尺规作图题项训练

合集下载

中考专题复习《尺规作图》巩固练习(真题)含答案

中考专题复习《尺规作图》巩固练习(真题)含答案

中考专题复习《尺规作图》巩固练习(真题)含答案一、单选题1、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段2、下列画图语句中,正确的是()A、画射线OP=3cmB、连接A , B两点C、画出A , B两点的中点D、画出A , B两点的距离3、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个30°的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段4、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b5、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图6、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm7、按下列条件画三角形,能唯一确定三角形形状和大小的是()A、三角形的一个内角为60°,一条边长为3cmB、三角形的两个内角为30°和70°C、三角形的两条边长分别为3cm和5cmD、三角形的三条边长分别为4cm、5cm和8cm8、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段9、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b10、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图11、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm12、下列作图语句中,不准确的是()A、过点A、B作直线ABB、以O为圆心作弧C、在射线AM上截取AB=aD、延长线段AB到D ,使DB=AB二、填空题13、所谓尺规作图中的尺规是指:________.14、尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法________15、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C'的依据是________.16、如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P ,连接AP并延长交BC于点D ,则∠ADB=________°.17、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P ,连结AP并延长交BC于点D ,则下列说法①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;正确的个数是________个三、作图题18、已知:如图△ABC .求作:①AC边上的高BD;②△ABC的角平分线CE .19、如图所示,已知△ABC:①过A画出中线AD;②画出角平分线CE;③作AC边上的高BF20、(2016•兰州)如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)四、解答题21、已知直线l和l上一点P ,用尺规作l的垂线,使它经过点P .你能明白小明的作法吗?你是怎样作的?22、如图,已知△ABC和直线m ,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)答案解析部分一、单选题1、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.选D.【分析】根据尺规作图的定义分别分析2、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.射线没有长度,错误;B.连接A , B两点是作出线段AB ,正确;C.画出A , B两点的线段,量出中点,错误;D.量出A , B两点的距离,错误选B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论3、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析4、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案5、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析7、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.三角形的一个内角为60°,一条边长为3cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm ,能唯一确定三角形形状和大小,符合题意选:D.【分析】根据基本作图的方法,及唯一确定三角形形状和大小的条件可知8、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析9、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案10、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析12、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确选:B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论二、填空题13、【答案】没有刻度的直尺和圆规【考点】作图—尺规作图的定义【解析】【解答】由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规【分析】本题考的是尺规作图的基本概念14、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS ,即边边边公理【分析】通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理15、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等【分析】①以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;②任意画一点O′,画射线O'A',以O'为圆心,OC长为半径画弧C'E ,交O'A'于点C';③以C'为圆心,CD长为半径画弧,交弧C'E于点D';④过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等16、【答案】125【考点】作图—基本作图【解析】【解答】由题意可得:AD平分∠CAB ,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°-20°-35°=125°【分析】根据角平分线的作法可得AD平分∠CAB ,再根据三角形内角和定理可得∠ADB的度数17、【答案】3【考点】作图—基本作图【解析】【解答】①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB ,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD【分析】根据角平分线的作法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确三、作图题18、【答案】解: 如图所示:【考点】作图—基本作图【解析】【分析】①以点B为圆心,较大的长为半径画弧,交直线AC于两点,分别以这两点为圆心,大于这两点的距离的一半为半径画弧,两弧相交于一点,过点B和这点作射线,交直线AC于点D , BD就是所求的AC边上的高;②以点C为圆心,任意长为半径画弧,交CA , CB于两点,分别以这两点为圆心,以大于这两点的距离的一半为半径画弧,两弧相交于一点,做过点C和这点的射线交AB于点E , CE即为所求的角平分线19、【答案】解答:如图所示:【考点】作图—复杂作图【解析】【分析】(1)首先找出BC的中点,然后画线段AD即可;(2)利用量角器量出∠BCA的度数,再除以2,算出度数,然后画出线段CE即可;(3)利用直角三角板,一个直角边与AC重合,令一条直角边过点B ,画线段BF即可20、【答案】解:如图所示,四边形ABCD即为所求:【考点】正多边形和圆,作图—复杂作图【解析】【分析】画圆的一条直径AC,作这条直径的中垂线交⊙O于点BD,连结ABCD就是圆内接正四边形ABCD.本题考查的是复杂作图和正多边形和圆的知识,掌握中心角相等且都相等90°的四边形是正四边形以及线段垂直平分线的作法是解题的关键.四、解答题21、【答案】解:明白.作法:①以点P为圆心,以任意长为半径画圆,与直线l相交于点A , B;②分别以AB为圆心,以任意长为半径画圆,两圆相交于点MN ,连接MN即可得出直线l的垂线【考点】作图—复杂作图【解析】【分析】根据线段垂直平分线的作法即可得出结论.22、【答案】【解答】如图所示,△A′B′C′即为△ABC关于直线m对称的图形.【考点】作图—尺规作图的定义,作图—基本作图,作图—复杂作图,轴对称图形【解析】【分析】找出点A、B、C关于直线m的对称点的位置,然后顺次连接即可.。

