弹塑性力学1
1弹塑性力学基础
σ σ σ 11
12
13
σ21 σ22 σ23 可表示为 σij ( i =1,2,3;j =1,2,3) 。 可见,一阶张量的下标应是 1 个,3
的下标应是 2 个,依次类推,n 阶张量的下标应是 n 个。 n 阶张量可以表示为 a ( i i1i2…in 1 =1,2,3;i2
ε =ε e +εp
(1畅1)
若在 D 点卸载后重新加载,则在 σ<σD 以前,材料呈弹性性质,当 σ>σD 以后才 重新进入
塑性阶段,这就相当于提高了屈服应力。 材料的这种当应力超出了弹性极限以后,材料内部对变
形的抵抗能力随之增强的性质,叫做强化。
综上所述,弹性变形是可逆的,物体在变形过程中所储存起来的能量在卸载过程中将全部释
有些物理量用三个量都还不能表示出来,需要用
更多的量才能表达。 经过数学家和物理学家的努力 发现,这更多 的 量 不 是 随 随 便 便 几 个 都 可 以, 而 是 具 有一定的规律,这个规律是:物理量的个数刚好是 3n
个(为什么是 3 的 n 次方个,而不是 4 的 n 次方个,或 者 5 的 n 次方个,或者其他什么数值的 n 次方个?)。 例如,在弹塑性力学中,有些物理量,如应力( 将在 1畅2 节中讨论) 、应变 ( 将在 1畅3 节中讨论) 等 是由 9 个 独
时,应力与应变关 系 不 再 是 直 线 关 系, 但 仍 属
弹性阶段,在 B 点之前,即 σ<σ0 ,如卸载,则 应力与应 变 关 系 按 原 路 径 恢 复 到 原 始 状 态,
图 1畅1 低碳钢试件简单拉伸试验应力 -应变曲线
σ0 称为屈服应力。 可见,应力在达到屈服应力以前经历了线弹性阶段( OA 段) 和非线性弹性阶
弹塑性力学 第01-0章绪论
静力学: 物体的平衡条件--平衡微分方程和应力边界条件。 几何学: 位移与应变的关系--变形协调关系(几何方程和 位移边界条件)。 物理学: 应力与应变(或应变增量)的关系--本构关系。 如在材料力学中推导扭转切应力、弯曲正应力 时都应用了上述关系。
8、求解弹塑性力学问题的数学方法
由几何方程、物理方程、平衡方程及力和位移的边 界条件求出位移、应变、应力等函数。 精确解法:能满足弹塑性力学中全部方程的解。例 如运用分离变量法将偏微分方程组解耦并化为常微分方 程组进行求解,另外还有级数解法、复变函数解法、积 分变换等。 近似解法:根据问题的性质采用合理的简化假设而 获得近似结果;如有限元法、边界元法、有限差分法 等。
ε ≤ ε s 时,σ = Eε ε > ε s 时,σ = σ s sign ε
⎧1, 当 σ > 0 ⎪ ⎪ sign σ = ⎨0, 当 σ = 0 ⎪ ⎪ ⎩-1, 当 σ < 0
εs = σs E
4、线性强化(硬化)弹塑性模型
假设拉伸和压缩时屈服应力 的绝对值和强化模量E’都相同, 当不卸载时,应力—应变关系可 以写成
如:梁的弯曲问题
弹性力学
材料力学
当 l >> h 时,两者误差很小。
材料力学计算简单而结果往往是近似的,但不少情 况下精度可以满足工程要求的 变截面杆的分析
o
σ (x )
σ
(x )
? P
P x
τ (x )
二、弹塑性力学的基本假设
¾ 连续性假设,应力、应变和位移都可以用坐标的 连续函数表示,便于应用连续和极限的概念。 ¾ 均匀性假设,物体各部分的物理性质都相同,并 不会随坐标位置的改变而发生变化。 ¾ 各向同性假设,物体在各个方向具有相同的物理 性质,弹性常数不随坐标方向的改变而改变。
弹塑性力学复习-1
d
0
取主应力状态有:sxd x syd y szd z 0
加载后: x 0 d , d x d , d y 0, d z d
sx
1 3
(2
) x ,
sy
1 3
(1
) x ,
sz
1 3
(1
2) x
d z
2 1 2
Mises屈服准则求该单元屈服时的应力 ,
