五年级一笔画与多笔画问题

合集下载

一笔画及多笔画问题

一笔画及多笔画问题

1.一笔画及多笔画问题
学会分辨一笔画画图特点,会判断图形能否一笔画完,利用一笔画特点知道怎样将多笔画问题改为一边画问题。

【例】下图是一张公园的平面图,如果想不重复将公园走一遍,那么公园的出入口应该设在哪里?
【解】本题相当于一笔画问题,找出公园的出入口相当于找出如何一笔画完这幅图的起始点。

利用一笔画特点,由于图中有两个奇点,只要将出、入口分别设在D、I两点,游客就可以从入口进入公园,不重复地走遍所有小径,而最后从出口处离开公园。

第三讲一笔画和多笔画

第三讲一笔画和多笔画

第三讲一笔画和多笔画【知识要点】1、与奇数条边相连的结点叫做奇点,与偶数条边相连的点称为偶点2、一笔画指:下笔后笔尖不能离开纸,每条线都只能画一次而不能重复。

欧拉定理:①凡是由偶点组成的连通图,一定可以一笔画成;画时可以任一偶点为起点,最后一定能以这个点为终点画完此图。

②凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画完;画时必须以一个奇点为起点,另一个奇点为终点。

③其他情况的图,都不能一笔画出。

3、多笔画:不能一笔画成的图,归纳为多笔画,奇点个数是研究多笔画问题的关键对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.公式如下:奇点数÷2=笔画数,即2n÷2=n。

【例题】例1、下列图形中。

请找出每个图的奇点个数,偶点个数。

试一试哪些可以一笔画出,请填表,从中你能发现什么规律?例2、右图是某地区所有街道的平面图.甲、乙二人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?A 岛 D 岸B 岛C 岸 例3、右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?例4、著名的“哥尼斯堡七桥问题”:故事发生在18世纪的哥尼斯堡城.流经那里的一条河中有两再架一座桥,能否不重复地一次走遍这八座桥?这座桥可以架在哪里?请你在右图上试一试!例5、观察下面的图,各至少用几笔画成?例6、判断右图能否一笔画成;若不能,你能用什么方法把它改成一笔画?请想出两种方法【池中戏水】1.观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.2、右图是国际奥委会的会标,你能一笔把它画出来吗?3、一张纸上画有如右图所示的图,你能否用剪刀一次连续剪下图中的三个正方形和两个三角形?4、右图是一个公园的平面图.要使游客走遍每条路而不重复,问出入口应设在哪里?5、下图是某少年宫的平面图,共有五个大厅,相邻两厅之间都有门相通(D与E两厅除外),并且有一个入口和一个出口.问游人能否从入口入,一次不重复地穿过所有的门?如果可以,请指明穿行路线;如果不能,请你想一想,关闭哪扇门后就可以办到?【江中畅游】1、右图是某地区街道的平面图,图上的数字表示那条街道的长度。

9.一笔画和多笔画

9.一笔画和多笔画

第九讲一笔画和多笔画问题1你能一笔画出一个“田”字吗?所谓一笔画出的意思就是在一张纸上(不允许折叠)笔不离纸,而且每一笔划(或称线段)只能画一次,不准重复。

对于“串”字或“品”字呢?结果会怎样?(参看图8-1)通过各种尝试发现,“田”字总也不能一笔画成,而“串”字却可以一笔画成。

由于“品”字中的三个“口”字不连在一起,显然也不能一笔画成。

我们把那些能一笔画成的图形叫一笔画。

一笔画问题主要讨论什么样的图形可以一笔画成。

例1下列图形哪些能一笔画成?哪些不能一笔画成?经过尝试,你会发现,图8-2(a)、(c)、(e)是可以一笔画成的。

而且图(c)、(e)可从任意一点出发,一笔画成回到出发点,而图(a)只能从A(或D)点出发,一笔画成到D(或A)点结束。

如果图形非常复杂,用这种逐一尝试的方法,则所花的时间较多,且有时还无法下结论。

有没有一种简便的判断方法呢?下面就来研究这个问题。

上面研究的图形都是由点和线段(或弧)组成的,在数学中叫做图。

图形中的点叫图的结点,线段(或弧)叫做图的边。

作为一个图,其图形还必须满足以下条件:(1)每条边都有两个端点(可以重合)作为结点;(2)各条边之间互不相交。

一个图完全由它的结点和边的个数以及它们相互连结的情况来确定,而与边的曲直长短无关。

图中与一个结点相连结的边的条数称为这个结点的度数。

度数为偶数的结点叫做偶结点。

例如,图8-3中结点C、D、E都是偶结点。

度数为奇数的结点叫做奇结点。

例如,图8-3中结点A、B、F、G都是奇结点。

任何两点间都有线连接的图称作连通图。

(如图8-3中D与G可通过DB、BA、AG连接)观察例1中的五个图,其结点的奇偶性可列成下表:从表中可以发现,一个图能否一笔画成,与图的奇结点的个数有密切联系,人们总结出如下规律:一个图若是一笔画必定是个连通图。

