应用经济统计学(第二版) 概率基础
《新编概率论与数理统计》第二版课件
基本事件 Basic Event
——由一个样本点组成的单点集 {ω}
必然事件 Certain Event
——每次试验必定发生的事件. 例 全体样本点组成的事件,记为Ω
不可能事件 Impossible Event
——每次试验必定不发生的事件. 例 不包含任何样本点的事件,记为Φ
Probability and Statistics– Chapter 1 Random Events and Probability-liqinggui Tan Kah Kee College 11
随机事件A发生——
随机试验中,当随机事件A的某个样本点出现
例 掷一颗骰子; Ω = {1,2,3,4,5,6}
设随机事件A={1,3,5},即{出现奇数点} 当1,3,5中任一点数出现,则称事件A发生
Probability and Statistics– Chapter 1 Random Events and Probability-liqinggui Tan Kah Kee College 10
1. 包含关系 Inclusion Relation
A ⊂ B —— A 包含于B
事件 A 发生 必导致事件 B 发生
Ω AB
A 是B的子事件 A ⊂ B
2. 相等关系 Equivalent Relation
A= B
A⊂ B且 A⊃B
Probability and Statistics– Chapter 1 Random Events and Probability-liqinggui Tan Kah Kee College 13
§ 1.1 随机事件及其运算
Random Events and Operation
概率论与数理统计第二版课后答案
概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。
在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。
2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。
–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。
–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。
1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。
–基本事件:对于只包含一个样本点的事件,称为基本事件。
–复合事件:由一个或多个基本事件组成的事件称为复合事件。
2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。
随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。
–连续型随机变量:其取值在某个区间内的任意一个值。
1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。
如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。
–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。
2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。
–交:事件A和事件B同时发生,记作A∩B。
–差:事件A发生而事件B不发生,记作A-B。
第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。
–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。
2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。
应用统计学第4章概率论基础
市场调查和预测分析估计,产品上市后销售量将达到生产 能力的 80% 以上(畅销)、 50% ~ 80% (销售一般)、不足 50%(滞销)的可能性分别为40%、30%、30%。 另经财务部门所作的财务预测分析,在产品出现”滞销”、” 一般”和”畅销”三种销售状况下,该项目投产后的年净现 金流量将分别为100万元、600万元和1000万元。 考虑到筹资成本和资金的机会成本,贴现率应取6%。
8
以上案例属于“有追加信息的风险型决策”问题,案 例的分析需要用到一些概率知识,包括条件概率、全概率 公式、贝叶斯公式和数学期望等,以及项目净现值等知识。 在本章的最后一节,我们将运用所学的概率知识对该例进 行分析,并且还将讨论信息的价值问题。
9
§4.1 随机试验与随机事件
一.随机试验
