微波基础知识

合集下载

微波电路及设计的基础知识

微波电路及设计的基础知识

微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的电脑辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例微波电路及其设计1.概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。

此外,还有毫米波〔30~300GHz〕及亚毫米波〔150GHz~3000GHz〕等。

实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频〔RF〕电路”等等。

由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。

作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。

另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。

在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。

以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。

2.微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用别离组件及分布参数电路混合集成。

微波集成电路〔MIC〕:采用管芯及陶瓷基片。

微波单片集成电路〔MMIC〕:采用半导体工艺的微波集成电路。

图6微波混合集成电路例如图7 微波集成电路〔MIC〕例如图8微波单片集成电路〔MMIC〕例如2.1.3 微波电路还可以按照有源电路和无源电路分类。

微波知识培训(2)

微波知识培训(2)

接收方向信号: 中频单元对来自ODU的信号进行分离处理,获得中心频率为140MHz的模拟中频信号和中心频率为5.5MHz的O&M信号。对接收到的中心频率为5.5MHz的O&M信号进行FSK解调,通过FPGA的GPA接口送给CPU控制单元;对接收到的中心频率为140MHz的模拟中频信号通过PVG710变频到基带信号,再经过BCM85620的解调变成数字信号给FPGA去处理。
射频传输的两种基本形式
Microwave links
Radio beam One multiplex per radio channel Applications: Civiliars and military telecommunication networks
广播
点-点视距微波
微波通信特点
1) 微波通信要求应具备视距传输条件。 2) 传输距离长,能适应各种传播环境。 3) 通信容量适中(1E1-NxSTM-1)。 4) 通信质量能够满足各种通信业务的需求。 5) 组网灵活方便。 6) 具有很强的抗自然灾害能力。 7) 投资省、见效快。
短 波
超 高 频
毫 米 波
光 波
频率
波长
名称
主 要 用 途
航行
无线
航行
广播
广播
FM
广播
T V
T V
T V
卫星 通信 微波 中继
Broadcasting
Maximum coverage One programme per radio channel Applications: Radio (LW, MW, SW, FM); TV etc ...
开发的产品面板结构类似于上图
具体介绍

精选微波技术基础知识

精选微波技术基础知识
本课内容
1、第三章、微波集成传输线常用集成传输线的种类和主要特点2、第四章介质波导和光波导
1、传播条件和波型2、特性阻抗3、波长,相速4、功率容量5、衰减
了解
微波集成传输线
微波集成传输线的最大特点是 平面化
五种重要的传输线:带状线(Stripline)微带线(Microstrip line)槽线(Slotline)鳍线(Finline)共面线(Coplanar line)
式中
微波集成传输线-带状线
带状线—优缺点和应用
1、改变线宽一个参数就改变电路参数(特性阻抗)。2、在馈线、功分器,耦合器,滤波器,混频器,开关的设计中,体积小,重量轻,大批量生产的重复性好。3、立体电路的设计,适用于多层微波电路,LTCC等,辐射小。4、封闭的电路,调试难。5、电路需要同轴或波导馈入,引入不连续性,需要在设计时补偿。6、在多层电路设计中,存在不同节点常数的介质之间的连接,介质与金属导体的连接,分析方法非常复杂,尤其对3D电路,尚缺少各种不连续性的模型和相关设计公式,采用全波分析法或者准静态场分析。
毫米波鳍线混频器
介质波导和光波导
当毫米波波段→亚毫米波段→太赫兹波段时普通的微带线将出现一系列新问题1)高次模的出现使微带的设计和使用复杂2)金属波导的单模工作条件限制了其横向尺寸不能超过大约一个波长的范围。这在厘米波段和毫米波低频段不成问题。但到毫米波高频段,单模波导的尺寸就显得太小,不仅制造工艺困难,而且随着工作频率的提高,功率容量越来越小,壁上损耗越来越大,衰减大到不能容忍的地步。因此,对毫米波段的高端及来说,封闭的金属波导已不再适用。于是,适合于毫米波高频段、亚毫米波的传输线 —— 介质波导等非封闭式的传输线(或称开波导)便应运而生
微波集成传输线-微带线

