红外光谱-核磁共振波普
[理学]红外与核磁
•苯酚的红外光谱
• 对甲苯酚的红外光谱
醛酮的红外光谱 • 羰基化合物在 1680~1850cm-1 处有一个强的羰基伸 缩振动吸收峰。醛基C-H在 2720cm-1处有尖锐的特征 吸收峰。 例1:乙醛的红外光谱
1
2
• 羰基若与邻近基团发生共轭,则吸收频率降低:
例2:苯乙酮的红外光谱
• 羧基中C=O伸缩振动与直链酮相同:1725~1700cm-1; • 它的缔和 O-H 伸缩振动在 2500-3000cm-1 范围内有一个 羧酸特征强的宽谱带; • 羧 酸 盐 含 有 两 个 C—O- 的 伸 缩 振 动 :1610~1550cm-1; 1420~1300cm-1
低场• 乙醇的核磁 共振来自 • 化学位移•以四甲基硅烷(TMS)作为标准物,以它的质子峰作 为零点,其他化合物的质子峰化学位移都是相对的:
• 越小,对应的磁场强度高.
0为核磁共振仪的频率。
(3) 吸收峰的裂分 例1: 乙醇的核磁共振谱
c c b a
•积分曲线 高度比(峰 面积)可得 质子比。
•在外场作用下,自旋能级的裂分:
E=h0
核磁共振 • 只有当电磁波的辐射能等于H1的能级差时,才能发生 H1的核磁共振: E射 = h射 = E = h0 所以要使H1发生核磁共振的条件必须是使电磁波的辐射 频率等于H1的进动频率:射 = 0= H0/2 (1) 固定H0,逐渐改变辐射频率射,进行扫描;
a
b
例2: 1,1,2-三氯乙烷的核磁共振谱
H Cl-CH2-C-Cl Cl 1,1,2-三氯乙烷
自旋偶合 (spin coupling) •CH的吸收峰分析:
Ⅲ
Ⅰ Ⅱ
• 自旋偶合通常只在两个相邻碳上的质子之间发生; 一般说来,当质子相邻碳上有 n个同类质子时,吸收峰裂 分为n+1个(不同类质子分裂成(n+1)(n’+1)个)。
红外光谱、核磁和质谱解析方法
红外光谱解析方法1、分子式不饱和度的计算:Ω不饱和度就是分子结构中达到饱和所缺的一价原子的“对”数,N4、N3、N1分别为分子式中四价、三价及一价元素的数目 2、例4:计算黄酮化合物(C16H10O2)的不饱和度分子结构因为双键为9个。
环数为3,所以不饱和度为12。
例1 某无色或淡黄色液体,具有刺激味,沸点为145.5℃,分子式为C8H8,其红外光谱如图14-29,试判断其结构解:(1)Ω=(2+2×8-8)/2=5,可能有苯环(2)特征区第一强峰1500cm-1粗查:1500~1675cm-1,为νC=C振动区1500cm-1可能为苯环的骨架振动特征峰。
细找:按基团查附录、芳香烃类栏,根据该表所提供的数据找到未知的光谱上取代苯的五种相关峰。
①νФ-H3090、3060及3030cm-1②泛频峰2000-1667cm-1的峰形为单取代峰形③νC=C苯环骨架振动1600、1575、1500及1450cm-1共振环④δф-H1250-1000cm-1出现弱峰⑤γф-H 780及690cm-1(双峰)单取代苯(3)特征区第二强峰1630cm-1粗查:该峰可能起源于νC=C,因苯环已确定,故初步指认为烯烃。
细查:查附录一:(二)烯烃类栏,同样找到烯烃的四种相关峰。
①ν=CH3090、3060及3030cm-1②νC=C1630m-1③δ=CH1430-1290cm-1,出现中强峰④γ=CH990及905cm-1(双峰)落在单取代范围内第二强峰归属:乙烯基单取代。
未知物可能结构,苯乙烯。
4、查标准光谱与Sadtler光谱的81K苯乙烯的光谱完全一致。
结论:未知物为苯乙烯。
核磁共振氢谱的解析核磁共振谱能提供的参数主要是化学位移,原子核的裂分峰数,偶合常数以及各组峰的峰面积积分高度等.一、峰面积与氢核数目的关系(一)峰面积1.概念:在1H-NMR,各吸收峰覆盖的面积。
2.决定因素:峰面积与引起该吸收的氢核数目成正比。
有机化合物波谱分析