人们在研究经济管理以及其他社会问题中,通常总是通过 调查或对社会现象的观察来获取所研究问题的有关数据;在 自然科学领域中,人们也是通过科学实验或对自然现象的观 察来获取所需要的资料。 对社会现象的观察和对自然现象的科学实验在概率论和统 计学中都统称为试验。如果试验可在相同的条件下重复进行, 而且试验的结果不止一个,每次试验前不能确定将会出现哪 一结果,这样的试验就称为随机试验,简称试验。 例如,在一批产品中任意抽取一件进行检验;企业市场调 查人员就本企业的产品和服务进行的用户满意度调查;对某 产品进行的寿命试验等等都是随机试验。
6
销售部经理认为,为减少决策风险,应根据对用户试用 反馈情况进行分析后再作是否投资生产该洗衣机的决定。 销售部经理还提供了过去许多企业在产品正式投产之前采 用类似试用或试销方法的用户反馈结果与产品正式生产上 市后销售状况之间的统计数据,见表1 表1 销售状况与试用结果间的统计资料
《统计学基础》(第二版王瑞卿主编)思考与应用技能训练答案
各位老师、同学、读者好:《统计学基础》(第二版),王瑞卿主编,北京大学出版社,2013年9月第二版。
由于本教材是江苏省教育考试院指定的自学考试参考教材(科目代码:27871),教材用量较大,已经多次印刷,同时错误也已修正。
统计学教材很多,不同的老师在编写时内容会有些许差异,所以有些习题答案可能语言描述有差异,习题答案仅供参考。
由于教材第一版跟第二版习题有些差异,大家在看习题时对照电子版习题即可。
欢迎大家就教材存在的问题提出您的宝贵意见,我的邮箱wrq31 5@.祝各位身体健康,工作学习顺利!王瑞卿2013年11月2日项目1 统计概述思考与应用技能训练一、填空题1.现代统计的含义包括三个方面: 、 和 。
2.一个完整的统计工作过程可以划分为 、 、 、 四个阶段。
3.总体是由许多具有 的个别事物组成的整体;总体单位是 的组成单位。
4.统计总体具有四个基本特征,即 、 、 和 。
5.标志是说明总体单位的特征的名称,按表现形式不同分为 和 两种。
6.统计指标按其所说明的总体现象内容的不同,可分为 和 。
答案:1.统计工作统计资料统计学2. 统计设计统计调查统计整理统计分析3.共同属性总体4.同质性差异性大量性客观性5.数量标志品质标志6.数量指标质量指标二、单项选择题1.统计总体的同质性是指()。
A.总体各单位具有某一共同的品质标志或数量标志B.总体各单位具有某一共同的品质标志属性或数量标志值C.总体各单位具有若干互不相同的品质标志或数量标志D.总体各单位具有若干互不相同的品质标志属性或数量标志值答案:B2.某地区有800家工业企业,要研究这些企业的产品生产情况,总体单位是()。
A.全部工业企业B.每一家工业企业C.每一件产品D.800家工业企业的全部工业产品答案:B3.要了解某班50名学生的学习情况,则总体是()。
A.50名学生B.50个学生的学习成绩C.每一个学生D.每一个学生的学习成绩答案:A4.一个统计总体()。
应用统计学(微课版 第2版)全书教案1-8章全
1.1.4 统计学的学科体系现代统计学是一门多分支的科学。
根据研究的侧重点不同将统计学科划分为理论统计学和应用统计学两个大类,统计学学科体系如图1.1所示。
图1.1 统计学学科体系1.2 统计研究的特点、方法和作用1.2.1 统计的含义所谓统计,顾名思义就是统而计之,即汇总分析。
具体指根据研究目的和要求,运用科学的方法,对客观事物或人类实践活动的数据资料进行调查、整理、分析的过程。
统计学则是研究如何对社会总体的数量特征和规律进行描述、推断、认识的一门学科。
1.统计活动统计活动也称为统计实践、统计工作,是指根据统计目的及要求,利用科学的方法,对所研究客观事物或者活动的数据资料进行调查、整理、分析的过程。
统计调查、统计整理和统计分析是基本的统计活动,所提供的统计资料包括原始统计资料、整理结果和分析结论。
统计活动一般按照统计设计、统计调查、统计整理、统计分析和统计资料的开发利用这几个阶段依次进行,如图1.2所示。
是非曲直的背后,引导学生如何做事、如何做人,培养他们正确的人生价值取向。
统计是静止的历史,历史是流动的统计。
统计虽然不能创造历史,但用数字真实记录了历史的发展。
作为一项社会实践,也是一部人类生活和斗争的历史,更是社会文明积累的结果。
统计学发展史中蕴含着大量做人的道理,统计学的发展和完善是众多统计学者和研究者孜孜不倦不断探索的结果,了2图1.3 统计方法体系图1.2.4 统计的作用与职能随着社会主义市场经济体制的逐步建立和完善,统计职能将越来越重要。
统计已由单纯的统计信息搜集整理职能转变为信息、咨询、监督三大职能。
统计部门已成为社会经济信息的主体部门和国民经济核算的中心,成为国家重要的咨询和监督机构。
统计的作用主要体现在信息、咨询、监督三大功能上。
具体表现为:①为党和政府各级领导机构决策和宏观调控提供资料;②为企业、事业单位经营管理提供依据;③为社会公众了解情况,参与社会经济活动提供资料;④为科学研究提供资料;⑤为国际交往提供资料。
概率论与数理统计及其应用第二版课后答案
P(B|)P(B)P(B)P(|B)10%(185%)17.06% P()1P(A)112.1%
即一名被检验者经检验认为没有关节炎而实际却有关节炎的概率为17.06%.
