数列与函数例题分析.doc
数列的极限例题及详解
数列的极限例题及详解
极限是数学分析中的一个重要概念,它描述了某种函数在某点附近的行为趋势,同时提供了有效的技术来解决数列的极限问题。
我们本文将讨论数列的极限问题,包括定义和几个例子。
一.定义
极限是一个抽象的概念,它指的是一个数列中的每一项都趋近一定的值,这个值称为数列的极限。
另外,数列的极限也称为极限点或极限值。
当然,数学家们对极限的定义更加严格,但这些都不重要,我们只需要理解数列的极限概念即可。
二.例题
1.设a_n=(-1)^n/n,求a_n的极限。
解:
首先,由于(-1)^n为一个交替变化的算子,它的值在n变大时无论n的奇偶性如何,(-1)^n的值都保持不变,因此极限就是
(-1)^n/n的值。
考虑n变大时,(-1)^n/n的值接近于0,所以a_n
的极限就是0.
2.设a_n=(1+1/n)^n,求a_n的极限。
解:
这个例题比较特殊,因为算子(1+1/n)^n这里n和指数相关,考虑当n变大时,(1+1/n)^n的值就接近于e,所以a_n的极限就是e.
3.设a_n=1/n,求a_n的极限。
解:
由于1/n的值是从1开始逐渐减小,当n变大时,1/n的值就逐渐接近于0,所以a_n的极限就是0.
三.总结
本文讨论了数列的极限问题,先介绍了数列极限的定义,然后举例说明了3种数列的极限问题,这其中包含了数列算子计算中比较常见的概念,如交替系数,和指数极限等。
希望本文对读者有所帮助。
等差数列的前n项和公式推导与例题解析
等差数列的前n 项和·例题解析一、等差数列前n 项和公式推导:(1) Sn=a1+a2+......an-1+an 也可写成Sn=an+an-1+......a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)=n(a1+an)所以Sn=[n (a1+an )]/2 (公式一)(2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得Sn=na1+ [n(n+1)d]/2(公式二)二、对于等差数列前n 项和公式的应用【例1】 等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.解 依题意,得10a d =140a a a a a =5a 20d =1251135791++++++101012()-⎧⎨⎪⎩⎪ 解得a 1=113,d=-22.∴ 其通项公式为a n =113+(n -1)·(-22)=-22n +135∴a 6=-22×6+135=3说明 本题上边给出的解法是先求出基本元素a 1、d ,再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而直接去求,所列方程组化简后可得++相减即得+,a2a9d=28a4d=25a5d=3 6111⎧⎨⎩即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3若a m=b N,则有3n-1=5N-3即=+ n N 213 () N-若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以N=1,4,7,…,40 n=1,6,11,…,66∴两数列相同项的和为2+17+32+…+197=1393【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为[ ]A .1,3,5B .1,3,7C .1,3,99D .1,3,9解 C 2b =a 5a b =3a 由题设+⇒又∵ 14=5a +3b ,∴ a =1,b =3∴首项为1,公差为2又+∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212 ∴a 50=c=1+(50-1)·2=99∴ a =1,b =3,c =99【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.解 依题意2=1+(2n +2-1)d①前半部分的和=++②后半部分的和′=+·+·-③S (n 1) d S (n 1)2(d)n+1n+1()()n n n n ++1212由已知,有′化简,得解之,得④S S n nd n nd nd nd n n ++=+++-=+-=111121229131222913()()()() nd =511 由①,有(2n +1)d=1⑤由④,⑤,解得,d =111n =5 ∴ 共插入10个数.【例5】 在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .解 S (m n)a (m n)(m n 1)d (m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212且S m =S n ,m ≠n∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d (m n)a (m n)(m n 1)=011112122d 即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212∴S m+n =0【例6】 已知等差数列{a n }中,S 3=21,S 6=64,求数列{|a n |}的前n 项和T n .分析 n S =na d a n 11等差数列前项和+,含有两个未知数,n n ()-12d ,已知S 3和S 6的值,解方程组可得a 1与d ,再对数列的前若干项的正负性进行判断,则可求出T n 来.解 d S na d 3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12 解方程组得:d =-2,a 1=9∴a n =9+(n -1)(n -2)=-2n +11由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为:S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50即-+≤-+>∈T =n 10n n 5n 10n 50 n 6n *n 22⎧⎨⎪⎩⎪N说明 根据数列{a n }中项的符号,运用分类讨论思想可求{|a n |}的前n 项和.【例7】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34得4a 1+38d =34又=+×S 20a d 20120192=20a 1+190d=5(4a 1+38d)=5×34=170解法二 S =(a +a )202=10(a a )20120120×+ 由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17S 20=170【例8】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 4 1111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得:a 4+a 6=a 3+a 7 即a 3+a 7=-4又a 3·a 7=-12,由韦达定理可知:a 3,a 7是方程x 2+4x -12=0的二根解方程可得x 1=-6,x 2=2∵ d >0 ∴{a n }是递增数列∴a 3=-6,a 7=2d =a =2a 10S 1807120--a 373,=-,= 【例9】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若S T n n a b n n =+231100100,则等于 [ ]A 1B C D ....23199299200301 分析 n S =n(a +a )n n 1n 该题是将与发生联系,可用等差数列的前项和公式把前项和的值与项的值进行联系.a b S T n n n n 1001002312=+ 解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b n n n n n n n n n n n n =+=+=++++=+()()11111122231∵2a 100=a 1+a 199,2b 100=b 1+b 199∴××选.a b a b 100100199199=a b =21993199+1=199299C 11++解法二 利用数列{a n }为等差数列的充要条件:S n =an 2+ bn∵S T n n n n =+231可设S n =2n 2k ,T n =n(3n +1)k∴∴××a b S S T T n k n k n n k n n kn n n n a b n n n n n n =--=--+---+=--=--=--=--1122100100221311311426221312100131001199299()()()[()] 说明 该解法涉及数列{a n }为等差数列的充要条件S n =an 2+bn ,由已知,将和写成什么?若写成,+,S T n n n n =+231S T S =2nk T =(3n 1)k n n n n k 是常数,就不对了.【例10】 解答下列各题:(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20;(4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值.分析与解答(1)a =a (62)d d =562+-=---1734a 9=a 6+(9-6)d=-17+3×(-5)=-32(2)a 1=19,a n+2=89,S n+2=1350∵∴+×+S =(a +a )(n +2)2n 2=2135019+89=25 n =23a =a =a 24d d =3512n+21n+2n+2251 故这几个数为首项是,末项是,公差为的个数.211112*********23 (3)∵a 4+a 6+a 15+a 17=50又因它们的下标有4+17=6+15=21∴a 4+a 17=a 6+a 15=25S =(a +a )2020120××210250417=+=()a a (4)∵a n =33-3n ∴a 1=30S =(a +a )n 2n 1n ·×=-=-+=--+()()633232632322123218222n n n n n ∵n ∈N ,∴当n=10或n=11时,S n 取最大值165.【例11】 求证:前n 项和为4n 2+3n 的数列是等差数列.证设这个数列的第n项为a n,前n项和为S n.当n≥2时,a n=S n-S n-1∴a n=(4n2+3n)-[4(n-1)2+3(n-1)]=8n-1当n=1时,a1=S1=4+3=7由以上两种情况可知,对所有的自然数n,都有a n=8n -1又a n+1-a n=[8(n+1)-1]-(8n-1)=8∴这个数列是首项为7,公差为8的等差数列.说明这里使用了“a n=S n-S n-1”这一关系.使用这一关系时,要注意,它只在n≥2时成立.因为当n=1时,S n-1=S0,而S0是没有定义的.所以,解题时,要像上边解答一样,补上n=1时的情况.【例12】证明:数列{a n}的前n项之和S n=an2+bn(a、b为常数)是这个数列成为等差数列的充分必要条件.证由S n=an2+bn,得当n≥2时,a n=S n-S n-1=an2+bn-a(n-1)2-b(n-1)=2na+b-aa1=S1=a+b∴对于任何n ∈N ,a n =2na +b -a且a n -a n-1=2na +(b -a)-2(n -1)a -b +a=2a(常数)∴{a n }是等差数列.⇐若{a n }是等差数列,则S na d =d n(a d)=d 2n 11=+··+-n n n n n n a d ()()()-++-1212221 若令,则-,即d d 22=a a =b 1 S n =an 2+bn综上所述,S n =an 2+bn 是{a n }成等差数列的充要条件. 说明 由本题的结果,进而可以得到下面的结论:前n 项和为S n =an 2+bn +c 的数列是等差数列的充分必要条件是c =0.事实上,设数列为{u n },则:充分性=+是等差数列.必要性是等差数列=+=. c =0S an b {u } {u }S an bn c 0n 2n n n n 2⇒⇒⇒⇒【例13】 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d按题意,则有S na d m S ma d n (m n)a d =n m n 1m 11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212 即+-∴··a d =11m n S m n a m n m n d m n a m n d m n ++=++++-=+++-+12121211()()()()() =-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)Am Bm n An Bn m 22+=①+=②⎧⎨⎪⎩⎪①-②,得A(m 2-n 2)+B(m -n)=n -m∵m ≠n ∴ A(m +n)+B=-1故A(m +n)2+B(m +n)=-(m +n)即S m+n =-(m +n)说明 a 1,d 是等差数列的基本元素,通常是先求出基本元素,再解决其它问题,但本题关键在于求出了+=-,这种设而不a d 11m n +-12解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设S x =Ax 2+Bx .(x ∈N)【例14】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少?解 ∵S 偶项-S 奇项=nd∴nd=90-75=15又由a 2n -a 1=27,即(2n -1)d=27nd 15 (2n 1)d 27n =5=-=∴⎧⎨⎩【例15】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.根据题意:+×,=+×S =17a d S 9a d 1719117162982∵a 1=25,S 17=S 9 解得d =-2∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩ ∵a 1=25,S 9=S 17∴×+××+×,解得-9252d=1725d d=29817162∴a n=25+(n-1)(-2)=-2n+27∴-+≥-++≥≤≥∴2n2702(n1)270n13.5n12.5n=13⎧⎨⎩⇒⎧⎨⎩即前13项和最大,由等差数列的前n项和公式可求得S13=169.解法三利用S9=S17寻找相邻项的关系.由题意S9=S17得a10+a11+a12+…+a17=0而a10+a17=a11+a16=a12+a15=a13+a14∴a13+a14=0,a13=-a14∴a13≥0,a14≤0∴S13=169最大.解法四根据等差数列前n项和的函数图像,确定取最大值时的n.∵{a n}是等差数列∴可设S n=An2+Bn二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示∵S9=S17,∴对称轴x=9+172=13∴取n=13时,S13=169最大。
关于数列极限和函数极限解法的解析
关于数列极限和函数极限解法的解析王雅丽摘要在数学分析中,极限的知识体系包括数列极限和函数极限。
在求解数列极限的方法中,我们从极限的定义出发,根据极限的性质以及相关的定理法则,例如单调有界收敛来论证极限;另外,对于函数极限的求解,文中列出六种类型,根据函数数列的定义、性质得出相关的定理和法则,对于不同类型,采用不同的方法。
上述方法对函数概念的理解和加强,以及对极限方法的掌握起很大的帮助作用。
ε-定义单调有界收敛无穷小量络必达法则关键词数列极限N早在两千多年前,我们的祖先就已经能够算出正方形,圆形和柱形等几何图形的面积。
公元前3世纪刘徽创立割圆术,就是用圆内接正多边形面积这一思想近似的计算圆周率,并指出“割之弥细,所失弥少,割之又割,以致不可割,则于圆和体而无所失矣”在数学分析中,极限是一个核心内容,同时它本身研究问题的工具。
极限概念与求极限的运算贯穿了数学分析课程的始终,因此全面掌握极限的方法与技巧是学习数学分析的关键。
1 数列极限古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”。
其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去。
把每天截下部分的长度列出如下(单位为尺):第一天截下12,第二天截下212……第n 天截下12n,……这样就得到一个数列{12n} 。
只有无穷数列才可能有极限,有限数列无极限.不难看出,数列{12n} 的通项12n随着n 的无限增大而无限地接近于0。
“无限增大”和“无限地接近”是对极限做了定性的描述,无限地接近于0说明了当n 无限的增大时数列的第n 项12n与0的距离102n-要多小有多小。
下面把任意小量化: 对于12,如果要求1110222nn-=<,只需要1n >即可;对于212,如果要求21110222nn-=<, 只需要2n >即可;对于 312,如果要求31110222n n -=<, 只需要3n >即可;...由上可以看出能满足不等式的n 不是唯一的,这就需要一个一般的任意小的正数来代替特殊的,如12,212,312...为此就出现了任意小的正数ε。
高数数列极限经典例题
高数数列极限经典例题高数数列是数学中重要的概念,它定义了一个数列中每一项的表达式,以及每一项和前面项之间的关系。
极限是描述数列无限接近某个值的重要概念,也是高数中最重要的内容之一,比较经典的例题是必须要掌握的。
首先,让我们来看一个经典的极限例题:求函数y=x3-3x2+3的极限,当x趋近于1的时候。
这道题的步骤是,先求x接近1时,函数值的上限和下限,然后利用极限的定义求解极限。
根据函数定义,当x取值接近1时,函数值的上限是x3-3x2+3+Δx,下限是x3-3x2+3-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。
接下来,我们可以利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于1时,函数值的极限就是x3-3x2+3。
通过这个例题,我们不仅学会了求函数极限的方法,还学会了求解其他类似例题的步骤。
再来看一道比较典型的极限例题:求函数y=2x2-2x+1的极限,当x趋近于0的时候。
这道题的步骤也是先求函数值的上限和下限,然后利用极限的定义求解极限。
根据函数定义,当x取值接近0时,函数值的上限是2x2-2x+1+Δx,下限是2x2-2x+1-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。
再利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于0时,函数值的极限就是2x2-2x+1。
可以看出,这两道极限例题,在步骤上有些类似,只是数值上的差别。
解决时只要注意函数的表达式,分析x趋于某个值时,函数值的上下限,从而利用极限定义求解极限。
当然,极限例题远不止上面两道,在解决这类例题的时候要更加熟悉解决的技巧,多练习解出一些类似的经典例题,以便应对考试中可能出现的问题。
以上就是关于高数数列极限经典例题的几个介绍,以帮助大家更好地理解极限和掌握求解极限的技巧。
当然,要想真正掌握极限知识,不能只依靠死记硬背,而要形成自己独立思考和解决问题的能力。
函数极限与数列极限的关系
函数极限与数列极限的关系数列极限设{x n}为实数数列,a为常数.若对任意给定的正数ɛ,总存在正整数N,使得当n>N时,有∣x n−a∣<ɛ,则称数列{x n}收敛于a,常数a称为数列{x n}的极限.并记作x n=a或x n→a(n→∞),limn→+∞读作“ 当n趋于无穷大时,{x n}的极限等于a”.若数列{x n}没有极限,则称{x n}不收敛,或称{x n}为发散数列.对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性:定理1:如果数列{x n}收敛,则其极限是唯一的;定理2:如果数列{x n}收敛,则其一定是有界的,即对于一切n(n=1,2,⋯),总可以找到一个正数M,使得∣x n∣⩽M.函数极限函数极限可以分成x→x0,x→+∞,x→−∞三种.x→x0:设函数f(x)在点x0的某一去心邻域,即(x0−δ,x0)∪(x0,x0+δ)(δ>0)内有定义,如果存在常数A,对于任意给定的正数ɛ(无论它多么小),总存在正数δ,使得当x满足不等式0<∣x−x0∣<δ时,对应的函数值f(x)都满足不等式∣f(x)−A∣<ɛ,那么常数A就叫做函数f(x)当x→x0时的极限,记作limf(x)=A.x→x0x→+∞:设f(x)为定义在[a,+∞)上的函数,A为常数.若对于任意给定的正数ɛ,存在正数M,使得当x>M时,有∣f(x)−A∣<ɛ,则称函数f(x)当x趋于正无穷时以A为极限,记作f(x)=A或f(x)→A(x→+∞),limx→+∞x→−∞与此类似.例题1. 设无穷等比数列 {a n } 的公比为 q ,若 a 1=lim n→∞(a 3+a 4+⋯+a n ),则 q = .【答案】 √5−12【分析】 易知 ∣q ∣<1,且 a 1=lim n→∞(a 1+a 2+a 3+a 4+⋯+a n −a 1−a 2),所以 a 1=a 11−q−a 1−a 1q ,即 q 2+q −1=0.2. lim√n 2+5n−n= .【答案】 253. 如图,抛物线 y =−x 2+1 与 x 轴的正半轴交于点 A ,将线段 OA 的 n 等分点从左至右依次记为 P 1,P 2,⋯,P n−1,过这些分点分别作 x 轴的垂线,与抛物线的交点依次为 Q 1,Q 2,⋯,Q n−1,从而得到 n −1 个直角三角形 △Q 1OP 1,△Q 2P 1P 2,⋯,△Q n−1P n−2P n−1,当 n →∞ 时,这些三角形的面积之和的极限为 .【答案】 13【分析】 S =lim n→∞[12(1n −1n 3)+12(1n −4n 3)+⋯+12(1n −(n−1)2n 3)]=lim n→∞[n−12n −12+22+⋯+(n−1)22n 3]=13.4. 计算: limn→∞3n 2+4n−2(2n+1)2= .【答案】 345. limn→∞(1−3nn+3)=.【答案】−26. limn→∞(1+a)n+1n+a=2,则常数a=.【答案】17. limx→2(4x2−4−1x−2)=.【答案】−148. limn→∞C n2+2C n n−2n+1=.【答案】329. limn→∞1+3+⋯+(2n−1)2n2−n+1=.【答案】1210. limx→1x−1x2+3x−4=.【答案】1511. 有一列正方体,棱长组成以1为首项,12为公比的等比数列,体积分别记为V1,V2,⋯,V n,⋯,则limn→∞(V1+V2+⋯+V n)=.【答案】8712. 若函数f(x)={3x+2x2−4−ax−2(x>2),b(x⩽2)在x=2处连续,则a=,b=.【答案】2;1413. limn→∞2n+3n2n−3n= .【答案】 −114. 