记屈服时的应力为 0 , 屈服后加载有 d , 求z方向的应力增量 d z 。
解:弹性应力 z ( x y )
应力偏量:
sx
x
m
1 (
3
)
1 (2 3
)
sy
y
m
1 (1 3
一、概念题
16.薄板理论的基本假设有哪些方面使问题得到简 化?为什么? 17.两种屈服准则的物理意义和它们在平面应力状 态下的图形特点。 18.按单向拉伸确定材料的屈服常数,比较两种屈 服条件的差异。 19.按纯剪状态确定材料的屈服常数,比较两种屈 服条件的差异。 20.叙述Levy-Mises、Prandtl-Reuss塑性本构关系, 并定义等效应力与等效塑性应变增量。 21.比较两种塑性本构关系的特点。
解(1)管的两端是自由的应力状态
由Mises屈服条件:
1 3
(
pR )2 t
2 s
p 3 s t
R
由Tresca屈服条件:
pR t
s
p 2 s t
R
例9薄壁管,平均半径为R,壁厚为t,承受内压p
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。
弹塑性力学1
n = n1 e1 + n2 e 2 + n3 e3 = ni ei
ni = n ⋅ ei = cos(n, ei ) dSi = cos(n, ei )dS = ni dS
dS dS3
第一章 应力与平衡
一、固体中的应力状态
• 任意斜面上应力矢量的Cauchy应力公式
dSi = cos(n, e i )dS = ni dS
与
σ ij
的关系
′
(σ ij = σ ⋅ e j )
(i )
σ i′j′ = σ (i ) ⋅ e j′
= e i′ ⋅ σ ⋅ e j′ = e i′ ⋅ (σ mn e m e n ) ⋅ e j ′ = (α i′i e i ) ⋅ (σ mn e m e n ) ⋅ (α j′j e j ) = α i′iα j ′jσ mnδ imδ nj = α i′iα j′jσ ij
一点应力状态
σ = n ⋅ σ (n) σ j = niσ ij
(n)
t = n ⋅ σ t j = niσ ij
第一章 应力与平衡
二、应力张量
u
u = ui e i
ui
u1 u2 u 3
σ 11 σ 12 σ 13 σ 21 σ 22 σ 23 σ σ 32 σ 33 31
σ 11 − σ 0 σ 12 σ 13 0 σ 22 − σ σ 23 → σ 21 σ σ 32 σ 33 − σ 0 31 S11 S12 S13 = S 21 S 22 S 23 应力偏(斜)张量 S S32 S33 31
• 一点应力状态与应力标号
弹塑性力学名词解释
弹性力学:1.应力:应力是描述一点内力各个方向上单位面积上的作用力的极限值,由于内力具有多重方向性因而应力也有多重方向性,需要用9个量描述,但表面独立的量有6个,实际上这6个量之间真正独立的只有3个。
2.应变;应变是描述一点的变形程度的物理量,变形包括伸缩和方向改变。
一点的应变是一个复杂的物理现象,需要6个量描述,但独立的量只有3个。
3.体积力:作用在物体每一点的外力。
比如每一点都有的重力。
4.面力:作用在物体表面的外力。
比如水给大坝表面的压力。
5.斜面应力公式:一点任一方向的面上的应力与这一点的6个坐标应力之间的关系,这个关系用于应力边界条件和斜面应力的计算。
物体表面的任一点的应力和该点的面力是相同的大小和方向。
6.平衡微分方程:分析一点:反映一点的体积力与该点的6个坐标应力之间的受力平衡的方程,方程是偏微分形式的方程。
直角坐标下的方程形式上简单,其它坐标的复杂些。
7.可能应力:满足应力边界条件和平衡微分方程的应力场(该点进入弹塑性阶段时还要满足应力形式的屈服条件),因为应力对应的应变不一定是真实应变,因此只满足应力方程的应力只是可能应力而不一定是真实应力。
