】该推导过程见解析【解析】设一个质量为m 的物体,初速度为0v ,在水平合外力F (恒力)的作用下,运动一段距离x 后,速度变为t v ,所用的时间为t则根据牛顿第二定律得:F ma =,根据运动学知识有2202t v v ax -=,联立得到2201122t mv mv Fx -=,即为动能定理. 根据运动学知识:0t v v a t-=,代入牛顿第二定律得:0t Ft mv mv =-,即为动量定理.。

相关文档
最新文档