初一数学压轴题:绝对值化简求值
【精品文档】初一数学同步练习:绝对值化简求值-范文模板 (2页)
【精品文档】初一数学同步练习:绝对值化简求值-范文模板
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
初一数学同步练习:绝对值化简求值
设a,b,c为实数,且化简|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|
【解析】
|a|+a=0,即|a|=-a,a
|ab|=ab,ab0,b
|c|-c=0,即|c|=c,c0
原式=-b+a+b-c+b-a+c=b
【答案】b
二、【考点】有理数运算、绝对值化简
【人大附期中】
在有理数的范围内,我们定义三个数之间的新运算#
法则:a#b#c=(|a-b-c|+a+b+c)/2
如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5
(1)计算:3#(-2)#(-3)___________
(2)计算:1#(-2)#(10/3)=_____________
(3)在-6/7,-5/7-1/7,0,1/9,2/98/9这15个数中,①任取三个数作为a、b、c 的值,进行a#b#c运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行a#b#c运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是
___________
【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。
绝对值计算化简专项练习题有答案
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.绝对值化简求值参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2 =|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49 9.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x <﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x <时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x ≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x ﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x ﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011| =1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x 到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x ﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2Welcome !!!欢迎您的下载,资料仅供参考!。
绝对值的化简及解绝对值方程压轴题三种模型全攻略(原卷版)
专题07绝对值的化简及解绝对值方程压轴题三种模型全攻略【考点导航】目录【知识点梳理】 (1)【典型例题】 (1)【类型一利用数轴化简绝对值】 (1)【类型二利用几何意义化简绝对值】 (2)【类型三解绝对值方程】 (4)【过关检测】.......................................................................................................................................................5【知识点梳理】1.绝对值的定义一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |2.绝对值的意义①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。
3.绝对值的化简:【典型例题】【类型一利用数轴化简绝对值】例题:(2023春·黑龙江哈尔滨·六年级哈尔滨市萧红中学校考期中)有理数,,a b c 在数轴上的位置如图所示,化简:a a b b c++--(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩【变式训练】(1)在如图所示的数轴上将a,b,c三个数表示出来;【类型二利用几何意义化简绝对值】【变式训练】利用数形结合思想回答下列问题:【类型三解绝对值方程】【变式训练】2.(2023秋·辽宁鞍山·七年级统考期末)阅读材料并回答问题:x 的含义是数轴上表示数x 的点与原点的距离,即0x x =-,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;因此可以推断1x -表示在数轴上数x 与数1对应的点之间的距离.例如,12x -=,就是在数轴上到1的距离为2的点对应的数,即为=1x -或3x =;回答问题:(1)若2x =,则x 的值是______;(2)利用上述方法解下列方程:①32x -=;②138x x -+-=【过关检测】1.(2023·全国·九年级专题练习)根据数轴解方程:235x x -++=.2.(2023·江苏·七年级假期作业)有理数a ,b ,c 在数轴上的位置如图所示.(1)用“<”连接:a ,a -,b ,b -,c ,c -;(2)化简:a b a b b c -+++-.(1)用“>”或“<”填空:b c -_______0,(2)化简:||||||b c a b c a -++--题:(1)求a b c a b c++=_______①若点P 在点M 、N 之间,则14x x ++-=______。