一个连通图,若没有奇结点(即全是偶结点),那么这个图一定可以一笔画成,而且可以从任一偶结点出发,一笔画成回到出发点。

五年级一笔画与多笔画全

五年级一笔画与多笔画全

一笔画问题(A级)知识框架如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。

那么是不是所有的图形都能一笔画成呢?这一讲我们就一起来学习一笔画的规律。

能否一笔画成,先看是不是连通图形,不连通图形一定不能一笔画成。

连通图形,关键在于判别奇点、偶点的个数。

一、只有偶点,可以一笔画,并且可以以任意一点作为起点。

二、只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点。

三、奇点超过两个,则不能一笔画。

对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答。

例题精讲【例1】下面这些图形,哪个能一笔画?哪个不能一笔画?(1)(2)(3)(4)【例2】下面这些图形,哪个能一笔画?哪个不能一笔画?(1)(2)(3)(4)【例3】下面的各个小图形都是由点和线组成的.请你仔细观察后回答:①标出与一条线相连的有哪些点?【写①】②标出与二条线相连的有哪些点?【写②】③标出与三条线相连的有哪些点?【写③】④标出与四条线或四条以上的线相连的有哪些点?【写④】【例4】下面各图能否一笔画成?(1)(2)(3)【例5】下面这几个字都能一笔写出来吗?【例6】下面这几个字母都能一笔写出来吗?【例7】下面的图形,哪些能一笔画出?哪些不能一笔画出?【例8】下图中,至少要画几笔才能画成?【随练1】德国有个城市叫哥尼斯堡.城中有条河,河中有个岛,河上架有七座桥,这些桥把陆地和小岛连接起来,这样就给人们提供了一个游玩的好去处(见下图).俗话说,“人是万物之灵”,他们就是在游玩时候想出了这样一个问题:如果在陆地上可以随便走,而对每座桥只许通过一次,那么一个人要连续地走完这七座桥怎么个走法?好动脑筋的小朋友请先不要接着往下读,你也试一试,走一走.AB CD课堂检测【随练2】 在我国著名数学家陈景润写的《数学趣谈》一书中,有下面的这样一道题,大意是说:在法国的首都巴黎有一条河,河中有两个小岛,那里的人们建了15座桥把两个小岛和河岸连接起来,如下图所示,请你说一说,从任一岸出发,一次连续地通过所有的桥到达另一岸,可能吗?(每座桥只能走一次)【作业1】 下面的图形都是由点和线组成的.请你仔细观察后回答:①与一条线相连的有哪些点? ②与三条线相连的有哪些点?③与四条线或四条以上的线相连的有哪些点?PONMLKJIHGFEDCBA【作业2】 下面各图能否一笔画成?(1) (2) (3) (4)家庭作业【作业3】下面这几个字母都能一笔写出来吗?【作业4】下面这几个字都能一笔写出来吗?【作业5】下图中,至少要画几笔才能画成?教学反馈老师对本次课的评价○特别满意(积分3分)○满意(积分2分)○一般(积分1分)注:积分满100分,有惊喜礼品。