有机化合物波谱分析有机化合物波谱分析是一种重要的手段,可用于确定有机物的分子结构和功能基团。
其中,核磁共振波谱(NMR)和红外光谱(IR)是两种常用的波谱技术。
本文将重点介绍这两种波谱分析技术的基本原理、应用和解读方法。
核磁共振波谱(NMR)是一种基于核自旋的波谱分析方法。
它通过测量核自旋与外加磁场相互作用导致的能量变化来获得信息。
核磁共振波谱图通常由若干个特征峰组成,每个峰对应于一种不同类型的核。
峰的位置称为化学位移,可以通过参考物质(如四氯化硅)来标定。
峰的形状和强度可以提供有关分子结构和相互作用的信息。
核磁共振波谱提供了关于有机分子的碳氢骨架以及官能团、取代基等信息,因此在有机化学和药物化学领域有广泛应用。
红外光谱(IR)是一种基于分子振动的波谱分析方法。
它通过测量物质吸收红外辐射的能量来获得信息。
由于不同分子具有不同的振动模式和结构,它们吸收红外辐射的方式也不同。
红外光谱图通常由一系列特征峰组成,峰的位置称为波数,可以用来标识不同的官能团和化学键。
峰的强度和形状可以提供关于分子的结构和取向的信息。
红外光谱在有机化学、聚合物化学和无机化学等领域都有广泛的应用。
在进行有机化合物波谱分析时,需要先对样品进行样品制备。
核磁共振波谱通常需要溶解样品,然后将溶液转移到核磁共振管中进行测量。
红外光谱则可以对固体、液体和气体样品进行测量,通常需要将样品制备成固体片或涂在透明载体上。
波谱仪器通常会提供相应的样品制备方法和参数设置。
在分析核磁共振波谱和红外光谱时,需要注意以下几个方面。
首先,对于核磁共振波谱,要正确解读峰的化学位移。
化学位移受到许多因素的影响,如官能团、电子效应、取代基等。
因此,需要结合文献和经验来确定不同类型核的化学位移范围。
其次,对于红外光谱,要正确解读峰的波数。
不同的官能团和化学键都有特定的波数范围,可以用来确定它们的存在。
最后,对于波谱图的解读,需要综合考虑各种信息,如位置、形状、强度和相对强度等。
核磁共振波谱法与红外吸收光谱法一样
核磁共振波谱法与红外吸收光谱法一样稿子一:嘿,亲爱的小伙伴们!今天咱们来聊聊“核磁共振波谱法与红外吸收光谱法一样”这个话题。
你知道吗?这俩方法就像一对双胞胎,都有着独特的魅力和作用。
先来说说核磁共振波谱法吧,它就像一个超级侦探,能深入到物质的内部,把分子结构的秘密一点点给挖出来。
它能告诉我们分子中原子的种类、数量和它们之间的连接方式,是不是很神奇?红外吸收光谱法也不示弱哟!它就像一个敏锐的观察者,通过对不同波长红外线的吸收情况,来判断分子中存在哪些官能团。
比如说,是不是有羟基啦,羰基啦等等。
它们在化学研究、药物研发等领域,那可都是大功臣。
就好像是科学家们的得力,帮助解决一个又一个难题。
不过呢,虽然它们有相似之处,但也有一些小差别哦。
核磁共振波谱法更擅长揭示分子的整体结构,而红外吸收光谱法在确定官能团方面更厉害。
核磁共振波谱法和红外吸收光谱法,这俩家伙虽然不是完全一样,但都为我们探索物质世界的奥秘立下了汗马功劳!怎么样,是不是觉得很有趣呀?稿子二:哈喽呀,朋友们!今天咱们来扯扯“核磁共振波谱法与红外吸收光谱法一样”这回事。
这俩方法呀,就像两朵姐妹花,各有各的美。
先说核磁共振波谱法,它就像个能看透人心的小精灵,能把分子内部的情况摸得透透的。
比如说,能清楚地知道分子里的原子是怎么排列的,它们之间有着怎样的关系。
红外吸收光谱法呢,就像是个眼光独到的时尚达人,一眼就能看出分子身上的“特色装饰”,也就是官能团。
虽然它们有相同点,但也有不一样的地方哟。
就好比一个喜欢安静地研究深层次的问题,一个更擅长快速捕捉表面的特征。
但不管怎么说,核磁共振波谱法和红外吸收光谱法都是科学领域里的宝贝,给我们的生活带来了好多便利和惊喜。
不知道大家听我这么一说,是不是对它们有了更多的了解和喜爱呢?。
核磁共振谱、红外光谱和质谱
② 结构对化学位移的影响 芳环,双键和叁键化合物的各向异性. 芳环,双键和叁键化合物的各向异性.