微波技术与天线 必考知识点 复习

微波技术与天线  必考知识点 复习

微波必考知识点复习1、微波是一般指频率从300M至3000GHz范围内的电磁波,其相应的波长从1m 至0.1mm。

从电子学和物理学的观点看,微波有似光性、似声性、穿透性、非电离性、信息性等重要特点。

2、导行波的模式,简称导模,是指能够沿导行系统独立存在的场型,其特点是:(1)在导行系统横截面上的电磁波呈驻波分布,且是完全确定的。

这一分布与频率无关,并与横截面在导行系统上的位置无关;(2)导模是离散的,具有离散谱;当工作频率一定时,每个导模具有唯一的传播常数;(3)导模之间相互正交,彼此独立,互不耦合;(4)具有截止特性,截止条件和截止波长因导行系统和因模式而异。

3、广义地讲,凡是能够导引电磁波沿一定的方向传播的导体、介质或由它们组成的导波系统,都可以称为传输线。

若按传输线所导引的电磁波波形(或称模、场结构、场分布),可分为三种类型:(1)TEM波传输线,如平行双导线、同轴线、带状线和微带线,他们都是双导线传输系统;(2)TE波和TM波传输线,如矩形、圆形、脊形和椭圆形波导等,他们是由金属管构成的,属于单导体传输系统;(3)表面波传输系统,如介质波导(光波导)、介质镜象线等,电磁波聚集在传输线内部及其表面附近沿轴线方向传播,一般是TE或TM波的叠加。

对传输线的基本要求是:工作频带宽、功率容量大、工作稳定性好、损耗小、易耦合、尺寸小和成本低。

一般地,在米波或分米波段,可采用双导线或同轴线;在厘米波段可采用空心金属波导管及带状线和微带线等;在毫米波段采用空心金属波导管、介质波导、介质镜像线和微带线;在光频波段采用光波导(光纤)。

以上划分主要是从减少损耗和结构工艺等方面考虑。

传输线理论主要包括两方面的内容:一是研究所传输波形的电磁波在传输线横截面内电场和磁场的分布规律(也称场结构、模、波型),称横向问题;二是研究电磁波沿传输线轴向的传播特性和场的分布规律,称为纵向问题。

横向问题要通过求解电磁场的边值问题来解决;各类传输线的纵向问题却有很多共同之处。

射频微波基础知识

射频微波基础知识

射频微波基础知识射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。

每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。

有线电视系统就是采用射频传输方式的。

在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。

在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波成为射频,英文缩写:RF一、射频和微波技术基础知识1、什么是射频?射频(RF)是指无线通信系统中使用的电磁频率范围。

它涵盖了广泛的频率范围,通常从3kHz(千赫)到300GHz(千兆赫)。

射频信号的特点是能够长距离传播并穿过障碍物,这使其成为各种通信应用的理想选择。

2、微波频率微波是射频频率的一个子集,频率范围为300MHz(兆赫)到300GHz。

虽然微波仍然是像射频一样的电磁波,但它们具有更短的波长,这在特定应用中提供了某些优势,例如高数据传输速率和精确成像能力。

二、射频和微波技术的应用1、无线通信射频和微波技术最突出的应用之一是在无线通信系统中。

从简单的无线电传输到复杂的蜂窝网络,射频技术使移动设备上的语音通话、短信、互联网浏览和视频流成为可能。

此外,Wi-Fi网络、蓝牙连接和其他无线协议依赖RF信号进行无缝数据交换。

2、卫星通信卫星通信严重依赖微波频率。

地球静止轨道或近地轨道卫星利用微波远距离传输电视信号、互联网数据和电话,确保在传统通信基础设施有限,或无法使用的偏远地区实现全球连接。

3、雷达系统微波雷达系统对各种应用至关重要,包括空中交通管制、天气监测和军事防御。

雷达使用微波脉冲来探测物体的存在、距离和速度,从而进行精确的跟踪和分析。

4、医疗应用射频和微波技术在医学领域有着重要的应用,例如磁共振成像(MRI)和微波消融。

实验一 微波测量基础知识

实验一 微波测量基础知识

实验一微波测量基础知识1. 实验目的1)了解和掌握信号发生器使用及校准2)了解微波测量系统的基本组成和工作原理3)掌握常用微波测量系统各器件的调整和使用方法4)频率计(波长表)校准5)了解和掌握测量线使用方法2. 实验原理1)微波信号源图1是微波信号源的基本框图。