绝对值的化简求值问题的几种类型及解法解析
数学篇解题指南绝对值在化简求值问题、解方程或不等式问题中都会涉及.解答含绝对值问题的关键就在于去掉绝对值符号.一般遵循的原则是:先判断绝对值符号中式子的正负,再根据法则去掉绝对值符号.单个绝对值的问题一般比较简单,但是有的题目会同时出现多个绝对值或多重绝对值,这样就使题目变得复杂了.下面介绍几类有关绝对值的化简求值问题,供大家参考.一、含单个绝对值问题一个题目中只含有一个绝对值是最基础的题目,此时只需考虑去绝对值符号的条件,即对于任意数|a |:(1)当a >0时,|a |=a ;(2)当a =0时|a |=0;(3)当a <0时;|a |=-a .同学们在解题时应根据题设条件或挖掘隐含条件,确定绝对值符号里代数式的正负.若题目对含绝对值代数式的字母没有限制条件,须运用分类讨论的方法来解答.例1若|x |=3,|y |=2,且|x -y |=y -x ,求x +y 的值.分析:此题中|x |=3,可知x =±3;|y |=2可知y =±2.由题中|x -y |=y -x 可知y ≥x .由此可以推断,当y =2时,x 可以为±3,此时x +y =-1或5;当y =-2时,x 只能为-3,此时x +y =-5.最后综合所有情况即可得解.解:∵|x |=3,∴x =±3;同理可得y =±2,∵|x -y |=y -x ,∴y ≥x ,①当y =2时,x =-3,x +y =-1.②当y =-2时,x =-3,则x +y =-5.综合①②得x +y 的值可能是-1、-5.评注:求解此题是利用|x -y |≥0挖掘了隐含条件y ≥x ,然后确定x 和y 的可能值,简化了分类讨论的种类.同学们在求解过程中一定要仔细观察,充分挖掘题目中的隐含条件.二、含多个绝对值问题有些含有绝对值的题目中往往不止一个含绝对值的代数式,可能是两个、三个甚至是更多个含绝对值的代数式,通过“+”“-”“×”“÷”等运算符号连接.此时,去绝对值符号就需要先找出每个绝对值的零点值,再把全体实数分段,然后在每一实数段中化去绝对值符号,最后分类讨论去绝对值的结果.例2化简:|3x +1|+|2x -1|.分析:此题含有两个绝对值,要想去绝对绝对值的化简求值问题的几种类型及解法解析盐城市新洋初级中学聂玉成19数学篇值符号就要将绝对值符号内的数或式与“0”比较,然后逐个去掉绝对值符号.令3x +1=0得x =-13,同理,令2x -1=0得x =12.所以,当x 取不同的值时,两个绝对值的正负是不同的,需要分类讨论来解答.x 的取值分布如图所示:---解:令3x +1=0,得x =-13,令2x -1=0,得x =12,所以,实数轴被-13和12分为如图所示的三个部分.当x <-13时,3x +1<0,且2x -1<0,则原式=-(3x +1)+[-(2x -1)]=-5x ;当-13≤x ≤12时,3x +1≥0,且2x -1≤0,则原式=(3x +1)+[-(2x -1)]=x +2;当x >12时,3x +1>0,且2x -1>0,则原式=(3x +1)+(2x -1)=5x ;综上所述,当x <-13,原式=-5x ;当-13≤x ≤12,原式=x +2;当x >12,原式=5x .评注:此题含有两个绝对值,即含有两个零点(x =-13和x =12),在去绝对值符号时需要借助“分类讨论思想”分情况解答.特别是第二种情况,去绝对值符号时两个代数式是一正一负,务必要注意符号问题.三、含多重绝对值问题有些较为复杂的问题中含有多重绝对值符号,即绝对值符号中还有绝对值符号,我们称这种形式为多重绝对值.在求解多重绝对来解答问题.例3已知x <-3,化简:|3+|2-|1+x |||.分析:这是一个含有多重绝对值符号的问题,在求解时需要根据“由内而外”的原则逐层去绝对值.首先根据x 的范围判断出1+x <0,所以最里层绝对值|1+x |=-(1+x ).第二层|2-|1+x ||可以转化为|2-[-(1+x )]|=|3+x |.因为x <-3,所以3+x <0,即|2-|1+x ||=-(3+x ).最外层|3+|2-|1+x |||可转化为|3+[-(3+x )]|=|-x |.这样根据x 的取值范围一步步利用绝对值的代数意义即可化简.解:①最内层:∵x <-3,∴1+x <-2<0,∴|1+x |=-(1+x ),②第二层:|2-|1+x ||=|2-[-(1+x )]|=|2+(1+x )|=|3+x |,∵x <-3,∴3+x <0,∴|3+x |=-(3+x ),∴|2-|1+x ||=-(3+x ),③最外层:|3+|2-|1+x |||=|3+[-(3+x )]|=|-x |,∵x <-3,∴-x >3>0,∴|-x |=-x ,∴|3+|2-|1+x |||=-x ,综合①②③可得|3+|2-|1+x |||化简后为-x .评注:此题数值比较简单,但含有多重绝对值符号.在去绝对值符号时要由内而外逐层将3个层次的绝对值符号内部的数或式同“0”作比较,大于等于“0”的直接去绝对值;小于“0”的一定要添加“-”.绝对值是中学数学中的一个重要概念,常与其他知识结合起来考查.同学们只要牢牢掌握去绝对值的基本方法,结合“由内而解题指南。