第五讲一笔画问题

第五讲一笔画问题

第五讲一笔画问题 一天,小明做完作业正在休息,收音机中播放着轻松、悦耳的音乐.他拿了支笔,信手在纸上写了“中”、“日”、“田”几个字.突然,他脑子里闪出一个念头,这几个字都能一笔写出来吗?他试着写了写,“中”和“日”可以一笔写成(没有重复的笔划),但写到“田”字,试来试去也没有成功.下面是他写的字样.(见下图) 这可真有意思!由此他又联想到一些简单的图形,哪个能一笔画成,哪个不能一笔画成呢?下面是他试着画的图样.(见下图) 经过反复试画,小明得到了初步结论:图中的(1)、(3)、(5)能一笔画成;(2)、(4)、(6)不能一笔画成.真奇怪!小明发现,简单的笔画少的图不一定能一笔画得出来.而复杂的笔画多的图有时反倒能够一笔画出来,这其中隐藏着什么奥秘呢?小明进一步又提出了如下问题: 如果说一个图形是否能一笔画出不决定于图的复杂程度,那么这事又决定于什么呢? 能不能找到一条判定法则,依据这条法则,对于一个图形,不论复杂与否,也不用试画,就能知道是不是能一笔画成? 先从最简单的图形进行考察.一些平面图形是由点和线构成的.这里所说的“线”,可以是直线段,也可以是一段曲线.而且为了明显起见,图中所有线的端点或是几条线的交点都用较大的黑点“●”表示出来了. 首先不难发现,每个图中的每一个点都有线与它相连;有的点与一条线相连,有的点与两条线相连,有的点与3条线相连等等. 其次从前面的试画过程中已经发现,一个图能否一笔画成不在于图形是否复杂,也就是说不在于这个图包含多少个点和多少条线,而在于点和线的连接情况如何——一个点在图中究竟和几条线相连.看来,这是需要仔细考察的.第一组(见下图) (1)两个点,一条线. 每个点都只与一条线相连. (2)三个点. 两个端点都只与一条线相连,中间点与两条线连. 第一组的两个图都能一笔画出来. (但注意第(2)个图必须从一个端点画起)第二组(见下图) (1)五个点,五条线. A点与一条线相连,B点与三条线相连,其他的点都各与两条线相连. (2)六个点,七条线.(“日”字图) A点与B点各与三条线相连,其他点都各与两条线相连. 第二组的两个图也都能一笔画出来,如箭头所示那样画.即起点必需是A点(或B点),而终点则定是B点(或A点). 第三组(见下图) (1)四个点,三条线. 三个端点各与一条线相连,中间点与三条线相连. (2)四个点,六条线. 每个点都与三条线相连. (3)五个点,八条线. 点O与四条线相连,其他四个顶点各与三条线相连. 第三组的三个图形都不能一笔画出来. 第四组(见下图) (1)这个图通常叫五角星. 五个角的顶点各与两条线相连,其他各点都各与四条线相连. (2)由一个圆及一个内接三角形构成. 三个交点,每个点都与四条线相连(这四条线是两条线段和两条弧线). (3)一个正方形和一个内切圆构成. 正方形的四个顶点各与两条线相连,四个交点各与四条线相连. (四条线是两条线段和两条弧线). 第四组的三个图虽然比较复杂,但每一个图都可以一笔画成,而且画的时候从任何一点开始画都可以.第五组(见下图) (1)这是“品”字图形,它由三个正方形构成,它们之间没有线相连. (2)这是古代的钱币图形,它是由一个圆形和中间的正方形方孔组成.圆和正方形之间没有线相连. 第五组的两个图形叫不连通图,显然不能一笔把这样的不连通图画出来. 进行总结、归纳,看能否找出可以一笔画成的图形的共同特点,为方便起见,把点分为两种,并分别定名: 把和一条、三条、五条等奇数条线相连的点叫做奇点;把和两条、四条、六条等偶数条线相连的点叫偶点,这样图中的要么是奇点,要么是偶点. 提出猜想:一个图能不能一笔画成可能与它包含的奇点个数有关,对此列表详查: 从此表来看,猜想是对的.下面试提出几点初步结论: ①不连通的图形必定不能一笔画;能够一笔画成的图形必定是连通图形. ②有0个奇点(即全部是偶点)的连通图能够一笔画成.(画时可以任一点为起点,最后又将回到该点). ③只有两个奇点的连通图也能一笔画成(画时必须以一个奇点为起点,而另一个奇点为终点); ④奇点个数超过两个的连通图形不能一笔画成.最后,综合成一条判定法则: 有0个或2个奇点的连通图能够一笔画成,否则不能一笔画成. 能够一笔画成的图形,叫做“一笔画”. 用这条判定法则看一个图形是不是一笔画时,只要找出这个图形的奇点的个数来就能行了,根本不必用笔试着画来画去. 看看下面的图可能会加深你对这条法则的理解.从画图的过程来看:笔总是先从起点出发,然后进入下一个点,再出去,然后再进出另外一些点,一直到最后进入终点不再出来为止.由此可见: ①笔经过的中间各点是有进有出的,若经过一次,该点就与两条线相连,若经过两次则就与四条线相连等等,所以中间点必为偶点.②再看起点和终点,可分为两种情况:如果笔无重复地画完整个图形时最后回到起点,终点和起点就重合了,那么这个重合点必成为偶点,这样一来整个图形的所有点必将都是偶点,或者说有0个奇点;如果笔画完整个图形时最后回不到起点,就是终点和起点不重合,那么起点和终点必定都是奇点,因而该图必有2个奇点,可见有0个或2个奇点的连通图能够一笔画成.。

