代数式化简求值经典17题(各版本通用)
代数式化简求值经典17题(各版本通用)
代数式化简求值经典17题(各版本通用)1.当x=-2时,求代数式9x+6x^2-3(x-2x)的值当x=-2时,代数式的值为9(-2)+6(-2)^2-3((-2)-2(-2))=-18+24+12=18.2.当x=111时,求代数式(-4x^2+2x-8)-(x-1)的值当x=111时,代数式的值为(-4(111)^2+2(111)-8)-(111-1)=-493,004.3.当a=-1,b=1时,求代数式(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2)的值当a=-1,b=1时,代数式的值为(5(-1)^2-3(1)^2)+((-1)^2+(1)^2)-(5(-1)^2+3(1)^2)=-8.4.当x=-1,y=-2时,求代数式3-2xy+3yx^2+6xy-4x^2y的值当x=-1,y=-2时,代数式的值为3-2(-1)(-2)+3(-2)(-1)^2+6(-1)(-2)-4(-1)^2(-2)=3+4-6+12+8=21.5.当x^2-xy=3a,xy-y^2=-2a时,求代数式x^2-y^2的值将x^2-xy=3a和xy-y^2=-2a相加得到x^2-y^2=a,因此代数式x^2-y^2的值为a。
6.当x=2004,y=-1时,求代数式A=x^2-xy+y^2,B=-x^2+2xy+y^2,A+B的值当x=2004,y=-1时,A=x^2-xy+y^2=2004^2-2004(-1)+(-1)^2=4,017,017;B=-x^2+2xy+y^2=-(2004)^2+2(2004)(-1)+(-1)^2=-4,017,015,因此A+B=2.7.当a=5时,求代数式(6a+2a^2+1)-(a^2-3a)的值当a=5时,代数式的值为(6(5)+2(5)^2+1)-((5)^2-3(5))=62.8.当a-b=4,c+d=-6时,求代数式(b+c)-(a-d)的值由a-b=4可得a=b+4,代入b+c-(a-d)得到b+c-(b+4-d)=c+d-4,因此代数式的值为-2.9.当a=1/2,b=1时,求代数式a^2+3ab-b^2的值当a=1/2,b=1时,代数式的值为(1/2)^2+3(1/2)(1)-(1)^2=-1/4.10.当a=114,b=73时,求代数式4(b+1)+4(1-a)-4(a+b)的值当a=114,b=73时,代数式的值为4(73+1)+4(1-114)-4(114+73)=-744.11.当x=-2时,求代数式9x+6x^2-3(x-2x)的值同第1题,代数式的值为18.12.当x=5时,求代数式(2x^2-6x-4)-4(-1+x+x^2)的值当x=5时,代数式的值为(2(5)^2-6(5)-4)-4(-1+5+5^2)=-38.13.当x=111时,求代数式(2x^2-x-1)-(x^2-x-1)+(3x^2-3)的值当x=111时,代数式的值为2(111)^2-(111)-1-(111^2-111-1)+(3(111)^2-3)=22,600.14.当x^2+xy=2,y^2+xy=5时,求代数式x^2+2xy+y^2的值将x^2+xy=2和y^2+xy=5相加得到x^2+2xy+y^2=7,因此代数式的值为7.15.当a=-2,b=3时,求代数式a-2(a-b^2)-(a-b^2)的值当a=-2,b=3时,代数式的值为-2-2(-2-3^2)-(-2-3^2)=2.16.当a=1/3时,求代数式1-(2a-1)-3(a+1)的值当a=1/3时,代数式的值为1-(2(1/3)-1)-3(1/3+1)=-25/3.。
代数式的化简求值问题(含答案)
第二讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数函数等知识打下基础。
识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,无关,求()[]m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零的项系数均为零 因为()()83825378522222222++-=+--++-y x m x y x x x mx 所以所以 m =4 将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。
的值。
分析:分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b abcacabcbabcacabcba在射线 ____上,上,BO 172839410 5116 12根据上面规律,2007应在应在A .125行,3列B . 125行,2列C . 251行,2列D . 251行,5列 分析:观察第二、三、四列的数的排列规律,发现第三列数规律容易寻找分析:观察第二、三、四列的数的排列规律,发现第三列数规律容易寻找 第三列数:第三列数: 3,11,19,27结果为kn 2(其中k 是使kn 2为奇数的正整数),并且运算重复进行.例如,取n =26,则:,则:26134411 第一次第一次F ② 第二次第二次F ① 第三次第三次F ② …代数式表示为__________________________.分析:OA 上排列的数为:1,7,13,19,… 观察得出,这列数的后一项总比前一项多6, 归纳得到,这列数可以表示为6n -5 因为17=3×17=3×66-1,所以17在射线OE 上。
代数式的化简求值问题(含答案)