设函数 f (x )=1x+1,点 A 0 表示坐标原点,点 A n (n,f (n ))(n ∈N ∗),若向量 a n ⃗⃗⃗⃗ =A 0A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +⋯+A n−1A n ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,θn 是 a n ⃗⃗⃗⃗ 与 i 的夹角,(其中 i =(1,0)),设 S n =tanθ1+tanθ2+⋯+tanθn ,则 lim n→∞S n = .【答案】 1【分析】 a n ⃗⃗⃗⃗ =A 0A n ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(n,1n+1).由题意,得 θn 是 a n ⃗⃗⃗⃗ 与 x 轴正方向 的夹角,从而 tanθn =1n (n+1).运用裂项相消法,得 S n =1−1n+1.15. 设等差数列 {a n } 的前 n 项和为 S n ,若 a 6=S 3=12,则 limn→+∞S nn 2=【答案】 1【分析】 {a 6=12S 3=12 故 {a 1=2d =2,所以 a n =2n ,lim n→+∞S n n 2=lim n→+∞n (n+1)n 2=lim n→+∞n+1n =1.16. lim x→0(1x 2−x −2x 2−2x )= .【答案】 −1217. 计算 limn→+∞n+21+2+⋯+n= .【答案】 018. (1)若 lim √n(√n+a−√n)=1 ,则常数 a = .(2) √x−√π= .【答案】 2 ; −2√π19. 已知无穷等比数列 {a n } 的各项和为 4 ,则首项 a 1 的取值范围是 .【答案】 (0,4)∪(4,8)20. 已知函数 f (x )={x 2+2x−3x−1,x >1,ax +1,x ⩽1,在 x =1 处连续,则实数 a 的值为 .【答案】 321. 设函数 f (x )={2x +1(x >0),a(x =0),bx (√1+x −1)(x <0) 在 x =0 处连续,求 a,b 的值.【解】lim x→0−f (x )=lim x→0−bx⋅(√1+x −1)=lim x→0√1+x √1+x x(√1+x +1)=lim x→0b (1+x −1)x(√1+x +1)=lim x→0√1+x +1=b2,而 lim x→0+f (x )=lim x→0+(2x +1)=2⋅0+1=1,所以 {b2=a 1=a⇒{a =1,b =2.22. 已知 lim x→−2x 2+mx+2x+2=n ,求 m,n 的值.【解】 解法一:∵ limx→−2x 2+mx+2x+2=n ,∴ x =−2 为方程 x 2+mx +2=0 的根. ∴ m =3. 又 limx→−2x 2+3x+2x+2=lim x→−2(x +1)=−1,∴ n =−1.∴ m =3,n =−1.解法二:∵lim x→−2(x 2+mx +2)=lim x→−2[(x +2)⋅x 2+mx +2x +2]=lim x→−2(x +2)⋅lim x→−2x 2+mx +2=0⋅n =0,∴ (−2)2+(−2)m +2=0,m =3. 同上可得 n =−1.23. 在数列 {a n } 中,若 a 1,a 2 是正整数,且 a n =∣a n−1−a n−2∣,n =3,4,5,⋯ 则称 {a n } 为“绝对差数列”.(1)举出一个前五项不为零的"绝对差数列"(只要求写出前十项);【解】 a 1=3,a 2=1,a 3=2,a 4=1,a 5=1,a 6=0,a 7=1,a 8=1,a 9=0,a 10=1.(答案不唯一)(2)若“绝对差数列” {a n } 中,a 1=3,a 2=0,试求出通项 a n ;【解】 因为在绝对差数列 {a n } 中,a 1=3,a 2=0,所以该数列是 a 1=3,a 2=0,a 3=3,a 4=3,a 5=0,a 6=3,a 7=3,a 8=0,⋯. 即自第 1 项开始,每三个相邻的项周期地取值 3,0,3,所以 {a 3n+1=3,a 3n+2=0,a 3n+3=3,(n =0,1,2,3,⋯).(3)证明:任何“绝对差数列”中总含有无穷多个为零的项.【解】 根据定义,数列 {a n } 必在有限项后出现零项,证明如下:假设 {a n } 中没有零项,由于 a n =∣a n−1−a n−2∣,所以对于任意的 n ,都有 a n ⩾1,从而 当 a n−1>a n−2 时,a n =a n−1−a n−2⩽a n−1−1(n ⩾3); 当 a n−1<a n−2 时,a n =a n−2−a n−1⩽a n−2−1(n ⩾3); 即 a n 的值要么比 a n−1 至少小 1,要么比 a n−2 至少小 1.令 c n ={a 2n−1(a 2n−1>a 2n ),a 2n (a 2n−1<a 2n ),(n =1,2,3,⋯). 则 0<c n ⩽c n−1−1(n =2,3,4,⋯).由于 c 1 是确定的正整数,这样减少下去,必然存在某项 c n <0, 这与 c n >0(n =1,2,3,⋯) 矛盾,从而 {a n } 必有零项.若第一次出现的零项为第 n 项,记 a n−1=A (A ≠0),则自第 n 项开始,每三个相邻的项周期地取值 0,A ,A ,即{a n+3k =0,a n+3k+1=A,a n+3k+2=A,(k =0,1,2,3,⋯).所以绝对差数列 {a n } 中有无穷多个为零的项.24. 已知数列 {a n } 的通项公式为 a n =8(n+1)(n+3),求 ∑(n +1)(a n −a n+1)∞n=1 的值.【解】 因为 (n +1)(a n −a n+1)=8(n +1)[1(n +1)(n +3)−1(n +2)(n +4)]=8⋅[1(n +2)(n +4)+1(n +3)(n +4)]=4⋅(1n +2−1n +4)+8(1n +3−1n +4),所以 ∑(n +1)(a n −a n+1)∞n=1=4∑(1n +2−1n +4)∞n=1+8∑(1n +3−1n +4)∞n=1=4⋅(13+14)+8⋅14=133.25. 已知数列 {a n } 中,a n =(2n )2(2n−1)(2n+1), S n 为其前 n 项的和,求 lim n→∞S nn的值.【解】∵a n=(2n )2(2n−1)(2n+1)=(2n )2−1+1(2n−1)(2n+1)=1+(12n−1−12n+1)×12,∴1n S n =1n [1+12(1−13)+1+12(13−15)+⋯+1+12(12n−1−12n+1)]=1n [n +12(1−13+13−15+⋯+12n−1−12n+1)]=1n [n +12(1−12n+1)]=2n+22n+1.∴ lim n→∞S nn =limn→∞2n+12n+1=1.26. 已知数列 {a n },其中 a 1=1,a 2=3,2a n =a n+1+a n−1 (n ⩾2).记数列 {a n } 的前 n 项和为 S n ,数列 {lnS n } 的前 n 项和为 U n . (1)求 U n ;【解】 由题意,得 {a n } 是首项为 1 、公差为 2 的等差数列,则其前 n 项和S n =n ×1+n (n −1)2×2=n 2,从而lnS n =lnn 2=2lnn,因此U n =2(ln1+ln2+⋯+lnn )=2ln (n!). (2)设 x >0,F n (x )=e U n2n (n!)2x 2n ,T n (x )=∑F k ʹn i=1(x )(其中 F k ʹ(x ) 为 F k (x ) 的导函数),计算 limn→∞T n (x )T n+1(x ).【解】 由(1),得F n (x )=e U n 2n (n!)2⋅x 2n =(n!)22n (n!)2⋅x 2n=x 2n2n,则F nʹ(x)=x2n−1.从而T n(x)=∑F kʹ(x)=nk=1∑x2k−1=nk=1{x(1−x2n)1−x2,0<x<1,n,x=1,x(1−x2n)1−x2,x>1.因此lim n→∞T n(x)T n+1(x)={limn→∞1−x2n1−x2n+2=1,0<x<1,limn→∞nn+1=1,x=1,limn→∞(1x2n)−1(1x2n)−x2=1x2,x>1.27. 已知等差数列{a n}的前三项为a,4,3a,前n项和为S n,且S k=2550. (1)求a及k的值;【解】∵a+3a=2×4,∴a=2.∴数列{a n}是首项为2,公差为2的等差数列.∵2k+k(k−1)2×2=2550,∴k=50,即a、k的值分别为2、50.(2)求limn→+∞(1S1+1S2+⋯+1S n)的值.【解】∵S n=2n+n(n−1)2×2=n2+n,∴1S n =1n2+n=1n(n+1)=1n−1n+1.∴1S1+1S2+⋯+1S n=1−12+12−13+⋯+1n−1n+1 =1−1n+1.∴limn→+∞(1S1+1S2+⋯+1S n)=limn→+∞(1−1n+1)=1.28. 已知数列{a n}的前n项和S n=3n−1,数列{b n}满足b1=1,b n=3b n−1+a n(n⩾2),记数列{b n}的前n项和为T n.(1)证明:{a n}为等比数列;【解】因为数列{a n}的前n项和S n=3n−1,所以a n=S n−S n−1=(3n−1)−(3n−1−1)=2⋅3n−1(n⩾2).因为n=1时,a1=S1=2,也适合上式,所以a n=2⋅3n−1(n∈N∗).因为a n+1a n =2⋅3n2⋅3n−1=3,所以数列{a n}是首项为2,公比为3的等比数列. (2)求T n;【解】当n⩾2时,b n=3b n−1+2⋅3n−1,将其变形为b n3n−1=b n−13n−2+2,即b n3n−1−b n−13n−2=2.所以数列{b n3n−1}是首项为b130=1,公差为2的等差数列.所以b n3n−1=1+2(n−1)=2n−1.所以b n=(2n−1)⋅3n−1(n∈N∗).因为T n=1×30+3×31+5×32+⋯+(2n−1)⋅3n−1,所以3T n=1×31+3×32+5×33+⋯+(2n−1)⋅3n.两式相减得2T n=−1−2(31+32+⋯+3n−1)+(2n−1)⋅3n.整理得T n=(n−1)⋅3n+1(n∈N∗).(3)设P n=S n+T n,若对于任意n∈N∗,都有(−1)n−1λ<1+(−1)n⋅P nP n+1成立,求实数λ的取值范围.【解】由P n=S n+T n=n⋅3n,得P nP n+1=n⋅3n(n+1)⋅3n+1=n3n+3.于是(−1)n−1λ<1+(−1)n⋅P nP n+1化为(−1)n−1λ<1+(−1)n⋅n3n+3. ⋯⋯①(i)当n是正奇数时,①式可化为λ<23+13n+3,显然,13n+3大于0,且随着正奇数n的增大而减小.由于①式对任意正奇数n恒成立,所以λ⩽23.(ii)当n是正偶数时,①式可化为λ>−43+13n+3,显然,13n+3随着正偶数n的增大而减小.由于①式对任意正偶数n恒成立,所以λ>−43+13×2+3=−119.综上,实数λ的取值范围(−119,23 ].29. 设函数f(x)=a1sinx+a2sin2x+⋯+a n sinnx,其中a1,a2,⋯,a n∈R,n∈N+,已知对一切x∈R,有∣f(x)∣⩽∣sinx∣和limx→0sinxx=1,求证:∣a1+2a2+⋯+na n∣⩽1.【解】由于f(x)=a1sinx+a2sin2x+⋯+a n sinnx,则fʹ(x)=a1cosx+2a2cos2x+⋯+na n cosnx,所以fʹ(0)=a1+2a2+⋯+na n.由于∣fʹ(0)∣=∣∣∣limΔx→0f (Δx )−f (0)Δx∣∣∣=lim Δx→0∣∣∣f (Δx )Δx ∣∣∣⩽limΔx→0∣sinΔx∣∣Δx∣=1,故有 ∣a 1+2a 2+⋯+na n ∣⩽1.30. 已知公比为 q (0<q <1) 的无穷等比数列 {a n } 各项的和为 9,无穷等比数列 {a n 2} 各项的和为 815.(1)求数列 {a n } 的首项 a 1 和公比 q ;【解】 依题意可知,{ a 11−q =9,a 122=81,⇒{a 1=3,q =23.(2)对给定的 k (k =1,2,3,⋯,n ),设 T (k ) 是首项为 a k ,公差为 2a k −1 的等差数列,求 T (2) 的前 10 项之和;【解】 由(1)知,a n =3×(23)n−1,所以数列 T (2) 的的首项为 t 1=a 2=2,公差 d =2a 2−1=3,S 10=10×2+12×10×9×3=155,即数列 T (2) 的前 10 项之和为 155.(3)设 b i 为数列 T (k ) 的第 i 项,S n =b 1+b 2+⋯+b n ,求 S n ,并求正整数 m (m >1),使得limn→∞S nn m存在且不等于零.(注:无穷等比数列各项的和即当 n →∞ 时该无穷等比数列前 n 项和的极限)【解】 b i =a i +(i −1)(2a i −1)=(2i −1)a i −(i −1)所以 S n =b 1+b 2+⋯+b n =[a 1+3a 2+5a 3+⋯+(2n −1)a n ]−[1+2+⋯+(n −1)]令 S =a 1+3a 2+5a 3+⋯+(2n −1)a n 因为 S −qS =2(a 1+a 2+⋯+a n )−a 1−(2n −1)a n+1 所以S =2a 1(1−q n )(1−q )2−a 1+(2n −1)a n+11−q =45−(18n +45)(23)n故S n =S −n (n −1)2=45−(18n +45)(23)n −n (n −1)2当 m =2 时,lim n→∞S n n 2=lim n→∞[45n 2−18n +45n 2(23)n −12+12n ]=−12 当 m >2 时,lim n→∞S n n m =0,所以当 m =2 时,lim n→∞S nn 存在且不等于零.31. 已知在 x 轴上有一点列:P 1(x 1,0),P 2(x 2,0),P 3(x 3,0),⋯,P n (x n ,0),⋯,点 P n+2 分有向线段 P n P n+1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 所成的比为 λ,其中 n ∈N ∗,λ 为常数,x 1=1,x 2=2. (1)设 a n =x n+1−x n ,求数列 {a n } 的通项公式;【解】 由题意得 x n+2=x n +λxn+11+λ,又 a n =x n+1−x n , ∴a n a n−1=−11+λ,又 a 1=x 2−x 1=1,∴ 数列 {a n } 是首项为 1 、公比为 −11+λ 的等比数列, ∴ a n =(−11+λ)n−1.(2)设 f (λ)=lim n→+∞x n ,当 λ 变化时,求 f (λ) 的取值范围.【解】 因为x n =x 1+(x 2−x 1)+(x 3−x 2)+⋯+(x n −x n−1)=1+a 1+a 2+⋯+a n−1,λ>0.∴ ∣∣−11+λ∣∣<1,lim n→+∞x n =1+11+11+λ=2λ+3λ+2. ∴ 当 λ>0 时,f (λ)=2(λ+2)−1λ+2=2−1λ+2∈(32,2).32. 已知函数 f (x )={0,(x ⩽0),n [x −(n −1)]+f (n −1),(n −1<x ⩽n,n ∈N ∗), 数列 {a n } 满足a n =f (n )(n ∈N ∗).(1)求数列 {a n } 的通项公式;【解】 ∵ n ∈N ∗,所以f (n )=n [n −(n −1)]+f (n −1)=n +f (n −1),所以f (n )−f (n −1)=n,所以f (1)−f (0)=1,f (2)−f (1)=2,f (3)−f (2)=3,⋯⋯f (n )−f (n −1)=n.将这 n 个式子相加,得f (n )−f (0)=1+2+3+⋯+n=n (n +1).∵ f (0)=0, ∴ f (n )=n (n+1)2,所以a n =n (n +1)2(n ∈N ∗). (2)设 x 轴,直线 x =a 与函数 y =f (x ) 的图象所围成的封闭图形的面积为 S (a )(a ⩾0),求 S (n )−S (n −1)(n ∈N ∗);【解】 S (n )−S (n −1) 为一直角梯形(n =1 时为直角三角形)的面积,该梯形的两底边的长分别为 f (n −1),f (n ),高为 1,所以S (n )−S (n −1)=f (n −1)+f (n )2×1=a n−1+a n 2=12[n (n −1)2+n (n +1)2]=n 22.(3)在集合 M ={N ∣N =2k,k ∈Z 且 1000⩽k <1500} 中,是否存在正整数 N ,使得不等式 a n −1005>S (n )−S (n −1) 对一切 n >N 恒成立?若存在,则这样的正整数 N 共有多少个?并求出满足条件的最小的正整数 N ;若不存在,请说明理由.【解】 设满足条件的正整数 N 存在,则n (n +1)2−1005>n 22⇔n2>1005⇔n >2010. 又 M ={2000,2002,⋯,2008,2010,2012,⋯,2998},∴ N =2010,2012,⋯,2998 均满足条件.它们构成首项为 2010,公差为 2 的等差数列. 设共有 m 个满足条件的正整数 N ,则2010+2(m −1)=2998,解得m =495,∴ M 中满足条件的正整数 N 存在,共有 495 个,所以N min =2010.(4)请构造一个与 {a n } 有关的数列 {b n },使得 lim n→∞(b 1+b 2+⋯+b n ) 存在,并求出这个极限值.【解】 设 b n =1a n,即b n =2()=2(1−1),则b 1+b 2+⋯+b n=2[(1−12)+(12−13)+(13−14)+⋯+(1n −1n +1)]=2(1−1n +1).显然,其极限存在,并且lim n→∞(b 1+b 2+⋯+b n )=lim n→∞[2−1n +1]=2. 注:b n =c a n(c 为非零常数),b n =(12)2a n n+1,b n =q 2a nn+1(0<∣q ∣<1) 等都能使 lim n→∞(b 1+b 2+⋯+b n ) 存在.33. 已知 a >0 ,且 a ≠1 ,函数 f (x )=log a (1−a x ) . (1)求函数 f (x ) 的定义域,并判断 f (x ) 的单调性;【解】 由题意知 1−a x >0 ,当 0<a <1 时, f (x ) 的定义域是(0,+∞);当 a >1 时, f (x ) 的定义域是(−∞,0).因为fʹ(x )=−a x lna 1−a x ⋅log a e =a xa x −1.由此,当 0<a <1 时, x ∈(0,+∞) ,因为 a x −1<0 , a x >0 ,则fʹ(x )<0,所以 f (x )在 (0,+∞) 上是减函数.当 a >1 时, x ∈(−∞,0),因为 a x −1<0 , a x >0 ,则fʹ(x )<0,所以 f (x )在 (−∞,0) 上是减函数. (2)若 n ∈N ∗,求 lim n→∞a f (n )a n +a;【解】 因为 f (n )=log a (1−a n ),所以a f (n )=1−a n ,由函数定义域知 1−a n >0 ,因为 n 是正整数,则 0<a <1 ,所以lim n→∞a f (n )a n +a =lim n→∞1−a n a n +a =1a. (3)当 a =e ( e 为自然对数的底数)时,设 ℎ(x )=(1−e f (x ))(x 2−m +1) ,若函数 ℎ(x ) 的极值存在,求实数 m 的取值范围以及函数 ℎ(x ) 的极值.【解】 由 ℎ(x )=e x (x 2−m +1)(x <0) ,所以ℎʹ(x )=e x (x 2+2x −m +1).令 ℎʹ(x )=0 ,即x 2+2x −m +1=0,由题意应有 Δ⩾0 ,即m ⩾0.①当 m =0 时, ℎʹ(x )=0 有实根x =−1,在 x =−1 点左右两侧均有 ℎʹ(x )>0 ,故 ℎ(x ) 无极值. ②当 0<m <1 时, ℎʹ(x )=0 有两个实根x 1=−1−√m,x 2=−1+√m.当 x 变化时, ℎʹ(x ) 、 ℎ(x ) 的变化情况如下表所示:x (−∞,x 1)x 1(x 1,x 2)x 2(x 2,0)ℎʹ(x )+00+ℎ(x )↗极大值↘极小值↗所以 ℎ(x ) 的极大值为2e −1−√m (1+√m),ℎ(x ) 的极小值为2e −1+√m (1−√m).③当 m ⩾1 时, ℎʹ(x )=0 在定义域内有一个实根x =−1−√m.同上可得 ℎ(x ) 的极大值为2e −1−√m (1+√m).综上所述,当 0<m <1 时 ℎ(x ) 的极大值为 2e −1−√m (1+√m) , ℎ(x ) 的极小值为 2e −1+√m (1−√m) ;当 m ⩾1 时, ℎ(x ) 的极大值为 2e −1−√m (1+√m) .34. 已知 f 是直角坐标系平面 xOy 到自身的一个映射,点 P 在映射 f 下的象为点 Q ,记作 Q =f (P ).设 P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),⋯,P n =f (P n−1),⋯ 如果存在一个圆,使所有的点 P n (x n ,y n )(n ∈N ∗) 都在这个圆内或圆上,那么称这个圆为点 P n (x n ,y n ) 的一个收敛圆.特别地,当 P 1=f (P 1) 时,则称点 P 1 为映射 f 下的不动点.若点 P (x,y ) 在映射 f 下的象为点 Q (−x +1,12y). (1)求映射 f 下不动点的坐标;【解】 设不动点的坐标为 P 0(x 0,y 0),由题意,得{x 0=−x 0+1,y 0=12y 0.解得x 0=12,y 0=0.所以此映射 f 下不动点为 P 0(12,0).(2)若 P 1 的坐标为 (2,2),求证:点 P n (x n ,y n )(n ∈N ∗) 存在一个半径为 2 的收敛圆.【解】 由 P n+1=f (P n ),得{x n+1=−x n +1,y n+1=12y n .所以x n+1−12=−(x n −12),y n+1=12y n . 因为 x 1=2,y 1=2,所以 x n −12≠0,y n ≠0,所以x n+1−12x n −12=−1,y n+1y n =12. 由等比数列定义,得数列 {x n −12}(n ∈N ∗) 是公比为 −1,首项为 x 1−12=32 的等比数列,所以x n −12=32×(−1)n−1, 则x n =12+(−1)n−1×32. 同理,y n =2×(12)n−1.所以 P n (12+(−1)n−1×32,2×(12)n−1).设 A (12,1),则∣AP n ∣=√(32)2+[1−2×(12)n−1]2.因为 0<2×(12)n−1⩽2,所以 −1⩽1−2×(12)n−1<1,所以∣AP n ∣⩽√(32)2+1<2.故所有的点 P n (n ∈N ∗) 都在以 A (12,1) 为圆心,2 为半径的圆内,即点 P n (x n ,y n ) 存在一个半径为 2 的收敛圆.35. 设 f (x ) 是定义在 R 上的偶函数,其图象关于直线 x =1 对称,对任意 x 1,x 2∈[0,12],都有f (x 1+x 2)=f (x 1)⋅f (x 2),且 f (1)=a >0. (1)求 f (12),f (14);【解】 因为对任意 x 1,x 2∈[0,12],都有 f (x 1+x 2)=f (x 1)⋅f (x 2), 所以 f (x )=f (x 2+x 2)=f (x 2)⋅f (x2)⩾0,x ∈[0,1]. ∵ f (1)=f (12+12)=f (12)⋅f (12)=[f (12)]2, f (12)=f (14+14)=f (14)⋅f (14)=[f (14)]2, f (1)=a >0,∴ f (12)=a 12,f (14)=a 14. (2)证明 f (x ) 是周期函数;【解】 依题设 y =f (x ) 关于直线 x =1 对称,故 f (x )=f (1+1−x ),即f (x )=f (2−x ),x ∈R.