风光互补路灯设计计算

合集下载

长江照明风光互补太阳能路灯计算分析公式

长江照明风光互补太阳能路灯计算分析公式

0.04 0.06 0.05 3.00
1.路面亮度的形成则与路面性质有关,入射照到路面后、部份被吸收、部分发生散射;被照路面各点的散射光,有一小 测者的眼瞳,在视网膜产生亮度,亮度如下式。
L
视网膜路面亮度(cd/m2或nit):
L=dI/(ds1*cosα)
#DIV/0!
dI 眼睛观察方向的光强(cd):
太阳能电池组件最佳工作电压:
太阳能电池浮充电压:
最低温度下所选蓄电池单体最大工作电压:
串联电池数:
二极管压降:
其他因素引起的压降:
H=Ht*2.778/10000h
太阳能电池方阵标准光强下平均日辐射时数:
太阳能电池方阵安装地点的太阳能辐射量:
2.778/10000(h.m2/KJ)为将日光辐射量换算为标准光强(1000W/m2)下的 平均日辐射时数系数:
Pm 太阳能电池容量:
#DIV/0!
Q'min 安装面日照量Q'的年最小值[mWh/(cm2·天)]:
0.00
PD 为负载的日平均消耗功率PL减去风力发电机日平均发电率:
K
系数(K1*K1*K2*K3*K4*K5*K6*K7*K8*K9):
K1
充电效率0.97:
K2
太阳能组件脏污系数0.9:
K3
太阳能电池温度补正系数0.9:
路面照度与路面亮度的关系
照度指的是路面受照后单位面积所获取的光通量,它并未进入人眼,人眼感觉到的是照明光经路面和目标漫反射后 的那部分光强被人眼所感知的亮度而蜚照射到路面的光通量(或光强)呈现的照度。
1.路面照度为路面各点被照射后所产生的照度,它与路面性质无关,也不是进入人眼瞳的那部分光线所引起的视觉感应
0.00

60W风光互补LED路灯系统设计

60W风光互补LED路灯系统设计

摘要随着科技的发展,能源需求已经成为一个非常重要的社会问题。

人们对各种可再生能源进行了研究,特别是风能和太阳能。

太阳能与风能有着很好的互补特性,因此在部分远离电网的区域可以采用小型的风光互补发电系统供电。

近年来LED 照明技术得到快速发展,LED照明得到越来越广泛的应用。

研究一种基于风光互补发电的LED路灯,对节能和城市照明具有重要的意义。

本文设计了一套独立式风光互补LED路灯系统,并对风力发电机、太阳能电池、蓄电池和控制器进行了分析和设计。

其中在最大功率跟踪策略方面,分别采用了双输入升降压斩波硬件电路实现风能和太阳能的最大功率输出,并分别采用变步长扰动控制算法和改进扰动观察控制算法作为最大功率点跟踪(MPPT)控制策略。