初一数学期中压轴题系列:绝对值化简求值
初一数学期中压轴题系列:绝对值化简求值【难度】★★★★★【考点】有理数运算、绝对值化简【人大附期中】在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#()=_____________(3)在-这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是___________【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。
【解析答案】(1)原式=3(2)原式(3)当a<b+c时,原式=b+c,当a≥b+c时,原式=a①令,时a#b#c的最大值为②4(提示,将分别赋予b、c同时赋予a四个负数;最后一组,a=0,b、c赋予两个负数即可)【难度】★★★☆☆【考点】绝对值与平方的非负性、二元一次方程组【北京四中期中】已知:(a+b)2+|b+5|=b+5,|2a-b-1|=0,求ab的值.【分析】考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。
【解析】由题意知b+50,(a+b)2+b+5=b+5,即(a+b)2=0……①2a-b-1=0……②解得,所以【答案】【难度】★★★☆☆【考点】绝对值化简,零点分段法【北大附中期中】化简|3x+1|+|2x-1|【分析】零点分段法,两个零点:,【答案】原式=5x;x+2(-); -5x(x<)【难度】★★★★☆【考点】有理数乘法法则、分类讨论、整体法求值【清华附中期中】已知:abc<0,a+b+c=2,且求多项式ax4+bx2+c-5的值。
绝对值的化简求值
初一上学期期中考试重难点分析 ----绝对值的化简求值进入初一上学期,同学们会发现大部门知识学起来还是比较简单,唯独绝对值的化简和 求值成为了众多学生的拦路虎。
无论是从绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说任何一个有理数的绝对值都是非负数,即:无论a 取任意有理数都有||a ≥0。
经过仔细分析,绝对值的考查无非就三种题型,用到的思想基本上就是分类讨论和数形结合,方法大部分题型考查的就是零点分段讨论,下面我们简单的分析下:零点分段讨论法:我们把使绝对值符号内的代数式为0的未知数的值叫做零点,一个代数式里有几个绝对值符号,通常就有几个零点。
比如|42||3|-++x x ,有两个绝对值,就有两个零点,分别是-3和2。
确定了零点后,再根据两个零点在数轴上把整个数轴分成几段,就进行几类分类讨论。
题型一:含一个绝对值符号的化简 1、已知未知数的取值或取值范围进行化简典型题型:当x >2时化简||23x x -+(根据绝对值的意义直接化简)解:原式=-+=-2333x x x 。
2、没有告知未知数的取值或取值范围进行化简典型题型:化简||x x -+52(此题中零点是5,5把数轴分成了两部分,因此分两类讨论) 解:(1)当5≥x 时,则05≥-x 是一个非负数,则它的绝对值应是它本身,所以原式=-+=-x x x 5235。
(2)当x <5时,则x -<50,是一个负数,而负数的绝对值应是它的相反数,所以原式=--+=-++=+()x x x x x 52525。
人大附中2009年期中测试真题:化简||2612x y x y +-+- 此题虽含有一个绝对值符号,但绝对值符号内出现了两个未知数,在这种情况下,我们把含有两个未知数的式子看作一个整体,即把2x +y 看作一个整体未知数,找出零点,使260x y +-=的整体未知数的值是26x y +=,我们把6叫做此题的零点,这样又可分两种情况进行讨论。
七年级数学--绝对值化简专题训练
七年级数学--绝对值化简专题训练
1.如图,数轴上的三点A、B、C分别表示有理数a、b、c。
则:
1)b-a < a-c < b+c
2)|b-a| - |a-c| + |b+c|
2.如图,数轴上的a、b、c分别表示有理数a、b、c。
1)①c或-c,②a或-a,③|a-b|
2)|b-a| + |a-b-c| - |a-c|
3.数a,b,c在数轴上的位置如图所示:
化简:|b-a| - |c-b| + |a+b|
4.已知:有理数a、b、c在数轴上如图所示。
化简:|a| +
3|c-a| + |b+c|
5.已知a、b、c这三个有理数在数轴上的位置如图所示。
化简:|b-c| - |a-b| + |a+c|
6.有理数在数轴上的位置如图所示,化简:|c-a| + |b-c| - |a-
b| + |a+b|
7.有理数a,b,c在数轴上如图所示,试化简|2c-b| + |a+b| - |2a-c|
8.已知有理数a、b、c在数轴上的位置如图所示。
化简:|a-b| - |a+c| - |c-a| + |a+b+c| + |b-c|
9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C。
1)填空:A、B之间的距离为|a-b|,B、C之间的距离为|b-c|,A、C之间的距离为|a-c|;
2)化简:|a+b| - |c-b| + |b-a|。
(完整word版)七年级数学--绝对值化简专题训练
(完整word版)七年级数学--绝对值化简专题训练亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。