通常由微波信号源、微波测量装置和指示器三部分组成。

图1 微波信号源的基本组成它负责提供一定频率和功率的微波信号。

同低频信号源一样,其信号可以是连续波也可以是调制波,工作方式有点频、扫频两种状态工作。

微波信号源被广泛应用的类型主要有以下两种:(1)标准信号发生器标准信号发生器其输出信号的频率、功率和调制系数可在一定范围内调节(有时调制系数可以固定不变),并能准确读数且屏蔽良好。

它能做到输出微波信号准确已知,并能精细调节,特别是能将信号功率连续衰减到毫瓦、微瓦级电平,根据不同用途可具有不同的调制方式。

(2)扫频信号发生器扫频信号发生器是能产生扫频信号的微波信号源,它能从所需频率范围的一端连续地“扫变”到另一端,所以能直接得到各个频率上的测量结果,在示波器或者记录仪上立即显示出所需要的频率特性曲线。

2)微波测量装置微波测量装置如图2所示。

主要包括驻波测量线、调配元件、待测元件和辅助元件(如短路器、衰减器、匹配负载、移相器等)图2 微波测试系统基本框图3)指示器部分指示器是用于显示测量信号特性的仪表,如直流电流表、测量放大器、功率计、示波器、数字频率计、频率计(波长表)等。

3. 实验内容及步骤1)了解微波信号源工作原理,掌握它的使用方法。

2)认识常用微波元件的形状和结构,了解其作用、主要性能及使用方法。

3)按照图3 所示连接系统,用数字频率计对波长表(或称频率计)读数进行校准:图3 波长计校准系统装置图(数字频率计是否使用与所用功率源有关)①将可变衰减器调至最大衰减量,以防止晶体检波器损坏;②按照信号源的操作步骤接通电源;③预热15 以上分钟;④掌握直读频率计(波长表)的使用方法。

微波技术基础

微波技术基础

微波技术基础微波技术是现代通信和雷达系统中不可或缺的技术之一。

它广泛应用于无线通信、卫星通信、雷达探测等领域。

掌握微波技术的基础知识对于从事相关领域的技术人员来说至关重要。

本文将介绍微波技术的基础知识,帮助读者更好地理解和应用微波技术。

一、微波技术的定义和特点微波技术是指利用微波(300MHz-300GHz)进行信息传输和探测的技术。

微波技术具有以下特点:1. 高频特性:微波技术的工作频率较高,能够提供较大的带宽,实现高速数据传输。

2. 穿透力强:微波具有很强的穿透力,可以穿透大气层,适用于远距离通信和雷达探测。

3. 直线性好:微波的传播路径近似直线,适合于直线传播的应用场景。

4. 天线尺寸小:与低频通信相比,微波通信所需的天线尺寸较小,便于集成和应用。

二、微波技术的关键组件微波技术的关键组件包括:1. 微波振荡器:微波振荡器是微波技术中的核心部件,它能够产生稳定的微波信号。

2. 微波放大器:微波放大器用于放大微波信号,提高信号的传输功率。

3. 微波混频器:微波混频器用于实现微波信号与其他信号(如射频信号)的混合,实现信号的调制和解调。

4. 微波天线:微波天线用于发射和接收微波信号,是微波通信和雷达探测的关键组件。

三、微波技术在通信领域的应用微波技术在通信领域的应用广泛,包括:1. 无线通信:微波技术是无线通信技术的重要组成部分,如4G、5G等通信标准都采用了微波技术。

2. 卫星通信:微波技术是卫星通信的关键技术,可以实现全球范围内的通信覆盖。

3. 深空通信:微波技术是实现深空通信(如火星探测、月球探测等)的重要手段。

四、微波技术在雷达探测领域的应用微波技术在雷达探测领域也有广泛应用,包括:1. 雷达探测:微波技术可以用于雷达系统的发射和接收部分,实现目标的探测和跟踪。

2. 气象雷达:微波技术是气象雷达的关键技术,用于气象观测和天气预报。

3. 航空雷达:微波技术在航空雷达中也有广泛应用,如空中交通管制、飞行器探测等。

微波传输特性的基础知识

微波传输特性的基础知识

微波传输特性的基础知识“微波”通常是指波长在m 1—mm 1的电磁波,对应的频率范围为:MHz300—GHz 300,它介于无线电波和红外线之间,又可分为分米波、厘米波、毫米波、亚毫米波。