8.位移:分析一点:一点变形前后的位置差值。
变形体研究的位移是该点空间位置的连续函数。
9.几何方程:分析一点:反映一点位移与该点应变之间关系的方程。
直角坐标的几何方程形式上是最简单的,而其它坐标的复杂些。
10.变形协调方程:变形体不出现开裂或堆叠现象,即一点变形后产生的位移是唯一的,这时对一点的应变分量之间的相互约束关系。
直角坐标下的方程形式上简单,其它坐标的复杂些。
11.物理方程:这是材料变形的固有性质,反映一点应力与应变之间的约束关系,这种约束关系和坐标选取无关,即各种坐标下的物理关系都是相同的函数。
12.弹性:弹性指物体在外界因素(外荷载、温度变化等)作用下引起变形,在外界因素撤除后,完全恢复其初始的形状和尺寸的性质。
13.完全弹性:材料变形性质只有弹性而没有其他如流变、塑性等变形性质。
弹塑性力学基础理论与应用
弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。
本文将简要介绍弹塑性力学的基础理论和一些应用领域。
一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。
根据胡克定律,应力与应变成正比。
弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。
弹性模量是弹性力学的重要参数,表征了材料的刚度。
2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。
当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。
塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。
3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。
它考虑了材料在弹性和塑性行为之间的转换。
在某些情况下,材料可以同时表现出弹性和塑性特性。
弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。
二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。
通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。
在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。
2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。
结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。
通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。
3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。
弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。
在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。
4. 金属加工金属的塑性变形是金属加工过程中的核心问题。
弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。
总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。
弹塑性力学-01
材料力学的研究对象
2
弹性力学 • 研究对象-块体板壳
弹塑性力学 • 研究对象广泛 • 数学方法
3
构件的四项基本要求