一笔画问题

一笔画问题

一笔画问题画一个图案,如果用笔既不重复也不遗漏,纸不离笔,一笔画成,那么就称这个图案是一笔画图案.现在我们来研究的问题是:(1)怎样的图案才能一笔画成?(2)如果一个图案能一笔画成,那么该从哪里起笔到哪里收笔?需提醒大家的是,这些问题与图案中的“奇点”的个数有关.何谓奇点呢?我们知道,任何图案都是由线条(直线或曲线)连成的.在图案中,由三条或三条以上的方向各不相同的线连接在一起的点叫做图案点,通过图案点的线是奇数条就称奇点(当然,通过图案点的线是偶数条就称偶点,现在只需回答前面的问题而与偶点无关).例如,在下面各图案中的奇点个数见统计表(请读者对照图案辨认奇点).统计表:接着就请读者朋友拿起你的笔来逐个试画以上各图案,看能否一笔画成,将结论填在统计表内.并注意体会能一笔画的图案应该怎样画.最后,请根据上表归纳出前面两个问题的答案.【规律】(1)奇点数为0或2的图案可以一笔画成.奇点数多于2的图案不能一笔画成.(2)画奇数为0的图案时,可以选择任意点起笔都能一笔画成;画奇数为2的图案时,必须选择其中的一个奇点起笔,而到另一个奇点收笔才能一笔画成.【练习】1.下面各图案,能一笔画出来吗?试一试.2.容易看出,下面的两个图案都不能一笔画成,请在每个图案上各补画一条线就能使新图案一笔画成了.会吗?3.这是大数学家欧拉曾经研究过的一个著名数学问题----七桥问题.东普士的多尼斯堡城中有一条横贯城区的河流,河上有两个岛,两岸和两岛之间共架有七座桥、如下图所示:问人们能不重复地走遍这七座桥吗?4.回龙州公园的游览点与路线示意图如下.如果要使游人游完所有的游览点而不重复行走的路线,请问入口处和出口处应该设在什么位置?如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画。

显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。

同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。

多笔画问题(二)

多笔画问题(二)

本讲主线
1.一笔画的基础知识
22.平面图转成点线图
1.一笔画,是指从图的一点出发,笔不离纸,每条边都只画一次,不准重复
2.奇点:与奇数条线段相连的点;
偶点:与偶数条线段相连的点
拉中
3.欧拉定理:连通图中,当奇点个数为【例1】(★★)
笔出能笔出下面哪些图形可以一笔画出,哪些不能一笔画出?
请给出下面图形的一笔画的画法.
请下面图形的笔的
笔的
笔画的图形.
最后又回到出发点呢?游人能否不重复地一次走遍七座桥,最后又回到出发点呢?
长条状纸,拧一下,用胶带固定,做成8字形.
分为二把原来的字形的圆圈变成个大圆圈沿着圆圈中间一分为二,把原来的8字形的圆圈变成一个大圆圈.再沿着大圆圈一分为二,就变成两个圆圈相连的锁链了.如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并设有请你能进次重复地穿过有的如且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如
果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?
数奇数点
.不重复》一笔画》数奇数点
数奇点
添线或者减线减少奇点个数
.多笔画变一笔画:添线或者减线减少奇点个数;
.画点线图,依据:点重线不重,先定点,后连线。

一笔画问题的判定法则

一笔画问题的判定法则

一笔画问题的判定法则
一笔画问题是一种经典的智力游戏,玩家需要用一笔连通所有的点,但不能重复经过同一个点。

在解决问题时,有一些判定法则可以帮助玩家更快地找到解答。

1. 判断顶点度数:顶点度数指的是一个点与多少条线段相连。

如果一个点的度数为奇数,则这个点必须作为起点或终点;如果一个点的度数为偶数,则这个点可以通行过去。

2. 判断连通性:判断图形是否连通是解决一笔画问题的关键。

如果图形不连通,则需要用多笔画才能将所有点连通。

而在连通的情况下,有些顶点是必须通过的,有些顶点则可以绕路绕开。

3. 判断欧拉路径和欧拉回路:欧拉路径指的是经过每条边一次的路径,而欧拉回路指的是在欧拉路径的基础上回到起点。

对于连通的无向图,如果存在欧拉路径,则所有点的度数均为偶数。

对于连通的有向图,如果存在欧拉路径,则所有点的入度等于出度。

4. 判断哈密顿回路:哈密顿回路指的是经过每个点一次的回路。

对于无向图,判断哈密顿回路可以使用Dirac定理:如果图中每个点的度数都大于等于n/2(n为顶点数),则图中存在哈密顿回路。

对于有向图,需要用到Ore定理:如果对于所有不相邻的点u和v,都有deg(u)+deg(v)>=n,则有向图存在哈密顿回路。

以上是几种判断一笔画问题的方法,不同的方法适用于不同的情况。

在实际解决问题时,可以根据具体情况选择合适的方法。

- 1 -。

一笔画成、多笔画成规律

一笔画成、多笔画成规律

一笔画成的规律:
一个图形是否能够一笔画成,是由图形中奇点的个数决定的。

通常来说一个独立的图形线与线之间会有很多的交点和端点。

根据一笔画成的需要,我们把这些点定义为奇点和偶点。

任意一个交点或端点,经过这个点都有n条线,当n为奇数的时候,这个点就是奇点,当n为偶数的时候,这个点为偶点。

一般来说,0或2 个奇点的图形能够一笔画成。

比如汉字“口”,有四个交点,每个交点都是两条线相交形成的,因此都是偶点,所以这个口字就是0个奇点能够一笔画成。

再比如汉字“日”,四周四个点都是偶点,只有中间的两个点是奇点,因此也能够一笔画成。

就近年的公务员考试试题来看,根据一笔画成规则又形成了多笔画成问题。

当奇点个数是3-4的时候,图形能够两笔画成;当奇点个数是5-6的时候,图形能够三笔画成;当奇点个数是7-8的时候,图形能够四笔画成;当奇点个数是9-10的时候,图形能够五笔画成。