又由 f (x ) 是偶函数知 f (−x )=f (x ),x ∈R ,∴ f (−x )=f (2−x ),x ∈R .将上式中 −x 以 x 代换,得f (x )=f (x +2),x ∈R.这表明 f (x ) 是 R 上的周期函数,且 2 是它的一个周期. (3)记 a n =f (2n +12n),求 lim n→∞(lna n ).【解】 由(1)知 f (x )⩾0,x ∈[0,1],∵f (12)=f (n ⋅12n)=f [12n +(n −1)⋅12n ]=f (12n )⋅f [(n −1)⋅12n]=⋯=f (12n )⋅f (12n )⋅⋯⋅f (12n)=[f (1)]n ,f (12)=a 12,∴ f (12n )=a 12n.∵ f (x ) 的一个周期是 2 ∴ f (2n +12n )=f (12n ),因此 a n =a 12n. ∴lim n→∞(lna n )=lim n→∞(12n lna)=0.36. 已知点 P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )(n 为正整数)都在函数 y =a x (a >0,a ≠1) 的图象上,其中 {a n } 是以 1 为首项,2 为公差的等差数列. (1)求数列 {a n } 的通项公式,并证明数列 {b n } 是等比数列;【解】 a n =2n −1,(n ∈N ∗),b n =a a n =a 2n−1,∴ b n+1b n=a 2(定值),∴ 数列 {b n } 是等比数列.(2)设数列 {b n } 的前 n 项的和为 S n ,求 lim n→∞S nS n+1;【解】 ∵ {b n } 是等比数列,且公比 a 2≠1,∴ S n =a (1−a 2n )1−a 2,S nSn+1=1−a 2n1−a 2n+2.当 0<a <1 时,lim n→∞S nS n+1=1;当 a >1 时,lim n→∞S nS n+1=limn→∞1−a 2n 1−a 2n+2=limn→∞1a 2n −11a 2n −a 2=1a 2.因此,lim S nSn+1={1,0<a <11a2,a >1.(3)设 Q n (a n ,0),当 a =23时,问 △OP n Q n 的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由;【解】 b n =(23)2n−1,S △=12⋅(2n −1)⋅(23)2n−1,设 c n =12⋅(2n −1)(23)2n−1,当 c n 最大时,则 {c n ⩾c n−1c n ⩾c n+1,解得 {n ⩽2.3n ⩾1.3,n ∈N ∗,∴ n =2 时,c n 取得最大值 49,因此 △OP n Q n的面积存在最大值为 49.37. 如图,已知 Rt △ABC 中,∠B =90∘,tanC =0.5,AB =1,在 △ABC 内有一系列正方形,求所有这些正方形面积之和.【解】 设正方形 BD 1C 1B 1 、 D 1D 2C 2B 2 、 … 的边长分别为 a 1,a 2,…., ∵AB =1,tanC =0.5,∴BC =2.由相似三角形的知识可得 a 12=1−a 11,∴a 1=23. 同理,可得 a 2=23a 1,…,a n =23a n−1.∴{a n } 是以 23为首项,以 23为公比的等比数列.设 {S n } 是第 n 个正方形的面积,则 S n 是以 49 为首项,49 为公比的等比数列.∴lim n→∞(S 1+S 2+⋯+S n )=limn→∞49[1−(49)n ]1−49=45lim n→∞[1−(49)n ]=45,即所有这些正方形面积之和为 45.38. 已知数列 {anλn −(3λ)n} 是等差数列,公差为 2,a 1=11,a n+1=λa n +b n . (1)用 λ 表示 b n ;【解】 因为数列 {a nλn −(3λ)n} 是公差为 2 的等差数列,所以 a n+1λn+1−3n+1λn+1=a n λn −3nλn+2, 去分母,得a n+1=λ⋅a n +3n+1+2λn+1−λ⋅3n ,由 a n+1−λa n =b n ,得b n =2λn+1+3n (3−λ).(2)若limn→∞b n+1b n=4,且λ⩾3,求λ的值;【解】lim n→∞b n+1b n=limn→∞2λn+2+3n+1(3−λ)2λn+1+3n(3−λ).当λ=3时,lim n→∞b n+1n=λ=3这与已知矛盾,所以λ≠3,当λ>3时,lim n→∞b n+1b n=limn→∞2λ+(3−λ)(3λ)n+12+3−λλ(3λ)n=λ=4,综上,λ=4.(3)在(2)的条件下,求数列{a n}的前n项和.【解】当λ=4,由已知,得a n 4n −3n4n=11−34+2(n−1)=2n,解得a n=2n⋅4n+3n.令A n=2×4+4×42+6×43+⋯+2n×4n,则4A n=2×42+4×43+6×44+⋯+2n×4n+1,两式相减,得−3A n=2×4+2×42+2×43+⋯+2×4n−2n⋅4n+1=8(1−4n)1−4−2n⋅4n+1=(2−6n)⋅4n+1−83,从而A n=(6n−2)⋅4n+1+89.而B n=3+32+33+⋯+3n=3n+12−32,因此,数列{a n}的前n项和S n=A n+B n=89+6n−29×4n+1+3n+12−32=−1118+3n+12+6n−29×4n+1.39. 讨论函数 f (x )={x,x >2,−(x −2)2,x <2 在 x =2 处的左极限、右极限以及在 x =2 处的极限.【解】 函数 f (x ) 的图象如图所示:当 x →2− 时,函数无限接近于 0, 即 lim x→2−f (x )=0. 当 x →2+时,函数无限接近于 2, 即 lim x→2+f (x )=2. 综上,可知 lim x→2−f (x )≠lim x→2+f (x ).∴ 函数 f (x ) 在 x =2 处极限不存在.40. 已知 a >0,数列 {a n } 满足 a 1=a ,a n+1=a +1a n,n =1,2,⋯.(1)已知数列 {a n } 极限存在且大于零,求 A =lim n→∞a n (将 A 用 a 表示);【解】 由 lim n→∞a n 存在,且 A =lim n→∞a n (A >0), 对 a n+1=a +1a n两边取极限得A =a +1A,解得A =a ±√a 2+42,又 A >0,所以A =a +√a 2+4.(2)设 b n =a n −A ,n =1,2,⋯,证明:b n+1=−bn A (b n +A);【解】 由 a n =b n +A ,a n+1=a +1a n,得b n+1+A =a +1n , 所以b n+1=a −A +1b n +A =−1A +1b n +A=−b nA (b n +A ).即 b n+1=−b nA(b n +A)对 n =1,2,⋯ 都成立.(3)若 ∣b n ∣⩽12n对 n =1,2,⋯ 都成立,求 a 的取值范围.【解】 令 ∣b 1∣⩽12,根据(1)(2)得∣∣∣a −12(a +√a 2+4)∣∣∣⩽12, 解得a ⩾32.现证明当 a ⩾32 时,∣b n ∣⩽12n 对 n =1,2,⋯ 都成立. (i )当 n =1 时结论成立(已验证).(ii )假设当 n =k (k ⩾1) 时结论成立,即 ∣b k ∣⩽12k , 那么∣b k+1∣=∣b k ∣∣A (b k +A )∣⩽1A ∣b k +A ∣×12k ,则只须证明1A ∣b k +A ∣⩽12,即证 A ∣b k +A ∣⩾2 对 a ⩾32成立.由于A =a +√a 2+42=2√a 2+4−a,而当 a ⩾32 时,√a 2+4−a ⩽1,所以A ⩾2,从而∣b k +A ∣⩾A−∣b k ∣⩾2−12k⩾1, 即A ∣b k +A ∣⩾2. 故当 a ⩾32 时,∣b k+1∣⩽12×12k =12k+1, 即 n =k +1 时结论成立.根据(i )和(ii )可知结论对一切正整数都成立.故 ∣b n ∣⩽12n 对 n =1,2,⋯ 都成立的 a 的取值范围为 [32,+∞).课后练习1. 无限循环小数可以化为有理数,如 0.1=19,0.13=1399,0.015=5333,⋯,请你归纳出0.017= (表示成最简分数 mn,且 n ,m ∈N ∗).2. 计算: lim n→∞n+203n+13= .3. 已知 limx→2x 2+cx+2x−2=a ,则 c = ,a = .4. 已知函数 f(x)={1−√1−xx (x <0)a +x 2(x ⩾0) 是连续函数,则实数 a 的值是 .5. 计算:lim n→∞n (n 2+1)6n 3+1= .6. 若 lim x→1f (x−1)x−1=1,则 lim x→1f (2−2x )x−1= .7. lim x→−2x 2+3x+2x+2= .8. limx→1x √x−xx−1= .9. 计算: limn→∞3n+1−2n3n +2n−1= .10. 若 (1+2x )7 展开式的第三项为 168 ,则 lim n→∞(1x +1x 2+⋯+1x n )= .11. 已知函数 f (x )={2x+1,x >0,x +a,x ⩽0是连续函数,则实数 a 的值是 .12. 等差数列 {a n } 的前 3 项的和为 21,前 6 项的和为 24,则其首项为 ,若数列 {a n } 的前 n 项的和为 S n ,则 limn→∞S nn 2= .13. 已知 f (x ) 在定义域 R 上可导,导函数为 fʹ(x ),若 f (x 0)=m ,fʹ(x 0)=n ,则limℎ→0sin [f (x 0+ℎ)]−sin [f (x 0−ℎ)]ℎ= .(用 m ,n 表示).14. 已知定义在正实数集上的连续函数 f (x )={11−x +2x 2−1,0<x <1x +a,x ⩾1,则实数 a 的值为 . 15. limx→2x 3−2x 2x−2= .16. lim x→1x 2+x−2x 2+4x−5= .17. \(\lim\limits \limits_{x \to 1} \left(\dfrac{1}{{x - 1}} - \dfrac{2}{{{x^2} - 1}}\right)=\) .18. lim x→−2(44−x −12+x )= .19. 等比数列 {b n }:1,2,4,⋯,其前 n 项和为 S n ,n =1,2,3,⋯,则 lim n→∞b nS n= .20. 计算 limn→∞3n−24n+3= .21. 已知数列 {a n } 的前 n 项和 S n =(n 2+n )⋅3n . (1)求 limn→∞a n S n;(2)证明:a 11+a22+⋯+ann >3n.22. 函数 f (x ) 定义在 [0,1] 上,满足 f (x )=2f (x 2) 且 f (1)=1,在每个区间 (12i ,12i−1](i =1,2,⋯) 上,y =f (x ) 的图象都是平行于 x 轴的直线的一部分.(1)求 f (0) 及 f (12),f (14) 的值,并归纳出 f (12i )(i =1,2,⋯) 的表达式;(2)设直线 x =12i ,x =12i−1,x 轴及 y =f (x ) 的图象围成的矩形的面积为 a i (i =1,2,⋯),求 a 1,a 2 及 lim n→∞(a 1+a 2+⋯+a n ) 的值. 23. 已知定义在 R 上的函数 f (x ) 和数列 {a n } 满足下列条件: a 1=a,a n =f (a n−1)(n =2,3,4,⋯),a 2≠a 1, f (a n )−f (a n−1)=k (a n −a n−1)(n =2,3,4,⋯), 其中 a 为常数,k 为非零常数.(1)令 b n =a n+1−a n (n ∈N ∗),证明数列 {b n } 是等比数列; (2)求数列 {a n } 的通项公式; (3)当 ∣k ∣<1 时,求 lim n→∞a n24. 已知 u n =a n +a n−1b +a n−2b 2+⋯+ab n−1+b n (n ∈N ∗,a >0,b >0). (1)当 a =b 时,求数列 {u n } 的前 n 项和 S n ; (2)求 lim n→∞u nu n−1.小测验姓名 成绩1. 若 lim √n(√n+a−√n)=1 ,则常数 a = .2. limx→−1x 2+3x+2x 2−1的值等于 .3. 设等差数列 {a n } 的公差 d 是 2 ,前 n 项的和为 S n ,则 lim n→∞a n2−n 2S n= .4. limx→2x−2x 2−x−2的值等于 .5. 极限 limx→0(x+1)10−(x+1)6x= .6. 各项均为正数的等比数列 {a n } 的公比为 q ,前 n 项和为 S n .若 q <1,则limn→∞a n+1S n= ,若 q >1,则 limn→∞a n+1S n= .7. 设常数 a >0,(ax −1x )5展开式中 x 3 的系数为 −581,则 a = ,lim n→∞(a +a 2+⋯+a n )= .8. 设 a n 是 (1+x )n (n =2,3,4,⋯) 展开式中 x 2 的系数,则 lim n→∞(1a 2+1a 3+1a 4+⋯+1a n)= .9. lim x→1(xx−1+x−3x 2−1)= .10. 设函数f (x )={√1+x−1x ,x ≠0,a,x =0在 x =0 处连续,则实数 a 的值为 . 11. 若 lim x→−1x 2+3x+m x+1=n ,则 m = ,n = . 12. limn→∞3n +(−2)n3n+1+(−2)n+1= .13. 等比数列 1,12,14,18,⋯ 所有项的和为 . 14. 若 lim n→∞(4+4a+⋯+4a n−11−a)=9,则实数 a = .15. 已知函数 f (x )={x 3−1x−1,x ≠1a,x =1,若 f (x ) 在 R 上连续,则 a = .此时 lim n→∞(an−1n+2a3n )= .16. 已知点 O (0,0),Q 0(0,1) 和点 R 0(3,1),记 Q 0R 0 的中点为 P 1,取 Q 0P 1 和 P 1R 0 中的一条,记其端点为 Q 1,R 1,使之满足 (∣OQ 1∣−2)(∣OR 1∣−2)<0,记 Q 1R 1 的中点为 P 2,取 Q 1P 2和P2R1中的一条,记其端点为Q2,R2,使之满足(∣OQ2∣−2)(∣OR2∣−2)<0.依次下去,得到P1,P2,⋯,P n,⋯,则limn→∞∣Q0P n∣=.17. 在二项式(1+x)n(n>1,n∈N)的展开式中,含x2项的系数记为a n,则limn→∞(1a2+1a3+⋯+1a n)的值为.18. 若(1+5x)n的展开式中各项系数的和是a n,(7x2+5)n的二项式系数和为b n,则lim n→∞a n−2b n3a n+4b n=.19. 已知数列{a n}的前n项和S n=−n2+kn(k∈R,n∈N∗),则limn→∞na nS n=.20. 已知点A(0,2n ),B(0,−2n),C(4+2n,0),其中n为正整数.设S n表示△ABC外接圆的面积,则limn→∞S n=.。
(完整)职高数列知识点及例题(有答案),推荐文档
数列一、数列的定义: 按一定顺序排列成的一列数叫做数列. 记为:{a n }.即{a n }: a 1, a 2, … , a n .二、通项公式:用项数n 来表示该数列相应项的公式,叫做数列的通项公式。
1、本质:数列是定义在正整数集(或它的有限子集)上的函数. 2、通项公式: a n =f(n)是a n 关于n 的函数关系. 三、前n 项之和:S n = a 1+a 2+…+a n注 求数列通项公式的一个重要方法: ⎩⎨⎧≥-==-)2()1(11n s s n s a n nn例1、已知数列{100-3n},(1)求a 2、a 3;(2)此数列从第几项起开始为负项.例2 已知数列{}n a 的前n 项和,求数列的通项公式:(1) n S =n 2+2n ; (2) n S =n 2-2n -1. 解:(1)①当n≥2时,n a =n S -1-n S =(n 2+2n)-[(n -1)2+2(n -1)]=2n+1; ②当n=1时,1a =1S =12+2×1=3;③经检验,当n=1时,2n+1=2×1+1=3,∴n a =2n+1为所求. (2)①当n≥2时,n a =n S -1-n S =(n 2-2n -1)-[(n -1)2+2(n -1)-1]=2n -3; ②当n=1时,1a =1S =12-2×1-1=-2; ③经检验,当n=1时,2n -3=2×1-3=-1≠-2,∴n a =⎩⎨⎧≥-=-)2(32)1(2n n n 为所求. 注:数列前n 项的和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式1n n n a S S -=-时,一定要注意条件2n ≥ ,求通项时一定要验证1a 是否适合例3 当数列{100-2n}前n 项之和最大时,求n 的值.分析:前n 项之和最大转化为10n n a a +≥⎧⎨≤⎩.等差数列1.如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.即:)()(1•+∈=-N n d a a n n 常数2.通项:d n a a n )1(1-+=,推广:d m n a a m n )(-+=.3.求和:d n n na a a n S n n 2)1(2)(11-+=+=.(关于n 的没有常数项的二次函数). 4.中项:若a 、b 、c 等差数列,则b 为a 与c 的等差中项:2b=a+c 5.等差数列的判定方法(1)定义法: )()(1•+∈=-N n d a a n n 常数 (2)中项法:212+++=n n n a a a (3)通项法:d n a a n )1(1-+= (4)前n 项和法:Bn An S n +=2 练习:已知数列{ a n }满足:a 1=2,a n = a 1+n +3,求通项a n .例1 在等差数列{}n a 中,已知.,63,6,994n S a a n 求=-==解:设首项为1a ,公差为d ,则⎩⎨⎧-==⎩⎨⎧+=-+=3188639111d a d a d a 得76:)1(231863==--==∴n n n n n S n或得 例2(1)设{a n }是递增等差数列,它的前3项之和为12,前3项之积为48,求这个数列的首项.分析2:三个数成等差数列可设这三个数为:a -d ,a ,a+d拓展:(1)若n+m=2p ,则a n +a m =2a p .推广:从等差数列中抽取等距离的项组成的数列是一个等差数列。
解决简单的数列与函数问题
解决简单的数列与函数问题数列和函数问题在数学学科中占据着重要的地位。
解决简单的数列与函数问题不仅可以提升我们的数学思维能力,还可以帮助我们应对日常生活中的一些实际问题。
本文将以实例为基础,分析和解决一些简单的数列与函数问题,并给出详细的解题步骤。
1. 简单数列问题:数列是一系列按照一定规律排列的数的集合。
解决数列问题可以通过观察数列的通项规律、前n项和等方法。
下面我们通过一个简单的数列问题来进行说明。
例题:求解数列 1, 3, 5, 7, 9, ...... 的第n项。
解析:观察数列可以发现,每一项都比前一项大2。
因此,可以得出数列的通项公式为 a_n = 2n-1,其中n为项数。
根据通项公式,我们可以轻松地求得第n项的值。
2. 简单函数问题:函数是一种对应关系,将自变量映射到一个唯一的因变量。
解决函数问题可以通过函数的图像、定义域、值域以及函数的性质等方面的分析。
下面我们通过一个简单的函数问题来进行说明。
例题:求解函数 y = 2x + 1 的零点。
解析:函数的零点即为函数图像与x轴交点的横坐标。
对于线性函数 y = 2x + 1,当y = 0时,可以得到 0 = 2x + 1,将方程两边关于x进行整理,得到 x = -1/2。
因此,函数的零点为x = -1/2。
以上是对简单数列与函数问题的解决方法进行了简单的示范。
在实际应用中,数列与函数经常与其他数学知识相结合,解决更加复杂的问题。
要想更好地解决数列与函数问题,我们需要通过大量的练习和学习积累,不断提高自己的数学能力。
总结:解决简单的数列与函数问题可以帮助我们培养逻辑思维和问题解决能力。
通过观察数列的规律、推导数列通项公式,以及理解函数的特性和性质,我们可以轻松解答相关问题。
但是要在数列和函数问题上取得更好的成绩,需要在平时的学习中多加练习,并不断拓展自己的数学知识面。
数学是一门需要不断学习和思考的学科,只有通过不断地学习与实践,我们才能更好地解决各类数列与函数问题。
6.2等差数列典型例题及详细解答