7
概率论与数理统计及其应用习题解答
15,计算机中心有三台打字机A,B,C,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。已知一程序因打字机发生故障而被破坏了,求该程序是在A,B,C上打字的概率分别为多少?
解:设“程序因打字机发生故障而被破坏”记为事件M,“程序在A,B,C三台打字机上打字”分别记为事件N1,N2,N3。则根据全概率公式有
解:根据题意,求出以下概率为
111111,P(C);222222
111111111P(AB),P(BC)P(CA),P(ABC)。224224224P(A)P(B)
所以有
P(AB)P(A)P(B),P(AC)P(A)P(C),P(BC)P(B)P(C)。
即表明A和B,B和C,C和A两两独立。但是
P(ABC)P(A)P(B)P(C)
P(M)P(Ni)P(M|Ni)0.60.010.30.050.10.040.025,
i13
根据Bayes公式,该程序是在A,B,C上打字的概率分别为
P(N1|M)P(N1)P(M|N1)0.60.010.24,P(M)0.025
P(N2)P(M|N2)0.30.050.60,P(M)0.025
P(N3)P(M|N3)0.10.040.16。P(M)0.025P(N2|M)P(N3|M)
第二版 工程数学-概率统计简明教程-第四章随机变量及其分布
P( X
1)
27 64
27 64
27 32
.
30
例7 已知一批螺丝钉的次品率为0.01,且每个螺丝 钉是相互独立的,现将这批螺丝钉没10个宝成一包 出售,并保证若每包发现多于一个次品则课退款。 问卖出的某包螺丝钉被退回的概率多大?
解 设X表示每包中的次品数,则X~B(10,0.01)
退回 ↔ 次品多于一个 ↔ X>1
取球结果为:红或者白,是定性的描述。可这样量化: 用X表示抽得的结果, 则X只有两种结果, 每一种结果分别对应一个数,如 X=1表示取到红球, X=0表示取到白球
特点:试验结果数量化了,试验结果与数建立了
一个对应关系
随机变量的定义
随机变量
设随机试验的样本空间为Ω ,如果对于每一个 样本点w∈Ω ,均有唯一的实数X(w)与之对应, 称X(w)为样本空间Ω 上的随机变量。
则X服从0-1分布,其分布律为:
X
0
1
P
7
3
10
10
二项分布
在n重伯努利试验中,若以X表示事件A发生的次数, 则X可能的取值为0,1,2,3,…,n.
随机变量X的分布律为
P X k Cnk pk (1 p)nk
k 0,1, 2..., n; 其中0< p <1, 则称X服从参数为 n, p 的二 项分布(也称Bernoulli 分布),记为
k 0
15 15 15 15 15
即 10 5c 1 15
c 1
例5 袋中有5个球,分别编号1,2,3,4,5.从中同时取出3个
球,以X表示取出的球的最小号码,求X的分布律与分布函数. 解 由于X表示取出的3个球中的最小号码, 因此X的所有可
概率论与数理统计(第二版)课后答案
各章大体题详解习题一一、选择题1. (A )A B A B B ⊂−−→=;(B )B A A B A B B ⊂−−→⊂−−→=; (C )AB A B A B B φ=−−→⊂−−→=;(D )AB B A φ=−−→⊂ 不必然能推出A B B =(除非A B =)所以 选(D )2. ()()()()()()()P A B P AB P AB P A P B P A P B -==--++ ()()()P A P B P AB =+-所以 选(C )3. )()()()()()()()|(A P B P A P B P A P B P AB P B A P B A ≥−→−==−→−⊂所以 选(B )4. 1)(0)()()()()(==−→−==B P A P B P A P AB P A P 或 所以 选(B )5. (A )若B A =,则φ=AB ,且φ==A A B A ,即B A ,不相容(B )若φ≠⊃B A ,且Ω≠A ,则φ≠AB ,且φ≠=A B A ,即B A ,相容 (C )若φφ≠=B A ,,则φ=AB ,且φ≠=B B A ,即B A ,相容 (D )若φ≠AB ,不必然能推出φ=B A 所以 选(D )6. (A )若φ≠AB ,不必然能推出)()()(B P A P AB P =(B )若1)(=A P ,且φ≠⊃B A ,则)()()()(B P A P B P AB P ==,即A,B 独立(C )若φ=AB ,1)(0<<A P ,1)(0<<B P ,则)()()(B P A P AB P ≠ (D )若1)(=A P ,则A 与任何事件都彼此独立 所以 选(B )7. 