形的规律包括对称(轴对称、中心对称)、叠加(去同存异、去异存同、同异皆存)、旋转(顺时针、逆时针)、结构、拆分、重组等。

数的规律包括递增、递减、奇偶相隔、不变等,而常见的元素则有点(交点、重心)、边(直线段、曲线段)、角(锐角、直角、钝角)、封闭区域、笔划、面积、体积等。

一笔画问题

一笔画问题

第一讲: 一笔画问题【例1】下面这些图形,哪个能一笔画?哪个不能一笔画?并说一说每个图形有几个单数点和双数点(2)1、下面这些图形,哪个能一笔画?哪个不能一笔画?并说一说每个图形有几个单数点和双数点【例2】数一数下列图形单数点与双数点的个数,并说出一笔画图形与单数点和双数点的关系。

1、下面的图形能否一笔画完成?为什么?(1) O (2)B D(3)【例2】下面的图形能不能一笔画?如果能怎么画?1、下面的图形能不能一笔画?如果能怎么画?【例3】下面的图形能不能一笔画?如果能怎么画?12、34、、、【例4】下图(图1)能否一笔画成,若不能,你能用什么方法把它改成能够一笔画成的图形?1、将下列各图改成一笔画。

【例5】邮递员叔叔要向一个居民小区送信,怎么样走才能少走重复路,使每天走的路尽可能短?1.下图是一个小区中花园的平面图,你能一次不重复地走完所有的路吗?入口和出口应该设计在哪儿呢?2.下面是“儿童乐园”平面图,出口应没在哪里才能不重复地走遍每条路?1.数一数下面图形有几个单数点?2.下列图形能一笔画成吗?为什么?3.甲、乙两辆车同时以相同的速度分别从A 、B 出发,哪辆车能最先行驶完所有的路线?4.园林工人在花园浇花,怎样才能不重复地走遍每一条小路?第 二 讲:巧填竖式【例1】在方框里填上合适的数,使算式成立。

□ 4+ 2 □8 9练习1:下面题中各图形分别表示多少?(1) 7 ☆ (2) ☆ 9 + □ 4 + 6 59 7 8 □(3) 6 △ (4) 1 ☆ 3 + △ ☆ + □ ☆9 7 1 9 5【例2】猜一猜,每个汉字各表示什么数字?学 学— 4 生8学=( ) 生=( )练习2: 想一想,每个汉字和图形各表示什么数字?(1)我爱 4—学数学我=()爱=( )数=()学=()(2)☆○☆—☆☆7 9 0☆=( ) ○=( )(3) 8 5 4—○○○○○○=( )【例3】在□里填合适的数,使算式成立。

数学人教版五年级下册《有趣的一笔画》

数学人教版五年级下册《有趣的一笔画》

判断:哪些图形能一笔画成?哪些不能?



当奇点个数为( 0 )个时,从(任意一个点)出发, 画完后回到( 起点 ); 当奇点个数为( 2 )个时,从(其中一个奇点)出 发,画完后回到( 另一个奇点)。
18世纪在哥尼斯堡城(今俄罗斯)的普莱格尔河上有7座桥, 将河中的两个岛和河岸连结。城中的居民经常沿河过桥散步, 于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通Байду номын сангаас 一次,最后仍回到起始地点。这就是历史上的“七桥问题”, 这个问题看起来似乎不难,但人们始终没有能找到答案,最后 问题提到了大数学家欧拉那里……
A
C B
D
一辆洒水车要给 城市的街道洒水,街 道地图如左图:你能 否设计一条洒水车洒 水的路线,使洒水车 不重复地走过所有的 街道,再回到出发点?
课外拓展:
在七桥问题中,如果允许你再架一座 桥,能否不重复地一次走遍这八座桥?这 座桥应该架在哪里?请你回家试一试吧!
“一笔画”是指从图形的某一点出 发,笔不离开纸,且每条线都只画 一次,不重复地画完整个图形。
图形
能否一笔画成



能 不能
奇点:和一个点连接的线的条数是奇数 偶点:和一个点连接的线的条数是偶数
图形
能否一笔画成 奇点的个数 偶点的个数

2 0
2 8 9 4 5


0 2
4
能 不能
操作要求: 1、画一画:每位同学自己画1个能一笔画的图形。 2、数一数:数出图形中奇点与偶点的个数,记 录在表格中。 3、议一议:四人小组讨论,说说能一笔画成的 图形中奇点与偶点的个数有什么特征。