微波与低频电磁波一样,具有电磁波的一切特性,但由于微波的波长较短、频率高因此又具有许多独特的性质,主要表现在:1、 描述方法:由于电磁波的波长极短,与使用的元件和设备的尺寸可以相比拟,在低频段由于能量集中其传播性质用“路”的概念来描述,使用的元件称为集中参数元件(电阻、电容、电感等);而微波的传播应利用“场”的概念来处理,使用的元件为分布参数元件(波导管、谐振腔等)。

因此低频电路的电流、电压、电阻等不再适用,而是采用等效方法处理;微波测量则以功率、波长、阻抗取代了电流、电压、电阻等。

2 、产生方法:微波的周期在910-—s 1210-与电子管内电子的渡越时间(约为s 910-)相近,因此微波的产生和放大不能再使用普通的电子器件,取而代之的是结构和原理完全不同的微电子元件——速调管、磁控管、行波管及微波固态器件。

3、 光似性:由于微波介于无线电波和红外线之间,因此不仅具有无线电波的性质同时具有光波的性质:以光速直线传播、反射、折射、干涉、衍射等。

4、 能量强:由于微波的频率高,故可用频带宽、信息容量大,且能穿透大气层因此可广泛用于卫星通讯、卫星广播电视、宇宙通讯和射天天文学的研究。

由于微波的这些特性,使微波在通信、雷达、导航、遥感、天文、气象、工业、农业、医疗、以及医学等方面得到广泛应用。

一、 微波元件简介1. 固态振荡器(固态信号源)微波振荡器(信号源)是产生微波信号的装置,常见的有磁控管振荡器、速调管振荡器和固态振荡器几种。

磁控管振荡器功率大体积大,常用来提供大功率信号;速调管振荡器结构简单、使用方便,但效率低一般只有0.5%—2.5%,输出功率小一般在,因此比较适合实验室使用。

固态振荡器则是一种较新型的信号源,可分为微波晶体管振荡器、体效应管振荡器、雪崩二极管振荡器等。

微波工程基础第1章

微波工程基础第1章
在空间中的传播。
波动方程的形式
波动方程的一般形式为▽²E + ₀²c²²E
= 0,其中E是电场强度,₀是真空中的
电常数,c是光速。
02
03
波动方程的解
对于特定的边界条件和初始条件,可
以通过求解波动方程得到电磁波的传
播特性。
微波的导波系统
导波系统的定义
导波系统是指能够引导电
磁波在其中传播的系统,
微波新器件的研发
总结词
详细描述
新型微纳加工技术的发展,新型微波器件如
的应用领域,提升微波系统的性能。
平面天线、集成电路、微波传感器等不断涌
现。这些新器件具有体积小、重量轻、功耗
低等优点,可广泛应用于通信、雷达、导航
、电子战等领域,提升系统的整体性能。
微波系统的集成化与小型化
微波工程基础第1章
目录
• 引言
• 微波基础知识
• 微波器件与电路
• 微波系统与应用
• 微波工程展望
01
引言
微波的定义与特性
微波是指频率在300MHz到300GHz
之间的电磁波,具有波长短、频率高
的特点。
微波具有穿透性、反射性、吸收性和
散射性等特性,这些特性使得微波在
通信、雷达、加热等领域具有广泛的
微波的传输线理论
传输线的定义
传输线是指用来传输电磁波的媒介,如同轴线、波导
等。
传输线的分类
根据结构和工作原理,传输线可分为均匀传输线和非
均匀传输线。
传输线的等效电路
传输线可以用等效电路来表示,其中电导和电感代表
能量损失,电容和电感代表波动效应。
微波的波动方程
波动方程的定义

微波辐射测量基础知识

微波辐射测量基础知识

微波辐射测量基础知识(为方便查询,以词条的形式展现)一、引论1、微波:频率为300MHz-300GHz的电磁波,即波长在1m(不含1m)到1mm之间的电磁波。

2、微波辐射测量学:又称为被动微波遥感,是关于微波频段内非相干辐射电磁能量的一门科学和技术。

3、遥感应用微波的三个理由:(1)微波具有穿透云层和在某种程度上穿透雨区的能力,不依赖于太阳作为辐射源;(2)比光波能更深入地穿入植被;(3)用微波可得到与用可见光、红外波段可得到的信息不同。

三者结合运用,能更好更全面地分析研究对象。

二、被动微波遥感的电磁学基础1、电导率:是电阻率的导数σ=1/ρ。

其物理意义表示物质导电的性能,电导率越大,导电性能越强。

2、介电常数:又称电容率,符号ε。

介电常数是被动微波遥感的一个重要物理参数。

特此做详尽说明。

介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为相对介电常数(permittivity),又称相对电容率,以εr表示。

