多种类型噪声滤波

合集下载

滤波的分类

滤波的分类

滤波的分类
滤波可以根据其特性和目的分为多种类型。

在数字信号处理中,
滤波是一种通过对信号进行变换来减少或消除噪声、增强信号或提取
特定信号特征的技术。

一、时域滤波
时域滤波直接对时间信号进行处理,主要包括低通滤波、高通滤波、
带通滤波和带阻滤波。

低通滤波可以去除高频信号噪声,高通滤波则
是去除低频信号噪声,带通滤波则可以保留一定的频率范围内的信号,而带阻滤波则是去除一定的频率范围内的信号。

二、频域滤波
频域滤波则是将信号转换到频域进行处理,主要包括傅里叶变换(FFT)、离散余弦变换(DCT)和小波变换等,这些变换可以将信号
转换到频率域,使得我们能够观察和处理不同频率范围内的信号,以
及去除或保留特定频率范围内的信号。

三、空间滤波
空间滤波是基于图像处理的滤波技术,主要用于去除图像噪声、增强
图像对比度、边缘检测等。

常见的空间滤波技术有中值滤波、均值滤波、高斯滤波、拉普拉斯滤波等。

四、自适应滤波
自适应滤波是一种特殊的滤波技术,根据信号本身的特点和环境噪声
的情况来自适应地动态调整滤波器的参数,以最大限度地保留信号的
特征和减少噪声的影响。

在数字信号处理中,滤波是非常重要的一部分,不同类型的滤波
技术可以应用于不同领域和不同信号类型的处理,通过正确选择和应
用滤波器可以有效地提高信号的质量和准确度。