尺规作图针对性训练题

尺规作图针对性训练题

尺规作图(A卷)(教材针对性训练题)一、选择题:(每题2分,共8分)1.用尺规作图,不能作出惟一三角形的( )A.已知两角和夹边;B.已知两边和其中一边的对角C.已知两边和夹角;D.已知两角和其中一角的对边2.用尺规作图,不能作出惟一直角三角形的是( )A.已知两条直角边B.已知两个锐角C.已知一直角边和一锐角D.已知斜边和一直角边3.只用无刻度直尺就可以作出的是( )A.延长线段AB至C,使BC=AB;B.过直线L上一点A作L的垂线C.作已知角的平分线;D.从点O再通过点P作射线OP4.下列画图语言表述正确的是( )A.延长线段AB至点C,使AB=BC;B.以点O为圆心作弧C.以点O为圆心,以AC长为半径画弧;D.在射线OA上截取OB=a,BC=b,则有OC=a+b二、填空题:(每空分,共20分)5.已知线段MN,画一条线段AC= MN 的步骤是: 第一步: _____________________________, 第二步:______________________________,AC就是所要画的线段.6.按照图形把下列画图语句补充完整.(1)如图1所示,在__________上截取_________=a.1()RM2()A B(2)如图2所示,以点______为圆心,以________为半径作弧,交_______于点____.7.已知∠AOB,画一个∠A′O′B′=∠AOB的步骤:第一步:____________________________________________;第二步:____________________________________________;第三步:_____________________________________________;第四步:______________________________________________;第五步:______________________________________________.所以∠A′O′B′就是所画的角.8.请你按照图3所示的作图痕迹,填写画线段AB的垂直平分线的步骤.第一步:别离以______、_______为圆心,以大于______一半的长度为半径画弧,两弧在AB的双侧别离相交于点________和点_______;第二步:通过点_____和点_______画______;直线MN就是线段AB的垂直平分线.9.过点C画直线L的垂线的思想方式是把那个问题转化为画_________ 的方式来解决.10.作线段的垂直平分线的理论按照是____________和两点肯定一条直线.11.如图4所示,所画的是∠AOB的平分线OP,按照图中的作图痕迹, 可知其P4()CDBAO画图的步骤是:第一步:以O 为圆心,以任意长为半径画弧,别离交______、______ 于______ 和______; 第二步:别离以_______、_______为圆心,以大于CD 的一半长为半径画弧, 两弧在∠AOB 的内部相交于_________;第三步:___________,那么射线OP 就是∠AOB 的平分线,这是因为______、 ________、_______,所以_______≌________,所以∠________=∠_________.12.把∠O 四等分的步骤是:第一步:先把∠O_______等分;第二步:把取得的两个角别离再_______等分.三、判断题:(对打“∨”,错打“×”)(每题1分,共10分) 13.(1)过点A 作直线AB 的垂直平分线.( ) (2)过点C 作线段AB 的垂直平分线.( )(3)在直线AB 上截取AC,使它等于射线OD.( ) (4)作直线OC 平分∠AOB.( ) (5)以点O 为圆心作弧.( ) (6)以OC 为半径画弧.( )(7)在线段AB 上截取AC=a ( ) (8)作射线AC 的垂直平分线.( )(9)通过已知角的内部一点作角的平分线.( )(10)线段的垂直平分线上的点到线段两头点的距离大于线段长的一半.( ) 四、解答题:(14-22每题6分,23题8分,共62分)14.如图所示,是过直线L 处一点C 画直线L 的垂线,请你按照作图痕迹, 叙述画图进程.l15.如图所示,请把线段AB 四等分,简述步骤.B16.如图所示,在图中作出点C,使得C 是∠MON 平分线上的点,且AC=OA, 并简述步骤.M17.如图所示,已知∠AOB 和两点M 、N 画一点P,使得点P 到∠AOB 的两边距离相等,且PM=PN,简述步骤.B18.如图所示,已知线段a,b,m,求作△ABC,使BC=a,CA=b,AB 边上的中线CD=m.mb a19.已知三个自然村A 、B 、C 的位置如图所示,现计划建一所小学,使其到A 、B 、C 三个自然村的距离相等,请你设计出学校所在的位置O,(不写画法,保留画图痕迹)B20.如图所示,已知AB .求证:(1)肯定AB 的圆心O;(2)过点A 且与⊙O 相切的直线.(注:作图要求利用直尺和圆规,不写作法,但要求得保留作图痕迹)21.如图所示,已知B 、C 是⊙O 上的两点.求作⊙O 上一点P,使得PB=PC.(保留作图痕迹,不写作法和证明)22.如图所示,已知线段a,求作:(1)△ABC,使AB=BC=CA=a;(2)⊙O,使它内切于△ABC.(说明:要求写出作法)a23.如图所示,一块直角三角形形状的木板余料, 木工师傅要在此余料上锯出一块圆形的木板制做凳面,要想使锯出的凳面的面积最大.(1)请你试着用直尺和圆规画出此圆(要求尺规作图,保留作图痕迹,不写作法和证明).(2)若此Rt△ABC的两直角边别离为30cm和40cm,试求此圆凳面的面积.CAA卷答案一、二、5.作射线AP;在射线AP上,以A为圆心,以MN为长为半径截取AC=MN.6.(1)射线OM;OA;(2)A;R;射线AB;M.7.画射线O′A′;以点O为圆心,以适当长为半径画弧,交OA于C,交OB于D;以O ′为圆心,以OC长为半径画弧,交O′A′于C′;以点C′为圆,以CD长为半径画弧, 交前一条弧于D′;通过点D′画射线O′B′.;B;AB;M;N;M:N;MN.9.线段的垂直平分线.10.到线段两头点距离相等的点,在这条线段的垂直平分线上.;OA;点C;点D;点C;点D;点P;画射线OP;OP=OP(公共边);OC=OD;PC=PD(同圆半径相等);△POC;△POD;POC;POD.12.二;二三、13.(1)×;(2)×;(3)×;(4)×;(5)×;(6)×;(7)∨;(8)×;(9)×;(10)×四、14.(1)以点C为圆心,以大于C点到直线L的距离为半径作弧交L于A、B两点(2)别离以A、B为圆心,以大于12AB长为半径作弧,两弧别离相交于M、N两点.(3)作直线MN,则直线MN即为所求.15.步骤:(1)作AB的垂直平分线MN,交AB于O1;(2)作O1A的垂直平分线EF交AB于O2;(3)作O1B的垂直平分线GH交AB于O3,则O一、O二、O3即为线段AB的四等分点.16.作法如下:(1)作∠MON的平分线OB;(2)以A 点为圆心,以OA 为半径画弧交OB 于C,连结AC,则C 点即为所求. 17.作法如下:(1)作∠AOB 的平分线OC;(2)连结MN,并作MN 的垂直平分线EF,交OC 于P,连结PM 、PN,则P 点即为所求. 18.作法如下:(1)以CA=b,AE=a,CE=2m 作△ACE; (2)过C 点作AE 的平行线CF;(3)取CE 的中点D,连结AD 并延长交CF 于B.△ABC 就是所求作的三角形. 19.略 20. 略. 21. 略.22.解:作法如下:(1)①作线段BC=a;②别离以B 、C 为圆心,以a 为半径作弧,两弧交于A 点; ③连结AB 、AC,则△ABC 即为所求. (2)①作∠ABC 的平分线BM;②作∠ACB 的平分线CN,BM 与CN 交于O; ③过O 作OD ⊥BC,垂足为D:④以O 为圆心,以OD 为半径作⊙O,则⊙O 即为所示. 23.(1)略r E CD BAFO(2)解:如答图所示,连结OD 、OF,则四边形OFCD 为正方形,所以设CD=CF=OD=r,据切线长定理得AE=AD=40-r,BE=BF=30-r. 在Rt △ABC 中,即AE+BE=50. ∴(40-r)+(30-r)=50,∴r=10,则22210100()OS r cm πππ=⋅=⨯=.。

尺规作图练习题

尺规作图练习题

尺规作图练习题尺规作图是几何学中一项重要的技巧,通过使用尺子和圆规,可以准确地绘制出各种几何图形。

在本文中,我们将提供几个尺规作图练习题来帮助读者巩固和提高自己的尺规作图技能。

1. 绘制一个正方形首先,让我们来练习如何用尺规作图绘制一个正方形。

从任意一点A开始,使用尺子画一条线段AB。

然后,以B为中心,设置一个合适的半径,使用圆规画一个圆弧,并将其与线段AB交于点C。

接下来,以C为中心,设置与BC相等的半径,使用圆规画一个圆弧,并将其与之前的圆弧交于点D。

最后,连接线段AD、AB、BC和CD,就得到了一个正方形。

2. 绘制一个等边三角形下面,我们来练习如何绘制一个等边三角形。

首先,从任意一点A 开始,使用尺子画一条线段AB。

然后,以A为中心,设置一个合适的半径,使用圆规画一个圆弧,并将其与线段AB交于点C。

接下来,以C为中心,设置与AC相等的半径,使用圆规画一个圆弧,并将其与之前的圆弧交于点B。

最后,连接线段AB、BC和CA,就得到了一个等边三角形。

3. 绘制一个相似三角形接下来,我们来练习如何绘制一个相似三角形。

首先,从任意一点A开始,使用尺子画一条线段AB。

然后,在线段AB的一侧选择一个点C。

接下来,以C为中心,设置一个合适的半径,使用圆规画一个圆弧,并将其与线段AB交于点D。

最后,连接线段AD和BC,就得到了一个相似三角形。

4. 绘制一个等腰梯形最后,我们来练习如何绘制一个等腰梯形。

首先,使用尺子绘制两条平行线段AB和CD,表示梯形的底边和顶边。

然后,使用圆规在底边上选择两个点E和F,分别向梯形内部延伸一条垂直线段,分别与顶边CD和AB交于点G和H。

最后,连接线段EG、GF、FH和HE,就得到了一个等腰梯形。

通过以上的练习题,读者可以不断熟悉和掌握尺规作图的技巧和方法。

尺规作图虽然看起来需要一些技巧和经验,但通过不断的练习和实践,每个人都能够掌握这项重要的几何学技能。

希望读者在完成这些练习题后能够对尺规作图有更深入的理解和应用能力。

初三尺规作图练习题及答案

初三尺规作图练习题及答案

初三尺规作图练习题及答案一、作图题:1. 作图:在空白平面上画一条长为5cm的线段AB;2. 作图:在平面上任意选择一点O,画一条长为3cm的线段OA,并作出∠AOB为45°的角;3. 作图:在空白平面上画一条长为4cm的线段OA,再在OA上作一点B,且OB=2cm;4. 作图:已知三条线段AB、BC、AC的长度分别为3cm、4cm、5cm,画出三角形ABC;5. 作图:已知四边形ABCD,其中AB=3cm,BC=4cm,∠C=90°,CD=5cm,画出该四边形;6. 作图:在平面上画一条直线,再取一点P,使得P到该直线的距离为4cm;7. 作图:在空白平面上画一条长为6cm的线段AB,然后以B为圆心,AB为半径作弧线;8. 作图:一个正方形边长为8cm,画出该正方形;9. 作图:在空白平面上任意选择一点O,以O为圆心,3cm为半径画出一个圆;10. 作图:在平面上给定一条线段AB和一点O,作出以线段AB为一边,点O为顶点的角。