16
a. 芳环
苯环的电子在外加磁场影响下, 苯环的电子在外加磁场影响下,产生一 个环电流,同时生成一个感应磁场, 个环电流,同时生成一个感应磁场,感 应磁场方向在环内与外加磁场相反, 应磁场方向在环内与外加磁场相反,在 环外与外加磁场同向. 环外与外加磁场同向.苯环上的质子在 环外,处于去屏蔽区,因此, 环外,处于去屏蔽区,因此,苯环上的 质子出现在低场,化学位移 值较大 值较大, 质子出现在低场,化学位移δ值较大,
12
假定核磁共振仪所用的射频固定在60MHz,慢慢改变 , 假定核磁共振仪所用的射频固定在 外加磁场强度,使其略有增加, 外加磁场强度,使其略有增加,当增加到一定程度 时,独立质子的 hν = r h H 2π o 此时发生共振(自旋转向),产生共振信号. ),产生共振信号 此时发生共振(自旋转向),产生共振信号.而有机 分子中的质子,由于屏蔽效应, 分子中的质子,由于屏蔽效应,必须在外加磁场强度 略大于H 时才发生共振. 略大于 o时才发生共振. 即屏蔽使吸收移向高场.去屏蔽使吸收移向低场. 即屏蔽使吸收移向高场.去屏蔽使吸收移向低场. 有屏蔽 无屏蔽 低磁场
6
原子核作为带电荷的质点,它自旋也可产生磁矩. 原子核作为带电荷的质点,它自旋也可产生磁矩. 但并非所有原子核都具有磁炬. 但并非所有原子核都具有磁炬. 例:下面一些原子核自旋产生磁矩: 下面一些原子核自旋产生磁矩:
1H 13C 15N 17O 19F 31P等. 等
有机化合物主要由碳,氢两种元素组成,现以氢为例说 有机化合物主要由碳,氢两种元素组成, 明核磁共振的基本原理. 明核磁共振的基本原理.
质谱仪红外光谱核磁共振氢谱
质谱仪红外光谱核磁共振氢谱
质谱仪红外光谱核磁共振氢谱(IR/NMR/HRMS)是一种先进的分析技术,可以提供准确的信息,用于识别、确定和谱系统分析有机化合物和其他大分子物质。
它主要由三大领域的技术组成,分别是红外光谱(IR)、核磁共振(NMR)和高分辨率质谱(HRMS)。
红外光谱(IR)可以用来识别有机分子中的结构信息,即探测不同类型氢键的存在。
它通过将红外线通过样品,然后探测其吸收或发射的信号来确定吸收光谱的特征信息,用来识别、确定和谱系统分析有机分子。
核磁共振(NMR)可以用来探测有机物质中不同原子的存在,从而确定其结构信息。
它通过研究样品中各个原子在磁场中的行为,来推断和确定有机物质的构型。
高分辨率质谱(HRMS)可用于鉴定和确定有机物质的结构和分子量。
它可以通过将分子离子化,然后记录其分子和离子离子的质量(m/z)来确定有机物质的结构信息。
质谱仪红外光谱核磁共振氢谱(IR/NMR/HRMS)的利用可以提高有机物质的分析精度,更有效地鉴定其结构和分子量。
这种技术可以用于多种应用,比如分析药物和食品中的化学成分,研究新化合物的结构和性质等。
综上所述,质谱仪红外光谱核磁共振氢谱(IR/NMR/HRMS)能够提供准确的信息,用于分析有机物质的结构和分子量,可以应用于多种领域。
核磁共振波谱与紫外可见光谱及红外光谱的区别
核磁共振波谱与紫外可见光谱及红外光谱的区别核磁共振波谱与紫外可见光谱及红外光谱的主要不同有两点:①原理不同紫外可见吸收光谱是分子吸收200~700nm的电磁波,吸收紫外光能量,引起分子中电子能级的跃迁,主要是引起最外层电子能级发生跃迁。
红外光谱是分子吸收2.5~50um(2500~50000nm)的电磁波,吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁。
核磁共振波谱则是在外磁场下,吸收60cm~300m 的电磁波,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁。
②测定方法不同。
紫外和红外等一般光谱是通过测定不同波长下的透光率(T%=出射光强/入射光强)来获得物质的吸收光谱。
这种方法只适用于透过光强度变化较大的能级跃迁。
60cm~300m的电磁波穿透力很弱,故核磁共振无法通过测定透光率来获得核磁共振光谱,它是通过“共振吸收法”来测定核磁共振信号的。