图像处理中的噪声去除方法和效果评价

图像处理中的噪声去除方法和效果评价

图像处理中的噪声去除方法和效果评价噪声是图像处理领域中常见的问题之一。

在图像采集、传输和存储过程中,噪声往往会以各种形式引入图像,从而导致图像质量下降和信息丢失。

因此,研究和应用有效的噪声去除方法对于提高图像质量和增强图像细节非常重要。

本文将介绍图像处理中常见的噪声去除方法和评价方法。

一、图像噪声的分类常见的图像噪声主要包括高斯噪声、椒盐噪声、泊松噪声、固定模式噪声等。

高斯噪声是一种均值为0、方差为σ²的随机噪声。

椒盐噪声则是指在图像中随机分布出现的黑白像素点,其比例可以根据实际情况进行调整。

泊松噪声主要由光子计数引起,其分布满足泊松分布的统计规律。

固定模式噪声是由于设备本身或传输过程中的非线性特性引起的噪声。

二、噪声去除方法1. 均值滤波均值滤波是一种简单的线性平滑滤波方法,通过计算邻域像素的平均值来减少图像中的噪声。

具体而言,对于一个大小为n×n的滤波模板,将滤波模板内的像素值进行求平均操作,然后将平均值赋给目标像素。

均值滤波适用于高斯噪声的去除,但对于椒盐噪声等其他类型的噪声效果不佳。

2. 中值滤波中值滤波是一种非线性滤波方法,其原理是将滤波模板内的像素值按照大小进行排序,然后取中值作为目标像素的值。

中值滤波相比于均值滤波,在去除椒盐噪声等其他类型噪声时表现更好,能够有效保持图像的边缘和细节。

3. 自适应滤波自适应滤波是一种基于图像统计特性的非线性滤波方法。

其核心思想是根据图像中像素的灰度差异来调整滤波器的参数,从而在保持图像细节的同时去除噪声。

自适应滤波方法通常需要根据具体应用场景进行参数调优,以获得最佳的去噪效果。

4. 小波去噪方法小波去噪方法将信号分解为不同尺度的子带,然后通过对具有较小能量的高频子带进行阈值处理,将其置零,最后将处理后的子带重构成去噪后的信号。

小波去噪方法在处理非平稳噪声时表现良好,能够有效去除信号中的噪声,并保留信号的细节。

三、噪声去除效果评价对于图像噪声去除的效果评价是非常重要的,它能够客观地反映算法的优劣和适用性。

说明几种滤波方法的处理效果

说明几种滤波方法的处理效果

说明几种滤波方法的处理效果滤波是数字信号处理中的一种常见方法,用于去除信号中的噪声或其他干扰。

在实际应用中,不同的滤波方法具有不同的优缺点和适用场景。

本文将介绍几种常见的滤波方法及其处理效果。

1. 均值滤波均值滤波是一种简单有效的滤波方法,其基本思想是利用邻域像素点的平均值来代替当前像素点的值。

该方法适用于去除高斯噪声等随机噪声,但对于图像细节较多、边缘清晰的图像效果不佳。

2. 中值滤波中值滤波是一种非线性滤波方法,其基本思想是利用邻域像素点的中位数来代替当前像素点的值。

该方法适用于去除椒盐噪声等脉冲噪声,并且可以保留图像细节和边缘信息。

但对于连续性较强、变化较平缓的图像效果不佳。

3. 高斯滤波高斯滤波是一种线性平滑滤波方法,其基本思想是利用高斯函数对邻域像素点进行加权平均。

该方法适用于去除高斯噪声和椒盐噪声,并且可以保留图像细节和边缘信息。

但对于图像中存在较多纹理和细节的情况,会导致模糊效果。

4. 双边滤波双边滤波是一种非线性滤波方法,其基本思想是利用空间域和灰度值域两个方向上的高斯函数对邻域像素点进行加权平均。

该方法适用于去除高斯噪声、椒盐噪声和周期性噪声,并且可以保留图像细节和边缘信息。

但计算量较大,处理时间相对较长。

5. 小波变换小波变换是一种基于多尺度分析的信号处理方法,其基本思想是将信号分解成不同尺度的子带,并对每个子带进行滤波处理。

该方法适用于去除多种类型的噪声,并且可以保留图像细节和边缘信息。

但需要选择合适的小波基函数和分解层数,过高或过低的分解层数都会导致处理效果不佳。

综上所述,不同的滤波方法适用于不同的噪声类型和图像特征。

在实际应用中,需要根据具体情况选择合适的滤波方法,并进行参数调节和优化,以达到最佳的处理效果。

白噪声特性及其噪声滤波理论讨论

白噪声特性及其噪声滤波理论讨论