•强 •刚 度:抵抗破坏(断裂或过量塑性变形)的 度:抵抗弹性变形的能力。
能力。 • 稳定性:保持其原有平衡状态的能力。
•韧
性:抵抗大塑性变形而不破裂的能力。
4
基本任务
• 研究可变形固体受到外载荷、温度变化及边界约束
1-2
弹塑性力学的基本任务
• 工程问题的对象是结构
• 结构的功能——承受载荷
• 结构的基本单元——构件
• 构件的属性 – 承受载荷、可变形、由固体材料构成
1
构件的种类——杆件、板、壳、块体
材料力学 • 研究对象-杆件
结构力学 • 研究对象-杆系
弹塑性力学 给出用材料力学和结构力学方 法无法准确求解问题的解法 给出材料力学和结构力学无法 给出的可靠性和精确度的度量
边界条件
边值问题 求解
对工程 问题作 出评价
20
1-5 弹塑性力学中的基本假设
• 按照物体的性质以及求解的范围,忽
略一些可以暂不考虑的因素,而提出 一些基本假设,使所研究的问题限制
在方便可行的范围以内。
21
一、连续性假设:物质密实地充满物体所在空间,毫无空隙。 (应力应变和位移等力学量可以用坐标的连续函数表示,可 用微积分数学工具) 二、均匀性假设:物体内,各处的力学性质完全相同。 三、各向同性假设:组成物体的材料沿各方向的力学性质完全 相同。(这样的材料称为各项同性材料;沿各方向的力学 性质不同的材料称为各项异性材料。) 四、小变形假设:材料力学所研究的构件在载荷作用下的变形 与原始尺寸相比甚小,故对构件进行受力分析时可忽略其 变形。 五、无初应力,物体原来处于一种无应力的自然状态,在外力 作用之前,物体内各点应力为零 22
弹塑性力学第一章 弹塑性力学绪 论
与 成非线性关系。 只要是在B点前 2)AB段 此段内,
卸载后不会有残余变形,因此B点之前是弹性阶段。B点 对应的应力为弹性极限,记为 s 。 3)BC段 从B点开始,材料进入塑性阶段,如果继续加 载,会有塑性变形产生。从B点至C点屈服阶段。这阶段的 特点是应力不增长,但变形继续增大。因此B点应力又称 为屈服极限 s 。比例极限 p 与屈服极限 s 在数值上非 常接近,在工程上认为它们相等。
弹性力学的发展初期主要是通过实践,尤其是通过 实验来探索弹性力学的基本规律。英国的胡克和法国 的马略特于1680年分别独立地提出了弹性体的变形 和所受外力成正比的定律,后被称为胡克定律。牛顿 于1687年确立了力学三定律。
8
同时,数学的发展,使得建立弹性力学数学理论 的条件已大体具备,从而推动弹性力学进入第二个时 期。在这个阶段除实验外,人们还用最粗糙的、不完 备的理论来处理一些简单构件的力学问题。这些理论 在后来都被指出有或多或少的缺点,有些甚至是完全 错误的。 在17世纪末第二个时期开始时,人们主要研究梁的 理论。到19世纪20年代法国的纳维和柯西才基本上建 立了弹性力学的数学理论。柯西在1822~1828年间 发表的一系列论文中,明确地提出了应变、应变分量、 应力和应力分量的概念,建立了弹性力学的几何方程、 运动(平衡)方程、各向同性以及各向异性材料的广义 胡克定律,从而奠定了弹性力学的理论基础,打开了 弹性力学向纵深发展的突破口。 9
塑性变形现象发现较早,然而对它进行力学研究, 是从1773年库仑提出土的屈服条件开始的。 特雷斯卡于1864年对金属材料提出了最大剪应力 屈服条件。随后圣维南于1870年提出在平面情况下理 想刚塑性的应力-应变关系,他假设最大剪应力方向和 最大剪应变率方向一致,并解出柱体中发生部分塑性 变形的扭转和弯曲问题以及厚壁筒受内压的问题。莱 维于1871年将塑性应力-应变关系推广到三维情况。 1900年格斯特通过薄管的联合拉伸和内压试验,初步 证实最大剪应力屈服条件。
《弹塑性力学》课件
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义
弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。
弹塑性力学总结
弹塑性力学总结弹塑性力学是研究材料在受力后既有一部分弹性变形又有一部分塑性变形的力学学科。
它是力学学科的分支之一,因为它研究的对象是材料,所以也可以看作是材料力学的一个方向。
它的研究对象包括各种传统或新型材料——金属、高分子、陶瓷等。
本文将对弹塑性力学进行总结。
一、弹性力学与塑性力学的区别弹性力学和塑性力学都是力学学科的重要分支。
它们各自关注的是物体在受力后不同的反应。
(1)弹性力学弹性力学研究的是物体在受到力的作用下,发生弹性变形而迅速恢复原状的力学原理。
简单来说,就是物体在受力后可以发生弹性变形,如压缩变形或拉伸变形,但是在撤离力的影响之后能够回复原来的状态。
弹性力学理论主要依赖于胡克定律,胡克定律可以表示为应力与应变之比等于恒定的常数。
(2)塑性力学塑性力学研究的是物体在受到力的作用下,发生塑性变形而无法迅速完全恢复原状的力学原理。
简单来说,就是物体在受力后可以发生塑性变形,但是在恢复撤离力的影响之后,不能完全返回原来的状态,仍有残余塑性变形。
塑性力学理论主要依赖于流动理论,流动理论可以用应变率表示材料变形时受到的应力。
二、弹塑性力学的基本概念(1)应力应力是单位面积上的力,通常用σ表示。
应力有三种类型:拉应力、压应力和剪应力。
(2)应变应变是材料的形变量,通常表示为ε。
应变有三种类型:拉伸应变、压缩应变和剪切应变。
(3)黏塑性黏塑性是材料表现出的一种变形特性,它描述了物质在应力作用下的变形表现。
(4)弹性模量弹性模量是材料在受力作用下相对于其初始长度相应变形程度的比率。
弹性模量是一种力学参数,通常用E表示,单位是帕斯卡(Pa)。
材料的弹性模量越大,其刚度就越高。
(5)屈服点在达到一定的应力时,材料就会开始发生塑性变形。
材料开始发生塑性变形的应力点称为屈服点。
三、弹塑性力学的应用弹塑性力学广泛应用于工程、物理、材料科学和冶金工业等领域。
弹塑性力学理论的应用使我们在实际情况下更好地理解和处理材料的力学性质。
弹塑性力学(浙大通用课件)通用课件
塑性力学
研究材料在塑性状态下应 力和应变行为的科学。
塑性力学的基本假 设
塑性变形是连续的,且不改变物质的性质。 塑性变形过程中,应力和应变之间存在单值关系,且该关系是连续的。 塑性变形过程中,材料内部的应力状态是稳定的,不会出现应力振荡或波动。
塑性力学的基本方程
应力平衡方程
在塑性状态下,物体的内部应力场满 足平衡方程,即合力为零。
应变协调方程
本构方程
在塑性状态下,应力和应变之间的关 系由本构方程描述,该方程反映了材 料的塑性行为特性。
在塑性状态下,物体的应变状态满足 应变协调方程,即应变是连续的。
塑性力学的边值问题
01
塑性力学中的边值问题是指给定 物体的边界条件和初始条件,求 解物体内部的应力和应变状态的 问题。
02
边值问题可以通过求解微分方程 或积分方程来解决,具体方法取 决于问题的具体形式和条件。
04
材料弹塑性性质
材料弹性性质
弹性模量
材料在弹性变形阶段所表现出的 刚度,反映了材料抵抗弹性变形
的能力。
泊松比
描述材料在受到压力时横向膨胀 的程度,反映了材料在弹性变形
阶段的横向变形特性。
弹性极限
材料在弹性变形阶段所能承受的 最大应力,超过该应力值材料将
发生不可逆的塑性变形。
材料塑性性 质
屈服点
解析法的优点是精度高、理论严 谨,但缺点是适用范围较窄,对
于复杂问题难以得到解析解。
有限元法
有限元法是一种将连续的求解域离散化为有限个小的单元,通过求解这些小单元的 解来逼近原问题的求解方法。
它适用于各种复杂的几何形状和边界条件,能够处理大规模的问题,并且可以方便 地处理非线性问题。
弹塑性力学PPT课件精选全文
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.