在蓄电池充放电控制上采用双向直流升/降压式变换电路来实现蓄电池的充放电能量管理。

在智能控制器设计方面上,设计了一种以DSP为控制核心的风光互补LED路灯控制系统。

系统以TMS320F2812为主控芯片,主要设计了控制系统的数据采集模块,PWM信号驱动模块,控制系统的辅助电源模块,LED照明驱动电路以及系统时钟模块。

最后根据设计要求进行了参数计算和设备选择。

关键词:风光互补;最大功率跟踪;能源;LEDAbstractWith the development of science and technology, the demand for energy has become a very important social issue. Human research on many renewable energy, especially wind and solar power.Solar and wind power has a very good complementary characteristics and therefore Small scale Wind and Solar complementary electricity generating system can be used in part of the region far from the grid.LED lighting technology developed rapidly in recent years, LED lighting has been used more widely. Research on LED lights based on wind and solar power have great significance to energy saving and urban lighting.This paper designs a general structure scheme of a wind and solar LED street light,and analyze and design wind turbine and solar cell and storage battery. And in terms of the intelligent controller’s maximum power tracking control strategy, this paper uses two-input buck-boost chopper hardware circuit to achieve the wind and solar maximum power output,and uses the variable step control algorithms and improve disturbance observation control algorithms as themselves maximum power point tracking (MPPT) control strategy, the variable disturbance step can be taken place of the traditional fixed-step in the control process, which to improve the efficien cy of power generation. In terms of the intelligent controller’s battery charging and discharging control strategy, this paper uses the bi-directional DC buck/boost converter to achieve the battery charging and discharging energy management. This project designed a wind and solar LED street light control based on DSP. In hardware design, TMS320F2812 is the MCU of this control system , we design the PWM signal driver modules, auxiliary power module of the control systems, LED lighting driver circuit.Final, According to the requirements of design parameter calculation and equipment selection.Key words:wind and solar street light;maximum power tracking;energy;LED目录第1章绪论 (1)1.1 研究背景与意义 (1)1.2 风光互补发电研究现状 (2)1.2.1 风力发电研究现状 (2)1.2.2 光伏发电研究现状 (2)1.2.3 风光互补研究现状 (3)1.3 风光互补LED路灯总体结构设计方案 (3)第2章风力发电机的设计 (4)2.1 风力发电机的工作原理及运行特性 (4)2.1.1风力发电机工作原理 (4)2.1.2 风力发电机运行特性 (4)2.2 最大功率跟踪控制策略 (7)2.2.1 风力发电机的基本控制策略 (7)2.2.2 风机最大功率跟踪控制策略 (7)2.2.3 功率扰动控制策略 (8)第3章太阳能电池板的设计 (10)3.1 太阳能电池的工作原理及运行特性 (10)3.1.1 太阳能电池原理 (10)3.1.2 太阳能电池工作特性 (10)3.2 最大功率跟踪控制 (12)3.2.1 太阳能电池板扰动观察法控制策略 (12)3.2.2 本文采用MPPT控制策略 (13)3.2.3 MPPT电路实现 (14)第4章蓄电池组的设计 (16)4.1 蓄电池工作原理及运行特性 (16)4.1.1 蓄电池的工作原理 (16)4.1.2 蓄电池的特性参数 (17)4.1.3 蓄电池的工作状态 (17)4.1.4 蓄电池的运行方式 (18)4.1.5 影响蓄电池寿命的因素及充放电保护 (19)4.2 蓄电池充放电方法 (19)4.3 充放电系统电路实现 (21)第5章参数确定及设备选择 (22)5.1 发电量与用电量计算 (22)5.2 设备参数确定 (22)5.3 LED路灯的选择 (23)5.3.1 LED的原理 (23)5.3.2 LED灯的特点 (23)5.3.3 LED路灯设计 (24)第6章风光互补路灯智能控制器的设计 (26)6.1风光互补发电系统主电路设计 (26)6.2 风光互补LED路灯控制器硬件设计 (27)6.2.1 TMS320F2812最小系统 (28)6.2.2 信号采集电路设计 (30)6.2.3 PWM驱动电路设计 (31)6.2.4 辅助电源设计 (33)6.2.5 实时时钟设计 (36)6.2.6 LED驱动设计 (37)6.3 系统软件设计 (38)6.3.1 主程序设计 (38)6.3.2 充放电程序设计 (39)6.3.3 LED照明管理程序设计 (40)第7章总结 (41)参考文献 (42)致谢 (43)附录Ⅰ锦州气候背景 (44)附录Ⅱ外文资料及翻译 (45)第1章绪论1.1研究背景与意义现阶段,人们主要使用的能源都是煤、石油、天然气等化石燃料以及少量的核能,随着现代人口的快速增长,以及人们对高质量生活的追求,化石能源的消耗量在进一步增加。

太阳能风光互补路灯项目技术方案

太阳能风光互补路灯项目技术方案

太阳能风光互补路灯项目技术方案供货商:地址:电话:传真:手机:项目经理:日期:目录目录 (02)企业简介 (03)一、***县气候资料 (04)二、工程概况 (04)三、设计理念与目的 (04)四、设计方案 (05)五、配件介绍 (09)六、技术服务及售后服务 (15)附件一:地基图纸 (16)企业简介(略)一、***县气候资料***县纬度较低,太阳投射角大,光照时间长,年均日照天数225天,年日照时数2139小时,太阳总辐射量4500-5800兆焦耳/平方米。

年平均气温23—24度,1月份平均气温16.9 度,7月份平均气温为28.3度。

年平均强风有3.1次,年平均风速2.5米/秒。

二、工程概况:工程地点:***县***大道具体道路情况如下:道路长度450米,主干道路宽16米,自行车道2.5米,人行道5米安装数量:46盏三、设计理念与目的我们希望通过此次路灯工程的设计和实施,营造出和谐、丰富的的日间景象,明亮、多姿的夜间景象,体现出***人民热情好客表现出和谐社会欣欣向荣的景象。

坚持高水平、高标准、高起点,与自然、人文相协调的原则,设计出有品位,结合城市特色的照明工程。

风能和太阳能是目前全球在新能源利用方面技术最成熟、最具规模化和产业化发展的行业,然而风力发电和太阳能发电两者互补性的结合实现了两种新能源在自然资源的配置方面、技术方案的整合方面、性能与价格的对比上达到了对新能源综合利用的最合理。

风光互补技术的开发与应用,利用自然界的风能和太阳能两种可再生资源,对气象资源的利用更加充分,可实现昼夜发电。

在合适的气象资源条件下,风光互补发电系统可提高系统供电的连续性、稳定性和可靠性。

在***县太阳能、风能资源比较丰富,且互补性非常好的情况下,我们对在系统的部件配置、运行模式及负荷调度方法等进行优化设计后,系统负载靠风光互补发电即可获得连续、稳定的供电。

四、设计方案:根据***县的实际情况,本次***大道工程照明灯具采用40WLED 和20WLED光源的双臂风光互补路灯,主光源高度7米,副光源高度5米,整灯总高度9米,路灯间距20米,布灯方式采用双侧对称布灯,本次道路设计中,道路平均照度达到12LX,照明要求满足城市机动车交通道路次干道照明要求。

风光互补路灯发电量计算及材料说明

风光互补路灯发电量计算及材料说明

风光互补路灯发电量计算及材料说明太阳能板发电量:根据北京是太阳能3类利用区,1KW太阳能电池可转得到4500MJ/Year,则150W 太阳能电池可转换得到电量为:Q1 = 4500/365/3.6*0.8 = 0.411KWH根据气象台统计的北京风能状况,每年风速高于3米/秒的时间超过3500小时,则平均一天风速高于3米/秒的时间超过9小时,全部以低估为3米/秒的风速情况来计算(风力发电机在3米/秒时功率为70W)。