奥数之多笔画

奥数之多笔画

行程问题四、五年级几何拓扑学一笔画加乘原理四年级秋季班最短路径三、四年级笔画原理一笔画一笔画原理笔画多画笔判断一笔画应用一笔画问题是一种有名的数学游戏。

所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线是图形的某点出发,笔不离开纸,而都只画一次不准重复。

我们把一个图形中与偶数条线相连接的点叫做偶点。

相应的把与奇数条线相连接的点叫做奇点。

1.判断图形能否一笔画的规律:⑴能一笔画出的图形必须是连通的图形。

⑴能笔画出的图形⑵凡是只由偶点组成的连通图形,一定可以一笔画出。

画时可以由任一偶点为起点。

最后仍回到这点。

⑶凡是只有两个奇点的连通图形一定可以一笔画出画时必须以出。

画时必须以一个奇点为起点。

另一个奇点为2.我们把不能一笔画成的图,归纳为多笔画。

多笔画图形的笔画数恰等于奇点个数的一半。

事实上,图形的笔对于任意的连通图来说,奇点个数必为偶数,如果有2n个奇点用n笔画成。

公式是:奇点数÷2n÷2=n。

【例1】判断下列各图能否一笔画出,并说明理由。

⑴⑷【例2】下图是一个公园的道路平面图,要使游客走遍每条路且不重复,问出、入口应设在哪里?【例3】请试着将下列图形一笔画出。

⑴⑶【例4】如图是一个超市的平面图,超市共有六个门,小明想一次走市共有遍所有通道而又不走重复路请你帮他设计一种进出方法。

【例5】如下图所示,有D 四个小岛,各岛之间有七A 个小岛,各岛之间有座桥,游人想要一次不重复的走遍这七座桥,能做到吗?B有几种走法?要怎么走?DC【例6】下图是某展览厅的平面图,它由五个展室组成,任两展室之由个展室间都有门相通,整个展览厅一个入口和一个出口,问游人能入口出口否一次不重复地穿过所有的门,并且从入口进,从出口出?答案1.答案:⑴为非连通图形,⑵有四个奇点,因此不能一笔画出;⑶有两个奇点,⑷均为偶点可以一笔画出。

2.答案:依据题意可知,此题实际是一笔画问题。

由于要设出口和入口,所以首先应确定有没有奇点,若有,有几个。

一笔画问题

一笔画问题

一笔画问题
这个问题,实际上是一笔画问题。

一笔画就是一笔可以画成一个图。

判断一笔画的方法:
①是连通的。

一个图,如果图上任意二点总有线段连接着,就称为连通的。

不是连通的就不能一笔画出。

②奇点个数是0或者是2。

图上线段的端点可以分成二类,奇点和偶数。

一个点,以它为端点的线段数是奇数就称为奇点,线段数是偶数就称为偶点。

一个图是否是一笔画就看奇点的个数,奇点个数是 0 或者 2,就是一笔画,否则就不是一笔画。

哥尼斯桥问题,就是一笔画问题。

但因A、B、C、D四个点都是奇点即奇点的个数是4,而不是0或2,所以不是一笔画,也就不能一次走遍,而又不重复。

多笔画

多笔画

第三讲多笔画及应用问题上一讲中,我们主要研究了利用奇偶点来判别一笔画,学习了利用一笔画来研究一些简单的实际问题.然而,实际生活中,许多问题的图并不能一笔画出,也就是说,一笔画理论不能直接用来解决这些问题.因此,在一笔画的基础上,我们有必要对这一类的问题作一些深入研究。

一、多笔画我们把不能一笔画成的图,归纳为多笔画.首先,我们来考虑一个不能一笔画成的图,至少用几笔才能画完呢?(为了研究的方便,我们仍然只研究连通图,非连通图可转化为连通图.)下面,我们就用简单熟悉的图来研究这个问题.通过前面的学习我们已经知道:当奇点个数不是0或2时,图不能一笔画出.因此,我们可以猜想;奇点个数是研究多笔画问题的关键。

观察下面的图形,并列出奇点的个数与笔画数(至少几笔画完此图)的关系表格。

为了表示得清楚一些,我们把图中第一笔画出的部分用实线表示,第二笔画出的部分用虚线表示,第三笔画出的部分用点线表示,其余部分请大家自己画出.奇点个数与笔画数的关系可列表如下:容易看出,笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.公式如下:奇点数÷2=笔画数,即2n÷2=n。

细心的同学可能会问:2n是表示一个偶数,但假若有奇数个奇点怎么办?实际上,这种情况不可能出现,连通图中,奇点的个数只能是偶数.想一想,这是为什么呢?例1观察下面的图,看各至少用几笔画成?分析解答(1)图中有8个奇结点,因此需用4笔画成。