射击n 次才命中k 次,即前1-n 次射击恰好命中1-k 次,且第n 次射击时命中目标,所以 选(C )二、填空题8. C A C A C A A C A C A C A C A )())((= C C C C A A C C A C A C ==== ))(()()( 所以 C B =9. 共有44⨯种大体事件,向后两个邮筒投信有22⨯种大体事件,故所求概率为414422=⨯⨯ 10. 设事件A 表示两数之和大于21,则 样本空间}10,10|),{(<<<<=Ωy x y x ,}10,10,21|),{(<<<<>+=y x y x y x A 872121211=⋅⋅-==ΩS S P A 11. 由1.0)(,8.0)(=-=B A P A P ,得7.0)(=AB P ,故3.0)(=AB P 12. 由4.0)(,3.0)(,2.0)(===B A P B P A P ,得1.0)(=AB P ,故2.0)()()(=-=AB P B P A B P 13. 2.0)|()()(==A B P A P AB P ,故8.0)|()()(==B A P AB P B P14. )()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P +---++=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=2719=15. 由于A,B 彼此独立,可得91)()()(==B P A P B A P ,)()(B A P B A P =,于是31)()(==B P A P ,故32)(=B P 三、计算题16.(1))},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(T T T H T T T H T H H T T T H H T H T H H H H H =Ω;(2)}3,2,1,0{=Ω;(3)}1|),{(22≤+=Ωy x y x ;(4)}5:0,5:1,5:2,5:3,5:4,4:5,3:5,2:5,1:5,0:5{=Ω 17.(1)C B A ; (2))(C B A ; (3)C B A C B A C B A ; (4)AC BC AB ; (5)C B A ; (6)C B A ; (7)ABC18. 法一,由古典概率可知,所求概率为:2016420109⋅C ;法二,由伯努利定理可知,所求概率为:1644209.01.0⋅⋅C19. 只有唯一的一个六位数号码开能打开锁。
《概率统计简明教程》第二版(第8章-统计量与抽样分布)统计与统计学、统计量、抽样分布
《概率统计简明教程》第二版
第八章 统计量与抽样分布
三、什么是统计学
◆短期的机遇变异
重复投掷一枚均匀硬币六次,观察每次出现的面: (1)正反正反反正 (2)反反反正正正 (3)正反反反反反
直觉认为结果(1)是随机的,结果(2)和结果 (3)很不随机。 从概率的观点认为结果(1)、(2)、(3)的发 生有相同的概率,因而没有哪一个结果比其他结果更多 一点或少一点随机性。
《概率统计简明教程》第二版
第八章 统计量与抽样分布
◆变异性(Variablity)
统计数据和统计资料具有变异性, 即个体之间有 差异,而对同一个体的多次观察,其结果也会不一样, 并且几乎每一次观察都随着时间的不同而改变,因而变 异性是一个重要的统计观念。 抽样结果的差异是变异性的主要表现 不能仅仅根据一次抽样的结果就断下结论!
《概率统计简明教程》第二版
第八章 统计量与抽样分布
二、总体和样本
1.总体
我们关心的是总体中的个体的某项指标(如人的身高、 灯泡的寿命, 汽车的耗油量…) .
由于每个个体的出现是随机的,所以相应的数量指标 的出现也带有随机性 . 从而可以把这种数量指标看作一 个随机变量X ,因此随机变量X的分布就是该数量指标在 总体中的分布.