则一台风力发电机平均每天的发电量为:Q2 = 70*9*0.8 = 489WH = 0.504KWH风光路灯配置的日均总发电量高于 0.9KWH .可将方案中相应部分改成以上内容。

下面是参考资料他们要是有对风的时间分布不均匀的情况有异议~可向他们说明。

这是风光互补系统~夏天太阳强发电量远高于计算值~冬天风强风机发电量也远高于计算值~并且我们的计算值都是取低值~考虑了安全系数。

路灯灯杆:1、灯杆尺寸:选用 8米高锥杆,锥杆底部直径180mm、锥杆顶部直径90mm。

2、灯杆内外采用热镀锌防腐蚀处理,防腐蚀年限 ? 30年,镀层厚度 > 85um。

杆表面再进行彩色喷塑处理,涂层附着牢固,表面光滑。

3、灯杆焊接按照国标 GB-50205《钢结构工程施工及验收规范》,焊接质量严格按照GBJ205-83规程进行,无漏焊、断焊、咬边等缺陷。

灯罩:高反光率低压纳灯专用灯罩。

低压钠灯及电子整流器:1、低压钠灯采用菲利普 SOX18WBY22D低压钠灯,其发光波长为589.0nm和589.6nm的单色光,这两条黄色谱线的位置靠近人眼最灵敏的波长555 .0nm 。

既具有高发光效率,又在人眼中不产生色差,因此视见分辨率高,对比度好,适用于道路等高能见度和显色性要求不高的地方。

低压纳灯还具有不眩目,不会产生因环境气体的蚀化作用而引起灯具光学系统过早损坏的现象。

2、菲利普 SOX18WBY22D低压钠灯工作寿命长达10000小时。

风光互补路灯设计

风光互补路灯设计

4.系统配置说明
名称 光源 风机 太阳能板 控制器 蓄电池 灯杆 电缆附件 蓄电池箱 规格型号 LED 24V 40W 300W 40W 风光互补 12V 100Ah 10m/7.5m 单位 盏 台 块 台 只 套 套 个 1 数量 1 1 2 1 2 1 备注
5.建设施工
系统成型图
风光互补路灯和市电路灯的性价比
风机选型
应用于路灯系统的风力发电机组通常功 率为300W-500W。根据北京市昌平区的风力 资源状况,选择300W的风力发电机组。
太阳电池方阵选型
充电时间(小时)= 充电电池容量(Ah)×1.5 / 充电电流(A) (xW×5h+300W×1.5)/24V=100Ah×1.5 / 5h 应用于路灯系统的太阳能电池组件通常功率为60W-120W,现选取 x=80W,代入数据得:左边=35.42A>右边=30A,符合要求。用两块40W 的电池板。
风光互补路灯原理框图
光伏电池阵列 控 制 器 风力发电机 整流器
负载
蓄 电 池
2.设计要求
• 结合北京风力和光照情况实现路灯能实现 夜间照明2天需求
北京地区全年各月的月平均太阳辐射值
单位:MJ/(m2•d)
注:太阳能支架角度北京地区一般取40°,能获得较多的能量
3.组件选型
• • • • • • 灯源的选择 蓄电池选型 风机选型 太阳电池方阵的选择 控制器的选择 灯杆的选择
灯源选择

采用单边设置,截光型路灯 路宽:3.75*2=7.5m 取H=7.5m S=22.5m
光源照度15lx LED发光效率75lm/w 15×H×S/(0.95×0作12小时,电池充满后能满足两天供 电计算。 40w*12h*2d*1.2=CAh*24V C=96Ah 取电池容量为100Ah。 采用12V 100Ah 蓄电池两块串联。

风光互补太阳能路灯设计方案

风光互补太阳能路灯设计方案

风光互补太阳能路灯设计方案设计单位:乌鲁木齐旭日阳光太阳能工程有限公司设计时间:二0 一一年三月二十日设计人员:姜广建电话:风光互补路灯设计方案现场效果图一、自然资源状况在跨入21 世纪之际,人类将面临实现经济和社会可持续发展的重大挑战,在有限资源和环保严格要求的双重制约下发展经济已成为全球热点问题。

而能源问题将更为突出,不仅表现在常规能源的匮乏不足,更重要的是化石能源的开发利用带来了一系列问题,如环境污染,温室效应都与化石燃料的燃烧有关。

目前的环境问题,很大程度上是由于能源特别是化石能源的开发利用造成的。

因此,人类要解决上述能源问题,实现可持续发展,只能依靠科技进步,大规模地开发利用可再生洁净能源。

太阳能和风能等清洁能源以其独具的优势,其开发利用必将在21 世纪得到长足的发展,并终将在世界能源结构转移中担纲重任,成为21 世纪后期的主导能源。

1.1 化石能源带来的问题(1)能源短缺:由于常规能源的有限性和分布的不均匀性,造成了世界上大部分国家能源供应不足,不能满足其经济发展的需要。

从长远来看,全球已探明的石油储量只能用到2020 年,天然气也只能延续到2040 年左右,即使储量丰富的煤炭资源也只能维持二三百年。

因此,如不尽早设法解决化石能源的替代能源,人类迟早将面临化石燃料枯竭的危机局面。

(2)环境污染:当前,由于燃烧煤、石油等化石燃料,每年有数十万吨硫等有害物质抛向天空,使大气环境遭到严重污染,直接影响居民的身体健康和生活质量;局部地区形成酸雨,严重污染水土。