白噪声特性及其噪声滤波理论讨论噪声是我们日常生活中不可避免的存在,无论是来自环境中的声音还是电子设备中的干扰,都会对我们的正常生活和工作产生一定的影响。

而白噪声作为一种特殊的噪声形式,具有一些独特的特性和应用。

在本文中,我们将对白噪声的特性以及噪声滤波理论进行深入探讨。

首先,我们来了解一下什么是白噪声。

白噪声是一种具有均匀分布的随机信号,其功率谱密度在各个频率上近似相等。

这意味着白噪声在整个频谱范围内都具有相同的能量,没有明显的频率特点。

我们可以将其视为一种背景噪声,类似于电视机未台的“噪雪”图像或雨天的电台信号。

白噪声的特性是其噪声功率谱密度在各个频率上均匀分布,不会随时间变化而发生改变。

那么白噪声有哪些应用呢?首先,白噪声在语音和音频处理中具有重要作用。

例如,在音频文件处理中,可以利用白噪声来进行信号的增强和降噪。

此外,白噪声还可以用于音频系统的校准和测试,以确保系统的准确性和稳定性。

另外,白噪声也常被用于睡眠辅助、放松疗法和婴儿安抚等领域,帮助人们放松身心,提高睡眠质量。

此外,白噪声还在无线通信、雷达系统和电子设备等领域中得到广泛应用。

接下来,我们来探讨一下噪声滤波理论。

噪声滤波是一种通过滤波器对信号进行处理,以去除或抑制噪声成分的方法。

在滤波理论中,我们需要了解一些重要的概念和方法。

首先,滤波器的类型。

根据滤波器的频率响应特性,可以将滤波器分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

低通滤波器可以通过滤除高频成分来去除噪声,高通滤波器则可以滤除低频成分。

带通滤波器和带阻滤波器则可以选择性地滤除特定频率范围的信号。

其次,滤波器的设计。

滤波器的设计过程需要确定滤波器的频率响应特性,常用的设计方法有自适应滤波、卡尔曼滤波、FIR滤波和IIR滤波等。

在滤波器设计时,我们需要根据实际应用场景和要求,选择合适的滤波器类型和设计方法。

最后,滤波器的性能评估。

在实际的滤波过程中,我们需要评估滤波器的性能,以确保其对噪声的抑制效果和对信号的保留能力。

去除图像噪声方法

去除图像噪声方法

去除图像噪声方法去除图像噪声是图像处理领域中一个重要的任务,它可以提高图像的质量和细节,并改善后续图像分析和处理的准确性。

目前,有许多方法可以用来去除图像噪声。

下面我将介绍一些常见的方法。

1. 统计滤波器:统计滤波器是一种简单而有效的方法,它利用邻域像素值的统计信息来去除噪声。

常见的统计滤波器包括中值滤波器、均值滤波器和高斯滤波器。

中值滤波器通过取邻域像素的中值来去除噪声,适用于椒盐噪声和脉冲噪声;均值滤波器通过取邻域像素的平均值来去除噪声,适用于高斯噪声;高斯滤波器通过卷积操作将图像模糊,从而去除噪声。

2. 基于波let变换的方法:波let变换是一种多分辨率分析方法,可以将图像分解为不同尺度的频带。

通过对小波系数进行阈值处理,可以减小较小的波动,从而去除噪声。

常见的基于波let变换的方法包括小波阈值去噪和小波软阈值去噪。

小波阈值去噪通过选择适当的阈值来将小波系数除噪,适用于高斯噪声;小波软阈值去噪通过对小波系数进行软阈值处理,适用于椒盐噪声和脉冲噪声。

3. 基于偏微分方程的方法:偏微分方程方法是一种基于偏微分方程的图像去噪方法。

它通过定义偏微分方程来描述图像中的噪声和边缘特征,并通过迭代求解偏微分方程来去除噪声。

常见的基于偏微分方程的方法包括非线性扩散滤波和总变差去噪。

非线性扩散滤波通过改变图像的梯度来去除噪声,适用于高斯噪声;总变差去噪通过最小化图像的总变差来去除噪声,适用于椒盐噪声和脉冲噪声。

4. 基于深度学习的方法:深度学习是一种机器学习方法,近年来在图像去噪任务中取得了很大的成功。

通过构建深度卷积神经网络,并通过大量的图像数据对其进行训练,可以实现高效的图像去噪。

常见的基于深度学习的方法包括基于卷积自编码器的方法和基于生成对抗网络的方法。

卷积自编码器是一种将输入图像压缩到较小维度编码,再通过解码恢复图像的神经网络,它可以学习到图像的低层特征,从而去除噪声;生成对抗网络是一种通过博弈的方式训练生成器和判别器网络的方法,可以生成逼真的去噪图像。