第1讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m =4将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。
分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b a2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x 整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
代数式的化简求值
代数式的化简求值代数式的化简求值问题一、知识链接1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零变式练习:已知3=+y x ,2=xy ,求22y x +的值.利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。
2008200712007200720072222323=+=++=+++=++a a a a a a a变式练习:1.已知当2018=x 时,代数式524=++c bx ax ,当2018-=x 时,代数式__________24=++c bx ax2.已知5=x 时,代数式52-+bx ax 的值是10,求5-=x 时,代数式52++bx ax 的值是多少?例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.分析:观察两个代数式的系数变式练习:1.已知87322=++y x ,则___________9642=++y x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
例4.已知012=-+a a ,求2007223++a a 的值. 分析:解法一(整体代人):由012=-+a a 得 023=-+a a a所以:解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。
最新初二数学化简求值经典练习题(你值得拥有)88238
化简求值演练1. 先化简,再求值:13181++÷⎪⎭⎫ ⎝⎛+--x x x x ,其中23-=x2. 先化简,再求值24--x x ÷(x+2- 212-x ),其中x= 3 -4. 3. 先化简,再求值:2422-+-x x x ,其中23-=x4. 先化简(1+1x-1)÷x x 2-1,再选择一个恰当的x 值代人并求值5. 先化简,再求值:2443x x x x x--÷+,其中01)x =- 6. 先化简,然后请你选择一个合适的x 的值代入求值:2443x x x x x--÷+7. 先化简,再求代数式2x 1-x 2x 3-12+÷+)(的值,其中x =4sin45°-2cos60° 8.8. 先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值9. 先化简:121a a a a a --⎛⎫÷- ⎪⎝⎭,并任选一个你喜欢的数a 代入求值10. 先化简.再求代数式的值.1a a )1a 2a 1a 2(2-÷-+++ 其中a =tan60°-2sin30°11. 先化简:⎪⎪⎭⎫ ⎝⎛++÷--a b ab a ab a b a 22222,当1-=b 时,请你为a 任选一个适当的数代入求值.12.先化简,再求值:2224441x x x x x x x --+÷-+-,其中32x =.13. 化简求值:22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中a =2010,b =2009.14.先化简,再求值21a 3a 1a +÷++其中a =2sin60°-3.15.先化简:(a - 2a —1a )÷ 1-a 2a 2+a,然后给a 选择一个你喜欢的数代入求值.16.先化简,再求值:)2522(422---+÷-+x x x xx ,其中︒+=60tan 1x 。
分享30个化简求值及答案初一
30个化简求值及答案初一20 年月日A4打印/ 可编辑中考专题—化简求值注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算 1. (x +2)2+(2x +1)(2x −1)−4x(x +1)−√2(2013年河南、16)先化简,再求值:,其中x=.2. x =2+√3−√5<x <√5(2012河南、11)先化简 然后从的范围内选取一个合适的整数作为x 的值代入求值。
3.(1−1x−1)÷x 2−4x+4x 2−1−2≤x ≤2(2011河南、16)先化简,然后从的范围内选取一个合适的整数作为x 的值代入求值。
4.A =1x−2B =2x 2−4C =xx+2(A −B)÷CA −B ÷Cx =3(2010河南,16)已知,,,将它们组合成或的形式,请你从中任选一种进行计算.先化简,再求值,其中.5.(1x−1−1x+1)÷x2x2−2√2,1,−1x(2009河南,16)先化简,然后从中选取一个你认为合适的数作为的值代入求值.6.(x+y−2xy−2y 2x−y )⋅x2y+xy2x2−y2xyx=1−3<y<√3y(河南原创一,16)先化简,再选择一组合适的、代入求值,其中,且为整数.7.(14+4b+b2−1b2+4−4b)÷(12+b−12−b)b=−√5(河南原创二,16)先化简,再求值:,其中.8.(1x+2−1)÷x2+2x+1x2−4x=tan60o−1(河南原创三,16)先化简,再求值:,其中.9.(a−1a2−4a+4−a+2a2−2a)÷(4a−1)a{7−a>2|(河南原创四,16)先化简,在求职难:,其中是满足不等式组的整数解.10.x 2−1x2+x ÷(x−2x−1x)xx2+2x−3=0(河南原创五,16)先化简,再求值:,这里是一元为此方程的一个根.11.xx2−2x+1=0x−33x2−6x ÷(x+2−5x−2)(河南原创六,16)已知是一元二次方程的根,求代数式的值.12.(xx−5−x5−x)÷2xx2−25{−x−2≤3|(原创卷七)先化简,然后从不等式组的解集中,选取一个你认为符合题意的x的值代入求值。