这些问题最终将迫使人们改变能源结构,依靠利用太阳能等可再生洁净能源来解决。

(3)温室效应:化石能源的利用不仅造成环境污染,同时由于排放大量的温室气体而产生温室效应,引起全球气候变化。

这一问题已提到全球的议事日程,其影响甚至已超过了对环境的污染,有关国际组织已召开多次会议,限制各国CO2 等温室气体的排放量。

1.2 太阳能资源及其开发利用特点(1)储量的“无限性”:太阳能是取之不尽的可再生能源,可利用量巨大。

风光互补路灯设计实例与配置方案

风光互补路灯设计实例与配置方案

风光互补路灯应用设计实例与典型配置方案一、任务导入风光互补路灯的技术优势在于利用了太阳能和风能在时间上和地域上的互补性,使风光互补发电系统在资源上具有最佳的匹配性。

风光互补路灯控制系统还可以根据用户的用电负荷情况和当地资源进行系统容量的合理配置,既可保证系统供电的可靠性,又可降低路灯系统的造价。

风光互补路灯系统可依据使用地的环境资源做出最优化的系统设计方案来满足用户的要求。

因此,风光互补路灯系统可以说是最合理的独立电源的照明系统。

这种合理性既表现在资源配置上,又体现在技术方案和性能价格上,正是这种合理性保证了风光互补路灯系统的可靠性。

从而为它的应用奠定了坚实的基础。

二、相关知识学习情境1风光互补路灯(一)风光互补路灯的技术特点风光互补路灯主要为夜间照明使用,采用两种工作模式:纯光控模式和光控+定时模式。

两种模式的设定和控制是通过路灯控制器的拨码来实现的,并且风光互补路灯控制系统对风力发电机、太阳能电池组件和蓄电池提供多种保护,使系统可以更可靠的稳定工作。

风光互补路灯使用方便,实现无人值守,免解缆;低风速启动,合理吸收风能和光能,大风切出保护系统使整个系统更加安全可靠,大大减少太阳能电池组件的配比,降低了灯具的设计成本,可以收到良好的社会效益和经济效益。

小功率风力发电机组的风力机体积小、质量小而且发电效率高。

风力发电机独特的电磁设计技术使其具有低的启动阻力矩。

按照风能公式,风中可用能量是风速的3次方。

这表示风速提高1倍时,风能将提高8倍。

一般风力发电机组的效率通常是线性的,因此无法利用风力的3次方效益。

发电机只在沿能量曲线上的1点或2点有效率。

通过改进风力机组的效率曲线,使其符合风中可用能量的分布,使它沿整个曲线都有效率。

(二)风光互补路灯的构成风光互补路灯具备了风能和太阳能产品的双重优点,没有风能的时候可以通过太阳能电池组件来发电并储存在蓄电池中,有风能没有光能的时候可以通过风力发电机来发电并储存在蓄电池中。

(完整版)风光互补路灯设计

(完整版)风光互补路灯设计
最大剪力V=γQ× × +γQ× ×
=5.05kN
式中γQ---载荷组合系数
(5)灯柱根部应力
灯柱根部最大应力应小于灯柱材料的许应力即
ξmax=M/W+P/ψA +2V/A
式中M/W—弯曲应力
P/ψA—轴向应力
2V/A—剪应力
由前面计算出灯柱总弯矩为M=34.25kN·m
风光互补路灯是由小型风力发电机、太阳能电池板、蓄电池组、灯具以及灯杆等组成。他的工作原理是:当有风的时候,风能通过叶轮带动发电机旋转产生电能;当有阳光的时候,太阳能通过光硅片பைடு நூலகம்光能转换成电能,两路电能通过电缆引到蓄电池组加以储存,在晚上的时候为灯具发光提供电能。风光互补路灯,是一种新能源路灯的合理应用,在经历了多年的努力后,风光互补路灯已被越来越多的人认可和应用,市场出现了欣欣向荣的局面。
灯杆的高度应根据安装地点的地理环境来决定,保证风力机组的使用不受影响。太阳能电池组件的安装一般以不与风力机组的风叶相干涉为准,同时要注意保证太阳能电池组件不被灯杆遮挡。所以灯源的高度为7.5m,灯杆的高度为10m。
3.2.3
1.材质:高纯度铝质反射器、灯壳及散热体;高强度钢化玻璃罩;大功率LED光源;高效率进口恒流源。
μr=1.2
整基杆风振系数βz取1.3
灯盘风载荷系数WK1=βz·μs·μz·ur·
=1.3×0.8×1.38×1.2×0.7=1.2kN/
c)灯杆:简化为均布荷载
风压高度变化系数μz取1.38
风荷载体型系数μs =0.6
μr=1.2
整基杆风振系数βz取1.3
灯杆风载荷系数WK2=βz·μs·μz·μr·
2
(1)风光互补路灯系统推荐使用资源条件

风光互补路灯方案 60WLED(东北)

风光互补路灯方案 60WLED(东北)