共振吸收法是指:在一定磁场强度下,原子核在一定频率的电磁波照射下发生自旋能级跃迁时引起核磁矩方向改变进而产生感应电流,通过放大、记录此感应电流便得到核磁共振信号。
依次改变磁场强度(或电磁波的照射频率)使满足不同化学环境核的共振条件,收集共振引起的磁感应信号,经过数学处理,就获得核磁共振波谱图。
③谱图的表示方法不同:紫外谱图的表示方法:相对吸收光能量随吸收光波长的变化。
红外谱图的表示方法:相对透射光能量随透射光频率变化。
核磁谱图的表示方法:吸收光能量随化学位移的变化。
④提供的信息不同:紫外提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息。
红外提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率。
核磁提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息。
核磁共振谱的优缺点:优点:(仪器的灵敏度和分辨率非常高,较容易解析NMR图(随着计算机技术的应用,多脉冲激发的方法的采用及由此产生的二维谱图、多维谱图等许多新技术,是许多复杂化合物的结构测定引刃而解,NMR可以说是化学研究中最有力的武器之一。
化学反应的核磁共振质谱红外光谱紫外光谱分析
化学反应的核磁共振质谱红外光谱紫外光谱分析在化学领域中,深入研究和理解化学反应是非常重要的。
为了对化学反应进行准确分析和识别,科学家们发展了多种分析技术,其中包括核磁共振(NMR)谱、红外(IR)光谱和紫外-可见(UV-Vis)光谱。
这些分析技术为化学反应的研究提供了强大的工具,能够揭示分子结构、反应机理和化学键的性质等信息。
一、核磁共振(NMR)谱核磁共振谱是一种非常有用的技术,可以用来分析和确认化合物的结构。
它通过测量核自旋以及其与外部磁场交互作用的方式来工作。
核磁共振谱可以提供关于化合物中不同原子的化学环境和它们之间的化学键的信息。
核磁共振谱的基本原理是利用核自旋与外部磁场之间的相互作用。
化合物中的核自旋会受到外部磁场和射频脉冲的影响。
通过测量核自旋在不同磁场强度下的吸收和释放射频能量的频率,可以得到核磁共振谱。
核磁共振谱还可以提供关于化学反应动力学和速率常数的信息。
通过测量峰的强度和面积,可以计算反应物和产物之间的相对含量,从而确定反应的进程和速率。
二、红外(IR)光谱红外光谱是一种根据物质吸收和发射红外辐射的方式来分析和识别化合物的方法。
红外光谱可以提供关于化合物中的功能团和它们之间的化学键的信息。
红外光谱的基本原理是物质中的分子会吸收红外辐射的特定频率,这些频率对应着分子中化学键的振动模式。
每种功能团和化学键都有自己独特的红外频率,因此可以通过测量样品吸收红外辐射的频率来确定其化学组成和结构。
红外光谱可以用于确定化学反应的产物和中间体。
在化学反应中,原子和分子之间的共振频率可能会发生变化。
通过比较反应物和产物之间的红外光谱,可以确定化学反应的进行和物质转化。
三、紫外-可见(UV-Vis)光谱紫外-可见光谱是一种利用物质对紫外光和可见光的吸收和发射来分析和识别化合物的技术。
紫外-可见光谱可以提供关于分子能级、电子结构和吸收峰的信息。
紫外-可见光谱的基本原理是物质中的分子可以吸收具有特定能量的光子。
质谱法红外光谱法核磁共振氢谱区别
质谱法、红外光谱法、核磁共振、氢谱区别简单来说,质谱,就是测质量的,只不过测定出来的质量数高中只需要看最大值。
最大值就是分子质量。
核磁共振,这个分氢谱和碳谱,碳谱不常用,我大学用的也少,好像不是很好看。
氢谱比较常用,看氢化学环境的,同时还能分析出相邻的氢的情况,这个比较好用。
不过高中好像是只需要看氢数量。
红外,这个是分析官能团用的。
紫外,这个分析未知物质基本没用,不过可以测定已知的物质的含量。
【红外】利用红外光谱对物质分子进行的分析和鉴定。
将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。
每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。