二、答案及解析:1. 题目要求画一条长为5cm的线段AB,可以任意选择一个点作为起点,然后使用尺规在平面上作一条长为5cm的线段。

最终得到的线段即为所求的AB线段。

2. 题目要求画一条长为3cm的线段OA,并作出∠AOB为45°的角。

先在平面上选取一个点O,再利用尺规作出线段OA。

接着,以O为圆心,半径为3cm作一个圆,并选择圆上任意一点B。

最后,使用尺规作出∠AOB为45°的角。

3. 题目要求画一条长为4cm的线段OA,再在OA上任意选择一点B,且OB=2cm。

首先,利用尺规作出长度为4cm的线段OA。

然后,在OA上以O为起点,用尺子量取2cm并在该位置上作一点B。

最终得到的OB线段长度为2cm。

4. 题目要求已知三条线段AB、BC、AC的长度分别为3cm、4cm、5cm,画出三角形ABC。

首先,利用尺规作出线段AB的长度为3cm。

尺规作图方法大全含练习试题

尺规作图方法大全含练习试题

BPA aOQPNM O N MBPA 尺规作图【知识回顾】1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。

已知:如图,线段a .求作:线段AB ,使AB = a . 作法:(1) 作射线AP ;(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的中点。

已知:如图,线段MN.求作:点O ,使MO=NO (即O 是MN 的中点). 作法:(1)分别以M 、N 为圆心,大于的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .则点O 就是所求作的MN的中点。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:(1)以O 为圆心,任意长度为半径画弧,分别交OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。

(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB③②①a bP BB A P(1)作射线O ’A ’; (2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。

则∠A ’O ’B ’就是所求作的角。

尺规作图专题练习

尺规作图专题练习

尺规作图专题练习[练习]1.(2018•河北)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求打乱顺序的尺规作图:则正确的配对是( )A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ2.(2018•台州)如图,在□ABCD 中,AB=2,BC=3.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( ) A.12 B.1 C.65 D.323.(2018•湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点;②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点;③连结OG .问:OG 的长是多少?大臣给出的正确答案应是( )B.12r ⎛⎫+ ⎪ ⎪⎝⎭C.1r ⎛+ ⎝⎭4. (2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE 中,CF =6,CE =12,∠FCE =45°,以点C 为圆心,以任意长为半径作AD ,再分别以点A 和点D 为圆心,大于12AD 长为半径作弧,交EF 于点B ,AB ∥CD .(1)求证:四边形ACDB 为△FEC 的亲密菱形;(2)求四边形ACDB 的面积.5.(2018•广州)如图,在四边形ABCD 中,∠B =∠C =90°,AB >CD ,AD=AB+CD .(1)利用尺规按如下方式作图:以点D 为圆心,任意长为半径作弧,分别交DA ,DC 于点M ,N ;分别以M ,N 为圆心,大于12MN 的长为半径作弧,两弧交于点P ;作射线DP 交BC 于点E ,连接AE .由作图可知,∠ADE ∠CDE .(2)在(1)的条件下,证明:①AE ⊥DE ;②点E 是BC 的中点;③若CD=2,AB=4,点M ,N 分别是AE ,AB 上的动点,求BM+MN 的最小值.6.(2018•自贡)如图,在△ABC 中,∠ACB=90°.利用尺规按如下方式作图:①以点B 为圆心,任意长为半径作弧,分别交BC ,BA 于点M ,N ;②分别以M ,N 为圆心,大于12MN 的长为半径作弧,两弧交于点P ;③作射线BP 交AC 于点E ;④过点E 作EO ⊥AC ,交AB 于O ;⑤以B 为圆心,OB 的长为半径作⊙O ;(Ⅰ) 由作图可知,∠CBE ∠ABE ;(Ⅱ)求证:AC 是⊙O 的切线.(Ⅲ)设⊙O 与边AB 交于异于点B 的另外一点D ,若⊙O 的直径为5,BC =4;求DE 的长. PN M O EC BA。

尺规作图练习题初三

尺规作图练习题初三

尺规作图练习题初三尺规作图是几何学中的一种重要方法,它通过使用尺子和圆规来完成各种图形的构造。

对于初三学生来说,掌握尺规作图技巧是必不可少的。

本文将给出几个尺规作图的练习题,帮助初三学生锻炼尺规作图的能力。

练习一:等腰三角形的构造要求:构造一个等腰三角形ABC,已知底边BC和顶角A。

解答:1. 画出底边BC,任取一点A作为顶点。

2. 以B为圆心,BC为半径作一个弧交底边BC于点D。

3. 以C为圆心,CD为半径作一个弧交底边BC于点E。

4. 连接AE,得到等腰三角形ABC。

练习二:正方形的构造要求:构造一个正方形ABCD,已知边长AB。

解答:1. 以A为圆心,AB为半径作一个弧交边AB于点E。

2. 以E为圆心,EA为半径作一个弧交边AE于点F。

3. 连接BF,得到正方形ABCD。

练习三:等边三角形的构造要求:构造一个等边三角形ABC,已知边长AB。

解答:1. 以A为圆心,AB为半径作一个弧。

2. 以B为圆心,AB为半径作一个弧。

3. 这两个弧交于一点C,连接AC和BC,得到等边三角形ABC。

练习四:垂直平分线的构造要求:构造一个垂直平分线,已知线段AB。

解答:1. 以A为圆心,任取不等于AB的半径作一个弧交AB于点C。

2. 以B为圆心,作相同半径的弧交AB于点D。

3. 以C和D为圆心,作相同半径的弧,这两个弧交于一点E。

4. 连接AE和BE,得到线段AB的垂直平分线。

练习五:平行线的构造要求:构造一条与给定线段AB平行的线段CD。

解答:1. 以A为圆心,任取一定半径作一个弧。

2. 以B为圆心,作相同半径的弧,与前一个弧交于一点C。

3. 以C为圆心,再次作相同半径的弧,与前一个弧交于一点D。

4. 连接CD,得到平行于线段AB的线段CD。

通过以上几个练习题,初三学生可以进行尺规作图的练习,提高自己的几何构造能力。

尺规作图需要仔细观察和灵活运用尺规,希望同学们能够多加练习,熟练掌握这一技巧。

让我们一起享受几何的乐趣吧!。

中考数学专题尺规作图

中考数学专题尺规作图

《尺规作图》专题训练基本作图,要求保留作图痕迹,不要求写作法1.作一条线段等于已知线段已知:线段a,求作:线段AB ,使AB=a 。

2.作一全角等于已知角已知:∠MPN求作:∠ABC,使∠ABC=∠MPN 。

3。

作角的平分线已知:∠MPN求作:∠MPN 的角平分线PO4、作线段的垂直平分线已知:线段AB求作:线段AB 的垂直平分线MN.5、过定点作已知直线的垂线:6、(1)点在直线上;(2)点在直线外6、已知三边作三角形已知:线段a 、b 、c求作:△ABC ,使AB=a 、BC=b 、AC=c 。

c b a7、已知两边及其夹角作三角形已知:线段a、b、∠α求作:△ABC,使AB=a、BC=b、∠B=∠α.8、已知两角及其夹边作三角形已知:线段a、∠α、∠β求作:△ABC,使∠A=∠α、∠B=∠β、AB=a。