风光互补路灯系统方案目录项目解决方案及设计:项目要求: (3)日照/风况等条件 (3)最佳配置......... . (3)系统配套摘要:风光互补系统 (4)系统-1——LED灯 (5)系统-2——风力发电机 (6)系统-3——风光互补路灯控制器 (7)系统-4——蓄电池 (8)系统-5——太阳能电池板 (9)系统要求及使用条件:a. 地区:b. 灯: 60瓦LED节能灯c. 灯杆高度: 8 M, 灯杆间距: 25m;d. 发光强度: >20LUX(照明单位)e. 工作时间: 每天8小时f. 连续性工作要求: 阴雨天和无风条件下,保证持续使用3~5天;天气条件:最佳配置:风光互补路灯结构示意图:风光互补路灯系统:由风力发电机,太阳能板,风光互补控制器,蓄电池,灯杆,灯具等组成。

.系统方案-1——LED 灯✧本产品运用先进的电子电力技术,设计了高效率增强以及超节能脉波宽度调变(PWM)两种输出模式,配合时间控制,可以在需要的时候以高效率增强模式点亮LED灯具,提供良好的照明,而其它时间段则以超节能模式输出,节约电力的消耗。

✧LED光源。

启动时间0.5秒、发光稳定,;✧工作时间30’000 ~100’000小时;✧不含紫外光、无辐射的绿色环保产品;✧与一般照明路灯相比,相同的照度下可以节能70%。

✧低维修率(500000小时内),耐久性使用,整体铝散热加专利防尘罩技术,耐冲击强度IK10(20J)、耐燃能力(850℃/5s)系统方案-2 200W 风力发电机对应序号组件 数量 备注 1 风机总成 1 主要部件2 叶片3 3 轮毂/压板 14 导流罩 1 配件5 螺栓M8×30 9叶片连接使用6 平垫 Ø9 97 防松螺母M89 8 螺母M16×1.5 1 配件 9 弹簧垫M16 1 10 法兰连接 1法兰连接使用11 螺栓M10×40 4 12防松螺母M104系统方案-3 FW-WBC-500 风光互补控制器技术参数:系统方案-4 免维护胶体蓄电池型 号FW-WBC-500 蓄电池组电压(V DC )24 风力发电机额定输入功率(W) 200 额定电压(VDC) 24 额定负载电流(A )12.5 允许太阳能风机最大充电电流(A) 50 充电(V) 保护门限(V ) 28.8 (可设) 温度补偿 30mV/℃/Cell 欠压(V)断开21.6(可设) 恢复26.4(可设)空载电流 (mA)<40 电压降落(V)太阳能电池与蓄电池之间 < 0.3V 蓄电池与负载之间< 0.3V系统方案-5—单晶硅太阳能电池板及相关参数LED太阳能样板工程说明:1:可根据需要选择纯太阳能照明系统和风光太阳能照明系统。

风光互补路灯发电系统设计说明书

风光互补路灯发电系统设计说明书

风光互补路灯发电系统设计目录摘要............................................................... I II ABSTRACT........................................................ I II 第一章前言...................................................... - 1 -1.1风光互补系统的发展背景.................................... - 1 -1.2风光互补路灯的意义........................................ - 1 -1.3 风光互补系统的发展前景.................................... - 2 -1.4主要研究内容.............................................. - 2 -第二章光伏系统的建模与仿真...................................... - 3 -2.1光伏阵列的原理和建模...................................... - 3 -2.2最大功率跟踪(MPPT)模块的原理实现 ...................... - 5 -2.3光伏并网发电系统的控制策略................................ - 7 -2.4系统仿真及其结果分析...................................... - 9 -光伏阵列的特性仿真....................................... - 9 -光伏发电系统的仿真...................................... - 10 -第三章双馈风电(DFIG)的建模与仿真 .............................. - 12 -3.1风机系统的建模与原理..................................... - 12 -风力机气动特性建模...................................... - 12 -风能利用系数Cp计算模块 ................................. - 12 -最大风能捕获模块........................................ - 13 -机械轴系转动系统建模.................................... - 14 -浆距角控制系统的建模与设计.............................. - 15 -3.2关于双馈型风力发电系统的建模与仿真....................... - 16 -发电机的模型............................................. - 16 -机侧逆变器控制策略....................................... - 17 -网侧逆变器控制策略....................................... - 19 -3.3 DFIG算例仿真............................................ - 21 -仿真结果与分析........................................... - 23 -第四章蓄电池储能单元的建模与仿真............................... - 28 -4.1 PQ控制策略的建模........................................ - 28 -4.2 VF控制策略.............................................. - 30 -4.3两种控制策略的仿真验证................................... - 31 -第五章结论..................................................... - 36 -参考文献........................................................ - 37 -致谢................................................ 错误!未定义书签。

风光互补LED路灯工程建设方案(精)

风光互补LED路灯工程建设方案(精)

企业生产实际教学案例:风光互补LED路灯工程建设方案案例说明一相关岗位名称●光伏系统设计工程师●光伏系统销售人员●光伏系统技术支持●光伏系统售后服务二相关职业技能●掌握风光互补路灯设计要点●掌握风光互补路灯部件的选型与配置●了解风光互补路灯与常规路灯效益对比三案例背景介绍●本案例介绍的是风光互补路灯的建设方案,包括风光互补路灯的设计与实施方案,以及风光互补路灯提供的售后服务1生产案例1.1 案例背景概述(一)项目名称:新建风光互补路灯工程(二)项目地点:惠州和东莞地区(三)项目建设性质:新建(四)项目建设内容:风光互补路灯工程建设风光互补路灯系统具体有以下几个优点:1.安装施工周期短.该路灯系统完全独立,无外部连接工程,工程量低,平均每20套工程工期从设备到现场开始算起只要两天,从工程采购算起只要五天;2.成本低,见效快。