代数式的化简与求值习题打印版G4
(打印版)1.设a>b>0,a²+b²=-48ab,则(a+b)/(a-b)的值等于________。
2.如果多项式p=a²+8b²+4a+32b+2441,则p的最小值是________。
3.已知a+(1/b)=b+(1/c)=c+(1/a),a≠b≠c,则a²b²c²=________。
4.一个正数x的两个平方根分别是a+81与a-14,则a值为________。
5.已知实数a满足|2814-a|+√(a-2093)=a,那么a-2814²=_______。
6.已知m是方程x²-2330x+3=0的一个根,则m²-2329m+6990/(m²+3)+772的值等于_______。
7.若x²+15x-133=0,则x³+24x²+2x+57=_______。
8.若a²+b-6a-4√b+13=0,则代数式a^(a+b)*b^(a-b)= ________。
9.若m为实数,则代数式|m|+m的值一定是________。
10.若x<-72,则y=|202-|202+x||等于________。
11.已知非零实数a,b 满足|3a-74|+|b+38|+√[(a-21)*b²]+74=3a,则a+b等于________。
12.当x>50时,化简代数式√[x+10√(x-25)]+√[x-10√(x-25)]= ________。
13.将代数式x³+(2b+1)x²+(b²+2b-1)x+(b²-1)分解因式,得________。
14.已知a=-1+√6,则8a³+2a²-22a+16的值等于________.15.已知n是方程x²-1979x+3=0的一个根,则n²-1978n+5937/(n²+3)+695的值等于________。
代数式的化简求值问题大题专练(真题6道+模拟30道)-中考数学重难题型押题培优导练案【解析版】
代数式的化简求值问题(北京真题6道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率代数式的化简求值(大题)2022、2021、2020、2015、2014、十年6考2013代数式的化简求值主要是整式的化简求值和分式的化简求值,北京中考解答题考查的主要是整式的化简求值问题,在2013-2022年中考中出现了6次,考查频率较高.1、对于整式的混合运算—化简求值,先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似. 2、对于分式计算:分式的运算即是分式的化简,①从整体上把握,是先对个别分式进行约分,还是先对分式进行加减;②把分式的除法运算转化为乘法运算;③按顺序(先括号内,再乘除,后加减)进行运算;④分式加减时,一是不要遗漏分式的分母,二是注意分数线具有的括号作用.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)已知a2+2b2−1=0,求代数式(a−b)2+b(2a+b)的值.【答案】1【解析】【分析】先对代数式进行化简,然后再利用整体思想进行求解即可.【详解】解:(a−b)2+b(2a+b)=a2−2ab+b2+2ab+b2=a2+2b2,∵a2+2b2−1=0,∵a2+2b2=1,代入原式得:原式=1.【点睛】本题主要考查整式的乘法运算及完全平方公式,熟练掌握利用整体思想进行整式的化简求值是解题的关键.【例2】(2022·北京·中考真题)已知x2+2x−2=0,求代数式x(x+2)+(x+1)2的值.【答案】5【解析】【分析】先根据x2+2x−2=0,得出x2+2x=2,将x(x+2)+(x+1)2变形为2(x2+2x)+1,最后代入求值即可.【详解】解:∵x2+2x−2=0,∵x2+2x=2,∵x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1=2(x2+2x)+1=2×2+1=5【点睛】本题主要考查了代数式求值,完全平方公式,单项式乘多项式,将x(x+2)+(x+1)2变形为2(x2+2x)+1,是解题的关键.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)已知x2−4x−1=0,求代数式(2x−3)2−(x+y)(x−y)−y2的值.【答案】12【解析】【分析】将代数式应用完全平方公式和平方差公式展开后合并同类项,将x2−4x=1整体代入求值.【详解】解:∵x2−4x−1=0,∵x2−4x=1.∵(2x−3)2−(x+y)(x−y)−y2=4x2−12x+9−x2+y2−y2=3x2−12x+9=3(x2−4x)+9=3×1+9=12.2.(2014·北京·中考真题)已知x−y=√3,求代数式(x+1)2−2x+y(y−2x)的值.【答案】4【解析】【分析】先利用完全平方公式以及整式的乘法将所给的式子化简,然后再进行处理,代入所给的数据即可.【详解】原式=x2-2xy+y2+1=(x-y)2+1,把x-y=√3代入,原式=3+1=4.