(2)图中有12个奇点,需6笔画成。

(3)图是无奇点的连通图,可一笔画成。

例2判断下面的图能否一笔画成;若不能,你能用什么方法把它改成一笔画?分析解答图中共有4个奇点,因此,显然无法一笔画成.要想改为一笔画,关键在于减少奇点的数目(把奇点的个数减少到0或2),具体方法有两种:①去边.即将多余的两奇点间的边去掉.这种方法只适用于多余的两奇点间有边相连的情况,如对下图就不适用.本题中,可去掉连结奇点B、C的边BC。

一或多笔划及应用问题

一或多笔划及应用问题

偶点。要想一笔成,而图中有 4 个奇点,5 个偶点。
解 图(1)、(2)可以一笔画。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

第五讲 一笔画问题

第五讲   一笔画问题

第五讲一笔画问题一天,小明做完作业正在休息,收音机中播放着轻松、悦耳的音乐.他拿了支笔,信手在纸上写了“中”、“日”、“田”几个字.突然,他脑子里闪出一个念头,这几个字都能一笔写出来吗? 他试着写了写,“中”和“日”可以一笔写成(没有重复的笔划),但写到“田”字,试来试去也没有成功.下面是他写的字样.(见下图)这可真有意思!由此他又联想到一些简单的图形,哪个能一笔画成,哪个不能一笔画成呢?下面是他试着画的图样.(见下图)经过反复试画,小明得到了初步结论:图中的(1)、(3)、(5)能一笔画成;(2)、(4)、(6)不能一笔画成.真奇怪!小明发现,简单的笔画少的图不一定能一笔画得出来.而复杂的笔画多的图有时反倒能够一笔画出来,这其中隐藏着什么奥秘呢?小明进一步又提出了如下问题:如果说一个图形是否能一笔画出不决定于图的复杂程度,那么这事又决定于什么呢?能不能找到一条判定法则,依据这条法则,对于一个图形,不论复杂与否,也不用试画,就能知道是不是能一笔画成?先从最简单的图形进行考察.一些平面图形是由点和线构成的.这里所说的“线”,可以是直线段,也可以是一段曲线.而且为了明显起见,图中所有线的端点或是几条线的交点都用较大的黑点“●”表示出来了.首先不难发现,每个图中的每一个点都有线与它相连;有的点与一条线相连,有的点两条线相连,有的点与3条线相连等等.其次从前面的试画过程中已经发现,一个图能否一笔画成不在于图形是否复杂,也就是说不在于这个图包含多少个点和多少条线,而在于点和线的连接情况如何——一个点在图中究竟和几条线相连.看来,这是需要仔细考察的.第一组(见下图)(I)两个点,一条线.每个点都只与一条线相连.(2)三个点.两个端点都只与一条线相连,中间点与两条线连.第一组的两个图都能一笔画出来.(但注意第(2)个图必须从一个端点画起)第二组(见下图)(1)五个点,五条线.A点与一条线相连,B点与三条线相连,其他的点都各与两条线相连.(2)六个点,七条线.(“日”字图)A点与B点各与三条线相连,其他点都各与两条线相连.第二组的两个图也都能一笔画出来,如箭头所示那样画.即起点必需是A点(或B点),而终点则定是B点(或A点).第三组(见下图)(1)四个点,三条线.。

一笔画问题及解决策略

一笔画问题及解决策略

一笔画问题及解决策略一、问题提出一笔画是一个大问题,为了更好的解决这个问题,我们从生活提出一笔画问题。

我们先看一个公路检查员的问题:他为了检查几个城市之间的若干公路,希望在这些城市和公路组成的公路系统中找出一条路线,使他能不重复地恰好通过每条公路一次,而经过每个城市的次数不限。

这就是拓扑学中的数学问题。

二、问题解决(一)数学化我们把这问题数学化,以点表示城市,以弧表示公路,这样构成的网络图就表示某个简单公路系统。

(二)点线图用点线图表示四个不同的公路系统。

如图所示:(三)一笔画的含义一个图形由一笔构成叫一笔画。

对于平面图形的一笔画与多笔画问题,通常的几何方法是无能为力的,因为一个图形能否一笔画,与图形的大小、形状等几何概念都没有关系,而是与图形中线段的数目及连接关系有关,我们可以随意地将图形拉伸、压缩或弯曲,甚至在保持端点不动的前提下,还可以将某些线段“搬家”,只要图形的整体结构不变,能否一笔画的性质也就不会改变。

(四)一笔画图形的判别著名的哥尼斯堡七桥问题实质上就是一个一笔画问题。

欧拉最终证明了这个图形是不能一笔画成的,并在关于七桥问题的报告中得到了任一网络图能否一笔画的判别法则。

1.必要条件一个网络图是由有限个点和有限条曲线组成的平面图形,这些点和线分别称为网络的顶点和弧。

如果从网络的一个顶点出发,一条弧连着一条弧地把所有的弧都画出,且每条弧都只画一次,而经过每个顶点的次数不限,就称该网络能一笔画。

当一个网络能一笔画时,只有两种情形:一是开放图形,只有起点和终点的指数为奇数,其余顶点的指数均为偶数;二是封闭图形,所有顶点的指数均为偶数。

我们称指数为奇数的顶点为奇顶点,指数为偶数的顶点为偶顶点,那么当一个网络能一笔画时,奇顶点个数必为0或2,所以,连通且奇顶点的个数是0或2,是一个网络图能一笔画的必要条件。