则介质介电常数ε=εrε0,其中,ε0是真空绝对介电常数。

对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。

在一些工具书或学术文献上的解释:指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。

介电常数愈小绝缘性愈好。

空气和CS2的ε值分别为1.0006和2.6左右,而水的ε值特别大,10℃时为 83.83。

3、波阵面:空间相位相同的点构成的曲面,即等相位面。

4、平面波:等相位面为无限大平面的电磁波。

5、均匀平面波:等相位面上电场和磁场的方向、振幅都保持不变的平面波。

其电场强度和磁场强度都垂直于波的传播方向(TEM 波)。

6、电磁波的三种重要模式:7、时谐电磁场:如果场源以一定的角频率随时间呈时谐(正弦或余弦)变化,则所产生电磁场也以同样的角频率随时间呈时谐变化。

这种以一定角频率作时谐变化的电磁场,称为时谐电磁场或正弦电磁场。

微波及毫米波技术基本知识

微波及毫米波技术基本知识

用求和 表示积分:
电磁场和电路定律
克希霍夫电压定律(电磁感应定律)
克希霍夫电流定律(电荷守恒定律)
电磁频谱
通常将电磁频谱分为长波、中波、短波、超短波、微波、毫米波、亚毫米波、红外和光波,其对应的 频率如表1所示。 不同频段的电磁波传播特性不同,它们的用途也不同。
常用频段称呼
射频 (RF):1MHz-1GHz (广义射频指无线电频率) 微波:1GHz-30GHz 毫米波:30GHz-300GHz 亚毫米波:300-3000GHz(1000GHz=1THz) 红外:300-416000GHz(1000THz=1pHz) 可见光:0.76-0.4µm
麦克斯韦预言
(3)不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场; (4)周期性变化(振荡)的磁场产生同频率的振荡电场,周期性变化(振荡)的电场产生同频率的 振荡磁场; (5)变化的电场和变化的磁场总是相互联系着,形成一个不可分离的统一体,这就是电磁场,它们 向周围空间传播就是电磁波。
无线电系统组成 发射机(信号产生、放大) 发射终端(信息产生)
接收机(信号放大、变换) 接收终端(信息处理)
发射天线(辐射能量) 接收天线(搜集能量)
概述
本讲座介绍无线系统的射频部分相关知识,包括天线、发射机、接收机以及电磁波的基本知识,微波 部件和子系统参数测量的基本原理和方法,使学员建立电磁场与微波技术的基本概念,奠定设计、调 试微波部件和子系统的技术基础。
名称 频率
长波
表1 无线电频段划分
中波
短波
超短波 (VHF)
微波和毫米波
15-100kHz
100-1500kHz 1.5-30MHz
30-300MHz

微波电路设计基础学习知识

微波电路设计基础学习知识

1、数字微波应用微波是无线电波的一种。

在我国无线电广播按波长分为:长波(LW波长在介于1000〜2000米,中波(MW)波长在介于200-600 米、短波(SW) 波长在介于10〜100米。

CDMA800 工作波长(35.93~36.36、34.09~34.48 )米。

在我国分配微波频率为:频率M (GHz) 1.52467811131518波- 长(cm)20157.55 4.29 3.75 2.73 2.312 1.67微波通信的特点:视距传输;电波在传播过程中遇到尺寸和工作波长相近的障碍物时,会绕过障碍物向前传播,这种现象叫做电波的绕射。

微波通信建设快、投资小、应用灵活;传输质量可靠,抗干扰能力强。

至今与光缆通信和卫星通信并列为现代通信传输的三大支柱,在中等容量的网络中,微波传输是一种最灵活、适应性最强的通信手段。

在移动网络中的应用:在移动接入网络中,随着网络不断扩容和无缝覆盖的需求,新建了大基础量移动基站,如城区的“楼宇室内覆盖”,边远地区的“边际网覆盖”,沿海地区“海岛移动覆盖”。

但由于市政建设限制(如架空线难、开挖路面铺管道难),在自然环境很恶劣的山区和海洋,光缆建设非常困难、造价太高,造成大量光纤死角,部分基站的接入必须采用无线方式解决,产生了大量无线传输需求。