平均每套系统投入比有线路灯低许多,两天时间,就能让漆黑的道路变得一片光明;3.占用土地很少,无须管路铺设,不存在电线防盗问题;4.零电费、零排放。

既减少了用电负担,实现了节能降耗,又改善了生态景观,达到了环保的效果,也方便了市民的出行,加强了社会治安综合治理。

◆制造优势√ 现代化的制造工厂管理√ 独立的研发团队√ 丰富的上游资源√ 完善的区域部件配套◆产品优势√ 产品线丰富√ 产品更新快√ 产品定位准确◆价格优势√产品性价比优势√供应链优势:既是制造商又是品牌商√上游资源的整合优势√规模采购带来的成本优势1.2项目简述路灯照明工程,是提高社会综合管理水平,全面构建和谐社会的重要一环。

该项目设计方案响应了国家“绿色照明、节能减排”的号召。

国家公布的《国家中长期科学和技术发展规划纲要》中,提倡照明节能。

由于我国城市照明所消耗的能源极为惊人,若将户外照明改用太阳能、风能供电,将大大减少城市用电的负担!华南地区具备独特的地理优势,而且还拥有丰富的气象资源,全年大于或等于3级风的时间大于200天。

风光互补路灯配置方案9M30m_(模板参考)

风光互补路灯配置方案9M30m_(模板参考)

灯距 (m) 30
灯高 (m) 9
最经济 LED 照明功率 (W) 80
10 小时耗能 (Kw.h) 0.8
每天照明安照 10 小时计算,分别为:1.120、0.800、0.560(Kw.h)
3.2.2
泰玛磁悬浮风力发电机的选择
泰玛 CXF400 400W 磁悬浮垂直轴风力发电机,具有起动风速小、风能利用率高的特点,这 里选用该型号非常合适。
3.2 泰玛风光互补系统方案设计
方案的设计,需要平衡供电要大于需电,并能给电池充电,留有一定的功率余量。才能不断 给蓄电池充电,满足特殊情况下的供电需求。
3.2.1
LED 路灯的功率选择
参照次级主干道的要求,平均照度≧15 lux。我们通过德国 DIALux 专业照明软件输入路面参数, 找到最经济 LED 照明灯具的功率。 (详细的参数见附件)
wwwtimarcom第7页项目参数项目参数风叶扫风直径124m叶片数量3起动风速1ms风轮气动效率036工作风速范围130ms发电机额定转速450转min额定风速12ms最大抗风强度60ms切离风速20ms机组噪音20db输出电源等级dc24v发电机型式永磁三相交流额定功率400w防护性能具有防潮防霉防腐蚀等性能泰玛牌400w风力发电机主要技术指标根据气象资料以及新区路段的自然环境此地段平均风速为35级4米秒6米秒24小时天此时功率为额定功率的55105
2.2 设计标准
泰玛风光互补路灯系统须满足以下设计标准:
1、 道路的照明标准参照国标次级主干道要求的标准, 平均照度要求大于或等于 15 (lux) 。 2、照明采用 LED 灯具:80W(正白 7600LM) 。 3、对于灯杆,遵守关于国家对路灯设计的规范。 4、照明的时长,采用国际流行的最新设计: (1)人行道每晚照明 10 – 11 小时,光控全功率,不少于 10 小时的照明时间。 (2)主车道每晚用光控或远程控制照明 。晚间 18 点至 0 点,全功率照明。0 点以后采 用半功率照明。

风光互补路灯设计计算

风光互补路灯设计计算

风光互补路灯设计一、技术要求及涉及因素:问题一:所要架设路灯的路级标准(单道或双道、路长、路宽、照明亮度要求)。

问题二:所要架设路灯的地理位置(常年日光照射情况及日平均风速)。

问题三:路灯日使用情况(每日使用时间,采用节能的双开或三开),遇到阴雨天,系统可提供备用电力应用天数。

问题四:系统负载功率多大?输出电压和电流是直流还是交流?问题五:系统负载情况,是电阻性、电容性、还是电感性?启动电流需要多大?根据问题一,确定合理的路灯布置方式,包括单路灯照明范围和路灯间距,同时还可以确定路灯的最低照明标准瓦数。

力求作到在照明达到理想要求的情况下少架设路灯,以降低路灯照明系统成本。

(需设计最少三套方案,进行成本比较)根据问题二,通过对所设路灯地理位置的年光照量和年风能储量考查,包括日均日照时间和日均风速,确定太阳能发电系统和风力发电系统的发电功率的分占百分比。