弹塑性力学作业(含答案)(1)
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得:3030cos 2sin 2221041041cos 602sin 607322226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()2x yx yxy x yxy MPa MPa σσσσσατασστατα+-=+----+=++=--⨯+=----+=⋅+=⋅-=--⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 2221041041cos 602sin 607322226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()22x yx yxy x yxy MPa MPa σσσσσατασστατα+-=++---+=++=--⨯+=----+=-⋅+=-⋅+=⨯+⨯=由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:题图1-3zz zE Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
弹塑性力学基础
温加工
冷加工 在不产生回复和 再结晶温度以下
改善产品组织性能
降低金属变形抗力 改善金属塑性 提高强度
冷加工-退火 表面光洁,尺寸精确, 组织性能良好
加热温度 变形终了温度 变形程度 冷却速度
冷变形及热变形
冷变形
变形温度低于回复温度时,金属在 变形过程中只有加工硬化而无回复与再 结晶现象,变形后的金属只具有加工硬 化组织,这种变形称为冷变形。
继续提高变形速度,塑性又开始 下降:随变形速度↑,变形抗力
升高,达到相应于更小变形程度 下的断裂抗力之值。 第二次上升:热效应起作用,温度↑ ,变形抗力下降。
第二次下降:热效应极大,把金属加热到出现液相或大大降
低其晶间物质的强度。
4.变形程度 变形程度对塑性的影响,是同加工硬化及加工过程中伴 随着塑性变形的发展而产生的裂纹倾向联系在一起的。 在热变形过程中,变形程度与变形温度-速度条件是相 互联系着的,当加工硬化与裂纹胚芽的修复速度大于发生速
4、具有纤维组织的金属,各个方向上的机械性能 不相同。顺纤维方向的机械性能比横纤维方向的好。金 属的变形程度越大,纤维组织就越明显,机械性能的方 向性也就越显著。
使纤维分布与零件的轮廓相符合而不被切断; 使零件所受的最大拉应力与纤维方向一致,最大 切应力与纤维方向垂直。
实例:
当采用棒料直接经切削加工制造螺钉时,螺钉头部与杆部 的纤维被切断,不能连贯起来,受力时产生的切应力顺着纤维 方向,故螺钉的承载能力较弱(如图a示 )。 当采用同样棒料经局部镦粗方法制造螺钉时(如图b示),纤 维不被切断且连贯性好,纤维方向也较为有利,故螺钉质量较 好。
3)金属表面形成吸附润滑层,塑性↑
提高金属塑性的主要途径
提高塑性的主要途径有以下几个方面: (1)控制化学成分、改善组织结构,提高材料的成分和组 织的均匀性; (2)采用合适的变形温度—速度制度;
弹塑性力学(
23
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。
2 3
1 x
x x
x
zx
xz
二向应力状态(Plane State of Stress): 一个主应力为零的应力状态。
单向应力状态(Unidirectional State of Stress): 一个主应力不为零的应力状态。
n=cos(N,z) SDOAB=nS 26
1、斜截面上的应力 z
Fx 0
px S x lS yx mS zx nS 0
C pz
px l x m yx n zx
N
py l xy m y n zy
yx xy
x
pz l xz m yz n z
y
弹塑性力学 前言
❖弹塑性力学的定义 ❖弹塑性力学中的简化假设 ❖弹塑性力学的研究方法 ❖弹塑性力学的主要内容
1
弹塑性力学的定义
❖ 弹塑性力学的定义:弹塑性力学是固体力学的一个重 要分支,是研究弹性体和弹塑性体在载荷作用下应力 分布规律和变形规律的一门学科。
❖ 任务:
❖ 根据实验观察结果寻求弹塑性状态下的变形规律,建立本构关系及 有关基本理论。
②全应力:p ΔA0 ΔA
O
全应力分解为:
x
z
垂直于截面的应力称为“正应力”:
pcosa
位于截面内的应力称为“切应力”: O
psina
DF M
DA
y
n
M ap
y
x 19
应力状态
➢ 一点的应力状态: 过一点有无数的截面,这一点的各个截面上应力情况的集合,
我所认识的弹塑性力学
我所认识的弹塑性力学弹塑性力学作为固体力学的一门分支学科已有很长的发展历史,其理论与方法的体系基本完善,并在建筑工程、机械工程、水利工程、航空航天工程等诸多技术领域得到了成功的应用。
一绪论1、弹塑性力学的概念和研究对象弹塑性力学是研究物体在载荷(包括外力、温度变化或外界约束变动等)作用下产生的应力、变形和承载能力,包括弹性力学和塑性力学,分别用来研究弹性变形和塑性变形的力学问题。
弹性变形指卸载后可以恢复和消失的变形,塑性变形时指卸载后不能恢复而残留下的变形。
弹塑性力学的研究对象可以是各种固体,特别是各种结构,包括建筑结构、车身骨架、飞机机身、船舶结构等,也研究量的弯曲、住的扭转等问题。
其基本任务在于针对实际问题构建力学模型和微分方程并设法求解它们,以获得结构在载荷作用下产生的变形,应力分布及结构强度等。
2、弹塑性简化模型及基本假定在弹性理论中,实际固体的简化模型为理想弹性体,它的特征是:一定温度下,应力应变之间存在一一对应关系,而与加载过程以及时间无关。
在塑性理论中,常用的简化模型为:理想塑性模型和强化模型。
理想塑性模型又分为理想弹塑性模型和理想刚塑性模型;强化模型包括线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型。
弹塑性力学有五个最基本的力学假定,分别为:连续性假定、均匀性假定、各向同性假定、小变形假定和无初应力假定。
3、研究方法及其与初等力学理论的联系和区别一般来说,弹塑性力学的求解方法有:经典方法、数值方法、试验方法和实验与数值分析相结合的方法。
经典方法是采用数学分析方法求解,一般采用近似解法,例如,基于能量原理的Ritz法和伽辽金法;数值法常用的有差分法、有限元法及边界条件法;实验法是采用机电方法、光学方法、声学方法等来测定应力应变分布规律,如光弹性法和云纹法。
弹塑性力学与初等理论力学既有联系又有区别,如下表所示:表1、弹塑性力学与初等力学理论的联系和区别二基本理论框架1、基本方程弹塑性力学和材料力学所求解的问题都是超静定问题,因此在分析问题研究问题是基本思路都是要进过三个方面的分析,这三个方面分别为:(1)静力平衡条件分析(2)几何变形协调条件分析(3)物理条件分析从而获得三类基本方程,联立求解,再满足具体问题的边界条件,即可使静不定问题得到解决,这三方面的方程为:(1)平衡(或运动方程)内部应力与外部体力之间的关系(2)几何方程(应变与位移之间的关系)(3)本构方程(应力与应变之间的关系) (A )在弹性变形阶段(B )在弹塑性变形阶段屈服函数()0ij f σ≥,则有a 、增量理论(流动理论)b 、全量理论(变形理论) a 、增量理论(i )Prandtl —Reuss 理论12ν≤() 塑性增量本构关系12G 12epij ij ij ij ijeii ii iide de de ds d s d d d Eλνεεσ=+=+-== 理想弹塑性材料2312G 212d ij ij ijs iiiidw de ds s d d Eσνεσ=+-=(ii )Levy —Mises 理论12ν=()理想刚塑性材料32iij ij sd d s εεσ=b 、全量理论(形变理论)依留申理论(强化材料)12ν≤() 312,,()2i ii ii ij ij i i ie s E ενεσσφεσ-=== 总之,当物体发生变形时,不论弹性变形还是塑性变形问题,共有3个平衡微分方程,6个几何方程和6个本构方程,共计15个独立方程(统称为泛定方程)而问题共有ij ij i u σε、、15个基本未知函数,因此在给定边界条件时,问题是可以求解的,弹塑性静力学的这种那个问题在数学上成为求解边值问题。
弹塑性力学-1 应力分析
斜截面上的应力 分量计算公式
如果作用在物体表面上的外面载荷用Fx,Fy,Fz表 示,而斜面为边界面,此时上式中的Pvx,Pvy,Pvz都 换成Fx,Fy,Fz,则上式亦可作为应力边界条件。