红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。
当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。
分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。
分子的振动和转动的能量不是连续而是量子化的。
但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。
所以分子的红外光谱属带状光谱。
分子越大,红外谱带也越多。
【紫外】分子振动能级的能级差为0.05~1 eV,转动能级的能差小于0.05eV,都远远低于电子能级的能差,因此当电子能级改变时,振动能级和转动能级也不可避免地会有变化,即电子光谱中不但包括电子跃迁产生的谱线,也有振动谱线和转动谱线,分辨率不高的仪器测出的谱图,由于各种谱线密集在一起,往往只看到一个较宽的吸收带。
若紫外光谱在惰性溶剂的稀溶液或气态中测定,则图谱的吸收峰上因振动吸收而会表现出锯齿状精细结构。
降低温度可以减少振动和转动对吸收带的贡献,因此有时降温可以使吸收带呈现某种单峰式的电子跃迁。
紫外可见吸收光谱红外吸收光谱核磁共振光谱相同之处
紫外可见吸收光谱、红外吸收光谱和核磁共振光谱是化学分析中常用的三种光谱技术。
它们虽然在应用领域和原理上有所不同,但在某些方面也存在一些相似之处。
在本文中,我将深入探讨这三种光谱技术的共同点,并分析它们之间的联系。
1. 这三种光谱技术都是分析化学领域中常用的手段,用于研究物质的结构和性质。
它们能够通过不同的原理和方法,对物质进行分析和表征,从而为化学研究和实际应用提供重要的数据支持。
2. 在实验操作上,这三种光谱技术都需要对样品进行预处理和制备,以确保获得准确和可靠的测试数据。
对于紫外可见吸收光谱和红外吸收光谱,样品通常需要溶解或制备成适当的样品片;而对于核磁共振光谱,则需要对样品进行氢化处理和溶解。
3. 就数据解析而言,这三种光谱技术都需要对实验数据进行处理和解释,以获得与化学结构和性质相关的信息。
这包括对光谱图谱的解读和峰位的标定,以及对峰强度和形状的分析。
4. 这三种光谱技术在实验原理和测试方法上也存在一些共通之处。
它们都是基于物质对电磁辐射的吸收和发射现象,通过测定不同波长或频率下的吸收或发射光谱,获得与物质结构和性质相关的信息。
总结回顾:在本文中,我们从实验操作、数据解析和实验原理三个方面分析了紫外可见吸收光谱、红外吸收光谱和核磁共振光谱的共同点。
这三种光谱技术在化学分析中发挥着重要作用,对研究物质的结构和性质具有重要意义。
通过深入理解和比较这三种技术,我们能够更全面、深刻和灵活地应用它们,在化学研究和实际应用中取得更好的成果。
个人观点和理解:我个人认为,紫外可见吸收光谱、红外吸收光谱和核磁共振光谱的相同之处并不仅仅局限于实验操作、数据解析和实验原理上,更重要的是它们共同承担了化学分析和表征的重任,为我们揭示了物质的结构和性质。
在今后的研究和应用中,我们应该充分发挥这三种光谱技术的优势,进一步加深对它们的理解和应用。
通过本文的阐述,我相信你对紫外可见吸收光谱、红外吸收光谱和核磁共振光谱的相同之处已经有了更全面的理解。
有机化学中的核磁共振和红外光谱
有机化学中的核磁共振和红外光谱核磁共振和红外光谱是有机化学中常用的分析工具,它们在研究有机物结构和性质方面具有重要的应用。
本文将介绍核磁共振和红外光谱的原理及其在有机化学中的应用。
一、核磁共振(Nuclear Magnetic Resonance,NMR)核磁共振是一种利用核自旋磁矩与外加磁场相互作用的技术,通过测量不同核自旋所产生的共振信号,可以得到有机分子的结构信息。
核磁共振谱图通常由化学位移、耦合常数和峰面积等参数组成。
化学位移是核磁共振谱图中的一个重要参数,它可以反映不同核自旋所处的化学环境。
常用的参考化合物是甲基硅烷(TMS),其化学位移被定义为0 ppm。
当有机分子中的核自旋与TMS的核自旋相比较时,其化学位移就可以确定。
耦合常数是指在核磁共振谱图中观察到的峰的分裂现象,也称为耦合(coupling)。