根据问题三,根据路灯日使用情况和路灯系统电能备用天数,确定蓄电池容量及风光发电系统的功率选择。

根据问题四及问题五:根据所需负载情况,确定风光发电系统附边设备的选型。

以上工作都作好后,根据风光发电系统的重量,进行灯杆的承重能力及抗几能力设计。

二、设计实例:下面以河北省二级路增加设计速度60km/h一档后,路基宽为10.0m,路长为2km,每天工作时间为10小时,备用时间为5天为例,进行风光路灯设计。

(一)、河北省≥3 m/s的风速全年累积为4000~5000h,≥6m/s风速全年累积为3000h以上。

年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5-5.1KWh/m2。

得出结论,河北省是一个风能和太阳能储量很高的省份,即适合风力发电,又适合太阳能发电,因此将太阳能发电和风力发电得到的电能定为各50%。

采用截光型灯具,灯具支架长1.5米,实际照明有效宽度为8.5米,设计灯架高为10米,灯具距地面直线距离为9米,各路灯间距为25米,所需路灯总数为2000/25=80。

风光互补式LED路灯设计方案

风光互补式LED路灯设计方案

风光互补式LED路灯设计方案设计者:黄钜海(浙江科技学院建筑工程学院,杭州,310023) 一、设计概述风光互补式LED路灯功能特点:1、风光一体,互补性强,稳定性高2、适用范围广泛、适应性强、实用性强3、一次性投入、持续性产出、使用寿命长4、对环境不产生任何污染、绝对绿色环保5、性能稳定,故障率低为保证风力发电机和太阳能电池能平稳、安全的运行,同时也配合路灯灯杆的多样化造型,我们将风光互补路灯灯杆设计为自立式路灯灯杆。

风力发电机位于灯杆的顶端,太阳能电池板位于灯杆的中上部,详见上图。

具体配置方案如下:灯杆高度:10米,灯具离地8米,灯杆间距25米灯杆材质:Q235优质钢结构标准灯杆(热镀锌/喷塑)太阳能光伏组件:100W风力发电机:额定功率300W 启动风速s,额定风速10m/s光源:60WLED灯蓄电池:地埋式磷酸铁锂电池100AH控制系统:智能升压型,微电脑智能控制、防过充、过放、防潮、输出短路保护及光控+时控自动开、关灯。

工作时间:10小时/天,前5小时全亮,后5小时半功率亮;阴雨天连续工作3-7天工作温度:-20℃~+45℃相对湿度:20%--90%。

二、详细说明风力发电机风机是风光互补路灯的标志性产品,风机的选择最关键的是要风机的运行平稳。

灯杆是无拉索塔,最担心因风机运行时的振动引起灯罩和太阳能支架的固定件松脱。

选择风机的另一个主要因素就是风机的造型要美观,重量要轻,减小塔杆的负荷。

这里选用嘉顿雄GARDENSON 牌GARDENSON-200W/300W型风机技术参数:300W 起动风速:(m/s)额定风速:12(m/s)切入风速:s 额定电压:24V 额定功率:300W 最大功率:400W 风叶直径: m 风叶数量: 6(pcs)整机重量: 10kg 大风保护:泄荷及电磁制动工作温度: -20℃至40℃海拔高度:≤4500m(额定工况海拔高度为1000m)最大风速:≤35m/s 电机选用60W国际先进的永磁式发电机,动平衡好、切割磁力线佳效率高,低速性能好,2级风就能发电。

如图所示为“风光互补路灯系统.它...

如图所示为“风光互补路灯系统.它...

如图所⽰为“风光互补路灯”系统,它在有阳光时通过太阳能电池板发电,有风时通过风⼒发电机发电,⼆者皆备时同时发电,并将电能输⾄蓄电池储存起来,供路灯照明使⽤。

为了能使蓄电池的使⽤寿命更为长久,⼀般充电⾄90%左右即停⽌,放电余留20%左右即停⽌电能输出。

下表为某型号风光互补路灯系统配置⽅案:
风⼒发电机太阳能电池组件
最⼩启动风速1.0m/s太阳能电池36W
最⼩充电风速2.0m/s太阳能转化效率15%
最⼤限制风速12.0m/s蓄电池500Ah-12V
最⼤输出功率400W⼤功率LED路灯80W-12V
当风速为6m/s时,风⼒发电机的输出功率将变为50W,在这种情况下,将蓄电池的电量由20%充⾄90%所需时间为 h;如果当地垂直于太阳光的平⾯得到的太阳辐射最⼤强度约为240W/m2,要想使太阳能电池的最⼤输出功率达到36W,太阳能电池板的⾯积⾄少要 m2。

风光互补太阳能LED路灯的设计

风光互补太阳能LED路灯的设计

光伏发电系统设计施工与应用学校:河南城建学院学院:数理学院专业:应用物理学(光伏工程方向)姓名:姚松薛强周鼎学号: 132411151 132411147132411158指导教师:潘慧杜亚冰完成时间:2014年12月1日~12月12日摘要 (1)1设计依据 (2)1.1光伏系统适用区域 (2)1.2建设目的与环境与光照分析 (2)2设计依据 (4)2.1路灯设计 (4)2.2高压钠灯和LED路灯的比较 (5)2.3风光互补太阳能路灯设计 (7)3设计评述 (15)3.1风光互补路灯系统的优点 (15)3.2风光互补路灯系统的技术优势 (15)4心得体会 (16)参考文献 (17)随着经济的发展以及在各个领域的现代化,我们需要的资源也越来越多。

但是对自然界来说资源是有限的,这就需要我们去寻找一些可利用的资源来维持我们的发展,在我们的自然界中有许多可循环的资源,比如说风电、水电、太阳能、以及生物能源都是有利于我们人们可循环利用的。