9、已知底边及底边上的高作等腰三角形已知:线段a、h求作:△ABC,使AB=AC,BC=a、BC边上的高AD=h.10、已知底边上的高和顶角作等腰三角形已知:线段h、∠α求作:△ABC,使AB=AC,∠A=∠α,高AD=h。

11、已知底边及腰长作等腰三角形已知:线段a、b求作:△ABC ,使AB=AC=a ,BC=b.12、已知一直角边及斜边作直角三角形已知:线段a 、c求作:Rt △ABC ,使∠C=90°、AB=c 、BC=a作三角形的外接圆已知:△ABC求作:△ABC 的外接圆⊙O作三角形的内切圆已知:△ABC求作:△ABC 的内切圆⊙O如图,1O7国道OA 和320国道OB 在我市相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建一个货站P ,使P 到OA 、OB 的距离相等,且使PC =PD ,用尺规作出货站P 的位置。

16、如图,直线AB ⊥CD ,垂足为P ,∠ACP=45°,利用尺规在图中作一段劣弧,使得它在A 、C 两AA B C B C点分别与直线AB和CD相切。

尺规作图专项训练

尺规作图专项训练

尺规作图专项训练一、选择题:1.下列四种基本尺规作图分别表示①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点作已知直线的垂线.则对应选项中作法错误..的是( )A .①B .②C .③D .④2.在探索“尺规三等分角”这个数学名题的过程中,曾利用了下图,该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,∠ACF =∠AFC ,∠FAE =∠FEA ,若∠ACB =21°,则∠ECD 的度数是( ) A . 7°B . 21°C .23°D .24°第2题 第3题 第4题 第5题 3.如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于G 、H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( ) A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD . GH 平分AF4.如图,用尺规作图作∠AOC =∠AOB 的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA 、OB 于点E 、F ,那么第二步的作图痕迹②的作法是( )A .以点F 为圆心,OE 长为半径画弧B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧5.如图,在△ABC 中, ∠ACB =90°,∠A =30°,BC =4,.以点C 为圆心, CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ;作射线CE 交AB 于点F.则AF 的长为( )①②③④FD A EBCE GF C D A B 第6题 O M Q BPCA6.如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =8,AB =5,则AE 的长为( ) A .5 B .6 C .8 D .12第7题 第8题 7.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG ,若AD =5,DE =6,则AG 的长是( )A .6B .8C . 10D .128.如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( ) A .∠DAE=∠BB .∠EAC=∠CC .AE ∥BCD .∠DAE=∠EAC9. 已知∠AOB ,作图: 步骤1:在OB 上任取一点M ,以点M 为圆心,MO 长为半径画半圆,分别交OA ,OB 于点P ,Q . 步骤2:过点M 作PQ 的垂线交PQ 于点C .步骤3:画射线OC .则下列判断:①PC CQ ;②MC ∥OA ;③OP =PQ ; ④OC 平分∠AOB .其中正确的个数为 A .1B .2C .3D .4二、填空题:10. 如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(a ,b ),则a 与b 的数量关系为 .已知:Rt △ABC ,∠C =90°, 求作Rt △ABC 的外接圆。

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)精选全文完整版

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)精选全文完整版

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)知识总结1.尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2.基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3.基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。

如图①②连接MN,过MN的直线即为线段的垂直平分线。

如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。

如图①。

②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。

如图②。

③连接OP,OP即为角的平分线。

(5)过一点作已知直线的垂线.4.复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。

5.设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。

专项练习题1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段F A的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD 即为所求;(2)过点O 作OH ⊥BC 于H ,连接OB ,OC .∵AD 是切线,∴OA ⊥AD ,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2. 9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的 .(2)求证:四边形AEDF是菱形.【分析】(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF∥AB,同理DE∥AF,于是可判断四边形AEDF是平行四边形,加上F A=FD,则可判断四边形AEDF为菱形.【解答】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠F AD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵F A=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。

中考数学专题复习之尺规作图精选训练题

中考数学专题复习之尺规作图精选训练题

中考数学专题复习之尺规作图精选训练题一.选择题(共10小题)1.利用直角三角板,作△ABC 的高,下列作法正确的是( )A .B .C .D .2.已知线段AB ,按如下步骤作图: ①取线段AB 中点C ; ②过点C 作直线l ,使l ⊥AB ;③以点C 为圆心,AB 长为半径作弧,交l 于点D ;④作∠DAC 的平分线,交l 于点E .则tan ∠DAE 的值为( )A .12B .2√55C .√5+12D .√5−123.阅读以下作图步骤:①在OA 和OB 上分别截取OC ,OD ,使OC =OD ;②分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧在∠AOB 内交于点M ;③作射线OM ,连接CM ,DM ,如图所示. 根据以上作图,一定可以推得的结论是( )A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS5.如图,在△ABC中,∠B=42°,∠C=48°,DI是AB的垂直平分线,连接AD.以A为圆心,任意长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,以大于1EF长为半径画弧,两圆弧交于G点,作射线AG交BC于点H,则∠DAH的度数为()2A.36°B.25°C.24°D.21°6.如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE7.如图,在Rt △ABC 中,以点A 为圆心,适当长为半径作弧,交AB 于点F ,交AC 于点E ,分别以点E ,F 为圆心,大于12EF 长为半径作弧,两弧在∠BAC 的内部交于点G ,作射线AG 交BC 于点D .若AC =3,BC =4,则CD 的长为( )A .78B .1C .32D .28.如图,在▱ABCD 中,分别以B ,D 为圆心,大于12BD 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线交BD 于点O ,交AD ,BC 于点E ,F ,下列结论不正确的是( )A .AE =CFB .DE =BFC .OE =OFD .DE =DC9.如图,Rt △ABC 中,∠C =90°,∠B =30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .10.如图所示,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =110°,则∠AMC 的度数为( )A .70°B .35°C .30°D .45°二.填空题(共10小题)11.如图,在△ABC 中,∠B =30°,∠C =50°,通过观察尺规作图的痕迹,∠DEA 的度数是 .12.如图,在△ABC 中,∠A =45°,∠B =30°,尺规作图作出BC 的垂直平分线与AB 交于点D ,则∠ACD 的度数为 .13.如图.△ABC 中,∠B =32°,∠BCA =78°,请依据尺规作图的作图痕迹,计算∠α= .14.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是 .15.如图,在平行四边形ABCD (AB <AD )中,按如下步骤作图:①以点A 为圆心,以适当长为半径画弧,分别交AB ,AD 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在∠BAD 内交于点P ;③作射线AP 交BC 于点E .若∠B =120°,则∠EAD 为 °.16.如图,在△ABC 中,∠A =90°,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若线段AE =5,AC =12,则BE 长为 .17.如图,在Rt △ABC 中,∠B =90°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若BG =1,AC =4,则△ACG 的面积为 .18.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .若∠B =24°,则∠CDA 的度数为 .19.如图,在矩形ABCD 中,连接AC ,以点A 为圆心,小于AD 的长为半径画弧,分别交AD ,AC 于点E ,F ,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠DAC内交于点G ,作射线AG ,交DC 于点H .若AD =6,AB =8,则△AHC 的面积为 .20.如图,已知∠AOB ,以点O 为圆心,以任意长为半径画弧,与OA 、OB 分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M作MN ∥OA ,与OB 相交于点N ,∠MNB =50°,则∠AOM = .三.解答题(共5小题)21.如图,AB =AE ,BC =ED ,∠B =∠E . (1)求证:AC =AD .(2)用直尺和圆规作图:过点A 作AF ⊥CD ,垂足为F .(不写作法,保留作图痕迹)22.如图,AC 是菱形ABCD 的对角线.(1)作边AB 的垂直平分线,分别与AB ,AC 交于点E ,F (尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接FB ,若∠D =140°,求∠CBF 的度数.23.如图,点A 、B 、C 在⊙O 上且AB =AC ,AB ⊥AC ,请你利用直尺和圆规,用三种不同的方法,找到圆心O .(保留作图痕迹)24.如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在边AC上求作一点E,使AE+EP=AC.(保留作图痕迹,不写作法)25.如图,网格中每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)画出以AB为底的等腰直角△ABC(点C在小正方形的顶点上);(2)画出以AB为一边且面积为20的平行四边形ABDE,(点D、E都在小正方形的顶点上),连接CE,请直接写出线段CE的长.。