耦合常数可以提供有机分子中化学键的相互作用信息,有助于推断亚基之间的关系。
峰面积是核磁共振谱图中峰的面积大小,可以用来推断化合物中不同核自旋的数量比例,从而得到有机分子的结构信息。
核磁共振在有机化学中的应用十分广泛。
通过核磁共振谱图的分析,可以确定有机物分子的结构、判断化学键的类型和数目、研究分子构象和手性等。
核磁共振还可以用来研究溶剂效应、反应动力学和分子间相互作用等问题。
二、红外光谱(Infra-Red Spectroscopy,IR)红外光谱是一种利用物质分子振动产生的红外辐射与入射光进行相互作用的技术。
不同化学键和官能团具有特征性的红外吸收带,通过分析红外光谱图可以得到有机分子的结构和官能团的信息。
红外光谱图中常见的吸收峰包括羟基(OH)的吸收峰、羰基(C=O)的吸收峰、氨基(NH)的吸收峰等。
这些吸收峰的位置和形状可以提供有机分子中官能团的存在和数量信息。
红外光谱在有机化学中有着广泛的应用。
通过分析红外谱图,可以确定有机物分子中官能团的类型和位置、检测其纯度和杂质、判断化学键的取代程度和构型等。
【2024版】核磁共振光谱NMR光谱
氢核(I=1/2),两种 取向(两个能级):
(1)与外磁场平行,能量低,
磁量子数m=+1/2;
(2)与外磁场相反,能量高,
磁量子数m=-1/2;
能级分布与弛豫过程
核能级分布
在一定温度且无外加射频辐射条件下,原子核处在高、低 能级的数目达到热力学平衡,原子核在两种能级上的分布 应满足Boltzmann分布:
Isotope
Magnetogyric Ratio (radians/Tesla)
# of Spin States
Resonance Frequency (MHz)
H 1
267.53
2
2H
41.1
3
13C
67.28
2
14N
3
17OΒιβλιοθήκη 619F251.7
2
31P
108.3
2
35Cl
4
60.0 9.2 15.1 4.3 8.1 56.4 24.3 5.9
自旋核的取向
在没有外电场时,自旋核的取向是任意的。
在强磁场中,原子核发生能级分裂,当吸收外来电磁辐射 时,将发生核能级的跃迁
----产生所谓的 核磁共振(NMR)现象
射频辐射─原子核(能级分裂)-----吸收──能级跃迁
射频
B
E
E= –μB
B
E
m=-1/2
E= –μB0
m=+1/2
E2B0 2 hB0
N NH i N NL
j
E
h
e kT e kT
通 过 计 算 , 在 常 温 下 , 1H 处 于 B0 为 2.3488T的磁场中,处于低能级的1H
有机化学中的核磁共振与红外光谱
有机化学中的核磁共振与红外光谱核磁共振(Nuclear Magnetic Resonance,NMR)和红外光谱(Infrared Spectroscopy,IR)是有机化学中常用的分析技术,能够提供有机分子结构和官能团的信息。
本文将介绍核磁共振和红外光谱的原理、应用以及在有机化学中的重要性。
一、核磁共振核磁共振是一种基于核自旋与外加磁场相互作用的分析技术。
其原理是利用核自旋磁矩在外加磁场下的取向分布和磁矩的相互作用,通过外加射频信号的作用,使核自旋能级间的跃迁发生,从而产生共振信号。
核磁共振技术广泛应用于有机化学中,可以用于确定有机化合物的分子结构、官能团以及有机反应过程的动力学研究。
核磁共振谱图通常由化学位移、积分强度和耦合常数等信息构成。
化学位移是指核磁共振信号相对于参考物质(一般以四氢呋喃或三甲基硅氢酮为参考物质)的相对位置,可以通过核磁共振频率进行定量测定。
积分强度表示每个核磁共振峰的相对积分面积,反映了各个核的数量比例关系。
耦合常数则提供了有机分子中质子之间的相互作用情况,可以用于确定分子结构以及官能团的位置。
核磁共振在有机化学研究中的应用广泛,其中一个重要的应用是结构鉴定。
通过分析核磁共振谱图,可以确定有机化合物的分子式以及分子结构,包括碳骨架的排列、官能团的存在以及官能团的位置。
此外,核磁共振还可以用于研究反应动力学,通过观察反应中的中间体或过渡态的核磁共振信号变化,推断出反应机理,并探究反应速率和活化能。