【点睛】本题考查了整式的混合运算,涉及了完全平方公式,单项式乘多项式以及因式分解的应用,掌握整体代入的方法是解题的关键.3.(2015·北京·中考真题)已知2a2+3a-6=0.求代数式3a(2a+1)-(2a+1)(2a-1)的值.【答案】7【解析】【分析】先根据整式的乘法化简,然后再整体代入即可求解.【详解】解:3a(2a+1)−(2a+1)(2a−1)=6a2+3a−4a2+1=2a2+3a+1∵2a2+3a−6=0∵2a2+3a+1=7∵原式=7.【点睛】本题考查整式的化简求值.4.(2020·北京·中考真题)已知5x2−x−1=0,求代数式(3x+2)(3x−2)+x(x−2)的值.【答案】10x2−2x−4,-2【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把5x2−x−1=0变形后,整体代入求值即可.【详解】解:原式=9x2−4+x2−2x=10x2−2x−4.∵5x2−x−1=0,∵5x2−x=1,∵10x2−2x=2,∵原式=2−4=−2.【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题(共30题)1.(2022·北京房山·二模)已知2x2+3y2=2,求代数式(x+y)(x−y)+(x+2y)2−4xy的值.【答案】2【解析】【分析】利用平方差公式和完全平方公式对所给代数式进行化简,再将2x2+3y2=2整体代入求解.【详解】解:原式=x2−y2+x2+4xy+4y2−4xy=2x2+3y2,∵2x2+3y2=2,∵原式=2x2+3y2=2.【点睛】本题考查利用平方差公式和完全平方公式对代数式进行化简求值,难度较小,掌握整体代入思想是解题的关键.2.(2022·北京平谷·二模)已知m2−2m+5=0,求代数式(m−2)2+2(m+1)的值.【答案】1【分析】先根据已知等式可得m2−2m=−5,再利用完全平方公式、整式的加减运算法则求值即可得.【详解】解:由m2−2m+5=0得:m2−2m=−5,所以(m−2)2+2(m+1)=m2−4m+4+2m+2=m2−2m+6=−5+6=1.【点睛】本题考查了代数式求值、完全平方公式、整式的加减运算,熟练掌握整式的运算法则是解题关键.3.(2022·北京北京·二模)已知2m2+5m−1=0,求代数式(m+3)2+m(m−1)的值.【答案】10【解析】【分析】去括号,合并同类项化简代数式,再根据2m2+5m−1=0得2m2+5m=1代入原式即可求得答案.【详解】解:(m+3)2+m(m−1)=m2+6m+9+m2−m=2m2+5m+9,∵2m2+5m−1=0,∵2m2+5m=1,∵2m2+5m+9=1+9=10,∵原代数式的值为10.【点睛】本题考查了代数式的化简,正确化简代数式是解题的关键.4.(2022·北京丰台·二模)已知3a2+b2−2=0,求代数式(a+b)2+2a(a−b)的值.【答案】2【解析】先将3a2+b2−2=0变形,得出3a2+b2=2,再将原式利用完全平方公式和整式运算化简,即可求解.【详解】∵3a2+b2−2=0,∴3a2+b2=2,∴(a+b)2+2a(a−b)=a2+2ab+b2+2a2−2ab=3a2+b2=2.【点睛】本题考查了完全平方公式和整式的化简求值,熟练掌握知识点是解题的关键.5.(2022·北京顺义·二模)已知x2+3x−2=0,求代数式(2x+y)(2x−y)−2x(x−3)+y2的值.【答案】4【解析】【分析】由x2+3x−2=0,可得x2+3x=2,根据完全平方公式,单项式乘以多项式,然后合并同类项,代入x2+ 3x=2,即可求解.【详解】解:∵x2+3x−2=0,∵x2+3x=2,(2x+y)(2x−y)−2x(x−3)+y2=4x2−y2−2x2+6x+y2=2x2+6x=2(x2+3x)=2×2=4.【点睛】本题考查了整数的混合运算,整体代入是解题的关键.6.(2022·北京房山·二模)已知x2+x−2=0,求代数式(x+1)(x−1)+x(x+2)的值.【答案】3【解析】【分析】先化简代数式,然后将x2+x−2=0,代入求解即可求解.【详解】解:∵x2+x−2=0,∵(x+1)(x−1)+x(x+2)=x2−1+x2+2x=2x2+2x−1=2(x2+x)−1=2×2−1=3.【点睛】本题考查了整式的化简求值,掌握整式的乘法是解题的关键.7.(2022·北京石景山·一模)已知m2−m=1,求代数式(2m+1)(2m−1)−m(m+3)的值.【答案】2【解析】【分析】根据平方差公式、合并同类项,化简代数式即可求解.【详解】解:(2m+1)(2m−1)−m(m+3)=4m2−1−m2−3m=3(m2−m)−1∵m2−m=1∴原式=3×1−1=2【点睛】本题考查了代数式、整式加减、合并同类项、平方差公式等知识点,熟练的正确运算是解决问题的关键.8.(2022·北京大兴·一模)已知x2−2x−1=0,求(x+1)(x−1)+2x(x−3)的值.【答案】2【解析】【分析】根据题意可得x2−2x=1,化简式子,整体代入即可求解.解:∵x2−2x−1=0,∵x2−2x=1,∵(x+1)(x−1)+2x(x−3)=x2−1+2x2−6x=3x2−6x−1=3(x2−2x)−1=3×1−1=2.【点睛】本题考查代数式求值,掌握整体代入的方法是解题的关键.9.(2022·北京一七一中一模)已知x2−3x−1=0,求代数式x(3x−6)−(x+2)(x−2)的值.【答案】6【解析】【分析】将代数式化简,再提出二次项系数2,即可整体代换x2−3x的值.【详解】x(3x−6)−(x+2)(x−2)=3x2−6x−(x2−4)=2x2−6x+4=2(x2−3x)+4∵x2−3x−1=0,∵x2−3x=1,∵原式=2×1+4=6.