第1章-半导体器件基础1分解复习过程

合集下载

第一章 半导体器件基础

第一章 半导体器件基础

五、二极管的基本功能
3.二极管的限幅作用
把输入电压的变化范围加以限制叫做限幅,常用于波形变 换和整形。二极管正向导通后,它的正向管压降基本保持不变 (硅管为0.7V,锗管为0.2V)。利用这一特性,在电路中作为 限幅元件,可以把信号幅度限制在一定范围内。
ui / V
5
R
+
VD
0
+
-5
t
ui
3V
uo
四、二极管的主要参数
1.最大平均整流电流IF
二极管长期工作时,允许通过的最大正向平均电流
2.最高反向工作电压UR
二极管正常工作时允许加的最大反向电压。为了确保二 极管安全工作,一般取反向击穿电压UBR的一半作为UR
3.反向电流IR
二极管加上最高反向工作电压时的反向电流。反向电流 越小,管子的单向导电性越好。另外,IR与温度密切相关, 使用时应注意。
_ _ _
_ _ _
_ _ _ _ _ _
PN结P端接高电位,N端
+ + +
+ + + + + +
+ + +
接低电位,称PN结外加正向 电压,又称PN结正向偏置, 简称为正偏,如图所示
结论:
PN结外加正向电压(正偏)时处于导通状态,外加反向电 压(反偏)时处于截止状态
四、PN结
4.PN结的用途 • 整流半导体器件 • 可变电容 • 稳压器件
空穴的移动: 当出现空穴时,由于电场的作 用,与它相邻的价电子很容易离开 它所在的共价键而填补到这个空位 上,在电子原来的位置上留下空穴, 而其它电子又可以转移到这个新的 空位上,那么在晶体中就出现了电 荷移动。 自由电子的定向运动形成了电子电流,空穴的定向运动也 可形成空穴电流,它们的方向相反。

第一章--半导体器件讲解

第一章--半导体器件讲解


RB 入
UEE
电 路
输 出
IE 电

共射极放大电路
2、三极管内部载流子的传输过程
a)发射区向基区注入电子,
形成发射极电流 iE
b)电子在基区中的扩散与复 IB
合,形成基极电流 iB c)集电区收集扩散过来的电
RB
子,形成集电极电流 iC
UBB
IC N RC
P UCC N
IE
另外,集电结的反偏也形成集电区中的少子空穴 和基区中的少子电子的漂移运动,产生反向饱和电流 ICBO。
1.3 半导体三极管
一、三极管的结构及类型
半导体三极管是由两个背靠背的PN结 构成的。在工作过程中,两种载流子(电 子和空穴)都参与导电,故又称为双极型 晶体管,简称晶体管或三极管。
两个PN结,把半导体分成三个区域。 这三个区域的排列,可以是N-P-N,也可以 是P-N-P。因此,三极管有两种类型:NPN 型和PNP型。
第一章 半导体器件
1.1 半导体基础知识 1.2 PN结(半导体二极管) 1.3 半导体三极管
1.1 半导体基础知识
半导体器件是用半导体材料制成的电 子器件。常用的半导体器件有二极管、三 极管、场效应晶体管等。半导体器件是构 成各种电子电路最基本的元件。
一、半导体的导电特征
导体:金、银、铜铁、铝等容易传导电流的物质 绝缘体: 橡胶、木头、石英、陶瓷等几乎不传导电流的物质 半导体:导电性能介于导体和绝缘体之间的物质, 如硅、锗、硒、砷化钾等。
稳压管是一种用特殊工艺制造的半导体二极管,稳 压管的稳定电压就是反向击穿电压。稳压管的稳压作用 在于:电流增量很大,只引起很小的电压变化。
i/mA
8
4