中考数学总复习《尺规作图》专项测试卷带答案

中考数学总复习《尺规作图》专项测试卷带答案

中考数学总复习《尺规作图》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是( )A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;(2)指出小丽作法中存在的问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是( )AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点(k>0,x>0)的图象经过C(4,n),D两A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=kx点.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.参考答案A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是(B)A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是(B)A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)【解析】(1)图形如图所示:(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.【解析】(2)∵DE垂直平分线段AB,∴EB=EA∴∠EBA=∠A=45°,∴∠BEA=90°AB=4∵BD=DA,∴DE=DB=DA=12∴BE=√2BD=4√2.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;【解析】(1)根据小明的作法知,CF=AE∵四边形ABCD是平行四边形∴AD∥BC,又∵CF=AE∴四边形AFCE是平行四边形∴AF∥CE;(2)指出小丽作法中存在的问题.【解析】(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是(B)AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).【解析】(1)如图(1)中,线段AD即为所求;(2)如图(1)中,点E即为所求;(3)如图(2)中,点C,射线AF,点G即为所求;(4)如图(2)中,线段MN即为所求.7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)【解析】(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N 和点M连接AM和CN如图所示,点G即为所求作的点.(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.答案:15【解析】(2)∵点G是△ABC的重心∴AG=2MG∵△ABG的面积等于5 cm2∴△BMG的面积等于2.5 cm2∴△ABM的面积等于7.5 cm2.又∵AM是△ABC的中线∴△ABC的面积等于15 cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=k(k>0,x>0)的图象经过C(4,n),D两x点.(1)求反比例函数的解析式;【解析】(1)过点D作DT⊥OA于点T.∵A(0,2),B(1,0)∴OA=2,OB=1∵AB⊥AD,DT⊥OT∴∠DTA=∠DAB=∠AOB=90°∵∠DAT+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAT=∠ABO ∵AD=AB∴△DTA≌△AOB(AAS)∴AT=OB=1,DT=AO=2∴OT=OA+AT=3∴D(2,3)∵反比例函数y=kx (k>0,x>0)的图象经过D点,∴3=k2,∴k=6∴反比例函数解析式为y=6x;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)【解析】(2)如图,直线MN即为所求;(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.【解析】(3)∵C(4,n)在y=6x的图象上∴n=32∴C(4,32)∵BM=CM,B(1,0)∴M(4+12,32+02)即M(52,34).第11页共11页。

八上第二章尺规作图专项训练(有答案)

八上第二章尺规作图专项训练(有答案)