滤波器种类作用原理

滤波器种类作用原理

滤波器种类作用原理滤波器是一种电子电路,它可以根据频率的不同,选择性地通过或抑制电路中的信号。

根据作用原理和种类的不同,滤波器可以分为多种类型。

1. 低通滤波器(Low-pass filter)低通滤波器是一种能够通过较低频率信号而抑制高频信号的滤波器。

它的作用是削弱或过滤掉输入信号中高于截止频率的频率分量。

低通滤波器广泛应用于音频和通信领域,常用于去除高频噪声。

2. 高通滤波器(High-pass filter)高通滤波器是一种能够通过较高频率信号而抑制低频信号的滤波器。

它的作用是削弱或过滤掉输入信号中低于截止频率的频率分量。

高通滤波器常用于音频和通信领域,常用于削弱或滤除低频噪声。

3. 带通滤波器(Band-pass filter)带通滤波器是一种能够通过一些频率范围内的信号而抑制其他频率范围内的信号的滤波器。

它的作用是只允许通过滤波器中选择的中心频率附近的频率分量,同时抑制其他频率范围的信号。

带通滤波器常用于音频、无线通信和图像处理等领域。

4. 带阻滤波器(Band-stop filter)带阻滤波器是一种能够通过除了一些频率范围内的信号外的其他信号的滤波器。

它的作用是削弱或完全抑制一些频率范围内的信号,同时允许通过其他频率范围的信号。

带阻滤波器常用于音频、无线通信和图像处理等领域。

5. 陷波滤波器(Notch filter)陷波滤波器是一种能够抑制特定频率的信号,但对其他频率相对较不敏感的滤波器。

它的作用是在滤波器的中心频率处产生一个深度抑制的窄带,用于削弱或滤除特定的干扰信号。

陷波滤波器常用于音频、无线通信和图像处理等领域。

滤波器的原理基于信号的频率特性,利用电子器件的非线性特性或通过设计合适的电路,选择性地通过或抑制输入信号中不同频率的分量。

常见的滤波器电路包括电容、电感和电阻等元件的组合。

通过调整元件的数值、组合方式和连接方式,可以实现不同类型的滤波器。

滤波器的工作原理可以根据其类型细分为不同的方法,例如使用RC电路或LC电路来实现滤波效果。

MATLAB的7种滤波方法(重制版)

MATLAB的7种滤波方法(重制版)

MATLAB的7种滤波方法(重制版)滤波是信号和图像处理中常用的一种方法,用于去除噪音,增强信号或图像的特征。

MATLAB提供了丰富的滤波函数和工具箱,包括7种常用的滤波方法,分别是均值滤波、中值滤波、高斯滤波、拉普拉斯滤波、Sobel滤波、Prewitt滤波和Canny边缘检测。