精心整理1.等差数列的定义一般地,假如一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,往常用字母__d__表示.2.等差数列的通项公式假如等差数列{a n}的首项为a1,公差为d,那么它的通项公式是a n=a1+(n-1)d. 3.等差中项假如A=,那么A叫做a与b的等差中项.4.等差数列的常用性质(1)通项公式的推行:a n=a m+(n-m)d(n,m∈N*).(2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an.(3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.(5)若{an}是等差数列,公差为d,则ak,ak+m,ak+*5.等差数列的前n项和公式设等差数列{a n}的公差为d,其前n项和S n=或S nna1+d.6.等差数列的前n项和公式与函数的关系S n=n2+n.数列{a n}是等差数列?S n=An2+Bn(A、B为常数).7.等差数列的前n项和的最值在等差数列{an}中,a1>0,d<0,则Sn存在最__大__值;若a1<0,d>0,则Sn存在最__小__值.【思虑辨析】判断下边结论能否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{an}为等差数列的充要条件是对随意n∈N*,都有2an+1=an+an+2.(√)(3)等差数列{an}的单一性是由公差d决定的.(√)(4)数列{a n}为等差数列的充要条件是其通项公式为n的一次函数.(×)(5)数列{an}知足an+1-an=n,则数列{an}是等差数列.(×)(6)已知数列{an}的通项公式是an=pn+q(此中p,q为常数),则数列{an}必定是等差数列.(√)1.(2015重·庆)在等差数列{an}中,若a2=4,a4=2,则a6等于()A.-1B.0C.1D.6答案B分析由等差数列的性质,得a6=2a4-a2=2×2-精心整理4=0,选B.2.(2014福·建)等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于()A.8B.10C.12D.14答案C分析由题意知a1=2,由S3=3a1+×d=12,解得d=2,所以a6=a1+5d=2+5×2=12,应选C.3.在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11等于()A.58B.88C.143D.176答案B分析S11===88.4.设数列{a n}是等差数列,若a3+a4+a5=12,则a1+a2++a7等于()精心整理A.14B.21C.28D.35答案C分析∵a3+a4+a5=3a4=12,∴a4=4,a1+a2++a7=7a4=28.5.(2014·京北)若等差数列{a n}知足a7+a8+a9>0,a7+a10<0,则当n=________时,{a n}的前n项和最大.答案8分析{a n}是等差数列,且a7+a8+a9=3a8因为数列>0,所以a8>0.又a7+a10=a8+a9<0,所以a9<0.故当n=8时,其前n项和最大.题型一等差数列基本量的运算例1(1)在数列{a n}中,若a1=-2,且对随意的n∈N*有2a n+1=1+2a n,则数列{a n}前10项的和为()精心整理A.2B.10C.D.(2)已知在等差数列{a n}中,a2=7,a4=15,则前10项和S10等于()A.100B.210C.380D.400答案(1)C(2)B分析(1)由2a n+1=1+2a n得a n+1-a n=,所以数列{a n}是首项为-2,公差为的等差数列,所以S10=10×(-2)+×=.(2)因为a2=7,a4=15,所以d=4,a1=3,故S10=10×3+×10×9×4=210.思想升华(1)等差数列运算问题的一般求法是设出首项a1和公差d,而后由通项公式或前n项和公式转变成方程(组)求解.(2)等差数列的通项公式及精心整理前n项和公式,共波及五个量a1,a n,d,n,S n,知此中三个就能求此外两个,表现了方程的思想.(1)(2015课·标全国Ⅱ)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5等于()A.5B.7C.9D.11(2)已知等差数列{a n}的前n项和为S n,且知足-=1,则数列{a n}的公差是().1C.2D.3答案(1)A(2)C分析(1)∵{a n}为等差数列,∴a1+a5=2a3,a1+a3+a5=3a3=3,得a3=1,S5==5a3=5.应选A.(2)∵S n=,∴=,又-=1,得-=1,即a3-a2=2,∴数列{a n}的公差为2.精心整理题型二等差数列的判断与证明例2已知数列{a n}中,a1=,a n=2-(n≥2,n∈N*),数列{b n}知足b n=(n∈N*).(1)求证:数列{b n}是等差数列;(2)求数列{a n}中的最大项和最小项,并说明原因.(1)证明因为a n=2-(n≥2,n∈N*),b n=(n∈N*),所以b n+1-b n=-=-=-=1.又b1==-.所以数列{b n}是以-为首项,1为公差的等差数列.(2)解由(1)知b n=n-,则a n=1+=1+.精心整理设f(x)=1+,则f(x)在区间(-∞,)和(,+∞)上为减函数.所以当n=3时,a n获得最小值-1,当n=4时,a n 获得最大值3.引申研究例2中,若条件变成a1=,na n+1=(n+1)a n+n(n 1),研究数列{a n}的通项公式.解由已知可得=+1,即-=1,又a1=,∴是以=为首项,1为公差的等差数列,∴=+(n-1)·1=n-,∴a n=n2-n.思想升华等差数列的四个判断方法精心整理(1)定义法:证明对随意正整数n都有a n+1-a n等于同一个常数.(2)等差中项法:证明对随意正整数n都有2a n+1=a n+a n+2后,可递推得出a n+2-a n+1=a n+1-a n=a na n-1=a n-1-a n-2==a2-a1,依据定义得出数列{a n}为等差数列.(3)通项公式法:得出a n=pn+q后,得a n+1-a n=p对随意正整数 n恒建立,依据定义判断数列{a n}为等差数列.(4)前n项和公式法:得出S n =An2+Bn后,依据S n,a n的关系,得出a n,再使用定义法证明数列{a n}为等差数列.(1)若{a n}是公差为1的等差数列,则{a2n-1精心整理+2a2n}是()A.公差为3的等差数列B.公差为4的等差数列C.公差为6的等差数列D.公差为9的等差数列(2)在数列{a n}中,若a1=1,a2=,=+(n∈N*),则该数列的通项为()A.a n=B.a n=C.a n=D.a n=答案(1)C(2)A分析(1)∵a2n-1+2a2n-(a2n-3+2a2n-2)(a2n-1-a2n-3)+2(a2n-a2n-2)2+2×2=6,∴{a2n-1+2a2n}是公差为6的等差数列.(2)由已知式=+可得-=-,知{}是首项为=1,公差为-=2-1=1的精心整理等差数列,所以=n,即a n=.精心整理题型三等差数列的性质及应用命题点1等差数列的性质例3(1)(2015广·东)在等差数列{a n}中,若a3+a4a5+a6+a7=25,则a2+a8=________.(2)已知等差数列{a n}的前n项和为S n,且S10=10,S20=30,则S30=________.答案(1)10(2)60分析(1)因为{a n}是等差数列,所以a3+a7=a4+a6a2+a8=2a5,a3+a4+a5+a6+a7=5a5=25,即a5=5,a2+a8=2a5=10.(2)∵S10,S20-S10,S30-S20成等差数列,且S10=10,S20=30,S20-S10=20,S30-30=10+2×10=30,∴S30=60.命题点2等差数列前n项和的最值例4在等差数列{a n}中,已知a1=20,前n项和为精心整理S n,且S10=S15,求当n取何值时,S n获得最大值,并求出它的最大值.解∵a1=20,S10=S15,10×20+d=15×20+d,d=-.方法一由a n=20+(n-1)×=-n+.得a13=0.即当n≤12时,a n>0,当n≥14时,a n<0.∴当n=12或13时,S n获得最大值,且最大值为S12=S13=12×20+×=130.方法二S n=20n+·=-n2+n精心整理=-2+.∵n∈N*,∴当n=12或13时,S n有最大值,且最大值为S12=S13=130.方法三由S10=S15得a11+a12+a13+a14+a15=0.5a13=0,即a13=0.∴当n=12或13时,S n有最大值,且最大值为S12 S13=130.引申研究例4中,若条件“a1=20”改为a1=-20,其余条件不变,求当n取何值时,S n获得最小值,并求出最小值.解由S10=S15,得a11+a12+a13+a14+a15=0,∴a13=0.又a1=-20,∴a12<0,a14>0,精心整理∴当n=12或13时,S n获得最小值,最小值S12=S13==-130.思想升华(1)等差数列的性质:①项的性质:在等差数列{a n}中,a m-a n=(m-n)d?d(m≠n),其几何意义是点(n,a n),(m,a m)所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n}中,S n为其前n项和,则a.S2n=n(a1+a2n)==n(a n+a n+1);b.S2n-1=(2n-1)a n.(2)求等差数列前n项和S n最值的两种方法:①函数法:利用等差数列前n项和的函数表达式S n精心整理an2+bn,经过配方或借助图象求二次函数最值的方法求解.②邻项变号法:a.当a1>0,d<0时,知足的项数m使得S n获得最大值S m;b.当a1<0,d>0时,知足的项数m使得S n获得最小值S m.(1)等差数列{a n}的前n项和为S n,已知a5+a7=4,a6+a8=-2,则当S n取最大值时,n的值是()A.5B.6C.7D.8(2)设数列{a n}是公差d<0的等差数列,S n为前n项和,若S6=5a1+10d,则S n取最大值时,n的值为()精心整理A.5B.6C.5或6D.11(3)已知等差数列{a n}的首项a1=20,公差d=-2,则前n项和S n的最大值为________.答案(1)B (2)C(3)110分析(1)依题意得2a6=4,2a7=-2,a6=2>0,a7=-1<0;又数列{a n}是等差数列,所以在该数列中,前6项均为正数,自第7项起此后各项均为负数,于是当S n取最大值时,n=6,选B.(2)由题意得S6=6a1+15d=5a1+10d,所以a6=0,故当n=5或6时,S n最大,选C.(3)因为等差数列{a n}的首项a1=20,公差d=-2,代入乞降公式得,S n=na1+d=20n-×2精心整理=-n2+21n=-2+2,又因为n∈N*,所以n=10或n=11时,S n获得最大值,最大值为110.6.等差数列的前n项和及其最值典例(1)在等差数列{a n}中,2(a1+a3+a5)+3(a7+a9)=54,则此数列前10项的和S10等于()A.45B.60C.75D.90(2)在等差数列{a n}中,S10=100,S100=10,则S110 ________.(3)等差数列{a n}中,已知a5>0,a4+a7<0,则{a n}的前n项和S n的最大值为()A.S4B.S5C.S6D.S7思想点拨(1)求等差数列前n项和,能够经过求解基本量a1,d,代入前n项和公式计算,也能够利用精心整理等差数列的性质:a1+a n=a2+a n-1=;(2)求等差数列前 n项和的最值,能够将S n化为对于的二次函数,求二次函数的最值,也能够察看等差数列的符号变化趋向,找最后的非负项或非正项.分析(1)由题意得a3+a8=9,所以S10====45.(2)方法一设数列{a n}的公差为d,首项为a1,则解得所以S110=110a1+d=-110.方法二因为S100-S10==-90,所以a11+a100=-2,所以S110===-110.精心整理(3)因为所以所以S n的最大值为S5.答案(1)A (2)-110(3)B温馨提示(1)利用函数思想求等差数列前n项和S n的最值时,要注意到n∈N*;(2)利用等差数列的性质求S n,突出了整体思想,减少了运算量.[方法与技巧]1.在解相关等差数列的基本量问题时,可经过列关于a1,d的方程组进行求解.2.证明等差数列要用定义;此外还能够用等差中项法,通项公式法,前n项和公式法判断一个数列是否为等差数列.精心整理3.等差数列性质灵巧使用,能够大大减少运算量.4.在碰到三个数成等差数列问题时,可设三个数为(1)a,a+d,a+2d;(2)a-d,a,a+d;(3)a-d,a +d,a+3d等,可视详细状况而定.[失误与防备]1.当公差d≠0时,等差数列的通项公式是n的一次函数,当公差d=0时,a n为常数.2.公差不为0的等差数列的前 n项和公式是n的二次函数,且常数项为0.若某数列的前n项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A组专项基础训练(时间:35分钟)1.设等差数列{a n}的前n项和为S n,若S3=9,S6精心整理=36,则a7+a8+a9等于()A.63B.45C.36D.27答案B分析由{a n}是等差数列,得S3,S6-S3,S9-S6为等差数列.即2(S6-S3)=S3+(S9-S6),获得S9-S6=2S6-3S3=45,应选B. 2.(2015·京北)设{a n}是等差数列,以下结论中正确的是()A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2>D.若a1<0,则(a2-a1)(a2-a3)>0答案C精心整理分析设等差数列{a n}的公差为d,若a1+a2>0,a2a3=a1+d+a2+d=(a1+a2)+2d,因为d正负不确立,因此a2+a3符号不确立,应选项A错;若a1a3<0,a1+a2=a1+a3-d=(a1+a3)-d,因为d正负不确立,因此a1+a2符号不确立,应选项B错;若0<a1<a2,可知a1>0,d>0,a2>0,a3>0,所以a-a1a3=(a1+d)2-a1(a1+2d)=d2>0,所以a2>,应选项C正确;若a1<0,则(a2-a1)·(a2-a3)=d·(-d)=-d2≤0,应选项D错.3.设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,S m+1=3,则m等于()A.3B.4C.5D.6答案C精心整理分析∵数列{a n}为等差数列,且前n项和为S n,∴数列也为等差数列.∴+=,即+=0,解得m=5,经查验为原方程的解,应选 C.4.数列{a n}的首项为3,{b n}为等差数列,且b n=a n+1-a n(n∈N*),若b3=-2,b10=12,则a8等于()A.0B.3C.8D.11答案B设{b n}的公差为d,∵分析∵∵-b3=7d=12-(-2)=14,∴d=2.∵b10∵∵b3=-2,∴b1=b3-2d=-2-4=-6.精心整理b1+b2++b7=7b1+d7×(-6)+21×2=0.又b1+b2++b7=(a2-a1)+(a3-a2)++(a8-a7)=a8-a1=a8-3=0,a8=3.应选B.5.已知数列{a n}知足a n+1=a n-,且a1=5,设{a n}的前n项和为S n,则使得S n获得最大值的序号n的值为()A.7B.8C.7或8D.8或9答案C分析由题意可知数列{a n}是首项为5,公差为-的等差数列,所以a n=5-(n-1)=,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所精心整理以S n获得最大值时,n=7或8,应选C.6.已知数列{a n}中,a1=1且=+(n∈N*),则a10 ________.答案分析由已知得=+(10-1)×=1+3=4,故a10=.7.已知递加的等差数列{a n}知足a1=1,a3=a-4,则a n=________.答案2n-1分析设等差数列的公差为d,a3=a-4,∴1+2d=(1+d)2-4,解得d2=4,即d=±2.因为该数列为递加数列,故d=2.∴a n=1+(n-1)×2=2n-1.精心整理8.设数列{a n}的通项公式为a n=2n-10(n∈N*),则|a1|+|a2|++|a15|=________.答案130分析由a=-∈N*知是以-为首项,n2n10(n)n8 {a}为公差的等差数列,又由a n=2n-10≥0得n≥5,∴n≤5时,a n≤0,当n>5时,a n>0,∴|a1|+|a2|++|a15|=-(a1+a2+a3+a4)+(a5+a6++a15)20+110=130.9.若数列{a n}的前n项和为S n,且知足a n+2S n S n 1=0(n≥2),a1=.(1)求证:成等差数列;(2)求数列{a n}的通项公式.(1)证明当n≥2时,由an+2S nn-1=0,S得S n-S n-1=-2S n S n-1,所以-=2,精心整理又==2,故是首项为2,公差为2的等差数列.(2)解由(1)可得=2n,∴S n=.当n≥2时,a n=S n-S n-1=-==-.当n=1时,a1=不合适上式.故a n=10.等差数列{a n}中,设S n为其前n项和,且a1>0,S3=S11,则当n为多少时,S n最大?解方法一由S3=S11得3a1+d=11a1+d,则d=-a1.进而S n=n2+n=-(n-7)2+a1,又a1>0,所以-<0.故当n=7时,S n最大.方法二因为S n=an2+bn是对于n的二次函数,由S3=S11,可知S n=an2+bn的图象对于n==7精心整理对称.由方法一可知a=-<0,故当n=7时,S n 最大.方法三由方法一可知,d=-a1.要使S n最大,则有即解得≤n≤,故当n=7时,S n最大.方法四由S3=S11,可得2a1+13d=0,即(a1+6d)+(a1+7d)=0,故a7+a8=0,又由a1>0,S3=S11可知d<0,所以a7>0,a8<0,所以当n=7时,S n最大.B组专项能力提高(时间:20分钟)11.设S n为等差数列{a n}的前n项和,(n+1)S n<精心整理nS n+1(n∈N*).若<-1,则()A.S n的最大值是S8B.S n的最小值是S8C.S n的最大值是S7D.S n的最小值是S7答案D分析由条件得<,即<,所以a n<a n+1,所以等差数列{a n}为递加数列.又<-1,所以a8>0,a7<0,即数列{a n}前7项均小于0,第8项大于零,所以S n的最小值为S7,应选D.12.设等差数列{a n}的前n项和为S n,若a1=-3,a k+1=,S k=-12,则正整数k=________.答案13分析S k+1=S k+a k+1=-12+=-,又S k+1=精心整理==-,解得k=13.13.设等差数列{a n},{b n}的前n项和分别为S n,T n,若对随意自然数n都有=,则+的值为________.答案分析∵{a n},{b n}为等差数列,∴+=+==.∵====,∴=.14.已知数列{a n}是首项为a,公差为1的等差数列,b n=,若对随意的n∈N*,都有b n≥b8建立,则实数a的取值范围为________.精心整理答案(-8,-7)分析依题意得b n=1+,对随意的n∈N*,都有b n≥b8,即数列{b n}的最小项是第8项,于是有≥.又数列{a n}是公差为1的等差数列,所以有即由此解得-8<a<-7,即实数a的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n}的前n项和为S n,且知足a3·a4=117,a2+a5=22.(1)求通项a n;(2)求S n的最小值;(3)若数列{b n}是等差数列,且b n=,求非零常数 c.解(1)因为数列{a n}为等差数列,所以a3+a4=a2+a5=22.又a3·a4=117,所以a3,a4是方程x2-22x+117=0的两实根,又公差d>0,所以a3<a4,精心整理所以a3=9,a4=13,所以所以所以通项a n=4n-3.(2)由(1)知a1=1,d=4,所以S n=na1+×d=2n2-n=22-.所以当n=1时,S n最小,最小值为S1=a1=1.(3)由(2)知S n=2n2-n,所以b n==,所以b1=,b2=,b3=.因为数列{b n}是等差数列,精心整理所以2b2=b1+b3,即×2=+,所以2c2+c=0,所以c=-或c=0(舍去),经考证c=-时,{b n}是等差数列,故c=-.。
完整版)数列典型例题(含答案)
完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。
因此,前项和为。
⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。
8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。
1) 求 $a_5$ 和 $a_{10}$。
2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。
考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。
答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。
解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。
2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。
根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。
专题10 放缩法证明数列不等式之常数型与函数型(解析版)
放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型 方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n 项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型. 放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小. 放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解). 放缩的方法:(1)当我们要证明多项式M A <时,我们无法直接证明两者的大小,这时我们可以将多项式M 放大为1N ,当我们能够证明1N A <,也间接证明了M A <.切不可将M 缩小为2N ,即使能够证明2N A <,M 与A 的关系无法得证.(2)当我们要证明多项式M A >时,这时我们可以将多项式M 缩小为1N ,当我们能够证明1N A >,也间接证明了M A >.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1. 常见的放缩形式:(1)()()21111211n n n n n n<=-≥--; (2)()2111111n n n n n >=-++;(3)2221441124412121n n n n n ⎛⎫=<=- ⎪--+⎝⎭; (5(()2121n n n n n n n n==--≥+-+; (6(211n n n n n n n =>=++++;(7222212111212122n n n n nn n n n ==--++-++-++; (8)()()()()()()()1211222211212121212122212121nn n n n n n n n n n n n ---=<==----------()2n ≥;(12)()()()111121122121212121n nn n n n n ---<=-≥-----.类型一:裂项放缩 【经典例题1】求证22221111.....2123n ++++< 【解析】因为()()2211111211n n n n n n n n <==-≥---,所以2222222211111111111111..........11.....=22123122332231n n n n n n ++++<++++=+-+-++--<----,所以原式得证. 为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】求证222211117 (1234)n ++++< 【解析】因为()()()221111112111211n n n n n n n ⎛⎫<==-≥ ⎪-+--+⎝⎭,所以222222221111111111111111........11....1231213112324351n n n n ⎛⎫++++<++++=+-+-+-+- ⎪----⎝⎭11117=112214n n ⎛⎫++--< ⎪+⎝⎭,所以原式得证. 总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】求证222211115 (1233)n ++++<【解析】因为()()()221111112111211n n n n n n n ⎛⎫<==-≥ ⎪-+--+⎝⎭,所以 222222222111111111111111111........1....12312311222435461n n n n ⎛⎫++++<++++=++-+-+-++- ⎪---⎝⎭11111151115=1=422313213n n n n ⎛⎫⎛⎫+++---+< ⎪ ⎪++⎝⎭⎝⎭,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢?这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项.【经典例题2】已知2,2n n n a b n ==,设1n n nc a b =+,求证:1243n c c c +++<.【解析】已知2,2n n na b n ==,因为 222441122(21)2(21)(21)(21)2121n c n n n n n n n n n n ⎛⎫===<=- ⎪+++-+-+⎝⎭所以1221111112224233557212133132n c c c n n n ⎛⎫+++<+-+-++-=+-< ⎪-++⎝⎭,故不等式得证.