(1).凡是由偶点组成的连通图,一定可以一笔画成。

画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。

多笔画

多笔画

G宁小军分别在点A,B处,同样的速度走遍公园的每条小路,最后到达 C点,谁先到达C点?
B
C
A

)笔画成。

)笔画成

)笔画成

)笔画成
5、将下图改为一笔画。
A
B
D
C
例1:观察下列图形各是由 几笔画成的?
例2:观察下图能否一笔画成?如果不 能,你能用什么方法把它改成一笔画成?
A
D
B
C
例3:你能将下图把它改成一笔画吗?
F
A
E
B
C
D
例4下图中A,B,C,D是4个防空洞,相邻防空洞之间有地 道,能否找到一条路线可以不重复地走遍所有防空洞?
A
B
C
D
例5下图是某花房的平面图,它由6间展室组成,相邻 两室之间有一门相通,请设计一个出口,使参观者能 从入口A进入,一次不重复地经过所有的门,最后由 出口走出花房?

多笔画问题(二)

多笔画问题(二)

多笔画问题(二)
1.定义:一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只,图,,每都
多笔画问题(二)
(1)判断图形能否一笔画的规律
()断图律
·凡是只由偶点组成的连通图形,一定可以一笔画出。

画时可以由任一偶点作·凡是只有两个奇点的连通图形一定可以一笔画出。

画时必须以一个奇点作为
相通,整个展览厅还有一个入口和一个出口,问游人能否一次不重复
地穿过所有的门并且从进从出出
地穿过所有的门,并且从入口进,从出口出?
各字母表示不同楼的代号。

一辆垃圾清扫车从垃圾站(垃圾站位于C楼与D楼之间的P处)出发要清扫完所有街道后仍回到垃圾站,问怎样走处出发要清扫完所有街道后仍到圾站问怎样走路线最短,最短路线是多少公里?
千米)。

清晨,洒水车从A出发,要洒遍所有的街道,最后再回到A。

问:如何设计洒水路线最合理?
问如何设计水路线最合理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一笔画与多笔画(B)
知识框架
一、一笔画的认识
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。

什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.
我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.
二、一笔画问题
(1)能一笔画出的图形必须是连通的图形;
(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;
(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;
(4)奇点个数超过两个的图形,一定不能一笔画.
三、多笔画问题
我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.
重难点
(1)知道什么样的的是奇点?什么样的点是偶点。

(2)知道什么样的图形可以一笔画出。

(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?
【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些
点是偶点?哪些点是奇点?
J O
I H
G F
E
D C
B
A
【巩固】 下图中,哪些点是奇点,哪些点是偶点?
G
F E D C
B
A
【例 2】 观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明
画法.
例题精讲
【巩固】 下面的图形,哪些能一笔画出?哪些不能一笔画出?
【例 3】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,
要求相邻营地的旗帜色彩不同,则贝贝最少需要
种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.
【例 4】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个
进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?
【巩固】 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如
果能,应从哪开始走?
E C
D
B A
【例 5】下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?

甲【例 6】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?
【例 7】(2010年第8届走美杯3年级初赛第6题)有16个点排成的44
方阵。

如图,请不间断地一笔画出6条直线经过每个点,且最后回到起点
【例 8】观察下面的图,看各至少用几笔画成?
(1)
A
E
D
H
C
F
G
B
(2)(3)【例 9】下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.
B
G
F
C
H
D
E
A
【例 10】(2009“数学解题能力展示"读者评选活动四年级初赛6题)如图所示,某小区花园的道路为一个长480米,宽200米的长方形;一个边长为260米的菱形和十字交叉的两条道路组成.一天,王大爷A处进入花园,走遍花园的所有道路并从A处离开.如果他每分钟走60米,那么他从进
入花园到走出花园最少要用分.
A 【随练1】下图是国际奥委会的会标,你能一笔把它画出来吗?
【随练2】下面的图形都能一笔画成,请标出起点(A)和终点(B)。

【作业1】下面图形能不能一笔画成?若果能,应该怎样画?
(1)(2)(3)
课堂检测
家庭作业
【作业2】下列各图至少要用几笔画完?
【作业3】游人在林间小路(如右图)上散步,问能否一次不重复地走遍所有的路后回到出发点?如不能,应选择怎样的路线才能使全程最短,其最短路程是多少?
【作业4】一辆清洁车清扫街道,每段街道长1公里,清洁车由A出发,走遍所有的街道再回到A.怎样走路程最短,全程多少公里?。

相关文档
最新文档