0=a()0=a1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a0,a﹣c0,b+c0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|=;②|a|=;③|a﹣b|=.(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.结尾处,小编送给大家一段话。
七年级数学--绝对值化简专题训练
绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。
0a()0==a1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a 0,a﹣c 0,b+c 0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|= ;②|a|= ;③|a﹣b|= .(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.。
初一数学压轴题:绝对值化简求值
初一数学压轴题:绝对值化简求值一、【考点】绝对值的代数意义、绝对值化简【北大附中期中】设a,b,c为实数,且化简|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【解析】|a|+a=0,即|a|=-a,a≤0;|ab|=ab,ab≥0,b≤0;|c|-c=0,即|c|=c,c≥0原式=-b+a+b-c+b-a+c=b【答案】b二、【考点】有理数运算、绝对值化简【人大附期中】在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#(10/3)=_____________(3)在-6/7,-5/7……-1/7,0,1/9,2/9……8/9这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是___________【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。
【解析&答案】(1)原式=3(2)原式=4/3(3)当a<b+c时,原式=b+c,当a≥b+c时,原式=a①令b=7/9,c=8/9时 a#b#c的最大值为b+c=5/3②4(提示,将1/9,2/9……8/9分别赋予b、c同时赋予a 四个负数;最后一组,a=0,b、c赋予两个负数即可)三、【考点】绝对值与平方的非负性、二元一次方程组【北京四中期中】已知:(a+b)²+|b+5|=b+5,|2a-b-1|=0,求ab的值.【分析】考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。
七年级数学--绝对值化简专题训练
七年级数学--绝对值化简专题训练-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。
0a()0=a=1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a0,a﹣c0,b+c0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|=;②|a|=;③|a﹣b|=.(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.。
初一数学期中压轴题:绝对值化简求
初一数学期中压轴题:绝对值化简求值初一数学期中压轴题:绝对值化简求值期中考试马上开始了,关于初一数学期中压轴题:绝对值化简求值,以供同学们练习参考!一、【考点】绝对值的代数意义、绝对值化简【xx期中】设a,b,c为实数,且化简|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【解析】|a|+a=0,即|a|=-a,a0;|ab|=ab,ab0,b0;|c|-c=0,即|c|=c,c0原式=-b+a+b-c+b-a+c=b【答案】b二、【考点】有理数运算、绝对值化简【人大附期中】在有理数的范围内,我们定义三个数之间的新运算#法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#()=_____________(3)在这15个数中,①任取三个数作为a、b、c的值,进行a#b#c运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行a#b#c运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是___________【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。
【解析答案】(1)原式=3(2)原式(3)当a<b+c时,原式=b+c,当ab+c时,原式=a①令,时a#b#c的最大值为②4(提示,将分别赋予b、c同时赋予a四个负数;最后一组,a=0,b、c 赋予两个负数即可)三、【考点】绝对值与平方的非负性、二元一次方程组【xx期中】已知:(a+b)+|b+5|=b+5,|2a-b-1|=0,求ab的值.【分析】考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。
【解析】由题意知b+50,(a+b)+b+5=b+5,即(a+b)=0①2a-b-1=0②解得,所以【答案】四、【考点】绝对值化简,零点分段法【xx期中】化简|3x+1|+|2x-1|【分析】零点分段法,两个零点:,【答案】原式=5x();x+2(<); -5x(x<)观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