1.均值滤波:均值滤波是使用一个窗口对图像进行平滑处理的方法,窗口内的像素值取平均值作为输出像素值。

这种滤波方法可以有效地去除高频噪声,但会导致图像细节的模糊。

2.中值滤波:中值滤波是一种非线性滤波方法,它使用一个窗口对图像进行平滑处理,窗口内的像素值按照大小排序,然后取中值作为输出像素值。

这种滤波方法能够很好地去除椒盐噪声和脉冲噪声,但无法处理其他类型的噪声。

3.高斯滤波:高斯滤波是一种线性平滑滤波方法,它使用一个高斯函数对图像进行卷积处理,窗口内的像素值按照高斯分布加权求和作为输出像素值。

这种滤波方法能够平滑图像并保持图像的细节信息,但会导致图像的边缘模糊。

4.拉普拉斯滤波:拉普拉斯滤波是一种边缘增强滤波方法,它使用一个拉普拉斯算子对图像进行卷积处理,突出图像中的边缘信息。

这种滤波方法能够提高图像的锐度和对比度,但会增强图像中的噪声。

5. Sobel滤波:Sobel滤波是一种边缘检测滤波方法,它使用Sobel算子对图像进行卷积处理,突出图像中的边缘信息。

这种滤波方法能够检测出图像中的水平和垂直边缘,但对于斜向边缘检测效果较差。

6. Prewitt滤波:Prewitt滤波是一种边缘检测滤波方法,它使用Prewitt算子对图像进行卷积处理,突出图像中的边缘信息。

与Sobel滤波类似,Prewitt滤波也能够检测出图像中的水平和垂直边缘,但对于斜向边缘检测效果较差。

7. Canny边缘检测:Canny边缘检测是一种广泛应用的边缘检测算法,它使用多个步骤对图像进行处理,包括高斯滤波、计算梯度、非极大值抑制和双阈值处理。

这种滤波方法能够检测出图像中的所有边缘,并进行细化和连接,对于复杂的边缘检测有较好的效果。

医学影像处理技术的噪声抑制与使用教程

医学影像处理技术的噪声抑制与使用教程

医学影像处理技术的噪声抑制与使用教程医学影像处理技术在现代医学诊断中起着至关重要的作用。

然而,由于成像设备本身的限制以及其他因素的影响,医学影像中常常存在着各种噪声。

噪声会干扰医生对图像的解读,降低诊断准确性。

因此,噪声抑制是医学影像处理中的一个重要环节。

本文将介绍医学影像处理技术中的噪声抑制方法,并提供相关的使用教程。

噪声类型与特点医学影像中常见的噪声类型包括高斯噪声、椒盐噪声、斑点噪声等。

高斯噪声表现为图像的像素值在均值附近产生随机波动,其特点是服从正态分布。

椒盐噪声则表现为图像中的部分像素值突然变为最大或最小灰度值。

斑点噪声则表现为图像中的局部区域出现明显的灰度变化。

噪声抑制方法1. 均值滤波均值滤波是一种简单而有效的噪声抑制方法。

该方法通过计算像素周围邻域的均值来替代当前像素值。

均值滤波能够有效地抑制高斯噪声和椒盐噪声,但对于斑点噪声的抑制效果较差。

2. 中值滤波中值滤波是一种非线性滤波方法,能够有效地抑制椒盐噪声和斑点噪声。

该方法通过计算像素周围邻域的中值来替代当前像素值。

中值滤波的缺点是会导致图像的边缘模糊。

3. 小波去噪小波去噪是一种基于小波变换的噪声抑制方法,能够同时抑制各种噪声类型。

该方法通过将图像分解为不同尺度的频带,然后对每个尺度的频带进行噪声抑制,最后通过小波反变换得到去噪后的图像。

小波去噪的优点是能够保留图像的细节信息。

4. 自适应滤波自适应滤波是一种根据图像自身特点来选择合适滤波方式的噪声抑制方法。

该方法通过计算邻域像素与当前像素的差异来确定滤波方式,以保留图像细节的同时抑制噪声。

自适应滤波能够抑制各种类型的噪声,并能够更好地保留图像的细节信息。

使用教程1. 在使用医学影像处理技术进行噪声抑制前,首先要识别出噪声类型。

常见的方法是通过观察图像的视觉特征来判断噪声类型,或者利用特定的算法进行自动检测。

2. 根据噪声类型选择相应的噪声抑制方法。

如果是高斯噪声或椒盐噪声,可以选择均值滤波或中值滤波;如果是斑点噪声,可以选择小波去噪或自适应滤波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DSP系统课程设计音频信号多种类型噪声滤波分析与处理任课老师:钱满义学院:电信学院班级:姓名:学号: 142同组成员班级:同组成员姓名:同组成员学号: 1422017年4月20日目录:设计背景 (2)设计要求 (4)设计思路及原理 (5)设计思路 (5)设计原理 (6)Matlab实验 (8)噪声类型分析过程 (8)噪声滤除方法 (11)Matlab仿真过程 (11)Matlab结果分析总结 (21)DSP设计程序运行及结果 (21)运行结果 (21)运行结果分析 (25)滤波算法程序段 (26)设计过程中遇到的问题及解决方法 (28)DSP设计感想 (29)参考文献 (30)设计背景随着信息时代和数字世界的到来,数字信号处理已成为如今一门极其重要的学科和技术领域。

数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。

数字信号处理(DSP)包括两重含义:数字信号处理技术(Digital Signal Processing)和数字信号处理器(Digital Signal Processor)。

数字信号处理(DSP)是利用计算机或专用处理设备,以数值计算的方法、对信号进行采集、滤波、增强、压缩、估值和识别等加工处理,借以达到提取信息和便于应用的目的,其应用范围涉及几乎所有的工程技术领域。

在信号处理中,滤波就显得非常重要。

在数字信号处理过程中,经常需对信号进行过滤、检测、预测等处理,这些任务的完成都要用到滤波器。

数字滤波器是数字信号处理的基本方法。

根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应( IIR)滤波器和有限冲激响应(FIR)滤波器。

FIR 滤波器是有限长单位冲激响应滤波器,在结构上是非递归型的。

它可以在幅度特性随意设计的同时,保证精确严格的线性相位。

所以FIR 数字滤波器广泛地应用于数字信号处理领域。

音频信号(audio)是带有语音、音乐和音效的有规律的声波的频率、幅度变化信息载体。

音频信号在信号采集、传输、处理等过程中常受到多种类型噪声的干扰,主要包含环境噪声、电子线路噪声、电源噪声等等。

为了恢复原来的音频信号,常需要设计音频信号滤波算法用于抑制或者滤除音频信号中的噪声。

图1音频信号噪声产生的示意图由于音频信号可能受到不同类型的干扰从而形成不同类型的噪声,可通过分析不同类型噪声的特点,设计适用的滤波算法实现噪声的抑制或滤除。

设计要求1、利用Matlab分析实验提供的4份含噪音频信号的特征分析并设计实现适用于不同类型噪声的滤波方法。

培养利用Matlab进行信号处理的仿真能力;2、对A/D和D/A转换器及DSP信号处理器进行编程,培养使用DSP硬件平台实现信号采集与传输能力,同时利用DSP C语言实现对采集到的信号检测识别,即具有实时信号处理的能力。