《概率统计简明教程》第二版
第八章 统计量与抽样分布
三、什么是统计学
◆长期的规律性
在某地的彩票活动中,七年中有人累计中两次大 奖的机会是: 一半对一半
人们的潜意识常常与理性思考的结果有很大差别, 如不善于统计思考,即使面对十分平常的现象,也会闹 出笑话。
《概率统计简明教程》第二版
第八章 统计量与抽样分布
第八章 统计量与抽样分布
二、总体和样本
概率论基础(第二版)课后答案_李贤平_高等教育出版社(1-5章全)
第一章 事件与概率1、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =U U ;(3)C AB ⊂;(4)BC A ⊂.2、试把n A A A U L U U 21表示成n 个两两互不相容事件的和.3、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。
4、证明下列等式:(1)1321232−=++++n n n n n n n nC C C C L ; (2)0)1(321321=−+−+−−n n n n n n nC C C C L ; (3)∑−=−++=r a k r a b a k b r k a C C C0.5、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。
6、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。
7、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。
8、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。
9、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。
现从两袋中各取一球,求两球颜色相同的概率。
10、由盛有号码L ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。
11、任意从数列L ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<<L L 21,试求M x m =的概率,这里N M ≤≤1。
应用经济统计学,李心瑜版期末复习重点
SST = SSB + SSE
MSB=SSB/(r-1) MSE=SSE/(k-r)
3、F分布
F
SSB / r 1 SSE / n r
=
MSB MSE
~
F
r
1, n
r
8 -5
统计学
练习题
填空题
1、在统计学中,总体是_________________,个体是 _______________,样本是_________________. 2、调查某大学2000名学生学习情况,则总体是 ____________,个体是____________。 3、某银行想知道平均每户活期存款余额并估计其总 量,根据存折账号的顺序,每50本存折抽出一本登记 其8余- 6额。这样的抽样组织形式称为__________。
n
X
i
X
2
i 1
2
~ ___________。
19、X1, X2,…, X20是来自N(μ, σ2)的简单随机样本,X , S 2
分别为样本均值和方差,则 20 X ~ ___________。
8 - 11
S
统计学
练习题
20、X1, X2,…, Xn是来自N(μ, σ2)的简单随机样本,要检 验Ho:σ2= σ2o,则采用的统计量是_______。
8 -2
统计学 第5章 概率和概率分布
二、随机变量及其概率 1、二项分布B(n,p)
应用;近似分布 2、正态分布N(μ,σ2)
计算概率; 3、期望E(X)和方差D(X)
性质;计算
8 -3
统计学
总体参数
μ: 大样本 μ: 小样本 标准差未知
p
8 - 4σ2
概率论与数理统计教程第二版茆诗松课件PPT第五章
12 April 2016
第五章 统计量及其分布
第19页
§5.2 样本数据的整理与显示
5.2.1 经验分布函数
设 x1, x2, …, xn 是取自总体分布函数为F(x)的样 本,若将样本观测值由小到大进行排列,为 x(1), x(2), …, x(n),则称 x(1), x(2), …, x(n) 为有序样本, 用有序样本定义如下函数 0, x < x(1) Fn ( x ) k / n , x(k ) x x(k 1) , 1, x(n ) x
原因在于总体的差异上!
1979年4月17日日本《朝日新闻》刊登调查报 告指出,日产SONY彩电的彩色浓度服从正态 分布N(m, (5/3)2) ,而美产SONY彩电的彩色浓 度服从(m5 , m+5)上的均匀分布。
12 April 2016
第五章 统计量及其分布
第8页
图5.1.1 SONY彩电彩色浓度分布图
第五章 统计量及其分布
第22页
其经验分布函数为
Fn(x) =
0, 0.2, 0.4, 0.8, 1,
x < 344 344 x < 347 347 x < 351 351 x < 355 x 355
由伯努里大数定律: 只要 n 相当大,Fn(x)依概率收敛于F(x) 。
12 April 2016
第五章 统计量及其分布
第6页
比如:两个生产同类产品的工厂的产品的总体 分布:
X p 0 0.983 1 0.017
X
p
0
0.915
1
0.085
12 April 2016
第五章 统计量及其分布
概率论与数理统计(王明慈第二版)第2章随机变量及其分布7-1节
D
1
dx
1 x e( x y)dy.
00
y
1
x y1
1e xdx 1 x e ydy
0
0
D
0
1x
1e x (e y )1 x dx
0
0
1e x (1 ex1) dx 1(e x e1) dx
0
0
1 2e1 0.2642
4/4/2020
26
例 4 设二维随机变量X, Y 的密度函数为
x 0
y 0
f (u, v) du dv,
x 0, y 0,
0,
其他.
x 0
y e(uv) dudv,
0
x 0, y 0,
0,
其他.