【经典例题3】已知数列{}n a 满足11a =,*11(2,)n n n a a n n n--≥∈=N , (1)求n a ;(2)若数列{}n b 满足113b =,*121()n n n b b n a ++∈=N ,求证:2512n b <. 【答案】(1)n a n =;(2)证明见解析. 【详解】 (1)由题意11n n a na n -=-(2n ≥), ∴321121231121n n n a a a na a n a a a n -=⨯⨯⨯⨯=⨯⨯⨯⨯=-,11a =也适合.所以n a n =(*n N ∈); (2)由已知1125312b =<,214251312b b =+=<,32214119252341212b b =+=+=<, 当3n ≥时,121111(1)1n n b b n n n n n+-=<=---, 因此1343541()()()n n n b b b b b b b b ++=+-+-++-1911111125125()()()12233411212n n n <+-+-++-=-<-, 则1212512n n b b n +=-< 综上,2512n b <.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解. 【经典例题4】证明:12311115 (212121213)n ++++<----【解析】令121n na =-,则1111212111212222n n n n n n n n a a a a ++++--=<=⇒<-- 又因为1211,3a a ==,由于不等式右边分母为3 ,因此从第三项开始放缩,得21121222111115321122312n n n a a a a a a a --⎛⎫- ⎪⎛⎫⎝⎭+++<++++=+<⎪⎝⎭-故不等式得证.【经典例题5】已知数列{}n a 满足:12a =,1122n n n a a ++=+,*n N ∈.(1)求证2n n a ⎧⎫⎨⎬⎩⎭是等差数列并求n a ;(2)求数列{}n a 的前n 项和n S ; (3)求证:2132431111112n n a a a a a a a a ++++⋅⋅⋅+<----. 【答案】(1)证明见解析,2nn a n =⋅;(2)1(1)22n n S n +=-+;(3)证明见解析.【详解】(1)证明:1111122211222222n n n n n n nn n n n n na a a a a a ++++++-=-=+-=, ∴2n na ⎧⎫⎨⎬⎩⎭是首项为1112a =,公差为1的等差数列, ∴1(1)12nn a n n =+-=,∴2n n a n =⋅. (2)∵1231222322n nS n =⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅⋅, ∴234121222322n n S n +=⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅⋅, 两式相减得:123122222n n n S n +-=+++⋅⋅⋅⋅⋅⋅-⋅,()1212212n n n n S +-=-⋅--,∴1(1)22n n S n +=-+.(3)证明:∵2n n a n =⋅,∴11(1)2n n a n ++=+⋅,∴1(2)2n n n a a n +-=+⋅,当*n N ∈时,22n +>,∴1(2)22n n n ++⋅>, ∴111(2)22n n n +<+⋅,∴21324311111n n a a a a a a a a ++++⋅⋅⋅⋅⋅⋅----234111112222n ++++⋅⋅⋅⋅⋅⋅< 111421111122212nn ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎛⎫⎝⎭⎛⎫⎝⎭==-< ⎪ ⎪ ⎪⎝⎭⎝⎭-.【练习1】已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)证明:2221274n S S S +++<. 【答案】(1)证明见解析;(2)证明见解析 【解析】(1)当2n ≥时,211nn n n S S S S --=-,11n n n n S S S S ---=,即1111n n S S --=从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,1为公差的等差数列.(2)由(1)可知,()11111n n n S S =+-⨯=,1n S n∴=. 则当2n ≥时222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭. 故当2n ≥时22212111111111123224211n S S S n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1111137111221224n n ⎛⎫=++--<+⋅= ⎪+⎝⎭ 又当1n =时,21714S =<满足题意,故2221274n S S S +++<. 法二:则当2n ≥时22211111n S n n n n n =<=---, 那么222121111111717142334144n S S S n n n ⎛⎫⎛⎫⎛⎫+++<++-+-+-=-< ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭ 又当1n =时,21714S =<,当时,21714S =<满足题意.【练习2】已知数列{}n a 的前n 项和为n S ,且112n n n S na a =+-. (1)求数列{}n a 的通项公式; (2)若数列22n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:32n T <. 【答案】(1)()*1n a n n N =+∈.(2)见解析【解析】(1)当1n =时,111112S a a =+-,即12a =, 当2n ≥时,112n n n S na a =+-①,()1111112n n n S n a a ---=-+-②, ①-②,得:()112122n n n n n a na n a a a --=--+-,即()11n n na n a -=+, 11n n a a n n-∴=+,且112a=,∴数列1n a n ⎧⎫⎨⎬+⎩⎭是以每一项均为1的常数列,则11n a n =+,即()*1n a n n N =+∈;(2)由(1)得1n a n =+,()()2222211221n a n n n n n ∴=<=-+++, 11111111113113243522122n T n n n n ∴<-+-+-++-=+--<+++.【练习3】已知函数()32x f x x=-,数列{}n a 中,若1()n n a f a +=,且114a =.(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)设数列{}n a 的前n 项和为n S ,求证:12n S <. 【答案】(1)见解析;(2)见解析 【解析】 (1)由函数()32x f x x=-,在数列{}n a 中,若1()n n a f a +=,得:132n n n a a a +=-, 上式两边都倒过来,可得:11n a +=32n na a -=3n a ﹣2,∴11n a +﹣1=3n a ﹣2﹣1=3n a ﹣3=3(1n a ﹣1).∵11a ﹣1=3.∴数列11n a ⎧⎫-⎨⎬⎩⎭是以3为首项,3为公比的等比数列.(2)由(1),可知:11n a -=3n ,∴a n =131n +,n ∈N*.∵当n ∈N*时,不等式131n +<13n成立. ∴S n =a 1+a 2+…+a n =2121111111 (313131333)nn +++<++++++=11133113n⎛⎫⋅- ⎪⎝⎭-=12﹣12•13n<12.∴1S 2n <.【练习4】已知函数2()2f x x x =-,数列{}n a 的前n 项和为n S ,点(),n n P n S 均在函数()y f x =的图象上.若()132n n b a =+ (1)当2n ≥时,试比较1n b +与2nb 的大小;(2)记)*1n nc n N b =∈试证1240039c c c ++⋯+<. 【答案】(1)12bnn b +<;(2)证明见解析. 【详解】(1)2()2f x x x ∴=-,故22n S n n =-,当2n ≥时,123n n n a S S n -=-=-, 当1n =时,111a S ==-适合上式,因此()*23n a n n N =-∈.从而1,1,22nb nn n b n b n +==+=,当2n ≥时,()01211 1nn n n C C n =+=++⋯>+故122nb nn b +<=(2)1n n c b n=11c =,()*2(1),21n n n N n n n n n n =<=-∈≥++- )12400 (12212)32 (2)400399c c c +++<++++400139==.◆题型二:放缩法证明数列不等式之函数型 方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数()f n 的不等关系,即12()n a a a f n +++<或者数列前n 项积与函数()f n 的不等关系,即12n a a a ⋅⋅⋅<()f n 的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将()f n 看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对n a 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列*113,31,2n n a a a n N +==-∈ (1)若数列{}n b 满足12n n b a =-,求证:数列{}n b 是等比数列。
高中数学数列与函数关系题
高中数学数列与函数关系题数列与函数是高中数学中的重要概念,它们之间有着密切的关系。
在数学学习中,我们经常会遇到数列与函数的结合题目,这些题目既考察对数列的理解,又考察对函数的掌握。
本文将围绕高中数学数列与函数关系题展开讨论,通过具体例题分析,帮助学生更好地理解与解决这类题目。
一、等差数列与线性函数的关系等差数列是指数列中的每两个连续项之间的差值都相等的数列。
线性函数是指函数的图像是直线的函数。
在等差数列与线性函数的关系题目中,我们常常通过观察数列的规律,找到数列中第一个项与公差,并将其与线性函数中的斜率和截距进行对应,从而建立数列与函数的关系式。
例如,给定数列{-3, 2, 7, 12, 17, ...},要求找出该数列的通项公式。
观察数列中的规律,可以发现每个项与前一项的差值都是5,因此该数列为等差数列,公差为5。
紧接着,我们可以假设数列的通项公式为an = dn + b,其中d为公差,b为首项。
代入数列中的前两项:-3 = d + b,2 = 2d + b,通过联立这两个方程,可以解得d = 5,b = -8,所以该数列的通项公式为an = 5n - 8。
通过将数列中的项与线性函数中的斜率和截距进行对应,我们成功建立了数列与函数的关系。
二、等比数列与指数函数的关系等比数列是指数列中的每两个连续项之间的比值都相等的数列。
指数函数是以底数为常数的指数形式表示的函数。
在等比数列与指数函数的关系题目中,我们需要通过观察数列的规律,找到数列中的公比,并将其与指数函数中的底数进行对应,从而建立数列与函数的关系式。
例如,给定数列{2, 6, 18, 54, ...},要求找出该数列的通项公式。
观察数列中的规律,可以发现每个项与前一项的比值都是3,因此该数列为等比数列,公比为3。
紧接着,我们可以假设数列的通项公式为an = ar^(n-1),其中a为首项,r为公比。
代入数列中的前两项:2 = ar^0,6 = ar^1,通过联立这两个方程,可以解得a = 2,r = 3,所以该数列的通项公式为an = 2 * 3^(n-1)。
高考数学第一轮数列与函数的极限
g3.1030数列与函数的极限(1)一、知识回顾1、 数列极限定义(1)定义:设{a n }是一个无穷数列,a 是一个常数,如果对于预先给定的任意小的正数ε,总存在正整数N ,使得只要正整数n>N ,就有|a n -a|<ε,那么就称数列{a n }以a 为极限,记作lim ∞→n a n =a 。
对前任何有限项情况无关。
*(2)几何解释:设ε>0,我们把区间(a-ε,a+ε)叫做数轴上点a 的ε邻域;极限定义中的不等式|a n -a|<ε也可以写成a-ε<a n <a+ε,即a n ∈(a-ε,a+ε);因此,借助数轴可以直观地理解数列极限定义:不论a 点的ε邻域怎么小,数列{a n }从某一项以后的所有项都要进入这个邻域中,也可以说点a 的任意小的ε邻域(a-ε,a+ε)中含有无穷数列{a n }的几乎所有的项,而在这个邻域之外至多存在有限个项,由此可以想像无穷数列{a n }的项是多么稠密地分布在点a 的附近。
2、几个常用极限①lim ∞→n C=C (常数列的极限就是这个常数) ②设a>0,则特别地 01lim=∞→nn ③设q ∈(-1,1),则lim ∞→n q n=0;;1lim ,1==∞→nn q q ,1-=q 或nn q q ∞→>lim ,1不存在。
若无穷等比数列1,,,,11<-q aq aq a n 叫无穷递缩等比数列,其所有项的和(各项的和)为:qa s s n n -==∞→1lim 13、数列极限的运算法则 如果lim∞→n a n =A ,lim ∞→n b n =B ,那么(1)lim ∞→n (a n ±b n )=A ±B (2)lim ∞→n (a n ·b n )=A ·B(3)lim ∞→n n n b a =BA(B ≠0) 极限不存在的情况是1、±∞=∞→n n a lim ;2、极限值不唯一,跳跃,如1,-1,1,-1…. 注意:数列极限运算法则运用的前提: (1)参与运算的各个数列均有极限;(2)运用法则,只适用于有限个数列参与运算,当无限个数列参与运算时不能首先套用. 二.基本训练1、n n n n 2312lim 22++∞→= ;22322lim n n n n n→∞+++= 2、135(21)lim2462n n n→∞+++⋅⋅⋅+-+++⋅⋅⋅+=_________________3.已知a 、b 、c 是实常数,且a cn can b cn c bn c bn c an n n n ++=--=-+∞→∞→∞→2222lim ,3lim ,2lim 则的值是………( )A .121 B .61 C .23D .6 4.已知a 、b 都是实数,且a >0,如果0)(lim =+∞→nn ba b ,那么a 与b 的关系是………………( )A .a <2bB .-a <2bC .-a <bD .-a <b <2a5.在等比数列中,a 1>1,前项和S n 满足11lim n n S a →∞=,那么a 1的取值范围是……………………( )(A )(1,+∞) (B )(1,4) (C )(1,2) (D )(16.等比数列{a n }中,a 1=-1,前n 项和为S n ,若10531,32S S =则lim n n S →∞=………………………( ) (A )23 (B )-23(C )2 (D )-2 三、例题分析例1求下列极限(1)lim ∞→n (1223-n n -122+n n ) (2)lim ∞→n [n (1+n -n )] (3)lim ∞→n (21n +24n +27n +…+223n n -) (4)lim∞→n )1()1()1()1(11n n n n a a a a a a -+--+--+(a ≠1) 例2:已知)413(22limn bnan cn n n -+++∞→=5,求常数a 、b 、c 的值。
详解数列求和的方法+典型例题.docx
详解数列求和的常用方法数列求和是数列的重要内容之一, 除了等差数列和等比数列有求和公式外, 大部分数列的求和都需要一定的技巧。
第一类:公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、等差数列的前 n 项和公式n( a 1 a n )na 1n(n1)d S n222、等比数列的前 n 项和公式na 1 (q 1)Sna 1 (1 q n ) a 1a n q (q 1)1 q1 q3、常用几个数列的求和公式n1n(n 1)( 1)、 S nk 1 2 3nk 12n222221 (1)(21)( 2)、 S nk 1 2 3 n nn nk 16nk 313 23 33n 3 [ 1n(n 1)] 2( 3)、 S nk 12第二类:乘公比错项相减(等差等比)这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{ a n b n } 的前 n 项和,其中 { a n } , { b n } 分别是等差数列和等比数列。
例 1:求数列 { nq n 1 } ( q 为常数 ) 的前 n 项和。
解:Ⅰ、若 q =0, 则 S n =0Ⅱ、若q =1 ,则1 ( 1)12 3nn nS nⅢ、若 q ≠ 0 且 q ≠ 1,2则 S n1 2q 3q 2nq n 1①qS n q2q 2 3q3nq n②①式—②式: (1q) S n1q q 2q3q n 1nq nS n1q (1 q q 2q 3q n 1nq n )1S n1q (1q n nq n )11qS n1q n nq n(1q) 21q0(q0)综上所述: S n 1n(n1)(q1)2q n nq n1(1q) 21(q 0且 q 1)q解析:数列 { nq n 1} 是由数列n与 q n 1对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n 项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行分类讨论,最后再综合成三种情况。
等差数列典型例题及分析(必看)
等差数列典型例题及分析(必看)第四章数列§4.1等差数列的通项与求和⼀、知识导学1.数列:按⼀定次序排成的⼀列数叫做数列.2.项:数列中的每⼀个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或⾸项),第2项,…,第n 项,….3.通项公式:⼀般地,如果数列{a n }的第n项与序号n之间的关系可以⽤⼀个公式来表⽰,那么这个公式叫做这个数列的通项公式.4. 有穷数列:项数有限的数列叫做有穷数列.5. ⽆穷数列:项数⽆限的数列叫做⽆穷数列6.数列的递推公式:如果已知数列的第⼀项(或前⼏项)及相邻两项(或⼏项)间关系可以⽤⼀个公式来表⽰,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的⼀种重要⽅法,其关健是先求出a 1,a 2,然后⽤递推关系逐⼀写出数列中的项.7.等差数列:⼀般地,如果⼀个数列从第⼆项起,每⼀项减去它的前⼀项所得的差都等于同⼀个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常⽤d表⽰.8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2ba +叫做a和b的等差中项.⼆、疑难知识导析1.数列的概念应注意⼏点:(1)数列中的数是按⼀定的次序排列的,如果组成的数相同⽽排列次序不同,则就是不同的数列;(2)同⼀数列中可以出现多个相同的数;(3)数列看做⼀个定义域为正整数集或其有限⼦集({1,2,3,…,n })的函数.2.⼀个数列的通项公式通常不是唯⼀的.3.数列{a n }的前n 项的和S n 与a n 之间的关系:??≥-==-).2(),1(11n S S n S a n n n 若a 1适合a n (n>2),则n a 不⽤分段形式表⽰,切不可不求a 1⽽直接求a n .4.从函数的⾓度考查等差数列的通项公式:a n = a 1+(n-1)d=d ·n+ a 1-d, a n 是关于n 的⼀次式;从图像上看,表⽰等差数列的各点(n,n a )均匀排列在⼀条直线上,由两点确定⼀条直线的性质,不难得出,任两项可以确定⼀个等差数列.5、对等差数列的前n 项之和公式的理解:等差数列的前n 项之和公式可变形为n d a n d S n )2(212-+=,若令A =2d ,B =a 1-2d,则n S =An 2+Bn.6、在解决等差数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。
数学复习数列与函数的关系
数学复习数列与函数的关系数学复习:数列与函数的关系引言:数学中数列与函数是两个重要的概念,二者之间有着密切的联系与关系。
数列是一组按照特定规律排列的数的序列,而函数则是一种特殊的关系,将自变量与因变量相联系。
本文将介绍数列与函数的基本概念、性质及二者之间的关系,并通过一些典型的例题来加深对这个关系的理解。
一、数列的基本概念数列由一系列按特定顺序排列的数所组成,可以用如下形式表示:$a_1, a_2, a_3, ..., a_n$其中,$a_1, a_2, a_3, ..., a_n$称为数列的项,$a_n$表示第n项。
数列可分为等差数列、等比数列和一般数列等不同类型。
二、函数的基本概念函数是一种特殊的关系,将自变量与因变量相联系。
函数可以用如下形式表示:$f(x)$其中,$f(x)$表示函数的值,x为自变量。
函数可以是线性的、二次的、指数的等多种类型。
三、数列与函数的关系数列可以看作是一种离散的函数,而函数则可以看作是连续的数列。
具体地,我们可以通过数列构建函数,并通过函数表达数列中的数之间的关系。
例如,对于等差数列$a_1, a_2, a_3, ..., a_n$,可以构建线性函数$f(x) = ax + b$,其中$a$为公差,$b$为首项。
四、数列与函数的性质4.1 数列的递推公式数列可以通过递推公式来表示,即通过前一项来定义后一项。
例如,斐波那契数列$a_1, a_2, a_3, ..., a_n$可以通过递推公式$a_n = a_{n-1} +a_{n-2}$来定义。
4.2 函数的定义域和值域函数的定义域是指自变量的取值范围,值域是指函数的值的范围。
对于数列的函数,其定义域为正整数集合,值域为实数集合。
五、数列与函数的应用5.1 模型应用数列与函数在现实生活中有着广泛的应用。
例如,人口增长模型、财务数列模型等都可以通过函数来表达,并进一步分析其数列的性质与特点。
5.2 应用题通过一些典型的例题,我们可以更深入地理解数列与函数之间的关系。
等差数列前n项及公式推导及例题解析