设计思路及原理设计思路1、利用Matlab进行仿真分析(1)分别读取含有不同种类噪声的音频文件提取音频对应的数据以及采样率,显示含噪信号的时域波形;(2)从时、频域分别分析含噪信号中噪声类型特征;(3)设计适用于不同种类噪声类型的滤波算法,利用Matlab设计含噪信号滤波处理,尝试进行滤波性能的定量分析。

2、利用C语言设计DSP程序,在信号处理平台上实现噪声滤波处理首先利用利用Matlab分析音频信号所含噪声特征,设计合适的滤波方法;在DSP对音频信号通过A/D采集,编写音频信号采集、滤波程序,实现音频信号的噪声滤波处理。

实验步骤:(1)音频信号的噪声分析对实验提供的四份音频信号利用Matlab进行噪声信号的特征分析,对每种不同的噪声提出适用的滤波处理算法;(2)音频信号的滤波算法实现与验证利用Matlab编程实现滤波算法,通过滤波后的音频数据与原始不含噪声的音频数据进行对比分析,计算检验滤波算法的性能参数。

(3)音频信号DSP平台采集通过音频线连接计算机声卡至DSP板卡的音频输入口,初始化DSP的A/D采集模块的硬件配置(采样率等),利用查询模式或者DMA模式进行音频信号的采集,将采集到的音频信号存储到申请的缓冲区中。

(4)时域信号的分析将采集获得的音频信号利用Graph波形查看功能显示时域波形,并从波形上分析音频信号的时域特征,并与Matlab数据进行比较等。

(5)滤波算法的DSP平台实现在DSP平台上实现音频信号的滤波算法,利用DSP实现音频信号中多种噪声类型的滤波处理。

(6)DSP滤波实现的性能验证通过D/A播放滤波后的音频信号进行滤波性能的验证。

设计原理(t x)(t y信号采集与传输:DSP数据流的输入和输出信号处理:Matlab算法仿真→Simulator下C算法仿真→DSP硬件处理利用DSP实现信号实时FIR滤波需要分4个步骤:第1步:利用MATLAB进行FIR滤波仿真第2步:利用Simulator在CCS下进行FIR滤波仿真第3步:编写利用DMA进行信号采集与传输程序,利用DSP进行快速信号采集与传输;第4步:实时DMA采集外部信号,实现DSP信号实时FIR滤波信号采集和滤波的流程图在DMA采集和传输程序的主程序main_dma.c中的存储器处理子程序processBuffer()中嵌入滤波算法,则可以实现利用DSP实现信号实时滤波。

DSPLIB库与fir()函数的调用方法调用DSPLIB库时,在工程中要添加库文件55xdspx.lib(存储器为大模式),在C源程序中要包含dsplib.h头文件,即#include <dsplib.h>。

Fir()函数调用格式:ushort oflag = fir(DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx,ushort nh)入口参数说明:x[nx] 表示含有nx个实数的实输入信号向量;h[nh] 表示含有nh个实数的系数向量,按自然顺序排列,即滤波器的单位脉冲响应。

r[nx] 表示含有nx个实数的输出向量;允许原位运算,即r=x。

注:DATA为Q15格式数据Matlab实验工具箱:滤波器设计工具箱sptool设计FIR滤波器Matlab实验噪声类型分析过程:audio_typea信号噪声类型:由于信号频谱是全频段的,考虑是高斯噪声。

用audio_typea信号减去audio_inital信号后得到噪声a信号,画出噪声a信号波形,对时域进行概率统计,发现幅值呈正态分布,查阅资料得出噪声a为高斯噪声。