二、红外光谱红外光谱是一种基于分子振动引起的能级跃迁的分析技术。
当物质受到红外光的辐射时,分子内部的化学键能够吸收特定频率的红外光,产生振动和转动的能级跃迁。
红外光谱图通常由吸收带的位置和强度构成,吸收带的位置对应于不同的官能团或化学键,吸收强度与特定官能团或化学键的相对数量相关。
红外光谱在有机化学研究中有着广泛的应用,其重要性不可忽视。
首先,红外光谱可用于识别官能团和化学键。
四大光谱
四大光谱介绍⑴光具有波粒二象性E=hν=hc/λ,λ=c/ν,V=1/ λ。
熟悉波长λ、频率ν、波数、能量E的概念、单位及相互关系。
⑵熟悉电磁波谱图,包括紫外光区、红外光区的划分。
⑶了解分子总的能量E的组成,它包括E平动能,电子运动能E电、分子振动能量E振和分子转动能量E转。
电磁波(光波)照射物质时,分子要吸收一部分辐射,但是,吸收是量子化的,即只吸收某些特定频率的辐射,吸收的能量可以激发电子到较高的能级或增加分子振动能级和转动能级,从而产生特征的分子吸收光谱。
其中电子能级差最大、振动能级差次之,转动能级差最小。
只有恰好等于某个能级差时,分子才能吸收。
⑷了解吸收光谱与分子结构的关系。
分子中不同的基团表现出不同的吸收特征,因此,确定分子的吸收光谱可以推测分子可能存在的官能团。
⑸了解分子能级裂化与光谱的关系。
读者要了解吸收光谱的分类,以及电磁波谱区域与相应波谱方法的对应关系。
①紫外光谱法:波长在200—400nm的近紫外光,激发n及π电子跃迁②红外光谱法:波长在2.5—15μm激发振动与转动③核磁共振波谱法:波长在无线电波1—1000m激发原子核自旋能级。
质谱不同于以上三谱,不属于吸收光谱。
它不是描述一个分子吸收不同波长电磁波的能力,而是记录化合物蒸汽在高真空系统中,受到能量很小的电子束轰击后生成碎片正离子的情况。
⑹光吸收定律透射率T=透射光/入射光=I/I0,吸光度A=-logT=εbc(L-B定律)⑺物质吸收谱带的特征主要特征:位置(波长)及强度(几率)1、分子轨道形成与ζ,π及n轨道。
读者应习惯于用分子轨道表示分子结构。
处在分子轨道中的价电子主要涉及ζ,π,n,价电子的跃迁产生uv:ζ→ζ* π→π* n→n* 其能量次序大致为ζ<π<n<π*<ζ*据此,可以比较不同类型能级跃迁所需能量的大小,以及与吸收峰波长的关系。
2、电子能级和跃迁类型ζ→δ* 200nm以下,远红外区,饱和碳氢化合物,例如,CH4λmax=125nm。
红外光谱和核磁共振
(P86)
化学方法
有机分子结构的测定
物理方法:
红外光谱、紫外光谱、 核磁共振、质谱。
优点:快速、微量、准确
红外吸收光谱:是分子中成键原子振动能级(伸
缩振动和弯曲振动)跃迁而产生的吸收光谱,
有机四大谱及其特点
有机四大谱:紫外吸收光谱、红外吸收光谱、 核磁 共振谱、质谱
UV
优点样准品确用快量速少
上式关系时,H1可以吸收特定波长的光波,从 低能态排布方式可转变成高能态的排布方式。 即产生了“共振”。
4、核磁共振:具有磁性原子核吸收能量,从低能 态跃迁到高能态的现象。
5、实现“共振”的办法:用恒定的频率的无线电 波照射,通过改变外磁场强度的方法来实现共振。
核磁共振波谱仪:连续波扫描NMR和FT-NMR
C—H伸缩振动3300cm-1(700-600 cm-1) CC伸缩振动: 2100-2140cm-1
芳H伸缩振动3100-3000cm-1 单核芳环骨架C=C伸缩振动1600、1580、1500、 1450cm-1(强度与分子对称性有关)
五、各类化合物的特征的红外吸收光谱
1、烷烃:
C—H伸缩振动:2850cm-1和3000 cmC-H(CH3)面内弯曲:1460(不对称)和1380(对称) -(CH2)n- (n>=4)面内弯曲:一般在720 cm-1处有特征峰
为了去除测定时的仪器频率的影响规定测得的化学位移值要除以仪器的频率因四甲基硅烷中由于硅的电负性很小故h周围的电子云密度较大化学屏蔽作用大且同时有12个等同的质子只给出一个特强信号故硅烷中的h在最高的磁场强度下共振吸收把它的吸收位置当作零点这样可使大多数的核磁共振信号都出现在tms的低场一侧化学位移值
化学反应的核磁共振质谱红外光谱质谱紫外光谱分析