在这些能源当中我们最容易发现的就是太阳能在这种用之不竭而且还能够在我们生活中很容易获得。

在这种情况下利用太阳能来发展清洁能源用于我们生活当中是比不可少的。

在这样的发展中我们就可以设计一些太阳能设备来解决这些问题,在现在的发展中我们会发现有许多太阳能一体化的设备以及利用太阳能来解决一些不能架设高压电线的地区的用电问题。

随着这样的发展中们就会发现太阳能的适用性还有其他的一些作用。

现在我国正在大力倡导建设节约型社会,节能环保越来越受到人们的重视,在夏天正是用电量高峰阳光充足,这给太阳能风扇的发展提供了必要的便利条件。

而且在这种情况下利用太阳能风扇就能很好的解决这写问题,在普通家庭中可以装并网发电系统来弥补阳光不稳定问题,利用太阳能风扇也可以解决一些我们生活中不能安装发电站的地区,比如说在南海的一些岛屿中这样太阳能电池风扇一体化就能很好的解决这些问题这样就能很好的解决这些问题,这也表明了太阳能电池风扇的可发展性以及可利用性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风光互补路灯设计
一、技术要求及涉及因素:
问题一:所要架设路灯的路级标准(单道或双道、路长、路宽、照明亮度要求)。

问题二:所要架设路灯的地理位置(常年日光照射情况及日平均风速)。

问题三:路灯日使用情况(每日使用时间,采用节能的双开或三开),遇到阴雨天,系统可提供备用电力应用天数。

问题四:系统负载功率多大?输出电压和电流是直流还是交流?
问题五:系统负载情况,是电阻性、电容性、还是电感性?启动电流需要多大?
根据问题一,确定合理的路灯布置方式,包括单路灯照明范围和路灯间距,同时还可以确定路灯的最低照明标准瓦数。

力求作到在照明达到理想要求的情况下少架设路
灯,以降低路灯照明系统成本。

(需设计最少三套方案,进行成本比较)根据问题二,通过对所设路灯地理位置的年光照量和年风能储量考查,包括日均日照时间和日均风速,确定太阳能发电系统和风力发电系统的发电功率的分占百分比。

根据问题三,根据路灯日使用情况和路灯系统电能备用天数,确定蓄电池容量及风光发电系统的功率选择。

根据问题四及问题五:根据所需负载情况,确定风光发电系统附边设备的选型。

以上工作都作好后,根据风光发电系统的重量,进行灯杆的承重能力及抗几能力设计。

二、设计实例:
下面以河北省二级路增加设计速度60km/h一档后,路基宽为10.0m,路长为2km,每天工作时间为10小时,备用时间为5天为例,进行风光路灯设计。

(一)、河北省≥3 m/s的风速全年累积为4000~5000h,≥6m/s风速全年累积为3000h以上。

年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5-5.1KWh/m2。

得出结论,河北省是一个风能和太阳能储量很高的省份,即适合风力发电,又适合太阳能发电,因此将太阳能发电和风力发电得到的电能定为各50%。

采用截光型灯具,灯具支架长1.5米,实际照明有效宽度为8.5米,设计灯架高为10米,灯具距地面直线距离为9米,各路灯间距为25米,所需路灯总数为2000/25=80。

采用单支75瓦LED路灯,24V系统,其平均亮度和亮度平均度、平均照度和照度平均度均高于标准要求。

(二)、太阳能发电系统设计
采用自带恒流、恒压、调功一体控制器降低系统功耗、降低组件成本。

(实际降低系统总损耗20%左右,以下以15%计算)
1、LED灯,单路、75W,24V系统。

2、当地日均有效光照以5h计算,采用追日系统可提高至6h。

3、每日放电时间10小时,(以晚7点-晨5点为例)通过控制器夜间
分时段调节LED灯的功率,降低总功耗,实际按每日放电7小时计算。

(例一:晚7点至11点100%功率,11点至凌晨5点为50%功率。

合计:7h)
(例二:7:00-10:30为100%,10:30-4:30为50%,4:30-5:00为100%)4、满足连续阴雨天4天(另加阴雨前一夜的用电,计5天)。

逆变后实际输出功率为原功率90%,故所需发电功率为83W。

电流=83W÷24V
=3.458 A
计算蓄电池=3.458A × 7h ×(4+1)天
=3.458A × 35h
=120 AH
蓄电池充、放电预留20%容量;路灯的实际电流小于3.458A(加5%线损等)
实际蓄电池需求=110AH 加20%预留容量、再加5%损耗
120AH ÷ 80% × 105% =159AH
实际蓄电池为24V /159AH,需要两组12V蓄电池共计:318AH
计算电池板:
1、LED灯75W、电流:3.458A
2、每日放电时间10小时,实际按7小时计算(调功同上蓄电池)
3、电池板预留最少20%
4、当地有效光照以日均5h计算
WP÷17.4V =(3.458A × 7h × 120%)÷ 5h
WP =101W
实际线损等综合损耗小于5%
电池板实际需求=92W × 105%=106W,
因为采用互补发电,功率减半。

实际电池板需24V /53W,
蓄电池300AH、24VDC一块,或12VDC、150AH二块
75W LED灯一只,
太阳能电池板24VDC、50W一块,或12VDC、50W二块
控制器24VDC/10AH一只,具有。

相关文档
最新文档