2 2 2 pvy pvz 总应力 pv pvx
正应力 v lPvx mP vy nP vz l 2 x m2 y n2 z 2lm xy 2mn yz 2nl zx 剪应力 v pv2 v2
对于动力学问题,还要给出初始条件。
弹塑性力学的基本解法: 根据基本方程求解 精确解法 即能满足弹塑性力学中全部方程的解。 近似解法 即根据问题的性质,采用合理的简化假 设,从而获得近似结果。 有限元数值分析方法 它不受物体或构件几何形状的限制,对于各种复 杂的物理关系都能算出正确的结果。
1-2 三维应力状态分析
z
pvz
斜截面的法线v与坐标轴 正向夹角余弦:
xy y yx xz yz zy zx pvx x z
x
pvy
cos(v, x) l , cos(v, y ) m, cos(v, z ) n
y
四面体平行于坐标轴的棱 边长度为dx,dy,dz 斜截面的面积为dS 静力平衡方程
3 基本方程与基本解法
弹塑性力学基本方程的建立需要从几何学、运动学 和物理学三方面来进行研究。 几何学方面 建立位移和应变之间的关系。 几何方程,位移边界条件 运动学方面 建立物体的平衡条件。 运动(或平衡)微分方程,载荷的边界条件
以上两类方程与材料的力学性质无关,属于普适方程。
物理学方面 建立应力与应变之间的关系。 本构方程
正应力 p cos cos2 剪应力 p sin sin cos
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、计算题
1.某点的应力分量为a x 50=σ,0=y σ,a z 11=σ,a xy 3=τ,a yz 3-=τ,a zx 8-=τ。
试求与各坐标轴有相等倾角的斜平面上的全应力、正应力、和切应力。
2.已知4101323542410
-⨯⎥⎥⎥⎦⎤⎢⎢
⎢⎣⎡----=ij ε,求主应变的大小及方向。
3.悬臂梁的弯曲问题。
如图所示,梁的两侧无外力作用,左端面受集中力F 作用,右端固定。
其余尺寸如图,且h c <<,l h <<
4.某一平面问题的应力表达式如下:
⎪⎪
⎩
⎪⎪⎨⎧--=-=+-=y cx By Bxy Ax xy xy y x 2323223τσσ (体力0==y x f f ),求A 、B 、C 的值。
5.已知应变状态
()()()
⎪⎪⎩⎪⎪⎨⎧+++=++++=++++=222104422104423210C y x xy C C y x y x B B y x y x A A xy y x γε
ε
求各系数之间应该满足的关系。
6.矩形截面的简支梁,受均布载荷q 作用,设矩形梁长、宽、高分别为l 2、b 2和h 2,材料的拉压屈服点为S σ,求:
(1)弹性极限弯矩e M ,塑性极限弯矩p M
; (2)当p e M M M
≤≤时,弹塑性区交界面方程
二、设结构的某突出部分具有三角形截面,其底部受均布载荷q ,如图。
该部分的应力表达式已求出如下
⎪⎪⎪
⎪⎪
⎩⎪⎪⎪
⎪
⎪⎨
⎧
===+-==⎪⎪⎭⎫ ⎝⎛+++-=⎪⎪⎭⎫ ⎝⎛++--=0
arctan arctan 2222222z yz xz yx xy y x
y x y A B y x xy x y A C y x xy x y A σττττσσ 由边界条件确定A 、B 、C 的表达式。
三、矩形截面柱的一侧受均匀分布的剪力q 作用,不计体力,试求应力分量。
四、验证下列应变状态是否满足相容方程。
⎪⎪⎩⎪⎪
⎨
⎧===-===0
23zy zx z xy y x Dy C By Axy γγεγ
εε
五、已知某点应力分量为a x 100=σ
,a y 200=σ,a z 300=σ,a xy 500-=τ,0=yz τ,0=zx τ,求主应力的大小和方向。
六、不计体力,验证下列应力分量是否能满足平衡方程。
()[]()[]()
⎪⎪⎪⎪⎩⎪⎪⎪⎪
⎨⎧≠==+=-+=-=++=00222222222c y x c x y x c xy c y x y c zx yz z y xy x ττμσμσντμσ 七、设321,,S S S 为应力偏量分量,试证明用应力偏量表示的Mises 屈服准则公式为
()23222123
S S S S ++=σ。