【点睛】本题考查整式的化简求值和整体代换法.熟练掌握整式的化简计算和整体代换是解决本题的关键.10.(2022·北京平谷·一模)已知a2+2a﹣2=0,求代数式(a﹣1)(a+1)+2(a﹣1)的值.【答案】−1【解析】(a−1)(a+1)+2(a−1)=a2+2a−3,由a2+2a−2=0可得a2+2a=2,整体代入求解即可.【详解】解:(a−1)(a+1)+2(a−1)=(a−1)(a+1+2)=(a−1)(a+3)=a2+2a−3∵a2+2a−2=0∵a2+2a=2∵原式=2−3=−1.【点睛】本题考查了代数式求值.解题的关键在于熟练掌握平方差公式及整体代入的思想.11.(2022·北京朝阳·一模)已知x2+x−3=0,求代数式(2x+3)(2x−3)−x(x−3)的值.【答案】0【解析】【分析】根据整式的乘法对代数式进行化简,整体代入即可得到答案.【详解】解:(2x+3)(2x−3)−x(x−3)=(2x)2−32−(x2−3x)=4x2−9−x2+3x=3x2+3x−9=3(x2+x−3)∵x2+x−3=0∵原式=0即代数式(2x+3)(2x−3)−x(x−3)的值为0.【点睛】本题考查整式的化简求值,根据整式的运算法则和乘法公式进行准确计算是解题的关键.12.(2022·北京市第一六一中学分校一模)已知a2﹣a﹣3=0,求代数式a(3a﹣2)﹣b2﹣(a+b)(a﹣b)【答案】6【解析】【分析】根据整式的混合运算将a(3a−2)−b2−(a+b)(a−b)化简即可得到2(a2−a),再将a2−a−3=0变形为a2−a=3,最后整体代入求值即可.【详解】解:a(3a−2)−b2−(a+b)(a−b)=3a2−2a−b2−a2+b2=2(a2−a).∵a2−a−3=0,即a2−a=3,∵2(a2−a)=2×3=6.【点睛】本题考查整式的混合运算和代数式求值.掌握整式的混合运算法则是解题关键.13.(2022·北京西城·一模)已知a2−2ab−7=0,求代数式(a+b)2−b(4a+b)+5的值.【答案】7【解析】【分析】先利用完全平方公式和整式的乘法运算法则化简,再把a2−2ab−7=0变形为a2−2ab=7,然后再代入,即可求解.【详解】解:(a+b)2−b(4a+b)+5=a2+2ab+b2−4ab−b2+5=a2−2ab+5∵a2−2ab−7=0,∵a2−2ab=7,∵原式=7+5=12【点睛】本题主要考查了整式的混合运算,熟练掌握整式混合运算法则是解题的关键.14.(2022·北京通州·一模)已知a2−ab=1,求代数式(a−b)2+(a+b)(a−b)的值.【答案】2【解析】【分析】先根据完全平方公式和平方差公式化简,再把a2−ab=1变形整体代入即可求解.,【详解】解:(a−b)2+(a+b)(a−b)=a2-2ab+b2+a2-b2=2a2-2ab=2(a2-ab)∵a2−ab=1∵(a−b)2+(a+b)(a−b)=2(a2-ab)=2.【点睛】本题主要考查完全平方差公式、平方差公式的化简,去括号得到最简结果,再把已知等式变形后代入计算求值,解题的关键是学会整体代入的思想解决问题.15.(2022·北京海淀·一模)已知m2−2mn−3=0,求代数式(m−n)2+(m+n)(m−n)−m2的值.【答案】3【解析】【分析】将(m−n)2+(m+n)(m−n)−m2化简得m2−2mn,再将m2−2mn−3=0变形m2−2mn=3代入即可.【详解】解:(m−n)2+(m+n)(m−n)−m2=m2−2mn+n2+m2−n2−m2=m2−2mn,∵m2−2mn−3=0,∵m2−2mn=3,∵(m−n)2+(m+n)(m−n)−m2=m2−2mn=3.【点睛】本题考查了整式的化简求值,解题的关键是整体代入思想的运用.16.(2022·北京市三帆中学模拟预测)已知x2−4x−3=0,求(x−3)(x+3)−(x+2)2+(xy)2÷y2的值.【答案】−10【解析】【分析】首先把整式进行化简,再把x2−4x=3代入,即可求得其值.【详解】解:∵x2−4x−3=0∴x2−4x=3∴(x−3)(x+3)−(x+2)2+(xy)2÷y2=x2−9−(x2+4x+4)+x2y2÷y2=x2−9−x2−4x−4+x2=x2−4x−13=3−13=−10【点睛】本题考查了整式的化简求值问题,采用整体代入法是解决此类题的关键.17.(2022·北京十一学校一分校模拟预测)已知x2+2x−1=0,求代数式(x+1)2+x(x+4)+(x−3)(x+ 3)的值.【答案】−5【解析】【分析】根据完全平方公式,单项式乘以多项式,平方差公式进行化简,再将已知代数式变形代入求解即可.【详解】解:∵(x+1)2+x(x+4)+(x−3)(x+3)=x2+2x+1+x2+4x+x2−9=3x2+6x−8又x2+2x−1=0x2+2x=1∵原式=3(x2+2x)−8=3×1−8=−5【点睛】本题考查了整式的化简求值,掌握完全平方公式,单项式乘以多项式,平方差公式是解题的关键.18.(2022·北京朝阳·模拟预测)先化简,再求值:(2a+1)2﹣2(a+2)(a﹣2),其中a为方程2x2+4x﹣3=0的解.【答案】2a2+4a+9,12【解析】【分析】直接利用乘法公式化简计算,进而把已知代入求出答案.【详解】解:(2a+1)2﹣2(a+2)(a﹣2)=4a2+4a+1﹣2(a2﹣4)=4a2+4a+1﹣2a2+8=2a2+4a+9,∵a为方程2x2+4x﹣3=0的解,∵2a2+4a=3,∵原式=3+9=12.【点睛】此题主要考查了整式的混合运算,正确运用乘法公式是解题关键.19.