如沿海城市大连,拥有诸多的岛屿,岛屿上的移动通信成为大连移动提高移动网络覆盖率的重要任务。

大连采用SDH微波作为各海岛移动基站的中继链路,并通过与光传输系统的连接,组成完整的传输网络。

SDH微波链路干线全长162.28公里,支线全长66.68公里,最长站距34.80公里,最短站距6.89公里,平均站距19.08公里,且全部为跨海电路(跨海微波链路的设计,由于海面环境和气候情况复杂,通常是所有微波应用中难度最大)。

使用微波设备不仅可以缓解传输网络资源不足的压力。

而且提高了整个网络工程进度,降低了整个网络投资。

在移动核心网络中,微波设备可提供高达2.5Gbps的传输容量,用来与光纤混合组网,作为城域光环和重要链路的备份。

射频微波(知识点)

射频微波(知识点)

一、射频/微波技术及其基础1、射频/微波技术的基础 ✓ 什么是微波技术研究微波的产生、放大、传输、辐射、接收和测量的科学。

射频/微波技术是研究射频/微波信号的产生、调制、混频、驱动放大、功率放大、发射、空间传输、接收、低噪声放大、中频放大、解调、检测、滤波、衰减、移相、开关等各个电路及器件模块的设计和生产的技术,利用不同的电路和器件可以组合成相应的射频/微波设备。

微波技术主要是指通信设备和系统的研究、设计、生产和应用。

✓ 微波技术的基本理论是以麦克斯韦方程为核心的场与波的理论2、射频/微波的基本特性✓ 频率高、穿透性、量子性、分析方法的独特性射频频段为30 ~ 300MHz ,微波频段为300MHz ~ 3000GHz ,相对应波长为1m ~0.1mm ,照射于介质物体时能深入到该物质的内部。

根据量子理论,电磁辐射能量不是连续的,而是由一个个的“光量子”组成,单个量子的能量与其频率的关系为e = h ·f式中,h = 4×10-15电子伏·秒 (eV ·S) 成为普朗克常数3、射频/微波技术在工程里的应用✓ 无线通信的工作方式1、单向通信方式通信双方中的一方只能接收信号,另一方只能发送信号,不能互逆,收信方不能对发信方直接进行信息反馈2、双向单工通信方式3、双向半双工通信方式通信双方中的一方使用双频双工方式,可同时收发;另一方则使用双频单工方式,发信时要按下“送话”开关。

4、双向全双工通信方式通信双方可以通信进行发信和收信,这时收信与发信一般采用不同的工作频率,通-讲 开关按-讲 按-讲 受话器受话器二、电磁波频谱12、射频/✓GSM900系统的频道配置GSM-900系统采用等间隔方式,频道间隔为200KHz,同一信道的收发频率间隔为45MHz, 频道序号和频道标称中心频率的关系为F上行(n)= 890.2 +(n-1)×0.2 MHzF下行(n)= F上行(n)+ 45 MHz式中:频道序号 n = 1 ~ 124在我国的GSM900网络中,1~94号载频分配给中国移动使用,96~124号载频分配给中国联通使用,95号载频作为保护隔离,不用于业务。

微波产品基础知识1(1)

微波产品基础知识1(1)