模电第1章复习精简版

模电第1章复习精简版

第一章
半导体器件
价电子
(a) 硅、锗原子结构 最外层电子称价电子 4 价元素
+4
惯性核
4 价元素的原子常常用 + 4 电荷的正离子和周围 4 个价电子表示。
(b) 简化模型
图 1-1 原子结构及简化模型
第一章
半导体器件
2)
本征半导体的原子结构
完全纯净的、不含其他杂质且具有晶体结构的半导 体称为本征半导体。
带负电的自由电子 带正电的空穴
2. 本征半导体中,自由电子和空穴总是成对出现, 称为 电子 - 空穴对。
3. 本征半导体中自由电子和空穴的浓度用 ni 和 pi 表示,显然 ni = pi 。 4. 由于物质的运动,自由电子和空穴不断的产生又 不断的复合。在一定的温度下,产生与复合运动会达到 平衡,载流子的浓度就一定了。 5. 载流子的浓度与温度密切相关(它随着温度的升 高,基本按指数规律增加)。
I / mA
60 40 死区 20 电压
0 0.4 0.8 U / V
正向特性
第一章
半导体器件
I / mA
–50 –25
– 0.02
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增 大,即饱和;
0U / V
反向饱 和电流
– 0.04
反向特性
如果反向电压继续升高,大到一定数值时,反向电 流会突然增大;
(a)N 型半导体
(b) P 型半导体
杂质半导体的的简化表示法
第一章
半导体器件
1.2 半导体二极管
1)PN 结的形成
在一块半导体单晶上一侧掺杂成为 P 型半导体,另 一侧掺杂成为 N 型半导体,两个区域的交界处就形成了 一个特殊的薄层,称为 PN 结。

第一章半导体器件基础知识

第一章半导体器件基础知识

第一节
第 一 节 半 导 体 的 基 本 知 识
第二节
第三节
第四节
第五节
江 西 应 用 技 术 职 业 学 院
3
第一章 半导体器件基础知识
本章概述
第一节
第二节
三、本征半导体 纯净的不含任何杂质、晶体结构排列整齐的半导体。 共价键:相邻原子共有价电子所形成的束缚。半导体中 有自由电子和空穴两种载流子参与导电。 空穴产生:价电子获得能量挣脱原子核吸引和共价键束 缚后留下的空位,空穴带正电。
+ + VD
第二节
第 二 节 半 导 体 二 极 管
u
i
C
RL
uo
第三节
£ -
£ -
第四节
第五节
江 西 应 用 技 术 职 业 学 院
21
第一章 半导体器件基础知识
六、特殊二极管
本章概述
第一节
1.发光二极管 发光二极管(LED)是一种将电能转换成光能的特殊二极管,它的外 型和符号如图1-12所示。在LED的管头上一般都加装了玻璃透镜。
R
+ VD +
ui Us O t
第一节
第二节
第 二 节 半 导 体 二 极 管
第三节
+
第四节
ui
Us
uo
uo Us O t
第五节

图1-8 单向限幅电路 江 西 应 用 技 术 职 业 学 院
18


第一章 半导体器件基础知识
本章概述
(2)双向限幅电路 通常将具有上、下门限的限幅电路称为双向限幅电路,电路 及其输入波形如图1-9所示。图中电源电压U1、U2用来控制它的上、 下门限值。

半导体器件的基础知识

半导体器件的基础知识

向电压—V(BR)CBO。 当集电极开路时,发射极与基极之间所能承受的最高反
向电压—V(BR)EBO。
精选课件
28
1.2 半导体三极管
③ 集电极最大允许耗散功率 PCM 在三极管因温度升高而引起的参数变化不超过允许值时, 集电极所消耗的最大功率称集电极最大允许耗散功率。
三极管应工作在三极 管最大损耗曲线图中的安 全工作区。三极管最大损 耗曲线如图所示。
热击穿:若反向电流增大并超过允许值,会使 PN 结烧 坏,称为热击穿。
结电容:PN 结存在着电容,该电容为 PN 结的结电容。
精选课件
5
1.1 半导体二极管
1.1.3 半导体二极管
1.半导体二极管的结构和符号 利用 PN 结的单向导电性,可以用来制造一种半导体器 件 —— 半导体二极管。 电路符号如图所示。
将两个 NPN 管接入判断 三极管 C 脚和 E 脚的测试电 路,如图所示,万用表显示阻
值小的管子的 值大。
4.判断三极管 ICEO 的大小 以 NPN 型为例,用万用 表测试 C、E 间的阻值,阻值 越大,表示 ICEO 越小。
精选课件
33
1.2 半导体三极管
1.2.6 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功率 三极管,一般采用 SOT-23形式封装。如图所示。
精选课件
21
1.2 半导体三极管
由图可见: (1)当 V CE ≥ 1 V 时,特性曲线基本重合。 (2)当 VBE 很小时,IB 等于零,三极管处于截止状态。
精选课件
22
1.2 半导体三极管
(3)当 VBE 大于门槛电压(硅管约 0.5 V,锗管约 0.2 V) 时,IB 逐渐增大,三极管开始导通。

半导体器件物理复习纲要word精品文档5页

半导体器件物理复习纲要word精品文档5页

第一章 半导体物理基础能带:1-1什么叫本征激发?温度越高,本征激发的载流子越多,为什么?1-2试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。