尺规作图专项训练班级姓名得分一、选择题1.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是()A. SSSB. SASC. ASAD. AAS2.如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.MN的长为半径画弧,两弧在∠AOB内部相交(2)分别以点M、N为圆心,大于12于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A. SSSB. SASC. ASAD. AAS3.用直尺和圆规作一个角等于已知角.如图,能得出∠A'O'B'=∠AOB的依据是A. SASB. SSSC. AASD. ASA4.下列说法正确的是A. 用直尺和圆规作一个角等于已知角的过程,是用“边角边”构造了全等三角形B. 用直尺和圆规作一个角的平分线的过程,是用“边边边”构造了全等三角形C. 到三角形三个顶点的距离相等的点是三角形三条角平分线的交点D. 到三角形三边的距离相等的点是三角形三边的垂直平分线的交点5.如图,在已知的△ABC中,按以下步骤作图:BC的长为半径作弧,两①分别以B,C为圆心,以大于12弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A. B. C. D.6.如图,在△ABC中,过点A作BC边上的高,正确的作法是( )A. B.C. D.7.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分BD的长为半径作弧,别以点B和点D为圆心,大于12两弧相交于点E,作射线CE交AB于点F,则AF的长为()A. 5B. 6C. 7D. 8AB长为半径8.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以大于12作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,若AC=3,BC=4,则BE等于A. 32B. 94C. 154D. 258AB 9.根据下列操作回答后面的问题:(1)分别以线段AB的端点A、B为圆心,以大于12长为半径作圆弧相交点P、M;(2)作直线PM交AB于点C.则下列有关的说法不一定正确的是()A. PM是线段AB的垂直平分线;B. PA=PB;C. 作线段垂直平分线的实质是作平角的平分线;D. AP⊥BP.10.经过已知直线外一点,用尺规作这条直线的垂线,下列作法正确的是().A. B.C. D.二、填空题11.如图,在RtΔABC中,∠C=90∘,以顶点A为圆心,适当长为半径画弧,分别交AC,ABMN的长为半径画弧,两弧交于某点,过点A及于点M,N,再分别以M,N为圆心,大于12该交点作射线AP交边BC于点D.若CD=2,AB=6,则ΔABD的面积是________.12.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离相等,请你作出灯柱的位置P.(不写作图过程,保留作图痕迹)13.如图,△ABC中,∠B=35°,∠BCA=75°,请依据尺规作图的作图痕迹,计算∠α=______°14.如图,在△ABC中,按以下步骤作图:①分别以A、B为AB的长为半径画弧,两弧相交于点M、N;圆心,大于12②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C= .15.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分AB的长为半径画弧,别以点A、B为圆心,大于12两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是______.16.已知ΔABC如图:(1)分别过定点A画ΔABC的角平分线AD和BC边上的高AE(在图中做出标注,不写画法);(2)若∠ACB=20∘,∠ABC=130∘.则∠DAE=__________.17.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”小艾的做法如下:(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.(3)两弧分别交于点P和点M(4)连接PM,与直线l交于点Q,直线PQ即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________________________________________________________.18.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧,分别交AB,AC于点M和N,再分别以点M,N为圆心,大于MN长的一半为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确的有_______.(填写序号)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.19.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.小红的作法如下:AB的长为半径作弧,两弧相交于点C;如图,①分别以点A和点B为圆心,大于12AB的长为半径(不同于①中的半径)作弧,②再分别以点A和点B为圆心,大于12两弧相交于点D,使点D与点C在直线AB的同侧;③作直线CD.所以直线CD就是所求作的垂直平分线.老师说:“小红的作法正确.”请回答:小红的作图依据是______.20.如图,在△ABC中,AB=5,AC=4,BC=3.按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;MN的长为半径作弧,两弧相交于点E;②分别以M,N为圆心,以大于12③作射线AE;④以同样的方法作射线BF.AE交BF于点O,连接OC,则OC=______.三、解答题(本大题共4小题,共32.0分)21.如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.22.如图,已知,在RtΔABC中,∠ABC=90 ∘, AB=BC=2.(1)用尺规作∠A的平分线AD.(2)角平分线AD交BC于点D,求BD的长.23.如图,在△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连接AP,当∠B为______度时,AP平分∠BAC;(3)在(2)的条件下,若AC=2,求BC的长.24.如图所示,△ABC中,点D在BC边上,且BD=AD=AC.(1)用尺规作图作出线段DC的垂直平分线AE,交DC于E点.(保留作图痕迹不要求写出作法和证明)(2)若∠CAE=16°,求∠B的度数.答案和解析1.【答案】A【解析】【分析】由作法可知,两三角形的三条边对应相等,所以利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点;由作法找准已知条件是正确解答本题的关键.【解答】解:由作法易得OD=O′D',OC=0′C',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS.故选:A.2.【答案】A【解析】【分析】本题考查了全等三角形的判定,熟悉角平分线的作法,找出相等的条件是解题的关键.根据角平分线的作图方法解答.【解答】解:根据角平分线的作法可知,OM=ON,CM=CN,又∵OC是公共边,∴△OMC≌△ONC的根据是“SSS”.故选A.3.【答案】B【解析】【分析】本题考查了尺规作图作一个角等于已知角,全等三角形的判定方法:边边边”以及全等三角形的对应角相等这个知识点,利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【解答】解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS.故选B.4.【答案】B【解析】【分析】本题考查的是基本作图及全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.【解答】解:A.用直尺和圆规作一个角等于已知角的过程,是用“边边边”构造了全等三角形,故错误;B.用直尺和圆规作一个角的平分线的过程,是用“边边边”构造了全等三角形,正确;C.到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点,故错误;D.到三角形三边的距离相等的点是三角形三条角平分线的交点,故错误.故选B.5.【答案】D【解析】解:∵CD =AC ,∠A =50°,∴∠ADC =∠A =50°,根据题意得:MN 是BC 的垂直平分线,∴CD =BD ,∴∠BCD =∠B , ∴∠B =12∠ADC =25°,∴∠ACB =180°-∠A -∠B =105°.故选:D .由CD =AC ,∠A =50°,根据等腰三角形的性质,可求得∠ADC 的度数,又由题意可得:MN 是BC 的垂直平分线,根据线段垂直平分线的性质可得:CD =BD ,则可求得∠B 的度数,继而求得答案.此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.6.【答案】D【解析】【分析】本题主要考查了学生利用三角板和直尺画三角形的高的作图能力.从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此作高.【解答】解:在△ABC 中,过点A 作BC 边上的高,如图:故选D .7.【答案】B【解析】解:连接CD ,∵在△ABC 中,∠ACB =90°,∠A =30°,BC =4,∴AB =2BC =8.∵作法可知BC =CD =4,CE 是线段BD 的垂直平分线,∴CD 是斜边AB 的中线,∴BD =AD =4,∴BF =DF =2,∴AF =AD +DF =4+2=6.故选:B .连接CD ,根据在△ABC 中,∠ACB =90°,∠A =30°,BC =4可知AB =2BC =8,再由作法可知BC =CD =4,CE 是线段BD 的垂直平分线,故CD 是斜边AB 的中线,据此可得出BD 的长,进而可得出结论.本题考查的是作图-基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.8.【答案】D【解析】【分析】本题主要考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.连接AE ,根据勾股定理求出AB ,根据线段垂直平分线的性质得到AE =BE ,在Rt △ACE 中,根据勾股定理求出AE ,即可求出BE .【解答】解:连接AE ,∵∠ACB =90°,∴AB =√AC 2+BC 2=5,由题意得,MN 是线段AB 的垂直平分线,∴AE=BE,在Rt△ACE中,AE2=AC2+CE2,即AE2=32+(4-AE)2,,解得,AE=258∴BE=25,8故选D.9.【答案】D【解析】【分析】本题考查了作图-基本作图:掌握基本作图(作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).