微波产品基础知识1.滤波器的概念及作用:用来分开及组合不同的频率,选取需要的信号频率,抑制不需要的信号频率.2.滤波器的四种形式:低通.高频.带通.带阻.3.调谐及耦合杆:根据需要,用于调谐频率及带宽4.谐振杆:滤波器中决定谐振频率的关键器件5.飞杆:根据客户需要,改变通带外抑制度,根据其特性阻抗可分为容飞和感飞两种6.IN及OUT:射频信号输入输出端口7.N型接插件:连接器的一种,一般根据客户需要进行选定,常用的接插件还有SMA.7/16等.8.功率/电平:放大器的输出能力,一般单位为W. MW.dBm9.增益:即放大倍数,单位可表示为分贝.即dB=10Log10.插损:当某一器件或部件接入传输电路后所增加的衰减,单位用dB表示.11.驻波比:行驻波状态时,波腹电压与波节电压之比.12.耦合度:耦合端口与输入端口的功率比.单位用dB13.隔离度:本振或信号泄露到其它端口功率与原有功率之比,单位用dB14.单工:亦称单频单工制,即收发使用同一频率,由于接收和发送使用同一个频率,所以收发不能同时进行,称为单工.15.双工:亦称异频双工制,即收发使用两个不同频率,任何一方在发话的同时都能收到对方的讲话16.放大器:用以实现信号放大的电路17.滤波器:通过有用频率信号抑制无用频率信号的部件或设备.18.功分器:进行功率分配的器件19.耦合器:从主干通道中担取出部分信号的器件20.负载:终端在某一电路或电器输出端口,接收电功率的元器件.部件或装置统称为负载.对负载最基本的要求是阻抗匹配和所能承受的功率.21.环形器:使信号单方向传输的器件22.馈线:是传输高频电流的传输线.23.天线:是将高频电流或波导形式的能量变换成电磁波并向规定方向发射出去或把来自一定方向的电磁波还原为高频电流的一种设备.24.合路器:用来对RF信号进行最后一级的合路,该器件的主要用途为对两路或多路平均输入功率的RF信号进行合路,可同时将两个或两个以上的RF信号进行合路后送至天线进行发射.25.散热片:由于功率的因素导致腔体过热,主要用散热片来对合路器腔体进行散热.26.合路器印制板:运用分支线原理,进行合路的一种方式.27.双向耦合器:双向耦合器提供一个测试界面端口来监测双工器主端口和天线.定向耦合器是一个四端口装置.它允许小数量的信号越过天线通道作为系统诊断的样本.天线信号可以在前向(朝天线)或者反射(朝双工器)两个方向取样.28.驻波披警器:驻波比告警所针对的对象是对双工器天线端口的驻波比进行检测告警,驻波比从根本上来说是指在均匀无耗传输线上,电压U(z)的最大振幅值与电压U(z)的最小振幅之比.29.中心频率带通或带阻滤波器两个截止频率的几何平均值。

微波技术基础知识

微波技术基础知识
准TEM模(电磁场的纵向分量很小) 具有色散持性,这与纯TEM模不同,而 且随着工作频率的升高,这两种模之间 的差别也愈大。
传输媒质为空气和介质的非均匀媒质,微带线的电磁场存 在纵向分量,不能传播纯TEM波。
但是,主模的纵向场分量远小于横向场分量。因此, 主模具有纯TEM相似的特性; 纯TEM的分析方法也对微带线适用。 ———准TEM近似法
D. D. Grieg and H. F. Englemann, “Microstrip—A New Transmission Technique for the Kilomegacycle Range,” Proc. IRE, Vol. 40, pp. 1644– 1650, Dec. 1952.
微波集成传输线-微带线
最后,抑制波导模和表面波,保证单模传输为
min
r (2W 0.8h) 4 r 1h
微带线设计中,金属屏蔽盒高度取H ≥(5 ~ 6)h, 接地板宽度取L≥(5 ~ 6)W
微波集成传输线-微带线
有效相对介电常数→准TEM波引入的
H. A. Wheeler, Transmission-line properties of parallel wide strips by a conformal mapping approximation, IEEE Trans. Microwave Theory Tech. 12:280–289 (May 1964).
五种重要的传输线:
指元器件、传输线导带等 在同一平面
带状线(Stripline)
注意耦合线结构
微带线(Microstrip line)
槽线(Slotline) 鳍线(Finline) 共面线(Coplanar line)

微波基础知识及测介电常数

微波基础知识及测介电常数

实验五微波实验微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。

从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。

与无线电波相比,微波有下述几个主要特点图1 电磁波的分类1.波长短(1m —1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。

2.频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。

另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。

3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。

4.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。

人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟。

(北京大华无线电仪器厂)5.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和射电天文学的研究和发展提供了广阔的前途。