实验程序(节选):figure(22)n1=y1-y;n11=hist(n1,100);plot(n11);噪声a概率统计audio_typeb信号噪声类型:用上诉方法做出噪声b的波形后,发现噪声b的幅值结果只集中在一点,所以b是脉冲干扰。

噪声b时域波形audio_typec信号噪声类型:做出audio_typec信号的波形,发现有个100hz单频噪声,用上诉方法做出噪声c的波形后,发现噪声信号是多个幅值不同但频率相同的正弦信号叠加。

噪声c时域波形audio_typed信号噪声类型:做出audio_typed信号波形后,发现噪声d为频率4000Hz附近的高频噪声。

噪声滤除方法:a噪声,采用滑动平均去噪;b噪声,采用中值滤波;c噪声,采用高通滤波;d噪声,采用带阻滤波。

Matlab仿真过程audio_inital读取程序[y,Fs] = audioread('audio_inital.wav');sound(y,48000);N=length(y);f=Fs*(0:(N/2-1))/N;Y=fft(y,N);fp=abs(Y);figure(1)subplot(2,1,1),plot(y)subplot(2,1,2),plot(f,fp(1:N/2)),axis([0 1000 0 200])audio_inital信号时域、频域波形audio_typea信号中噪声类型为高斯噪声,采用20点滑动平均去噪实验程序[y,Fs] = audioread('audio_inital.wav');[y1,Fs] = audioread('audio_typea.wav');N=length(y1);f=Fs*(0:(N/2-1))/N;Y1=fft(y1);fp1=abs(Y1);figure(2);subplot(2,1,1),plot(y1);subplot(2,1,2),plot(f,fp1(1:N/2)),axis([0 10000 0 200]);%20点滑动平均去噪x=y1(:,1);z1=smooth(x,20);sound(z1,48000);Z1=fft(z1);fpz2=(Z1);figure(21);subplot(2,1,1),plot(z1);subplot(2,1,2),plot(f,fpz2(1:N/2)),axis([0 10000 0 200]); figure(22)n1=y1-y;n11=hist(n1,100);plot(n11);audio_typea信号滤波前时域、频域波形audio_typea信号滤波后时域频域波形audio_typeb中噪声类型为脉冲噪声,采用13点的中值滤波实验程序[y2,Fs] = audioread('audio_typeb.wav');N=length(y2);f=Fs*(0:(N/2-1))/N;Y2=fft(y2);fp2=abs(Y2);figure(3)subplot(2,1,1),plot(y2)subplot(2,1,2),plot(f,fp2(1:N/2)),axis([0 10000 0 300]) %13点的中值滤波x=y2(:,1);z2=medfilt1(x,13);Z2=fft(z2);fpz2=abs(Z2);figure(41)subplot(2,1,1),plot(z2);subplot(2,1,2),plot(f,fpz2(1:N/2)),axis([0 10000 0 300] figure(32)n2=y2-y;n22=hist(n2,1000);plot(n22);audio_typeb信号滤波前时域、频域波形audio_typeb信号滤波后时域、频域波形audio_typec中噪声类型为低频正弦噪声,采用高通滤波实验程序[y3,Fs] = audioread('audio_typec.wav');N=length(y3);f=Fs*(0:(N/2-1))/N;Y3=fft(y3);fp3=abs(Y3);figure(4)subplot(2,1,1),plot(y3)subplot(2,1,2),plot(f,fp3(1:N/2)),axis([0 1000 0 500])%高通滤波,Num3为fdatool设计的截频为100HZ的高通滤波器z3=filter(Num3,1,y3);Z3=fft(z3);fpz3=abs(Z3);sound(z3,48000);figure(41)subplot(2,1,1),plot(z3);subplot(2,1,2),plot(f,fpz3(1:N/2)),axis([0 1000 0 500])figure(42)n3=y3-y;plot(n3)滤波器参数滤波器幅频特性audio_typec信号滤波前时域、频域波形audio_typec信号滤波后时域、频域波形audio_typed中的噪声为某高频段的噪声,采用带阻滤波。

相关文档
最新文档