利用基本作图可对A进行判断;利用PM垂直平分AB可对A、B、D进行判断.【解答】解:由作法得PM垂直平分AB,所以A、C选项正确;因为CD垂直平分AB,所以PA=PB,因为AP不一定垂直BP,所以D选项错误.故选D.10.【答案】B【解析】【分析】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.根据过直线外一点向直线作垂线即可.【解答】解:已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁;(2)以C为圆心,CK的长为半径作弧,交AB于点D和E;(3)分别以D 和E 为圆心,大于12DE 的长为半径作弧,两弧交于点F ; (4)作直线CF .直线CF 就是所求的垂线. 故选B . 11.【答案】6【解析】【分析】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.根据角平分线的性质得到DE =DC =4,根据三角形的面积公式计算即可.解:作DE ⊥AB 于E ,由基本尺规作图可知,AD 是△ABC 的角平分线, ∵∠C =90°,DE ⊥AB , ∴DE =DC =2,∴△ABD 的面积=12×AB ×DE =6, 故答案为6.12.【答案】解:如图,点p 为所作.CD 的垂直平分线和∠AOB 的角平分线【解析】本题考查了对角平分线及线段垂直平分线的理解. 13.【答案】75【解析】解:∵∠B =35°,∠BCA =75°, ∴∠BAC =70°,∵由作法可知,AD 是∠BAC 的平分线,∴∠CAD =12∠BAC =35°,∵由作法可知,EF 是线段BC 的垂直平分线, ∴∠BCF =∠B =35°,∵∠ACF =∠ACB -∠BCF =40°, ∴∠α=∠CAD +∠ACF =75°, 故答案为:75.先根据三角形的内角和得出∠BAC =70°,由角平分线的定义求出∠EAC 的度数,再由EF 是线段AC 的垂直平分线得出∠ABC =∠BCF 的度数,根据三角形内角和定理得出∠α的度数,进而可得出结论.本题考查的是作图-基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.14.【答案】40°【解析】【分析】本题考查了基本作图中作已知线段的垂直平分线及线段的垂直平分线的性质,解题的关键是能利用垂直平分线的性质及外角的性质进行角之间的计算,难度不大.首先根据作图过程得到MN 垂直平分AB ,然后利用中垂线的性质得到∠A =∠ABD ,然后利用三角形外角的性质求得∠CDB 的度数,从而可以求得∠C 的度数. 【解答】解:∵根据作图过程和痕迹发现MN 垂直平分AB , ∴DA =DB ,∴∠DBA =∠A =35°, ∵CD =BC ,∴∠CDB =∠CBD =2∠A =70°, ∴∠C =40°, 故答案为40°.本题考查了基本作图中作已知线段的垂直平分线及线段的垂直平分线的性质,解题的关键是能利用垂直平分线的性质及外角的性质进行角之间的计算,难度不大.15.【答案】85【解析】解:连接AD .∵PQ 垂直平分线段AB , ∴DA =DB ,设DA =DB =x , 在Rt △ACD 中,∠C =90°,AD 2=AC 2+CD 2, ∴x 2=32+(5-x )2,解得x =175,∴CD =BC -DB =5-175=85,故答案为85.连接AD 由PQ 垂直平分线段AB ,推出DA =DB ,设DA =DB =x ,在Rt △ACD 中,∠C =90°,根据AD 2=AC 2+CD 2构建方程即可解决问题;本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 16.【答案】解:(1)如图所示 (2)55°【解析】【分析】本题考查了角平分线和垂线的尺规作图,以及求角问题. 【解答】解:(1)利用尺规作图中角平分线的画法即可,用三角尺由顶点向底边延长线上作垂线即可;(2)∵三角形内角和为180°, ∴∠CAB =180°-∠ACB -∠ABC =30°, 又∵AD 为∠CAB 的平分线, ∴∠DAB =15°,∠ABE =180°-∠ABC =50°, 又∵△ABE 为直角三角形, ∴∠BAE =90°-∠ABE =40°,∴∠DAE =∠DAB +∠BAE =15°+40°=55°.17.【答案】到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线 .【解析】【分析】本题考查的是线段垂直平分线的性质,直线的性质有关知识,利用线段垂直平分线的性质,直线的性质进行解答即可. 【解答】解:小艾这样作图的依据是:到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线 .故答案为:到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线 .18.【答案】① ② ③ ④【解析】【分析】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键. ①连接NP ,MP ,根据SSS 定理可得△ANP ≌△AMP ,故可得出结论;②先根据三角形内角和定理求出∠CAB 的度数,再由AD 是∠BAC 的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC =60°③根据∠1=∠B 可知AD =BD ,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD =12AD ,再由三角形的面积公式即可得出结论. 【解答】①证明:连接NP ,MP , 在△ANP 与△AMP 中, ∵{AN =AM NP =MP AP =AP, ∴△ANP ≌△AMP , 则∠CAD =∠BAD ,故AD 是∠BAC 的平分线,故此选项正确; ②证明:∵在△ABC 中,∠C =90°,∠B =30°, ∴∠CAB =60°.∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB =30°,∴∠3=90°-∠2=60°,∠ADC =60°,故此选项正确;③证明:∵∠1=∠B =30°, ∴AD =BD ,∴点D 在AB 的中垂线上,故此选项正确; ④证明:∵在Rt △ACD 中,∠2=30°,∴CD =12AD ,∴BC =BD +CD =AD +12AD =32AD , S △DAC =12AC •CD =14AC •AD ,∴S △ABC =12AC •BC =12AC •32AD =34AC •AD , ∴S △DAC :S △ABC =1:3,故此选项正确; 故答案为①②③④.19.【答案】到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线【解析】解:如图,∵由作图可知,AC =BC =AD =BD , ∴直线CD 就是线段AB 的垂直平分线.故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.根据线段垂直平分线的作法即可得出结论. 本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键. 20.【答案】√2【解析】解:过点O 作OD ⊥BC ,OG ⊥AC ,垂足分别为:D ,G , 由题意可得:O 是△ACB 的内心,∵AB =5,AC =4,BC =3, ∴BC 2+AC 2=AB 2, ∴△ABC 是直角三角形, ∴∠ACB =90°, ∴四边形OGCD 是正方形,∴DO =OG =3+4−52=1, ∴CO =√2.故答案为:√2.直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.此题主要考查了基本作图以及三角形的内心,正确得出OD 的长是解题关键.21.【答案】(1)解:如图所示:(2)解:△BCD 是等腰三角形. 理由如下:∵AB =AC ,∠A =36°, ∴∠ABC =∠C =72°, ∵BD 平分∠ABC ,∴∠DBC =12∠ABC =36°, ∴∠BDC =∠C =72°,∴BC=BD,∴△BCD是等腰三角形.【解析】本题主要考查了等腰三角形的性质和判定,三角形的内角和定理,角平分线的性质,作图与基本作图等知识点,解此题的关键是能正确画图和求出∠C、∠BDC的度数.(1)以B为圆心,以任意长为半径画弧交AB、AC于两点,再以这两点为圆心,以大于这两点的距离的一半为半径画弧,交于一点,过这点和B作直线即可;(2)由∠A=36°,求出∠C、∠ABC的度数,能求出∠ABD和∠CBD的度数,即可求出∠BDC,根据等角对等边即可推出答案.22.【答案】解:(1)如图,AD为所求;(2)作DE⊥AC于E,如图,∵∠ABC=90°,AB=BC=2.∴△ABC为等腰直角三角形,∴∠C=45°,∴△CDE为等腰直角三角形,∴CD=√2DE,∵AD为角平分线,DB⊥AB,DE⊥AC,∴BD=DE,设BD=x,则CD=√2x,∴x+√2x=2,∴x=1+√2=√2)(1+√2)(1−√2)=2−2√2−1=2√2−2,即BD的长为2√2−2.【解析】(1)利用基本作图(作已知角的平分线)作AD平分∠BAC;(2)作DE⊥AC于E,如图,先判断△ABC为等腰直角三角形得到∠C=45°,则可判断△CDE 为等腰直角三角形,则CD=√2DE,再根据角平分线的性质得到BD=BE,设BD=x,则CD=√2x,然后利用BC=2列方程x+√2x=2,再解方程即可.本题考查了基本作图:熟练掌握5个基本作图;掌握角平分线的性质定理和等腰直角三角形的判定与性质是解决(2)小题的关键.23.【答案】解:(1)如图所示,P为所求的点(2)30(3)∵AP是∠BAC的平分线,∴∠DAP=∠CAP,∵∠ADP=∠C,AP=AP,∴△ADP≌△ACP(AAS),∴AD=AC=2,∴AB=2AD=4,在Rt△ABC中,∠C=90°,根据勾股定理,得BC=√AB2−AC2=√42−22=√12=2√3.【解析】【分析】本题主要考查了基本作图,角平分线的知识,解题的关键是熟记作图的方法及等边对等角的知识.(1)运用基本作图方法,中垂线的作法作图;(2)求出∠PAB=∠PAC=∠B,运用直角三角形解出∠B;(3)根据AP是∠BAC的平分线,可知∠DAP=∠CAP,进一步得△ADP≌△ACP,AD=AC=2,AB=2AD=4,利用勾股定理进行求解即可.【解答】解:(1)见答案;(2)如图,∵PA=PB,∴∠PAB=∠B,如果AP是角平分线,则∠PAB=∠PAC,∴∠PAB=∠PAC=∠B,∵∠ACB=90°,∴∠PAB=∠PAC=∠B=30°,∴∠B=30°时,AP平分∠CAB.故答案为30;(3)见答案.24.【答案】(1)如图所示,线段AE即为所求.作图方法不唯一,正确即可.(2)∵AD=AC,AE⊥CD,点E是CD中点,∴∠C=90°-∠CAE=74°.∵AD=AC,∴∠ADC=∠C=74°.∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°.【解析】本题考查的是作图-基本作图以及线段垂直平分线的性质和等腰三角形的性质,熟知线段垂直平分线的作法是解答此题的关键.(1)根据线段垂直平分线的画法解决此题;(2)利用等腰三角形的性质解决此题;。