化学反应的核磁共振质谱红外光谱质谱紫外光谱分析化学反应的核磁共振质谱、红外光谱、质谱和紫外光谱分析化学反应是研究化学物质之间相互转化的过程。
在化学研究中,为了深入了解反应过程,许多分析技术被广泛应用。
其中,核磁共振谱(NMR)、红外光谱(IR)、质谱(MS)和紫外光谱(UV)是具有广泛应用的常见分析工具。
本文将重点介绍这些分析技术的原理和在化学反应研究中的应用。
一、核磁共振谱(NMR)核磁共振谱是一种通过测量磁场中原子核共振现象得到的谱图。
它可以提供关于分子结构、化学环境和分子运动性质的信息。
核磁共振谱可以分为质子核磁共振谱(1H-NMR)和碳核磁共振谱(13C-NMR)等多种类型。
在化学反应中,核磁共振谱可用于确定反应物、产物的结构,分析反应物的纯度以及跟踪反应进程。
例如,可以通过1H-NMR谱图来监测反应物的消失和产物的生成。
通过对谱图中峰的大小和形状的分析,可以确定反应物的转化率和产物的结构。
二、红外光谱(IR)红外光谱是通过测量物质吸收红外光的能力来研究物质结构和化学键的分析技术。
红外光谱可以提供关于分子中功能团的信息,如羟基、羰基、氨基等。
在化学反应中,红外光谱可以用于分析反应物和产物之间的化学键的变化。
通过比较反应物和产物的红外光谱图,可以确定反应中发生的功能团的变化,并验证反应的成功与否。
红外光谱还可以用于监测反应进程,例如判断反应是否完全进行。
三、质谱(MS)质谱是利用物质离子的质量和数量比对物质进行分析的技术。
质谱可以提供有关分子的组成、相对分子质量、分子结构和元素组成的信息。
在化学反应中,质谱可以用于确定反应物和产物的质量以及其质量之间的比例。
通过质谱图,可以得到反应物和产物离子的质量和相对丰度的信息,进而得到反应的转化率和产物的结构。
四、紫外光谱(UV)紫外光谱是一种测量物质对紫外光吸收的能力来研究物质结构和分析化合物的技术。
紫外光谱可以提供有关物质电子的能量转换和分子间电子转移的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外光谱-核磁共振波谱(IR-NMR) 班级 姓名
本章需掌握知识:
一.知道红外光谱和核磁共振波谱在有机结构分析中的用途,可以从中得到什么有价值的信息; 二.对于红外光谱要知道C-H 、N-H 、O-H 、C ≡C 、C=C 、C=O 以及苯环骨架伸缩振动产生的特
征吸收峰所在的大概位置;会用虎克定律理解伸缩振动吸收峰位置差异的原因。
三.对于核磁共振波普要知道化学位移、偶合裂分的概念;知道峰积分面积比代表氢的数目之比;
知道峰裂分的n+1规律(对于H 核);知道饱和烷烃的C-H 、COC H 2-、OC H -、Ar H 化学位移的大概位置。
1.红外光谱是如何产生的;从中可以得到什么有价值的信息?
2.H 核磁共振谱是如何产生的;从中可以得到什么有价值的信息?
3.有三个化合物A 、B 和C ,它们的分子式都是C 5H 10O ,它们的红外光谱中在1715~1720 cm-1都有一强吸收峰;它们的1H NMR 如下所示(所标数值为积分面积),推测A 、B 、C 各是什么结构,并指出每个H 在谱图上所对应的信号。
4.已知某化合物分子式为C 4H 8O 2,其1H NMR 谱如图所示。
根据谱图推断其结构式,并指出1H NMR 信号所对应的氢原子。
5.下面三张谱图是正辛烷、1-辛烯、1-辛炔的红外光谱。
判断A 、B 、C 分别对应哪种物质,指出它们由伸缩振动产生的特征吸收的差别,并说明是何种振动吸收引起的。
6.已知某化合物分子式为C 10H 12O ,其1H NMR 和IR 光谱如图所示。
根据谱图推断其结构式为下列结构式中的哪一个?并指出1H NMR 谱图红各种信号所对应的氢原子,指出IR 光谱中E 、F 、G 吸收峰分别属于什么振动引起的。
2CH 3
2OCH 2CH 3
CH 22CH 3
O
CH 2CH 2CCH 3
O
OCH 2C CCH 2CH 3
OCH 2CH 2C CCH 3
(1)
(2)
(3)
(4)
(5)
(6)
2
3
2
3
2
3
1
3
6
A
B
C
A
B
C。