(2022·北京昌平·模拟预测)先化简,再求值:已知x−y=1,求(x+y)(x−y)+(y−1)2−x(x−2)的值.【答案】−2y+2x+1,3【解析】【分析】根据乘法公式与单项式乘以多项式法则展开合并同类项,然后整体代入x−y=1,求值即可.【详解】解:(x+y)(x−y)+(y−1)2−x(x−2),=x2−y2+y2−2y+1−x2+2x,=−2y+2x+1,∵x−y=1,∵原式=2x−2y+1=2(x−y)+1=2×1+1=3.【点睛】本题考查多项式乘法化简求值,掌握平方差公式和完全平方公式,以及单项式乘以多项式法则是解题关键.20.(2022·北京·北理工附中模拟预测)已知a2+2b2−1=0,求代数式(a−b)2+b(2a+b)的值.【答案】1【解析】【分析】先对代数式进行化简,然后再利用整体思想进行求解即可.【详解】解:(a−b)2+b(2a+b)=a2−2ab+b2+2ab+b2=a2+2b2,∵a2+2b2−1=0,∵a2+2b2=1,代入原式得:原式=1.【点睛】本题主要考查整式的乘法运算及完全平方公式,熟练掌握利用整体思想进行整式的化简求值是解题的关键.21.(2022·北京西城·二模)已知x2+x−5=0,求代数式(1x +1x+1)⋅56x+3的值.【答案】53x2+3x ,13【解析】【分析】先根据分式混合运算法则化简分式,再由x2+x-5=0,变形为3x2+3x=15,最后整体代入化简式计算即可.【详解】解:(1x +1x+1)⋅56x+3=2x+1 x(x+1)⋅53(2x+1)=53x 2+3x,∵x 2+x -5=0, ∵x 2+x =5, ∵3x 2+3x =15,当3x 2+3x =15时,原式=515=13, 【点睛】本题考查分式化简求值,熟练掌握分式混合运算法则是解题的关键. 22.(2022·北京市广渠门中学模拟预测)如果m 2−4m −6=0,那么代数式(m 2−m−4m+3+1)÷m+1m 2−9的值.【答案】m 2−4m +3,9 【解析】 【分析】根据分式的加法和除法法则化简题目中的式子,然后根据m 2−4m −6=0可以得到m 2−4m =6,然后整体代入化简后的式子即可解答本题. 【详解】 解:(m 2−m−4m+3+1)÷m+1m 2−9 =m 2−m−4+m+3m+3⋅(m+3)(m−3)m+1,=(m+1)(m−1)m+3⋅(m+3)(m−3)m+1,=(m −1)⋅(m −3), =m 2−4m +3, ∵m 2−4m −6=0, ∵m 2−4m =6,∵原式=m 2−4m +3=6+3=9. 【点睛】本题考查分式的化简求值,解答本题的关键是掌握整体思想的应用. 23.(2020·北京朝阳·模拟预测)先化简,再求值:(2x 2x+1−14x 2+2x )÷(1−4x +214x),其中x =3.【答案】−22x−1,25【解析】【分析】先根据分式的加减法法则计算括号内,再根据分式的乘除法法则计算即可.【详解】原式=4x 2−12x(2x+1)÷4x−4x2−14x=(2x+1)(2x−1) 2x(2x+1)⋅4x−(2x−1)2=−22x−1.当x=3时,原式=−22×3−1=−25.【点睛】本题主要考查了分式的混合运算,掌握分式的通分和约分是解题的关键.24.(2022·北京·二模)先化简,再求值:(a2a−b −2ab−b2a−b)÷a−bab,其中a=√3+1,b=√3−1.【答案】ab,2【解析】【分析】先对分式进行化简,然后再代入进行二次根式的运算即可.【详解】解:原式=a 2−2ab+b2a−b×aba−b=ab(a−b)2(a−b)2=ab,把a=√3+1,b=√3−1代入得:原式=(√3+1)(√3−1)=3−1=2.【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的运算及二次根式的运算是解题的关键.25.(2021·北京门头沟·二模)已知:x−2y=0,求2x+yx2−2xy+y2⋅(x−y)的值.【答案】5【解析】【分析】先根据分式的乘法法则进行化简,再由x−2y=0得到x=2y,代入即可求解【详解】解:2x+yx2−2xy+y2⋅(x−y)=2x+y(x−y)2·(x−y)=2x+yx−y;当x−2y=0时,x=2y,原式=4y+y2y−y=5yy=5.【点睛】本题考查了分式的乘法运算与化简求值,正确进行分式的化简是解题关键.26.(2021·北京·一模)已知m+2n=√5,求代数式(4nm−2n +2)÷mm2−4n2的值.【答案】2√5【解析】【分析】根据分式的混合运算法则把原式化简,代入计算即可.【详解】解:原式=(4nm−2n +2m−4nm−2n)÷mm2−4n2=2mm−2n×(m+2n)(m−2n)m=2(m+2n),当m+2n=√5时,原式=2√5.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.27.(2020·北京东城·二模)已知a−2b=0,求代数式1−(1a+3b +6ba2−9b2)÷a+3ba2−6ab+9b2的值.【答案】6ba+3b ,65【解析】【分析】将代数式化简得到6ba+3b ,再根据题意a−2b=0,可得a=2b,用b表示a代入6ba+3b,即可得出答案.【详解】解:1−(1a+3b +6b a 2−9b 2)÷a+3ba 2−6ab+9b 2=1−[a −3b (a +3b)(a −3b)+6b (a +3b)(a −3b)]÷a +3b(a −3b)2=1−a −3b +6b (a +3b)(a −3b)⋅(a −3b)2a +3b=1−a −3ba +3b=6ba+3b .当a −2b =0,即a =2b 时, 原式=6b2b+3b =65. 