天线和微波技术基础知识概述

天线和微波技术基础知识概述

天线和微波技术基础知识概述天线和微波技术是现代通信领域中非常重要的组成部分。

天线作为接收和发射无线信号的关键装置,而微波技术则主要用于传输和处理高频率的电磁信号。

本文将对天线和微波技术的基础知识进行概述,以帮助读者加深对这一领域的了解。

一、天线基础知识1. 天线的定义和作用天线是一种通过电磁辐射和感应的方式,将电磁信号转换为自由空间中的电磁波,或者将电磁波转换为电信号的装置。

它负责将信号从发射源传输到接收源,或者将接收到的信号转换为电信号。

2. 天线的分类根据天线的形式和使用场景,可以将其分为多种类型,如:(1)微带天线:用于无线通信和雷达系统,具有体积小、重量轻、成本低的优点。

(2)偶极子天线:应用广泛,适用于各种频率范围和工作环境。

(3)扩展频带天线:可以在多个频段上工作,适应不同通信需求。

(4)阵列天线:通过组合多个天线单元,实现波束和指向性辐射。

(5)喇叭天线:用于辐射高功率无线信号,可在长距离范围内传输。

3. 天线参数天线的性能主要由以下参数来衡量:(1)增益:表示天线向某个方向传输/接收信号的能力,可以通过增加天线尺寸或精心设计来提高。

(2)方向性:指示天线向某个方向辐射/接收信号的能力,可以通过改变天线结构来实现。

(3)驻波比:用于衡量天线的适配性和效率,一般要求越小越好。

二、微波技术基础知识1. 微波的概念和特点微波是一种频率范围在300 MHz至300 GHz之间的电磁波,具有高频率、短波长和较强的穿透能力。

微波技术在无线通信、雷达、卫星通信等领域有着广泛的应用。

2. 微波器件和系统(1)微波集成电路(MIC):它是一种将微波元器件(如传输线、滤波器、放大器等)集成在同一芯片上的技术,可以实现尺寸小、性能优越的微波电子元器件。

(2)高频开关:用于控制微波信号的通断,具有快速响应、低损耗的特点。

(3)微波天线系统:结合天线和微波技术,用于将微波信号进行传输和接收。

(4)微波滤波器:用于筛选和处理特定频率范围内的微波信号,以满足通信系统的要求。

微波基础知识..

微波基础知识..


微波通信系统框图
信 源
信 源 编 码
发信 基带 处理
调 制
上 变 频
功 率 放 大
滤 波
天 馈 系 统 传输媒介
同步系统
收 信
信 源 解 码
收信 基带 处理
解 调
下 变 频
低 噪 声 放 大
滤 波
天 馈 系 统
第一章、微波基础知识
微波无线通信系统组成 1. 收发信机
2. 调制解调单元
3. 天馈系统 4. 各种不同的配置(1+0/N+1,同频/异频)
第一章、微波基础知识
传输速率及容量:
Line Rate (Mb/s)
2.048 8.192 16.384 34.368 51.84 155.52 622.08 2488.32 Sub-STM-1 STM-1 STM-4 STM-16
0.8 f I 10Fd / 10 f *d f
式中:Δf/f-两个频率之差与中心频率的比值。 公式中其它参数的取值范围如下: 2GHz≤f≤11GHz; 30km≤d≤70km; Δf/f≤5 %. 超出这个范围将导致误差。该公式仅仅对于I≥5有效。
第一章、微波基础知识
副瓣
半功率角
侧视图
第一章、微波基础知识
Байду номын сангаас
微波传播自由空间损耗
可见频率提高一倍或距离增加一倍,自由 空间损耗都将增加6dB
第一章、微波基础知识
第一章、微波基础知识
如收发两点T、R相距d,另一动点P,并PT+PR=d+nλ/2(λ为工作 波长),此动点在平面上轨迹为一椭圆。它以TR为轴旋转就构成 一椭球,这椭球的内部空间称为第n菲涅尔区(Fn)。P点(椭 球上的动点)至TR垂直线段PO为路径TR上O点的第一菲涅尔半 径。当d及λ一定时,在同一路径TR不同点上,Fn的大小是不同 的,以路径中点的Fn最大。当n=1时为第一菲涅尔区和第一菲 涅尔半径F1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
常用微波术语-分贝
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波的应用-脉冲雷达
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波的传播
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波的传播
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波连接器-N型连接器
Frequency Range: DC to 18 GHz Impedance: 50 . and 75 . Mating Torque: 12 in-lbs. Female Socket: 0.207 +0.000 –0.010 inches Male Pin: 0.207 +0.010 –0.000 inches
微波基本元件-滤波器
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件-PIN控制器件
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基础知识 Fundamentals of Microwave
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
波长和频率
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
频段划分
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波的应用-卫星通信
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
频段划分
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波的发展
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件-电桥
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微chnique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件-放大器
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件-频率源
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件-功率分配器
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件-定向耦合器
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件-滤波器
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件-滤波器
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波的应用-雷达
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波的应用
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波的应用-陆基通信
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件-天线
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波连接器-N型连接器
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件-天线
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
微波基本元件-天线
Technique Training
泰格微电子研究所技术培训课程 Tiger Micro-Electronics Institute Technique Training 微波基础知识
相关文档
最新文档