等差数列的前n项和·例题解析一、等差数列前n项和公式推导:1〕Sn=a1+a2+......an-1+an也可写成Sn=an+an-1+......a2+a1 两式相加得2Sn=〔a1+an)+(a2+an-1)+......(an+a1)=n(a1+an)所以Sn=[n〔a1+an〕]/2〔公式一〕〔2〕如果等差数列的首项为a1,公差为d,项数为n,那么an=a1+(n-1)d代入公式公式一得Sn=na1+[n(n+1)d]/2〔公式二〕二、对于等差数列前n项和公式的应用【例1】等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.解依题意,得10a1+10(101)d=140∴2∴a1+a3+a5+a7+a9=5a1+20d=125∴解得a1=113,d=-22.∴∴其通项公式为∴a n=113+(n-1)·(-22)=-22n+135a6=-22×6+135=3说明此题上边给出的解法是先求出根本元素a1、d,再求其他的.种先求出根本元素,再用它去构成其他元素的方法,是常用到的一种方法.在本中如果注意到a6=a1+5d,也可以不必求出a n而直接去求a6,所列方程组化简后可得2a1+9d=28相减即得a1+5d=3,a1+4d=25即a6=3.可,在做的候,要注意运算的合理性.当然要做到一点,必以知的熟掌握前提.【例2】在两个等差数列2,5,8,⋯,197与2,7,12,⋯,197中,求它相同的和.解由,第一个数列的通a n=3n-1;第二个数列的通b N=5N-3 假设a=b,有3n-1=5N-3mN即n=N+2(N1)3假设足n正整数,必有N=3k+1(k非整数).又2≤5N-3≤197,即1≤N≤40,所以N=1,4,7,⋯,40 n=1,6,11,⋯,66∴两数列相同的和2+17+32+⋯+197=1393【例3】:数a,b,5a,7,3b,⋯,c成等差数列,且a+b+5a+7+3b+⋯+c=2500,a,b,c的分[ ]A.1,3,5 B.1,3,7 C.1,3,99 D.1,3,9 解C由题设2b=a+5a b=3a 又∵14=5a+3b,a=1,b=3∴首项为1,公差为2又S n=na1+n(n1)d22500=n+n(n1)·2∴n=502a50=c=1+(50-1)·2=99a=1,b=3,c=99【例4】在1和2之间插入2n个数,组成首项为1、末项为2的等差数列,假设这个数列的前半局部的和同后半局部的和之比为9∶13,求插入的数的个数.解依题意2=1+(2n+2-1)d①前半局部的和S n+1=(n+1)+(n1)n d②2后半局部的和S′n+1=(n+1)·2+(n1)n·(-d)2S n1(n1)(1nd)92由,有n d1 3S′n1(n1)(2)2nd1化简,得29nd 1322解之,得nd=5④11由①,有(2n+1)d=1⑤由④,⑤,解得d=1,n=511∴共插入10个数.【例5】在等差数列{a}中,设前nm项和为Sm,前n项和为S,且nSm=Sn,m≠n,求Sm+n.解∵S m+n=(m+n)a1+1(m+n)(m+n-1)d 2=(m+n)[a1+2(m+n-1)d]∴且Sm=Sn,m≠n∴ma1+1m(m-1)d=na1+1n(n-1)d22d整理得(m-n)a1+(m-n)(m+n-1)=0即(m-n)[a1+1(m+n-1)d]=021由m≠n,知a1+2(m+n-1)d=0∴S=0m+n【例6】等差数列{a n}中,S3=21,S6=64,求数列{|a n|}的前n项和T n.分析等差数列前n项和S=na+n(n1)d,含有两个未知数a121d,S3和S6的值,解方程组可得a1与d,再对数列的前假设干项的正负性进行判断,那么可求出T n来.解设公差为d,由公式S=na+n(n)d123a1+3d=21得ba1+15d=24解方程组得:d=-2,a1=9a n=9+(n-1)(n-2)=-2n+1111由a n=-2n+11>0得n<=,故数列{a n}的前5项为正,2其余各项为负.数列{a n}的前n项和为:n(n1)2S n=9n+(-2)=-n+10n∴当n≤5时,T n=-n2+10n当n>6时,T n=S5+|S n-S5|=S5-(S n-S5)=2S5-S nT n=2(-25+50)-(-n2+10n)=n2-10n+50T=-n2+n≤5n10n即-10n+50n∈N*2n>6说明根据数列{a n}中项的符号,运用分类讨论思想可求{|a n|}的前n项和.【例7】在等差数列{a n}中,a6+a9+a12+a15=34,求前20项之和.解法一由a6+a9+a12+a15=34得4a1+38d=34又S20=20a1+20×19d2=20a1+190d5(4a1+38d)=5×34=170( a1+a20)×21+a20)解法二S20==10(a2由等差数列的性质可得:a6+a15=a9+a12=a1+a20∴a1+a20=17S20=170【例8】等差数列{a n}的公差是正数,且a3·a7=-12,a4+a6=-4,求它的前20项的和S20的值.解法一设等差数列{a n}的公差为d,那么d>0,由可得(a1+2d)(a1+bd)=-12①a1+3d+a1+5d=-4②由②,有a1=-2-4d,代入①,有d2=4再由d>0,得d=2 ∴a1=-10最后由等差数列的前n项和公式,可求得S20=180解法二由等差数列的性质可得:a4+a6=a3+a7即a3+a7=-4又a3·a7=-12,由韦达定理可知:a3,a7是方程x2+4x-12=0的二根解方程可得x1=-6,x2=2 d>0∴{a n}是递增数列∴a3=-6,a7=2d=a7a3=2,a1=-10,S20=18073【例9】等差数列{a n}、{b n}的前n项和分别为S n和T n,假设S n2n,那么a100等于T n 3n1b10[]A.1B.23C.199D.2002 993 01分析该题是将a100与S n2n发生联系,可用等差数列的前n项b100Tn3n1n(a1+an)和公式S n= 把前n项和的值与项的值进行联系.解法一∵S n n(a1a n),Tnn(b1b n )22∴S na1an∴a1an2nT nb1bn b1bn3n1∵2a100=a1+a199,2b100=b1+b199 a100a1a1992×199199∴=b199=×199+1=选C.b 100b13299解法二利用数列{a n}为等差数列的充要条件:S n=an2+bnSn2nT n3n1可设S n=2n2k,T n=n(3n+1)ka n SnSn12n2k2(n1)2k∴T n Tn1n(3n1)k(n1)[3(n1)1]kb n4 n2n16 n3n1∴a 100×100199 2b100×100299 3说明该解法涉及数列{a n}为等差数列的充要条件S n=an2+bn,由S n2n,将S n和T n写成什么?假设写成S n=2nk,T n=(3n+1)k,Tn3n1(1)是常数,就不对了.(2)【例10】解答以下各题:(3):等差数列{a n}中a2=3,a6=-17,求a9;在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(5):等差数列{a n}中,a4+a6+a15+a17=50,求S20;(6):等差数列{a n}中,a n=33-3n,求S n的最大值.分析与解答(1)a6 =a2+(6-2)d173d==-54a9=a6+(9-6)d=-17+3×(-5)=-32 (2)a1=19,a n+2=89,S n+2=1350∵S n+2(a1+a n+2)(n+2)=2∴+2=2×1350n=25n=2319+8935 an+2=a25=a1+24dd=12故这几个数为首项是2111,末项是861,公差为35的23个数.121212(3)∵a4+a6+a15+a17=50又因它们的下标有4+17=6+15=21a4+a17=a6+a15=25( a1+a20)×2S20=10×(a4a17)2502(4)∵a n=33-3n ∴a1=30S n(a1+a n)·n(633n)n363 =2n2223212×23212(n2)8n∈N,∴当n=10或n=11时,S n取最大值165.【例11】求证:前n项和为4n2+3n的数列是等差数列.证设这个数列的第n项为a n,前n项和为S n.当n≥2时,a n=S n-S n-1a n=(4n2+3n)-[4(n-1)2+3(n-1)]=8n-1当n=1时,a1=S1=4+3=7由以上两种情况可知,对所有的自然数n,都有a n=8n-1又a n+1-a n=[8(n+1)-1]-(8n-1)=8∴这个数列是首项为7,公差为8的等差数列.说明这里使用了“a n=S n-S n-1〞这一关系.使用这一关系时,要注意,它只在n≥2时成立.因为当n=1时,S n-1=S0,而S0是没有定义的.所以,解题时,要像上边解答一样,补上n=1时的情况.【例12】证明:数列{a n}的前n项之和S n=an2+bn(a、b为常数)是这个数列成为等差数列的充分必要条件.证由S n=an2+bn,得当n≥2时,a n=S n-S n-1an2+bn-a(n-1)2-b(n-1)=2na+b-aa1=S1=a+b∴对于任何n∈N,a n=2na+b-a且a n-a n-1=2na+(b-a)-2(n-1)a-b+a 2a(常数)∴{a n}是等差数列.假设{a n}是等差数列,那么S n=na1+n(n1)d 2= d·(1n)·n-d)2+n(a1d2d=2 nn(a12)假设令d=a,那么a1-d=b,即22S n=an2+bn综上所述,S n=an2+bn是{a n}成等差数列的充要条件.说明由此题的结果,进而可以得到下面的结论:前n项和为S n=an2+bn+c的数列是等差数列的充分必要条件是c=0.事实上,设数列为{u n},那么:充分性必要性c=0 Sn=an2+bn {un}是等差数列.{un}是等差数列Sn=an2+bn c=0.【例13】等差数列{an}的前n项和Sn=m,前m项和Sm=n(m>n),求前m+n项和Sm+n.解法一设{a n}的公差d 按题意,那么有S n =na 1+n(n1)d =m①2S m =ma 1+m(m) d =n②2①-②,得(m -n)·a 1+(mn)(mn1)·d=n-m2即a 1+mn1d=-12(mn)(mn1)·d∴S mn (mn)a 12(mn )(a 1mn1·d)2=-(m +n)解法二 设S x =Ax 2+Bx(x∈N)Am 2+Bm =n An 2+Bn =m①-②,得A(m 2-n 2)+B(m -n)=n -m m≠n∴A(m+n)+B=-1故A(m +n)2+B(m +n)=-(m +n) 即S =-(m +n)m+n说明a 1,d 是等差数列的根本元素,通常是先求出基 本元素,再解决其它问题,但此题关键在于求出了a1+mn1d=-1,这种设而不2解的“整体化〞思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设S x=Ax2+Bx.(x ∈N)【例14】在项数为2n的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,那么n之值是多少?解∵S偶项-S奇项=ndnd=90-75=15又由a2n-a1=27,即(2n-1)d=27nd=15∴n=5(2n-1)d=27【例15】在等差数列{a n}中,a1=25,S9=S17,问数列前多少项和最大,并求出最大值.解法一建立S n关于n的函数,运用函数思想,求最大值.17169×8根据题意:S17=17a1+d,S9=9a1+d∴a1=25,S17=S9解得d=-2S n=25n+n(n1)(-2)=-n2+26n=-(n-13)2+1692∴当n=13时,S n最大,最大值S13=169解法二因为a1=25>0,d=-2<0,所以数列{a n}是递减等差数列,假设使前an≥,可解出n.n项和最大,只需解a n+1≤0∵a1=25,S9=S17∴∴9×25+9×8d=17×25+17×16d,解得d=-22 2a n=25+(n-1)(-2)=-2n+27-2n+27≥0n≤∴∴n=13-2(n+1)+27≥0n≥即前13和最大,由等差数列的前n和公式可求得S13=169.解法三利用S9=S17找相的关系.由意S9=S17得a10+a11+a12+⋯+a17=0而a10+a17=a11+a16=a12+a15=a13+a14a13+a14=0,a13=-a14∴a13≥0,a14≤0S13=169最大.解法四根据等差数列前n和的函数像,确定取最大的n.{a n}是等差数列∴可S n=An2+Bn二次函数y=Ax2+Bx的像原点,如3.2-1所示∵∵∵∵∵∵∵∵S9=S17,9+17∴对称轴x= =13∴取n=13时,S13=169最大。
黑龙江省牡丹江市第三高级中学数列的概念经典例题doc
一、数列的概念选择题1.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24B .26C .28D .302.已知数列{}n a 满足11a =),2n N n *=∈≥,且()2cos3n n n a b n N π*=∈,则数列{}n b 的前18项和为( ) A .120B .174C .204-D .37323.在数列{}n a 中,10a =,1n a +,则2020a =( ) A .0B .1C.D4.已知数列{}n a 的通项公式为23nn a n ⎛⎫= ⎪⎝⎭,则数列{}n a 中的最大项为( ) A .89B .23C .6481D .1252435.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 6.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x -+=的实数根,则10b 等于( ) A .24B .32C .48D .647.在数列{}n a 中,114a =-,111(1)n n a n a -=->,则2019a 的值为( ) A .45B .14-C .5D .以上都不对8.数列{}n a 中,12a =,121n n a a +=-,则10a =( )A .511B .513C .1025D .10249.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )A .存在正整数0N ,当0n N >时,都有n a n ≤.B .存在正整数0N ,当0n N >时,都有n a n ≥.C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥.10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .16011.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4012.数列{}n a 满足12a =,1111n n n a a a ++-=+,则2019a =( ) A .3-B .12-C .13D .213.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45B .46C .47D .4814.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )A .1B .3C .-3D .015.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个16.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么24620201a a a a +++++=( )A .2021aB .2022aC .2023aD .2024a17.下列命题中错误的是( ) A .()()21f n n n N+=-∈是数列的一个通项公式B .数列通项公式是一个函数关系式C .任何一个数列中的项都可以用通项公式来表示D .数列中有无穷多项的数列叫作无穷数列 18.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23 D .21119.已知数列{}n a 满足12n n a a n +=+,且133a =,则na n的最小值为( ) A .21B .10C .212 D .17220.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 二、多选题21.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 22.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =- B .201912a =C .332S =D . 2 01920192S =23.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=024.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .225.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .426.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 27.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列28.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列29.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =30.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <31.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅32.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <33.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <34.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2135.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】先写出新数列的各项,找到数列的周期,即得解. 【详解】由题意可知“斐波那契数列”的各项依次被4整除后的余数构成一个新的数列{}n b , 此数列的各项求得:1,1,2,3,1,0,1,1,2,3,1,0,1……,则其周期为6, 其中1+1+2+3+1+0=8,则201819201812S S b b S b b =++=++381126=⨯++=, 故选:B.2.B解析:B 【分析】将题干中的等式化简变形得211n n a n a n --⎛⎫= ⎪⎝⎭,利用累乘法可求得数列{}n a 的通项公式,由此计算出()32313k k k b b b k N *--++∈,进而可得出数列{}nb 的前18项和.【详解】)1,2n a n N n *--=∈≥,将此等式变形得211n n a n a n --⎛⎫= ⎪⎝⎭,由累乘法得22232121211211123n n n aa a n a a a a a n n --⎛⎫⎛⎫⎛⎫=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2cos3n n n a b n N π*=∈,22cos 3n n b n π∴=, ()()222323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝⎭592k =-,因此,数列{}n b 的前18项和为()591234566921151742⨯+++++-⨯=⨯-=. 故选:B. 【点睛】本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.解析:A【分析】写出数列的前几项,找寻规律,求出数列的周期,问题即可解.【详解】10a=,1n a+1 n=时,2a2n=时,3a3 n=时,4a;∴数列{}n a的周期是320206733110a a a⨯+∴===故选:A.【点睛】本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n项的和.4.A解析:A【分析】由122 33nn n na a+-⎛⎫-=⋅ ⎪⎝⎭,当n<2时,a n+1-a n>0,当n<2时,a n+1-a n>0,从而可得到n=2时,a n最大.【详解】解:112222(1)3333n n nn nna a n n++-⎛⎫⎛⎫⎛⎫-=+-=⋅⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当n<2时,a n+1-a n>0,即a n+1>a n;当n=2时,a n+1-a n=0,即a n+1=a n;当n>2时,a n+1-a n<0,即a n+1<a n.所以a1<a2=a3,a3>a4>a5>…>a n,所以数列{}n a中的最大项为a2或a3,且2328 239a a ⎛⎫==⨯=⎪⎝⎭.故选:A.【点睛】此题考查数列的函数性质:最值问题,属于基础题.5.C【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.D解析:D 【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +-=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x -+=的实数根, 所以1n n n a a b ++=,12nn n a a +=,又11a =,所以22a =; 当2n ≥时,112n n n a a --=,所以11112n n n n n na a a a a a ++--==, 因此4102232a a =⋅=,5111232a a =⋅=所以101011323264b a a =+=+=. 故选:D. 【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.7.A解析:A 【分析】根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值 【详解】由114a =-,111(1)n n a n a -=->知 21115a a =-= 321415a a =-= 4131114a a a =-=-= 故数列{}n a 是周期为3的数列,而2019可被3整除 ∴2019345a a == 故选:A 【点睛】本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题8.B解析:B 【分析】根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值. 【详解】因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-, 所以1121n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,所以112n n a --=,所以121n n a -=+,所以91021513a =+=,故选:B. 【点睛】本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方法进行求解.9.A解析:A 【分析】运用数列的单调性和不等式的知识可解决此问题.【详解】数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,121n n n n a a a a +++∴≥--,设1n n n d a a +=-,则1n n d d +≥,∴数列{}n d 是递减数列.