2023-2024学年北师大版七年级数学上册压轴题攻略专题02 绝对值化简的三种考法(解析版)
专题02绝对值化简的三种考法【知识点精讲】1.绝对值的意义绝对值:数轴上表示数a的点与原点的距离叫做a的绝对值,记作a 2.绝对值的性质绝对值表示的是点到原点的距离,故有非负性a≥0,即:,00,0,0a aa aa a>⎧⎪==⎨⎪-<⎩互为相反数的两个数绝对值相等3.绝对值与数的大小1)正数大于0,0大于负数。
2)理解:绝对值是指距离原点的距离所以:两个负数,绝对值大的反而小;两个正数,绝对值大的大。
类型一、利用数轴化简绝对值)先分别判定绝对值内的数的大小,再去绝对值,再合并同类项即可求解.【答案】(1)6或8.(1)判断正负,用“>”或“<”填空:b -a 0;c -(2)化简:2b a c b a c----+,一个当-2≤x ≤5时,|x +2|+|x -5|=x +2+5-x =7,当x <-2时,|x +2|+|x -5|=-x -2+5-x =-2x +3>7,∴使得|x +2|+|x -5|=7的所有整数为:-2,-1,0,1,2,3,4,5,∵-2+(-1)+0+1+2+3+4+5=12,故答案为:12;【点睛】本题考查数轴、绝对值,解答本题的关键是明确题意,利用数轴的特点和分类讨论的数学思想解答.【变式训练2】综合与实践:问题情境:数学活动课上,王老师出示了一个问题:点A B 、在数轴上分别表示有理数a b AB 、,、两点之间的距离表示为AB ,在数轴上A B 、两点之间的距离||AB a b =-.利用数形结合思想回答下列问题:(1)数轴上表示1和7两点之间的距离是__________;数轴上表示3和2-的两点之间的距离是__________;独立思考:(2)数轴上表示x 和3-的两点之间的距离表示为__________;(3)试用数轴探究:当|2|3m -=时m 的值为__________.实践探究:利用绝对值的几何意义,结合数轴,探究:(4)利用数轴求出|1||4|x x -+-的最小值,并写出此时x 可取哪些整数值?(5)当|1||9||16|m m m ++-+-的值最小时,m 的值为__________(直接写出答案即可).【答案】(1)65,;(2)|3|x +;(3)5或1-;(4)31234;、、、;(5)9【分析】(1)用大数减小数便可求得两点的距离;(2)根据定义用代数式表示;(3)分两种情况:m 点在2的左边;m 点在2的右边;分别列式计算便可;(4)确定x 与1的距离加上x 与4的距离之和最小时,x 的取舍范围,再在该范围内求整数;(5)|1||9||16|m m m ++-+-表示数轴上某点到表示1-、9、16三点的距离之和,依此即可求解.【详解】解:(1)数轴上表示1和7两点之间的距离是:71=6-;数轴上表示3和2-的两点之间的距离是3(2)=3+2=5--,故答案为:6;5;(2)数轴上表示x 和3-的两点之间的距离表示为|3|x +,故答案为:|3|x +;(3)|2|3m -=表示数m 的点与表示数2的点距离为3,当表示数m 的点在2的左边时,=23=1m --,当表示数m 的点在2的右边时,=2+3=5m ,所以1m =-或5,故答案为:1-或5;(4)|1|x - 表示数轴上x 和1两点之间的距离,|4|x -表示数轴上x 和4两点之间的距离,当且仅当14x 时,两距离之和最小,x \可取的整数有:1,2,3,4.(5)|+1|m 表示数轴上m 和1-两点之间的距离,|9|m -表示数轴上m 和9两点之间的距离,|16|m -表示数轴上m 和16两点之间的距离,∴当且仅当=9m 时,距离之和最小,∴当|1||9||16|m m m ++-+-的值最小时,m 的值为9.故答案为:9.【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.课后训练,首先判断三个式子的正负,然后判断积的符号;两数在数轴上所对应的两点之间的距离;AC=-=,则819587232(1)abc0,c+a0,c-b0(请用“<”,(2)化简:|a-b|-2|b+c|+|c-a|。
绝对值计算化简专项练习题有答案)OK
绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b| 2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a ﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7|(2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p?|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.绝对值化简求值参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣1 2.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49 9.