【点睛】本题考查了分式化简求值的知识点, 熟练掌握分式化简,以及用b 表示a 代入化简的代数式是解题的关键. 28.(2020·北京门头沟·一模)已知a ≠0,a +b ≠0且a −b =1,求代数式a 2−b 22a 2+2ab÷(a −2ab−b 2a)的值.【答案】12(a−b ),12. 【解析】 【分析】由题意根据分式的混合运算法则把原式化简,代入计算即可. 【详解】 解:a 2−b 22a 2+2ab÷(a −2ab−b 2a)=(a +b )(a −b )2a (a +b )÷(a 2a −2ab −b 2a )=(a +b )(a −b )2a (a +b )÷(a 2−2ab +b 2a)=(a +b )(a −b )2a (a +b )⋅a(a −b )2 =12(a −b )∵a −b =1, ∵ 原式=12(a−b )=12. 【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.29.(2020·北京·北理工附中三模)先化简:(x 2−2x+1x 2−x+x 2−4x 2+2x )÷x−4x,再从−1≤x ≤3的整数中选取一个你喜欢的x 的值代入求值.【答案】2x−3x−4,当x =−1时,原式=1 【解析】 【分析】先利用分式的基本性质和分式的混合运算顺序和法则对分式进行化简,然后从−1≤x ≤3的整数中选取合适的x 的值代入计算即可. 【详解】 原式=[(x−1)2x (x−1)+(x+2)(x−2)x (x+2)]⋅xx−4, =(x −1x +x −2x )⋅xx −4 =2x −3x ⋅xx −4 =2x −3x −4∵x ≠0,1,2, ∵当x =−1时,原式=2×(−1)−3−1−4=1.【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键. 30.(2020·北京·模拟预测)如果m 2+m −√2=0,求代数式(2m+1m 2+1)÷m+1m 3的值【答案】√2 【解析】 【分析】首先将代数式加以化简,然后根据题意进一步可知m 2+m =√2,最后整体代入计算即可. 【详解】 由题意得:(2m +1m 2+1)÷m +1m 3=(2m+1m 2+m 2m 2)×m 3m+1=(m+1)2m2×m3m+1=m(m+1)=m2+m,又∵m2+m−√2=0,∵m2+m=√2,∵原式=m2+m=√2.【点睛】本题主要考查了分式的化简求值,熟练掌握相关方法是解题关键.21。
化简求值50道(你值得拥有)
化简求值50道(你值得拥有)1.先化简,再求值:(+)/(÷),其中x=-1.2.化简求值:(a^2+1)/(a-1),a取-1、0、1、2中的一个数。
3.先化简,再求值:(√3-1)/(√3+1)。
4.先化简,再求值:(1-1/3+1/5-1/7+1/9)/(1+1/3+1/5+1/7+1/9)。
5.先化简,再求值:(1/(1+x)+x/(1-x^2)),其中x=(-1)+(-1)*tan60°。
6.先化简,再求值:(a^2+1)/(a^3-a),其中a=-1.7.先化简,再求值:(1-x)/(x^2-x-1),其中x满足x^2-x-1=0.8.先化简,再求值:(a+2)/(a^2+3a-1),其中a满足a^2+3a-1=0.9.先化简,再求值:(x-max)/(x-min),其中x为数据-1,-3,1,2的极差。
10.先化简,再求值:(√2+1)/(√2-1)。
11.化简求值:(1+√2)/(√2-1)。
12.先化简,再求值:(x^2-3)/(x-√3)。
13.先化简,再求值:(a+b)/(a-b),其中a=-1,b=1+√2.14.先化简,再求值:(x+1)/(x^2-1)其中x≠-1.15.先化简,再求值:(x-2)/(x^2+1),其中x=2.16.先化简,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值:(x+1)/(x-2)。
17.先化简,再求值:(1/x)+(x/1),其中x的值为方程2x=5x-1的解。
18.先化简:(x^2-1)/(x+1)。
19.先化简,再求值:(√(x+3)-1)/(√(x+3)+1),其中x=-1.20.先化简,再求值:(-2)/(x^2-4),其中x=2.21.先化简,再求值:(1-a)/(a^2+2a+1),其中a=-1/2.22.先化简,再求值:(-1)/(a^2-b^2),其中a=1,b=-1.23.先化简代数式(-a)/(a^2+1),再从1,2三个数中选择适当的数作为a的值代入求值。
代数式的化简求值问题典型例题
代数式的化简求值问题典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.例2.x=-2时,代数式635-++cx bx ax 的值为8,求当x=2时,代数式635-++cx bx ax 的值。
例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.例4. 已知012=-+a a ,求2007223++a a 的值.例5.(实际应用)A 和B 两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A 公司,年薪一万元,每年加工龄工资200元;B 公司,半年薪五千元,每半年加工龄工资50元。
从收入的角度考虑,选择哪家公司有利?例6.三个数a 、b 、c 的积为负数,和为正数,且bc bc ac ac ab ab c c b b a a x +++++=, 则 123+++cx bx ax 的值是_______ 。