对于A ,由11a =,20192019a =, 则201911220182019a a d d d =+++=,所以1220182018d d d +++=,又1232018d d d d ≥≥≥≥,所以1122018201820182018d d d d d ≥+++≥,故120181d d ≥≥,2018n ∴≥时,1n d ≤,02019N ∃=,2019n >时, 20192019202012019111n n a a d d d n -=+++≤++++=即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;结合A ,故B 不正确;对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A 【点睛】本题考查了数列的单调性以及不等式,属于基础题.10.B解析:B 【分析】根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】3,4,6,9,13,18,24,1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=,所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()11113322n n n n -+⋅--=+=+.所以19191831742a ⨯=+=. 故选:B本小题主要考查数列新定义,考查累加法,属于基础题.11.B解析:B 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.12.B解析:B 【分析】由递推关系,可求出{}n a 的前5项,从而可得出该数列的周期性,进而求出2019a 即可. 【详解】 由1111n n n a a a ++-=+,可得111nn n a a a ++=-,由12a =,可得23a =-,312a =-,413a =,52a =,由15a a =,可知数列{}n a 是周期数列,周期为4, 所以2019312a a ==-. 故选:B.13.C解析:C 【分析】利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C14.C解析:C 【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=,所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②,①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-故选:C 【点睛】如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .15.B解析:B 【分析】讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数. ①若11a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;②若12a =,则21a =,34a =,42a =,51a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;③若13a =,则26a =,33a =,46a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;④若14a =,则22a =,31a =,44a =,52a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.下面说明,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.(1)当(3412,2a ⎤∈⎦且1N a *∈时,由列举法可知,数列{}n a 不是周期数列;(2)假设当(()112,23,k k a k k N +*⎤∈≥∈⎦且1N a *∈时,数列{}n a 不是周期数列,那么当(()1212,23,k k a k k N ++*⎤∈≥∈⎦时. 若1a 为正偶数,则(1122,22k k a a +⎤=∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则((121321323,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.综上所述,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.16.A解析:A 【分析】根据数列的递推关系式即可求解. 【详解】由21(1),n n n a a a n ++=+≥ 则2462020246210201a a a a a a a a a +++++++++=+3462020562020201920202021a a a a a a a a a a =+++=+++=+=.故选:A17.C解析:C 【分析】根据通项公式的概念可以判定AB 正确;不难找到一些规律性不强的数列,找不到通项公式,由此判定C 错误,根据无穷数列的概念可以判定D 正确. 【详解】数列的通项公式的概念:将数列{} n a 的第n 项用一个具体式子(含有参数n )表示出来,称作该数列的通项公式,故任意一个定义域为正整数集合的或者是其从1开始的一个子集的函数都可以是数列的通项公式,它是一个函数关系,即对于任意给定的数列,各项的值是由n 唯一确定的,故AB 正确; 并不是所有的数列中的项都可以用一个通项公式来表示,比如所有的质数从小到大排在一起构成的数列,至今没有发现统一可行的公式表示,圆周率的各位数字构成的数列也没有一个通项公式可以表达,还有很多规律性不强的数列也找不到通项公式,故C 是错误的; 根据无穷数列的概念,可知D 是正确的. 故选:C. 【点睛】本题考查数列的通项公式的概念和无穷数列的概念,属基础题,数列的通项公式是一种定义在正整数集上的函数,有穷数列与无穷数列是根据数列的项数来分类的.18.C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.19.C解析:C 【分析】由累加法求出233n a n n =+-,所以331n a n n n,设33()1f n n n=+-,由此能导出5n =或6时()f n 有最小值,借此能得到na n的最小值. 【详解】解:()()()112211n n n n n a a a a a a a a ---=-+-+⋯+-+22[12(1)]3333n n n =++⋯+-+=+-所以331n a n nn设33()1f nn n=+-,由对勾函数的性质可知, ()fn 在(上单调递减,在)+∞上单调递减,又因为n ∈+N ,所以当5n =或6时()f n 可能取到最小值. 又因为56536321,55662a a ===, 所以n a n的最小值为62162a =.故选:C. 【点睛】本题考查了递推数列的通项公式的求解以及对勾函数的单调性,考查了同学们综合运用知识解决问题的能力.20.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.二、多选题 21.ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a <<设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x ,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数, 即()()102f f x f ⎛⎫<<⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题.22.ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD . 【点睛】 本解析:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确;41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确.故选:ACD . 【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.23.ABD 【分析】对于A ,由题意得bn =an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题24.AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.25.BD 【分析】利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,由于数列单调递减, 可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本解析:BD 【分析】 利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减,可得:2n =时,21n -取得最大值2. ∴1n n a a -的最大值为3. 故选:BD .本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.26.ABCD 【分析】由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,, 可得:.故是斐波那契数列中的第解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.27.BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数,是等方差数列,故解析:BD根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n aa ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2n中,()()22221112234nn n nn aa----=-=⨯不是常数,{}2n∴不是等方差数列,故C 错误; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD. 【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.28.AB 【分析】根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】依题意,等差数列中,即, .对于A 选项,,所以A 选项正确. 对于C 选项,,,所以,解析:AB 【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确.对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误.故选:AB 【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.29.BCD 【分析】设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解. 【详解】设等差数列的公差为, 由题意,,所以,故A 错误; 所以,所以,故B 正确; 因为, 所以当解析:BCD 【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解. 【详解】设等差数列{}n a 的公差为d ,由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2211168642n n n a n d n n n S -=+=-+=--+,所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈, 所以使得0n S >的最大整数15n =,故D 正确. 故选:BCD.30.ABD 【分析】结合等差数列的性质、前项和公式,及题中的条件,可选出答案. 【详解】由,可得,故B 正确; 由,可得, 由,可得,所以,故等差数列是递减数列,即,故A 正确; 又,所以,故C 不正确解析:ABD 【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案. 【详解】由67S S =,可得7670S S a -==,故B 正确; 由56S S <,可得6560S S a -=>, 由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确; 又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <, 所以()117179171702a a S a +==<,故D 正确.故选:ABD. 【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题.31.ABC 【分析】由已知求得公差的范围:,把各选项中的项全部用表示,并根据判断各选项.由题知,只需, ,A 正确; ,B 正确; ,C 正确; ,所以,D 错误. 【点睛】本题考查等差数列的性解析:ABC 【分析】由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项. 【详解】由题知,只需1220010a d d d =->⎧⇒<<⎨>⎩, ()()2242244a a d d d ⋅=-⋅+=-<,A 正确;()()2222415223644a a d d d d +=-++=-+>≥,B 正确; 21511111122221a a d d d+=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误. 【点睛】本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.32.AD 【分析】由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误. 【详解】 由已知得:,结合等差数列的性质可知,,该等差解析:AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误.由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.33.BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】 A 选项,若,则, 那么.故A 不正确; B 选项,若,则,又因为,所以前8项为正,从第9项开始为负, 因为解析:BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负, 因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.34.BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D . 【详解】由公差,可得,即,① 由a7是a解析:BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.35.ACD 【分析】由得,故正确;当时,根据二次函数知识可知无最小值,故错误;根据等差数列的性质计算可知,故正确;根据等差数列前项和公式以及等差数列的性质可得,故正确. 【详解】因为,所以,所以,即解析:ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小。
数列知识点归纳及例题分析
数列知识点归纳及例题分析一、数列的概念:1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: 10,-3,8,-15,24,....... 221,211,2111,21111,......(3), (17)9,107,1,232.n a 与n S 的关系:⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化求通项例2:已知数列}{n a 的前n 项和⎩⎨⎧≥+==2,11,32n n n S n ,求n a .3.数列的函数性质:(1)单调性的判定与证明:定义法;函数单调性法 (2)最大小项问题:单调性法;图像法(3)数列的周期性:注意与函数周期性的联系例3:已知数列}{n a 满足⎪⎩⎪⎨⎧<<-≤≤=+121,12210,21n n n n n a a a a a ,531=a ,求2017a . 二、等差数列与等比数列例4等差数列的判定或证明:已知数列{a n}中,a1=错误!,a n=2-错误!n≥2,n∈N,数列{b n}满足b n=错误!n∈N.1求证:数列{b n}是等差数列;2求数列{a n}中的最大项和最小项,并说明理由.1证明∵a n=2-错误!n≥2,n∈N,b n=错误!.∴n≥2时,b n-b n-1=错误!-错误!=错误!-错误!=错误!-错误!=1.∴数列{b n}是以-错误!为首项,1为公差的等差数列.2解由1知,b n=n-错误!,则a n=1+错误!=1+错误!,设函数fx=1+错误!,易知fx在区间错误!和错误!内为减函数.∴当n=3时,a n取得最小值-1;当n=4时,a n取得最大值3.例5等差数列的基本量的计算设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn ,满足S5S6+15=0.1若S5=5,求S6及a12求d的取值范围.解1由题意知S6=错误!=-3,a6=S6-S5=-8. 所以错误!解得a1=7,所以S6=-3,a1=7.2方法一∵S5S6+15=0,∴5a 1+10d 6a 1+15d +15=0, 即2a 错误!+9da 1+10d 2+1=0.因为关于a 1的一元二次方程有解,所以 Δ=81d 2-810d 2+1=d 2-8≥0, 解得d ≤-2错误!或d ≥2错误!. 方法二 ∵S 5S 6+15=0, ∴5a 1+10d 6a 1+15d +15=0, 9da 1+10d 2+1=0.故4a 1+9d 2=d 2-8.所以d 2≥8.故d 的取值范围为d ≤-2错误!或d ≥2错误!.例6前n 项和及综合应用1在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值;2已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和. 解 方法一 ∵a 1=20,S 10=S 15,∴10×20+错误!d =15×20+错误!d ,∴d =-错误!. ∴a n =20+n -1×错误!=-错误!n +错误!. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+错误!×错误!=130.方法二 同方法一求得d =-错误!.∴S n =20n +错误!·错误!=-错误!n 2+错误!n =-错误!错误!2+错误!. ∵n ∈N,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 2∵a n =4n -25,a n +1=4n +1-25,∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令错误!由①得n <6错误!;由②得n ≥5错误!,所以n =6. 即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则 T n =错误! =错误!例7已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例8等差数列{},{}n n a b 的前n 项和分别为{},{}n n S T ,且7453nnS n T n ,则使得n na b 为正整数的正整数n 的个数是 3 . 先求an/bn n=5,13,35例9已知数列{}n a 中,113a =,当2≥n 时,其前n 项和n S 满足2221nn n S a S =-,则数列{}n a 的通项公式为 ()()21132214n n a n n ⎧=⎪=⎨⎪-⎩≥例10在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a = .例1111a a -+是和的等比中项,则a +3b 的最大值为 2 . 例12 若数列1, 2cos θ, 22cos 2θ,23cos 3θ, … ,前100项之和为0, 则θ的值为例13 △ABC 的三内角成等差数列, 三边成等比数列,则三角形的形状为__等边三角形_三、数列求和: 1倒序相加法如:已知函数1()()42x f x x R =∈+,求12()()()m mS f f f m m m =+++_________2错位相减法:{}n n b a 其中{ n a }是等差数列,{}n b 是等比数列; 3裂项相消法:形如)11(1))((1CAn B An B C C An B An a n +-+-=++=4拆项分组法:形如n n n c b a ±=,如:n n n a 32+=,65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,21)1(n a n n ⋅-=-练习:1、数列1,211+,3211++,···,n+++ 211的前n 项和为 B A .122+n n B .12+n nC .12++n nD .12+n n2、数列,,1617,815,413,211 前n 项和=n S .3、数列{}n a 的通项公式为nn a n ++=11,则S 100=_________________;4、设()111126121n S n n =+++++,且134n n S S +⋅=,则=n .65、设*N n ∈,关于n 的函数21)1()(n n f n ⋅-=-,若)1()(++=n f n f a n ,则数列}{n a 前100项的和=++++100321a a a a ________.答案:100.解答:])1[()1()1()1()1()1()(22221n n n n n f n f a n n n n -+-=+⋅-+⋅-=++=-,)12()1(+-=n n ,所以201)199(9)7(5)3(100321+-+++-++-=++++ a a a a100502=⨯=. 