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x <﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x <时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x ≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x ﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122.解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣1 25.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011| =|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x 到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x ﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣| =1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p?|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。
专题01 绝对值化简的四种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)
专题01绝对值化简的四种考法
【知识点精讲】
1.绝对值的意义
绝对值:数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作a 2.绝对值的性质
绝对值表示的是点到原点的距离,故有非负性a
≥0,即:,00,0
,0a a a a a a >⎧⎪
==⎨⎪-<⎩
互为相反数的两个数绝对值相等3.绝对值与数的大小1)正数大于0,0大于负数。
2)理解:绝对值是指距离原点的距离
所以:两个负数,绝对值大的反而小;两个正数,绝对值大的大。
类型一、利用数轴化简绝对值
【答案】22b c
+
(1)用“<”连接:a ,a -,b ,b -,c ,c -;a b c c b a ∴<<-<<-<-;
(1)填空:A ,B 之间的距离为______,B ,(2)化简:22a b c b c a +--+-.
利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是
【答案】4b
(1)在如图所示的数轴上将a ,b ,c 三个数表示出来;
(2)解:根据数轴位置关系,可得:0a >、0b c +<、
(1)a=______;c=______;
(2)若将数轴折叠,使得A点与B点重合,则点C与数
(3)若点P为数轴上一动点,其对应的数为x,当代数式
【点睛】本题主要考查了非负性的性质,绝对值的几何意义,数轴上两点的距离,用数轴表示有理数等等,熟知相关知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学压轴题:绝对值化简求值
一、【考点】绝对值的代数意义、绝对值化简
【北大附中期中】
设a,b,c为实数,且化简|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|
【解析】
|a|+a=0,即|a|=-a,a≤0;
|ab|=ab,ab≥0,b≤0;
|c|-c=0,即|c|=c,c≥0
原式=-b+a+b-c+b-a+c=b
【答案】b
二、【考点】有理数运算、绝对值化简
【人大附期中】
在有理数的范围内,我们定义三个数之间的新运算“#”
法则:a#b#c=(|a-b-c|+a+b+c)/2
如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5
(1)计算:3#(-2)#(-3)___________
(2)计算:1#(-2)#(10/3)=_____________
(3)在-6/7,-5/7……-1/7,0,1/9,2/9……8/9这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的最大值__________,
②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是___________
【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。
【解析&答案】
(1)原式=3
(2)原式=4/3
(3)当a<b+c时,原式=b+c,当a≥b+c时,原式=a
①令b=7/9,c=8/9时 a#b#c的最大值为b+c=5/3
②4(提示,将1/9,2/9……8/9分别赋予b、c同时赋予a 四个负数;最后一组,a=0,b、c赋予两个负数即可)
三、【考点】绝对值与平方的非负性、二元一次方程组
【北京四中期中】
已知:(a+b)²+|b+5|=b+5,|2a-b-1|=0,求ab的值.
【分析】考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。
【解析】
由题意知b+5>0,(a+b)²+b+5=b+5,即(a+b)²=0……①
2a-b-1=0……②
解得a=1/3,b=-1/3
所以ab=-1/9
【答案】-1/9
四、【考点】绝对值化简,零点分段法
【北大附中期中】
化简|3x+1|+|2x-1|
【分析】零点分段法,两个零点:x=-1/3,x=1/2
【答案】原式=5x(x≥1/2);x+2(-1/3≤x<1/2); -5x(x<-1/3)。