另:观察代数式 bcbc ac ac ab ab c c b b a a +++++,交换a 、b 、c 的位置,我们发现代数式不改变,这样的代数式成为轮换式,我们不用对a 、b 、c 再讨论。
有兴趣的同学可以在课下查阅资料,看看轮换式有哪些重要的性质。
规律探索问题:例7.如图,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…. (1)“17”在射线 ____上, “2008”在射线___________上. (2)若n 为正整数,则射线OA 上数字的排列规律可以用含n 的 代数式表示为__________________________. 例8. 将正奇数按下表排成5列: 第一列 第二列 第三列 第四列 第五列第一行 1 3 5 7 第二行 15 13 11 9 第三行 17 19 21 23第四行 31 29 27 25根据上面规律,2007应在A .125行,3列 B. 125行,2列 C. 251行,2列 D . 251行,5列例9.(2006年嘉兴市)定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为k n 2(其中k 是使k n2为奇数的正整数),并且运算重复进行.例如,取n =26,则:若n =449,则第449次“F 运算”的结果是__________.A B D C E FO 1 7 2 8 3 9 4 10 511 6 12 26 13 44 11 第一次 F ② 第二次 F ① 第三次 F ② …和绝对值有关的问题(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。
2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)
2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m=4将m=4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式的值为8,求当x =2时,代数式的值。
分析: 因为当x=-2时, 得到,所以146822235-=--=++c b a当x=2时,=206)14(622235-=--=-++c b a例3.当代数式的值为7时,求代数式的值.分析:观察两个代数式的系数由 得 ,利用方程同解原理,得2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 整体代人,代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
例4. 已知,求的值.分析:解法一(整体代人):由 得所以:解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。
化简代数式50道题
化简代数式50道题一、化简下列代数式(1 - 20题带解析)1. 化简:3x + 2x- 解析:根据合并同类项的法则,同类项的系数相加,字母和指数不变。
这里3x和2x是同类项,将它们的系数3和2相加,得到(3 + 2)x=5x。
2. 化简:5a - 3a- 解析:5a和3a是同类项,按照合并同类项的方法,将系数相减,即(5 - 3)a = 2a。
3. 化简:4x+3y - 2x + y- 解析:- 合并同类项4x和-2x,得到(4 - 2)x = 2x。
- 然后,合并同类项3y和y,得到(3+1)y = 4y。
- 所以,化简后的结果为2x + 4y。
4. 化简:2a^2+3a^2- 解析:2a^2和3a^2是同类项,合并同类项时,系数相加,字母和指数不变,即(2 + 3)a^2=5a^2。
5. 化简:6xy-4xy- 解析:6xy和-4xy是同类项,将系数相减,得到(6 - 4)xy = 2xy。
6. 化简:3x^2y+2x^2y - 5x^2y- 解析:- 先合并3x^2y和2x^2y,系数相加得(3 + 2)x^2y=5x^2y。
- 再用5x^2y减去5x^2y,即(5 - 5)x^2y = 0。
7. 化简:4(a + b)-3(a + b)- 解析:- 把(a + b)看作一个整体,4(a + b)和-3(a + b)是同类项。
- 合并同类项得(4 - 3)(a + b)=a + b。
8. 化简:2m^2-3m + 4m^2-m- 解析:- 先合并同类项2m^2和4m^2,得到(2+4)m^2=6m^2。
- 再合并同类项-3m和-m,得到(-3 - 1)m=-4m。
- 所以化简结果为6m^2-4m。
9. 化简:3(a - b)+2(b - a)- 解析:- 先将2(b - a)变形为- 2(a - b)。
- 然后合并同类项3(a - b)和-2(a - b),得到(3-2)(a - b)=a - b。
代数式的化简求值问题(含答案)
第1讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m =4将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。
分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b a2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x 整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。