四、求数列通项式2ln n+1公式法:121+=+n n a a ,112++-=⋅n n n n a a a a ,121+=+n nn a a a 等 2累加法:形如)2)((1≥=--n n f a a n n 或)(1n f a a n n +=-,且)(n f 不为常数 3累乘法:形如)2)((1≥⋅=-n n f a a n n 且)(n f 不为常数 4待定系数法:形如1,0(,1≠+=+k b ka a n n ,其中a a =1型5转换法:已知递推关系0),(=n n a S f ⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n解题思路:利用⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn变化1已知0),(11=--n n a S f ;2已知0),(1=--n n n S S S f (6)猜想归纳法慎用练习:考点三:数列的通项式1、在数列{}n a 中,前n 项和842--=n n S n ,则通项公式=n a _______________3、已知数列的前n 项和n n S 23+=,则=n a _______________15122n n n a n -=⎧=⎨≥⎩4、已知数列{}n a ,21=a ,231++=+n a a n n ,则 =n a )(,23*2N n nn ∈+5、在数列{}n a 中,1112,lg 1n n a a a n +⎛⎫==++ ⎪⎝⎭*N n ∈,则n a = .6、如果数列{}n a 满足)(53111*++∈=-=N n a a a a a n n n n ,,则=n a ________________7、}{n a 满足11=a ,131+=+n n n a a a ,则n a =_______132n -8、已知数列{}n a 的首项12a =,且121n n a a +=-,则通项公式n a = 121n -+ 9、若数列{}n a 满足()*112,32n n a a a n N +==+∈,则通项公式n a =10、如果数列{}n a 的前n 项和323-=n n a S ,那么这个数列的通项公式是 DA .)1(22++=n n a nB .n n a 23⋅=C .13+=n a nD .n n a 32⋅=五、数列应用题: 等差数列模型1、一种设备的价格为450000元,假设维护费第一年为1000元,以后每年增加1000元,当此设备的平均费用为最小时为最佳更新年限,那么此设备的最佳更新年限为 ;30年2、在一次人才招聘会上,有甲、乙两家公司分别公布它们的工资标准:甲公司:第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; 乙公司:第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%.设某人年初同时被甲、乙公司录取,试问:1若该人打算连续工作n 年,则在第n 年的月工资收入分别是多少元2若该人打算连续工作10年,且只考虑工资收入的总量,该人应该选择哪家公司为什么精确到1元解:1设在甲公司第n 年的工资收入为n a 元,在乙公司第n 年的工资收入为n b 元 则2301270n a n =+,120001.05n n b -=⋅ 2设工作10年在甲公司的总收入为S 甲,在甲公司的总收入为S 乙由于S S >乙甲,所以该人应该选择甲公司.等比数列模型例 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据计划,本年度投入800万元,以后每年投入将比上一年度减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增加41;1设n 年内本年度为第一年总投入为n a 万元,旅游业总收入为n b 万元,写出n a 、n b 的表达式;2至少经过几年旅游业的总收入才能超过总投入精确到整数 参考解答:112511800511800511800800-⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=n n a2解不等式n n a b >,得5≥n ,至少经过5年,旅游业的总收入才能超过总投入.六、2017年高考题一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1. 2017年新课标Ⅰ 记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为2. 2017年新课标Ⅱ卷理 我国古代数学名着算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯1.A 盏 3.B 盏 5.C 盏 9.D 盏 3.2017年新课标Ⅲ卷理 等差数列{}n a 的首项为1,公差不为0.若632,,a a a 成等比数列,则{}n a 前6项的和为4. 2017年浙江卷 已知等差数列}{n a 的公差为d ,前n 项和为n S ,则“0>d ”是“5642S S S >+”的.A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件5.2017年新课标Ⅰ 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列⋯,16,8,4,2,1,8,4,2,1,4,2,1,2,1,1其中第一项是02,接下来的两项是102,2,再接下来的三项是2102,2,2,依此类推.求满足如下条件的最小整数100:>N N 且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 二、填空题将正确的答案填在题中横线上6. 2017年北京卷理 若等差数列{}n a 和等比数列{}n b 满足8,14411==-==b a b a ,22a b =_______.7.2017年江苏卷等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =_______________.8. 2017年新课标Ⅱ卷理 等差数列{}n a 的前n 项和为n S ,33a =,410S =, 则11nk kS ==∑. 9.2017年新课标Ⅲ卷理设等比数列{}n a 满足3,13121-=--=+a a a a ,则=4a __. 三、解答题应写出必要的文字说明、证明过程或演算步骤10. 2017年新课标Ⅱ文已知等差数列}{n a 前n 项和为n S ,等比数列}{n b 前n 项和为.2,1,1,2211=+=-=b a b a T n 1若533=+b a ,求}{n b 的通项公式; 2若213=T ,求3S . 11.2017年新课标Ⅰ文 记nS 为等比数列{}n a 的前n 项和,已知.6,232-==S S1求{}n a 的通项公式; 2求n S ,并判断21,,++n n n S S S 是否成等差数列; 12. 2017年全国Ⅲ卷文设数列{}n a 满足()123+212n a a n a n ++-=…1求数列{}n a 的通项公式; 2求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和;13.2017年天津卷文已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=. 1求{}n a 和{}n b 的通项公式; 2求数列2{}n n a b 的前n 项和*()n ∈N . 14.2017年山东卷文已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==.1求数列{}n a 的通项公式;2{}n b 为各项非零等差数列,前n 项和n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭前n 项和n T15. 2017年天津卷理已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.1求{}n a 和{}n b 的通项公式; 2求数列221{}n n a b -的前n 项和()n *∈N . 16. 2017年北京卷理 设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数. 1若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; 2证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.17.2017年江苏卷对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.1证明:等差数列{}n a 是“(3)P 数列”;2若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 18.本小题满分12分已知}{n x 是各项均为正数的等比数列,且.2,32321=-=+x x x x Ⅰ求数列}{n x 的通项公式;Ⅱ如图,在平面直角坐标系xOy 中,依次连接点)1,(,),2,(),1,(11211+⋯++n x P x P x P n n 得到折线121+⋯n P P P ,求由该折线与直线11,,0+===n x x x x y 所围成的区域的面积n T .19.2017年浙江卷已知数列}{n x 满足:).)(1ln(,1*111N n x x x x n n n ∈++==++证明:当*N n ∈时,1n n x x <<+10; 22211++≤-n n n n x x x x ; 3212121++≤≤n n n x .。
(完整版)等差数列典型例题及分析
第四章 数列[例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式;(2)指出1+4+…+(3n -5)是该数列的前几项之和.正解:(1)a n =3n -2;(2) 1+4+…+(3n -5)是该数列的前n -1项的和.[例2] 已知数列{}n a 的前n 项之和为① n n S n -=22 ② 12++=n n S n求数列{}n a 的通项公式。
正解: ①当1=n 时,111==S a 当2≥n 时,34)1()1(2222-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合,∴34-=n a n ②当1=n 时,311==S a 当2≥n 时,nn n n n a n 21)1()1(122=-----++= ∴ ⎩⎨⎧=n a n 23)2()1(≥=n n [例3] 已知等差数列{}n a 的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。
正解:由题意:⎪⎪⎩⎪⎪⎨⎧=⨯+=⨯+7022930301029101011d a d a 得152,521==d a 代入得S 40 =1204023940401=⨯⨯+d a 。
[例5]已知一个等差数列{}n a 的通项公式a n =25-5n ,求数列{}||n a 的前n 项和;正解: ⎪⎪⎩⎪⎪⎨⎧≥+--≤-6,502)5)(520(5,2)545(n n n n n n[例6]已知一个等差数列的前10项的和是310,前20项的和是1220,由此可以确定求其前n 项和的公式吗?[例7]已知:nn a -+=12lg 1024 (3010.02lg =)+∈N n (1) 问前多少项之和为最 大?(2)前多少项之和的绝对值最小? 解:(1) ⎩⎨⎧<-=≥-+=+02lg 102402lg )1(10241n a n a n n 3403340112lg 10242lg 1024<<⇒+≤<⇒n n∴3402=n (2) 0)2lg (2)1(1024=--+=n n n S n 当n n S S 或0=近于0时其和绝对值最小 令:0=n S 即 1024+0)2lg (2)1(=--n n 得:99.680412lg 2048≈+=n ∵ +∈N n ∴6805=n [例8]项数是n 2的等差数列,中间两项为1+n n a a 和是方程02=+-q px x 的两根,求证此数列的和n S 2是方程 0)lg (lg lg )lg (lg lg 2222=+++-p n x p n x 的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26课数列与函数•考试目标主词填空1•函数的定义域常要推导或计算才能确定,而数列的定义域都是C 知的,是事先确定的,要么是 集合{1, 2, 3, •••,〃}.要么是{1, 2, 3,…,n, •••}.2. 两数的值域须依其定义域推算确定,数列的值域也是计算所得:且为{山,02,…,冷}或{%,。
2, 如,…,禺,…}.3. 函数的图像最帘见的是连续不断的Illi 线(若是分段两数则在每一段上是连续不断的Illi 线),而数列 对应的点仙 為)描绘出来的图形是一些“孤零零的点”,不是线状图形.4. 函数的单调性考察,须在其定义域内任取心,也,不妨设小<兀2,然后比较.血丄)与血2)的大小关 系是否恒定•而数列仙}的单调性考察,只须比较对一沏给与如|的人小关系即可.5. 函数的最值,在数列中就是“最大项”或“最小项”.6. 函数的作图,往往要利用函数的各种性质或川“变换”作图,而数列的图形只须描点即町. •题型示例点津归纳【例1】 填空题.⑴函数沧尸血一(XWN )的值域是 ________ ,最大函数值为 _________ (2)当R 仅当n= _________ 时,数列{H 2-21H }单调增.【解前点津】(1)考察函数在一个周期内的取值悄况即可. (2)a n =w 2-21 n 解不等式:a n <a n+\ 即得.兀 2/r 3/r (l)/(l)=su?—, X2)=siz? —,f(3)=sm — =sm — , f(4)=sin — =sin 4- J J J J Jc •龙 • 7i ・ 2/r . 2TT(),sin —,一 sin —, sin ——,一 sin ——5 5 5 5(2)令 a n =n 2-2\n.由 0“<禺+】得,n-11 n<(n+1 )2-21 («+1) => n> 10.故斤丘{11, 12, 13,…}. 【解后归纳】考察数列{血的单调性,关键是看外<如](或给>伽】)成立与否.【例2]判断并证明函数心尸(XWN )的单调性.」厂>0"N ),故勢=富+伫<1, (V x +1 + J x)/(兀) J x + 2 + Jx + 1Xx+l)</(x), :.f(x)是N*上的单调减函数.【解后归纳】(1)将分子有理化,是逆向思维,(2)当被比较的两个量是正数时,可考虑比较商. 【例3】 设数列{禺}的前n 项和为S n , f\.(3-ni)S n +2ma n =m+3(n EN*),其中m 为常数H.加工・3.【解前点津】 化函数.心)为再比较f(x+\)与.心)的人小. 【规范解答】 证明:f(x)=71,A5)=o,【规范解答】 故值域为(1)求证:{«…}是等比数列.(2)若函数{禺}的公比q=j\m),数列{仇}满足:求证:等差数列,并求仇.【解前点津】(1)将给与S“的递推式转化为关于為与為+1的递推式;(2)通过变形,证明-——⑺22)是一个与无关的常数.b n b n-\【规范解答】证明:⑴由条件:加》+2;a” =/n + 3两式相减得:(3讪)如]+2加(如]1(3 一fn)S n+l + 2ma n+i = m + 3-^)=o =>也=卫_与”无关,故仏}是一个公比为旦_的等比数列.(2)由b“=l, q=/(加)=2^, b=l Abn})=l ・ m + 3 2 2a n m + 3 m + 3£}是首项和公羌为訥等差数列,R+守宇,.咖士【解后归纳】将禺与S”这种异类的递推公式转化为冷与如1(或S”与S申)这种同类的递推公式, 是变形的“常用方法”,常用的结论是:给+LS”+1・S“.【例4】已知等比数列仇}的各项为不等于1的正数,数列5}满足儿 =2(G>0, G HI),log“ 耳设>*3=18,『6=12.(1)数列{%}的前多少项和最大?最大值为多少?(2)试判断是否存在自然数M,使得QM时,兀”>1恒成立,若存在,求出相应的M;若不存在, 请说明理由.(3)令a”=log心兀时心>13, nEN*),试比较a n与如】的大小.【解前点津】通过计算)屛讪,考察{%}的属性,才能计算其前«项和x【规范解答】(l)y n=21og e A,r )0+1=210&並+1=>%+1 讪=210&並+i-2Iog(並=210臥亠~ , T 仇}为等比X数列,・・・土为定值,・•・{y n}为等差数列,乂y6-y3=3J=12-18 , Z. d=-2.y}=y r2d=22 , Z.S“=22卄一D (・2)=・/+23〃,・••当,尸11或”12时,S”取最人值132.2(2)已知%=22+(几・1) • (-2)=21og內》, .\x n=a l2'n,又x…=a l2'n>\ tU成立,・••当a>l 时,12-n>0, n<12;当0<a<\时,12-n<0, n>\2.・••当Ovavl时,存在M=12,当QM时,忑>1恒成立.(3)d“=log:E= — = —~ =1 + —-—,已知在(13, +8)上是减函数,:.a tl>a n+],n log’s [2-n n-12【解后归纳】 存在性问题,常从计算,假设存在推导入手,值得注意的是:①假设应与条件背 景相符合,②对结果进行检验. •对应训练分阶提升 一、基础夯实1.数列佃}是公差不为0的等差数列,且如、©0、⑷5是等比数列{加的连续三项,若等比数列{仇}的首项勿=3,则加等于3.已知a”=sin —+cos —,则无穷数列{a”}中()n n A.有最大项无最小项 B.有最小项无最大项 C.既有最人项又有最小项D.既无最人项又无最小项4. 设 Q “=COS (+ ] 一 4n ),则数列{a H } A.单调递增 B.单调递减 C.先递增后递减 D.先递减后递增5.设 a n =a J+bn 且尙=1,他=5,贝IJ 他()A.71B.72C.73D.746. 设数列仇}, {九}满足递推关系式:x n +x n y…= 1 -n+rT-n 及y n +x…y n =2n 2-n\则以卜结论正确的是()A. {x”}是递增数列,{),”}是递减数列B. {x“}是递减数列,{%}是递增数列C. {/}与{%}都是递增数列 。
.{无}与{曲都是递减数列7. 设a“=log ](4"・2"M+259),则在无穷数列{冷}中,必冇()3A.最大项是・1B.最小项是・1C.最人项是1D.最小项是19. 若无穷数列{* >各项和为S,则10邸的值为A.24 y2.在数列{给}中, B.5a”=/・22〃+10, A."B.9个 9C.2D.-5则满足切=4伽知)的等式有C 」0个D11个8.已知正项无穷数列闪}, {)%}满足递推关系:2x n -y n =n, 3兀;=3/?・1侧lim"TOO的值为A.5B.4 ()D.2A.lB.-lC.-210.无穷数列{10劭(/・加+8)}中的最大项是・1,则A.(l, +8)B.(o, -)C.(丄,1)D.J- >7 7 ⑺二、思维激活11. 在数列仏}中,若尙=1,给+1=7?+给,则02004= ___________ •12. ____________________________________ 数列”川最大项的值是 •n 2 913. 己知数列{如各项为非负实数,且满足:一+。
討1,则此数列各项之和为 __________514. _______________________________________________________________ 己知数列{a“}中,a“=l+x+2f+3x'+・・・+nx".则此数列前4项之和是 _____________________ . 三、能力提高15. 已知函数金)=。
•戻的图像过点A(l,丄)和8(2,-).8 2(1) 求函数.兀0的解析式;(2) 记a rt =log2/(n), n 是正整数,S”是数列{ci,,}的前n 项和,求S 30.16.已知一次函数心)的图像关于直线兀・)=0对称的图像为C 但f L/(l)] =•],若点(n,-)(n a nN )在曲线C 上并有al 1, 也・2.=1 (心2).5 %】 (1) 求/U )的解析式及曲线c 的方程:(2) 求数列{给}的通项公式;JI17•设Ax)=sin —x, xeR,求 /(1 )4^(2)+/{3)+-• -+/{2004)Z 值.5!limS”之值./?—>co0? + 2)!,求:618.在数列{d“}中,如]+。
“=3〃・54 (?2 e N*). ⑴若67)+20=0,求通项%(2)设必为{给}的前n 项和,证明:当山+27>0时,存在自然数加,使得当几=加时,和|如+如都 取得最小值,并求此时加的值.第5课数列与函数习题解答1.B •••沂0=如・如5,・・・a+9d)2=(e+6d)・(。
]+14〃)3%二2公比 §=组=少 +% =)2a 1 +6d 3r.Z>2=3X-=5. 一 3 2. C 3. A ^=(/7-U)2-llh 函数严(炉11匚111的对称轴x=ll 其对称点有10对. a n = V2 sin( —+ —),故 n 44.A是递增.5. C 其中禺=3%6. B 解关于无,%的一元方程组得:心=l ・n, y tl =n 2.7. A 注意到 f(n)=4n-2,1+5+259=(2?,-24)24-3 &3.即;?=4 时有最小值 3.8. D 解关于x n 及%的二元二次方程组得:x n =2n-l , y…=3n-2.3 19.B •: S= --- = 一故为・1・ 仁1)2I 3丿 10.D 令 a“=log〃(/・2几+8),则 d]=log 加7=-1 => 1 m=— 7 11 •由 "1+如1)•"2004=1+2003 X 1002=2007007.12.这是一个周期数列.当77=1时值为—, 3当n=2时值为V3 , «=3时无意义,故此数列只两项. 13.Vne{l, 2, 3, 4,且点⑺禺)在椭圆上•••5=.*+心+叽=帚芬底十底十E 弋弋+厝£=—(7+2 yj~6 + 丁21).14. 由条件知:° ]=1 +x, «2= 1 +兀+2,,心=1 +x+2,+3x‘,«4= 1 +X +2X 2+3X 3+4X 4 故其 |J!J" 4 项之和是 a ] +6f2+^3+^4=4+4x+6x 2+6x 3+4x 4.Ill 4X15. 由题意得 ab=—.几 ab 2= — => a= — , b=4 =>J(x)= ——・ 8 2 32 32 4X(2)a n =log2f(n)=log2f(n)=log2一=2n-5(n^N*), Va n+r a n =2(n^N*),故{冷}是公差为 2 的等差数列,且 血=・3,由 S tl =-n(a^a tl )^S 3()=- X30X(-3+2X30-5)=780. 2 216.(1)设■几方伙HO),则f LAO] =k(k+b)+b=・\ 即 疋+肋+b+l=0,又厂\x)=^—= 一■一是|11|线 k k k C 的解析式,•・•点s ,也)在曲线C 上,・・・厂论)厂论・1)= 纽・仏=1, 乂 f ■,(M-1)=5 a nM —(M —]) ]--- ~k ---- =E ,故 Bl 代入 &+R 方+b+l=0 得 b=-\, .\J(x)=x-l =>f'l (x)=x+l,二 ill]线 C 为:x ・y+l=0.⑵由⑴知当x=n 时,厂】⑴=卄1,故啦=/?+1,而山二1于是空・鱼・毁・••旦一=2・3・4・・“, ① 5 a 2 a 3 a n _x即 a n =n!.兀 ] 兀逅兀 17*1 )=乡 的正弦=-,X2)=sin —=— , y (3)=sin^ = l, f(4)=sin 6 2 3 2 2 1 73 73 1A7)=--,A8)=- —,A9)=-l ,7(10)=—,川 1)二-,/(12)=0,・・・川)切2)+…土川2)=0,・・談1)峡2)+ ・・・峡2004)=167 •皿1)±/(2)峡3)+…寸(⑵]=0.[a nU + a n =3/1-5418.(1)由己知 a°+di 二 51, 乂 6Z =-20, />«2=-31 ill s =>如2・给=3,「・数列{给}一 一 ①+2+昭1 =3(72 + 1)-54 一的奇数项和偶数项分别成公差为3的等差数列.an ⑶(〃 + 2)! nl S + 2)!1 ____ ]_ n +1 n+2 ••心石•忑巳奧盼丁 丰=£ , y (5)=sin 討 + ,张)=0,3 2 6 2-(3n-43)(斤为奇数)故 a n = *-(3n + 68) 5为偶数)(2)当 n 为偶数时,S 尸@1+42)+(如+。