(1
e
x
)(1
e
y
),
0,
x 0, y 0, 其他.
4/4/2020
25
(2) P{(X ,Y ) D} p( x, y)dx dy.
4/4/2020
18
X Y
x1 x2 xi
y1
p11 p21 … pi1 …
y2 p12 p22 … pi2 …
……
…… ……
y j p1 j p2 j … pij …
其中 pij满足: (1) pij 0, (i, j 1,2, );
(2) pij 1.
i1 j1
4/4/2020
预备知识回顾 二重积分的计算法
4/4/2020
1
利用直角坐标计算二重积分
被积函数 f (x, y) 且在积分区域D上连续时,
若D为 X - 型区域
y y 2(x)
则
第二版 工程数学-概率统计简明教程-第一章-随机事件
四、小结
1. 随机试验、样本空间与随机事件的关系
随机试验
样本空间 子集 随机事件
随 机
基本事件 复合事件
事 件
必然事件
不可能事件
2. 概率论与集合论之间的对应关系
记号
概率论
集合论
样本空间,必然事件
{ NNN , NND, NDN , DNN , NDD, DDN , DND, DDD }.
实例3 从一批灯泡中任取 一只, 测试其寿命.
{t t 0}.
其中 t 为灯泡的寿命 .
实例4
记录某城市120 急 救电话台一昼夜接 到的呼唤次数.
{0, 1, 2, }.
试验可以在相同的条件下重复地进行
k 1
A A A, A , A A A, A A,
A A, A .
AA B
B
Ω
7. 事件 A 与 B 的差
B A AB Ω
例10 用事件的交和并区别对立事件与互斥事件
A、B 互斥
A、B 对立
A
B
Ω
AB
A Ω
A B S 且 AB
互斥
对立
例7 有两门火炮同时向一架飞机射击,考察事件 A= {击落飞机}, B i= {击中 第i个发动机}, i=1,2 , C = {击中驾驶员}. 根据常识 “击落飞机”等价于“击中驾驶员”或者 “同 时击中2个发动机”.试描述事件A,Bi ,C之间的关系.
A= C发生 或 B1和B2同时发生, A= C ∪ (B1∩B2)= C∪B1B2
概率论与数理统计教程(第二版) 魏宗舒 第一章
第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
(3) 甲、乙两人从装有a 个白球与b 个黑球的口袋中轮流摸取一球,甲先取,乙后取,每次取后都有不放回,直到两人中有一人取到白球时停止,甲先取到白球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }(3)1ω表示白,2ω表示黑白,3ω表示黑黑白,…白黑黑表示个b b 1+ω,则样本空间=Ω{1ω,2ω,…,1+b ω}, 当b 被奇数时:1135{,,,,}b A ωωωω= 当b 为偶数时:21351{,,,,}b A ωωωω+=1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立? 解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
第二版 工程数学-概率统计简明教程-第六章 随机变量的函数及其分布
-2X 2 0 -2
-4 -5
pk 0.2 0.1 0.1 0.3 0.3
-2X 2 0 -2 -4 -5
X -1 0 1
2 2.5
pk 0.2 0.1 0.1 0.3 0.3
(2)
X2 1 0
1
4 9/4
pk 0.2 0.1 0.1 0.3 0.3
X2
0
1
pk 0.1 0.3
4 9/4 0.3 0.3
fX x
1
x2
e2
2
fY y
1
y2
e2
2
且X与Y 独立
f x, y
fX x
fY
y
1
x2 y2
e2
2
y
FZ z P Z z P X Y z
f ( x, y)dxdy
D
这里积分区域 D={(x, y): x+y ≤z}
一般方法
(1) 求Y的分布函数 FY(y)
FY ( y) 根据分布函数的定义 P(Y y) P(g( X ) y)
(2) 对FY(y) 求导,得到 fY(y)
P( X )
fY ( y) FY( y)
解不等式转化 为求关于X的概率
例2 设X的概率密度函数
f
X
x
x 2
,
0 x2
0, 其它
求随机变量Y=3X+2的概率密度函数。
第一步: 先求Y= 3X+2的分布函数 FY (y).
解
FY y
PY y P3X 2 y
y2
P