初三尺规作图练习题

初三尺规作图练习题

初三尺规作图练习题尺规作图是初中数学中的基础内容,通过使用尺子和圆规来进行几何图形的绘制和构造。

这是一项重要的技能,它能够培养学生的空间想象力、观察力和创造力。

以下是几个初三尺规作图练习题,帮助学生巩固和提高这一技能。

练习一:画等边三角形1. 用尺子和圆规画一个等边三角形。

2. 以线段AB为边,以A为圆心,画一个以线段AB为半径的圆弧。

3. 以线段BA为边,以B为圆心,画一个以线段BA为半径的圆弧。

4. 这两个圆弧相交于点C。

5. 连接AC和BC,得到一个等边三角形。

练习二:画正四边形1. 画一个边长为5cm的正四边形。

2. 以点A为圆心,以5cm为半径,画一个圆弧。

3. 以点B为圆心,以5cm为半径,画一个圆弧。

4. 这两个圆弧相交于点C。

5. 连接AC和BC,得到一个正四边形。

练习三:画正六边形1. 画一个边长为4cm的正六边形。

2. 以点A为圆心,以4cm为半径,画一个圆弧。

3. 连接圆弧上的点与圆心A,得到一条线段。

4. 以线段AB为边,以点B为圆心,以4cm为半径,画一个圆弧。

5. 连接圆弧上的点与线段AB的端点,得到一条线段。

6. 以线段AC为边,以点C为圆心,以4cm为半径,画一个圆弧。

7. 连接圆弧上的点与线段AC的端点,得到一个正六边形。

练习四:画平行线1. 画一条任意长度的线段AB。

2. 以点A为圆心,以任意半径,画一个圆弧。

3. 以点B为圆心,以相同的半径,画一个圆弧。

4. 这两个圆弧相交于点C和D。

5. 连接CD,得到一条平行于线段AB的线段。

以上是初三尺规作图练习题,通过这些练习,可以提高学生的尺规作图能力,加深对几何图形的理解,培养学生的观察和推理能力。

这些技能对于初中数学以及将来的学习和职业发展都具有重要意义。

希望同学们能够认真练习,掌握这一基本技能。

尺规作图初二上练习题

尺规作图初二上练习题

尺规作图初二上练习题尺规作图是几何学中的重要内容之一,通过尺和规这两种工具,可以实现诸多几何图形的精确绘制。

下面是一些初二上学期尺规作图的练习题,通过完成这些题目,可以更好地理解和掌握尺规作图的方法和技巧。

1. 作一个等腰三角形ABC,知道底边BC和顶角A的大小。

2. 作一个等边三角形XYZ,已知边长为a。

3. 作一个与已知直线平行的直线。

4. 作一个与已知直线垂直的直线。

5. 过已知点P作一条平行于已知直线的直线。

6. 过已知点P作一条垂直于已知直线的直线。

7. 作一个直角三角形,已知两条直角边的长度。

8. 作一个正方形,已知边长。

9. 过已知点P作一条经过已知点Q的直线。

10. 作一个与已知线段AB等长的线段。

以上是初二上学期尺规作图的一些练习题,通过动手实践这些题目,可以帮助同学们更好地掌握尺规作图的方法和技巧。

尺规作图在几何学中具有重要的意义,它不仅可以帮助我们准确地绘制各种几何图形,还可以培养我们的观察力、分析能力和解决问题的能力。

尺规作图的基本原理是通过尺上的刻度和规上的固定长度,结合直尺和圆规这两种工具,来绘制几何图形。

在作图过程中,需要注意以下几点:1. 清晰准确地标出已知条件。

在作图前,要仔细阅读题目,理解图形的已知条件,将这些条件清晰地标出来,为后续的作图提供依据。

2. 确定作图的步骤和顺序。

尺规作图一般需要按照一定的步骤和顺序进行,不可随意涂抹或直接描绘,要有条不紊地进行作图。

3. 使用规时要保持长度不变。

规上的固定长度是尺规作图的关键,要保证在作图过程中不改变规的长度,以保证绘制的图形准确无误。

4. 仔细检查作图结果。

完成作图后,要仔细检查绘制的图形是否符合已知条件和要求,确保没有错误。

通过反复练习和不断实践,同学们可以逐渐掌握尺规作图的方法和技巧。

在解决数学和几何问题时,尺规作图可以起到辅助的作用,帮助理解和解决问题。

同时,尺规作图也是培养同学们观察力、分析能力和解决问题能力的有效方法之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1
尺规作图专题
一、关于尺规作图
用 和 准确地按要求作出图形。

不利用...直尺的刻度,三角板现有的角度,及量角器。

二、几种基本作图
1、画一条线段等于已知线段
如图1,MN 为已知线段,用直尺和圆规准确地画一条线段AC 与MN 相等。

步骤:
1、画 AB ,
2、然后用 量出线段 的长,再在 AB 上截取AC =MN , 那么,线段AC 就是所要画的线段. 2、画一个角等于已知角
如图2所示,∠AOB 为已知角,试按下列步骤用圆规和直尺准确地画∠A ′O ′B ′等于∠AOB .
步骤:
1、 画射线O ′A ′.
2、 以点O 为圆心,以适当长为半径画弧,交OA 于C ,交OB 于D .
3、 以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于C ′.
4、 以点C ′为圆心,以CD 长为半径画弧,交前一条弧于D ′.
5、 经过点D ′画射线O ′B ′.∠A ′O ′B ′就是所要画的角. 3、画已知线段的垂直平分线
定义: 于一条线段并且 这条线段的直线,叫做线段的垂直平分线(或叫中垂线。

) 如图所示,已知线段AB ,画出它的垂直平分线. 步骤:
1、 以点A 为圆心,以大于AB 一半的长为半径画弧;
2、 以点B 为圆心,以同样的长为半径画弧,
3、 两弧的交点分别记为C 、D ,连结CD ,则CD 是线段AB 的垂直平分线.
4、画角平分线
利用直尺和圆规把一个角二等分. 已知:如图3,∠AOB
求作:射线OC ,使∠AOC =∠BOC 步骤:
1、OA 和OB 上,分别截取OD 、OE ,使OD =OE
2、分别以D 、E 为圆心,大于 的长为半径作弧,在∠AOB 内,两弧交于点C
3、作射线OC ,OC 就是所求的射线。

5、作已知直线垂线
(1)过直线上一点作一条直线与已知直线垂直 如图,点A 在1l 上,过点A 作直线2l ,使得1l ⊥2l 作法:
1、以点A 为圆心,以为适当长为半径画弧交1l 于B 、C
2、分别以点B 、C 为圆心,以大于2
1
BC 为半径,在1l 一侧作弧,交点为D 3、连接AD
o B A
图2A
l 1
l 1
o
B
A
图2
那么,AD就是所求的直线直线
2
l
(2)过直线上一点作一条直线与已知直线垂直
1、以点A为圆心,以大于点A到
1
l的距离的长度为半径画弧交
1
l于B、C
2、分别以点B、C为圆心,以大于
2
1
BC为半径,在另一侧作弧,交点为D
3、连接AD
那么,AD就是所求的直线直线
2
l
练习一
1、已知线段AB和CD,如下图,求作一线段,使它的长度等于AB+2CD.
2、如图,已知∠A、∠B,求作一个角,使它等于∠A-∠B.
3、根据要求作△ABC和它的内切圆。

(1)如图作△
ABC,使得BC=a、AC=b、AB=c
(2)作△ABC的内切圆。

4、如图,画一个等腰△ABC,使得底边BC=a,它的高AD=h
5、如图,已知∠AOB及M、N两点,求作:点P,使点P到∠AOB的两边距离相等,且到M、N的两点也距离相等。

c
b
a
a
O
A
N
M
练习二
1.己知三边求作三角形
己知一个三角形三条边分别为a,b,c求作这个三角形。

2.己知三角形的两条边及其夹角,求作三角形
已知一个三角形的两条边分别为a,b,这两条边夹角为∠a,求作这个三角形
3.已知三角形的两角及其夹边,求作三角形
巳知一个三角形的两角分别为∠a ∠β夹边为a 求作这个三角形。

4、己知三角形的两角及其中一角的对边,求作三角形
已知三角形的两角分别为∠a ∠β,∠a的对边为∠a,求作这个三角形
5.己知一直角边和斜边求作三角形
己知一个直角三角形的一条直角边为a,斜边长为c,求作这个三角形。

练习三(挑战中考)
1.尺规作图,已知线段,a 画一个底边长度为a ,底边上的高也为a 的等腰三角形。

(要求:写出已知、求作,保留作
图痕迹) 已知: 求作:
2.尺规作图:请你作出一个以线段a 和线段b 为对角线的菱形.ABCD
(要求:写出已知,求作,结论,并用直尺和圆规作图,保留作图痕迹,不写作法及证明) 已知: 求作: 结论:
3.已知直角三角形的一条直角边和斜边,求作此直角三角形.
(要求:写出已知,求作,结论,并用直尺和圆规作图,保留作图痕迹,不写作法及证明) 已知:
求作:
结论:
a
a
b
4. 如图,在△ABC中,∠BAC=2∠C.
(1)在图中作出△ABC的内角平分线AD;(要求:尺规作图,保留作图痕迹,•不写证明)(2)在已作出的图形中,写出一对相似三角形,并说明理由.。

相关文档
最新文档