1-3、试指出空穴的主要特征及引入空穴的意义。

1-4、设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E v (k)分别为:2222100()()3C k k k E k m m -=+和22221003()6v k k E k m m =-;m 0为电子惯性质量,1k a π=;a =0.314nm ,341.05410J s -=⨯⋅,3109.110m Kg -=⨯,191.610q C -=⨯。

试求:①禁带宽度;②导带底电子有效质量;③价带顶电子有效质量。

题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。

其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。

温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。

反之,温度降低,将导致禁带变宽。

因此,Ge 、Si 的禁带宽度具有负温度系数。

1-3、准粒子、荷正电:+q ; 、空穴浓度表示为p (电子浓度表示为n ); 、E P =-E n (能量方向相反)、m P *=-m n *。

空穴的意义:引入空穴后,可以把价带中大量电子对电流的贡献用少量空穴来描述,使问题简化。

1-4、①禁带宽度Eg 根据dk k dEc )(=2023k m +2102()k k m -=0;可求出对应导带能量极小值E min 的k 值: k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m ;由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =22106k m ;∴Eg =E min -E max =221012k m =222012m a π =23423110219(1.05410)129.110(3.1410) 1.610π----⨯⨯⨯⨯⨯⨯⨯=0.64eV②导带底电子有效质量m n2222200022833C d E dk m m m =+=;∴ 22023/8C n d E m m dk == ③价带顶电子有效质量m ’ 22206V d E dk m =-,∴2'2021/6V n d E m m dk ==- 掺杂:2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?2-3、什么叫受主?什么叫受主电离?2-4、何谓杂质补偿?杂质补偿的意义何在?题解:2-1、解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。

半导体器件基础 第1章(第二版)PPT课件

半导体器件基础 第1章(第二版)PPT课件

电 子的浓度是一定的,反向电流在一定
的电压范围内不随外界电压的变化而
子 变化,这时的电流称为反向饱和电流,第
技 以IR(sat) 表示。

术 章



少数载流子的浓度很小,由
子 此而引起的反向饱和电流也很小, 技 但温度的影响很大。表1.2.1是硅 第
管的反向电流随温度的变化情况 一
术 章


三、PN结的伏安特性

术 温度每升高8℃,硅的载流子浓度增加一倍。


+4
+4
+4
+4
+4
+4 自


+4
+4
+4
+4
+4
+4 电

空穴
+4
+4
+4
+4
+4
+4
1.1.3 杂质半导体的导电特性

掺杂后的半导体称为杂质半导体,
子 杂质半导体按掺杂的种类不同,可分为N 第
技 型(电子型)半导体和P型(空穴型)半

术 导体两种。
1.2.1 PN结的形成

当P型半导体和N型半
子 导体相互“接触”后,在
它们的交界面附近便出现

技 了电子和空穴的扩散运动。

术 N区界面附近的多子电子将 基 向P区扩散,并与P区的空
同样,P区界面形章 成一个带负电的薄电
础穴复合,N区界面附近剩下 荷层。于是在两种半 了不能移动的施主正离子, 导体交界面附近便形
成了一个空间电荷区,

第01章 半导体器件基础

第01章 半导体器件基础
符号中发射极上的箭头方向, 符号中发射极上的箭头方向,表示发射结正偏时电流的流 向。 三极管制作时,通常它们的基区做得很薄( 三极管制作时,通常它们的基区做得很薄(几微米到几十 基区做得很薄 微米) 掺杂浓度低;发射区的杂质浓度则比较高; 微米),且掺杂浓度低;发射区的杂质浓度则比较高;集电区 的面积则比发射区做得大, 的面积则比发射区做得大,这是三极管实现电流放大的内部条 件。
7
c
(b)合金型(PNP) )合金型( )
1.3.1 三极管的结构及符号
三极管可以是由半导体硅材料制成,称为硅三极管 硅三极管; 三极管可以是由半导体硅材料制成,称为硅三极管;也可 以由锗材料制成,称为锗三极管。 以由锗材料制成,称为锗三极管。 锗三极管 三极管从应用的角度讲,种类很多。根据工作频率分为高 三极管从应用的角度讲,种类很多。根据工作频率分为高 频管、低频管和开关管;根据工作功率分为大功率管 大功率管、 频管、低频管和开关管;根据工作功率分为大功率管、中功率 小功率管。 管和小功率管。 一般高频管功率就比较小 , 因为频率高就要结电容小 , 一般 高频管功率就比较小, 因为频率高就要结电容小, 高频管功率就比较小 PN结面积就要小,面积小电流就不能太大,功率也就低。 结面积就要小, 结面积就要小 面积小电流就不能太大,功率也就低。 大功率管的工作频率也不高,因为大功率就要大电流, 大功率管的工作频率也不高,因为大功率就要大电流,大 电流就要PN结面积够大 结面积够大, 结电容也大 工作频率自然低。 结电容也大, 电流就要 结面积够大,PN结电容也大,工作频率自然低。
18
2. 晶体管的电流放大原理
(2)交流电流放大系数 )
在共射极放大电路中,当有输入电压 作用时, 在共射极放大电路中,当有输入电压∆ui作用时,则晶体 管的基极电流将在I 的基础上叠加动态电流∆i 管的基极电流将在 B的基础上叠加动态电流 B,集电极电 流也将在I 的基础上叠加动态电流∆i 通常将集电极电流 流也将在 C的基础上叠加动态电流 C。通常将集电极电流 变化量∆i 与基电极电流变化量∆i 之比定义为“ 变化量 C与基电极电流变化量 B之比定义为“共射极交流 电流放大系数” 表示。 电流放大系数”,用β 表示。即:

半导体基础知识专题培训课件

半导体基础知识专题培训课件

所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电扩散荷运运动动,空间电荷区的厚 度固定不变。
(1-20)
电位V
V0
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
(1-14)
多余 电子
磷原子
+4 +4 +5 +4
N 型半导体中 的载流子是什 么?
1、由施主原子提供的电子,浓度与施主原子相同。 2、本征半导体中成对产生的电子和空穴。
掺杂浓度远大于本征半导体中载流子浓度,所以,自 由电子浓度远大于空穴浓度。自由电子称为多数载流 子(多子),空穴称为少数载流子(少子)。
+ +++++ + +++++ + +++++ + +++++
空间电荷区, 也称耗尽层。
扩散运动
扩散的结果是使空间电 荷区逐渐加宽,空间电 荷区越宽。
(1-19)
漂移运动
P型半导体
内电场E N型半导体
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++

第一章 半导体器件基础讲义

第一章 半导体器件基础讲义

第一章半导体器件基础讲义1.1半导体的基本知识一、半导体材料导体电阻率半导体绝缘体电阻率<10-4Ωcm >1010Ωcm,·典型半导体材料:硅(Silicon ,元素符号Si)锗(Germanium,元素符号Ge)化合物半导体如砷化镓(GaAs)等·半导体三特点:热敏性;②光敏性;③杂敏性。

·半导体导电能力与晶体结构的关系――半导体的导电能力取决于它的原子结构。

·硅原子结构简化模型:·硅原子的晶体结构:共价键。

·半导体指纯净的、结构完整的晶体·共价键内载流子的运动方式――价电子是可以在共价键内运动的。

二、本征半导体·T=0K(约为-273℃)时,所有价电子均被束缚在共价键内,不能导电。

·热激发T↑→价电子的热运动获得能量→摆脱共价键的吸引→成为自由电子,同时留下一个空位→相关原子成为正离子――中性原子的电离过程。

·空穴可以移动的,带正电荷的载流子。

空穴的运动形式――价电子在共价键内移动。

·半导体内的两种载流子:自由电子和空穴――两者带电量相同而极性相反,且均可移动。

·自由电子和空穴成对产生源于温度,称为热激发。

·热敏性T↑,热激发加剧,自由电子和空穴的浓度↑,电阻率↓。

·复合自由电子和空穴相遇,自由电子和空穴成对消失的过程。

·从能量的角度看激发和复合热激发是价电子获得能量摆脱共价键束缚的过程,复合则是自由电子释放出所获得的能量重新被共价键俘获的过程。

·热平衡浓度T↑→自由电子和空穴浓度↑→复合↑→动态平衡。

表现为在此温度下电子和空穴对的浓度宏观上不再变化。

称为此温度下的热平衡浓度。

温度提高后,热激发产生的自由电子-空穴对的数量出现新的增长,带动复合数量的增长,最终达到新的动态平衡,在新的温度下形成新的热平衡浓度。

·室温下,硅中载流子的热平衡浓度只有约1010/cm3,导体中自由电子浓度约1022/cm3,且不随温度而变。

半导体器件物理复习资料1

半导体器件物理复习资料1

半导体器件物理复习资料第1 页共11 页半导体器件物理复习资料半导体器件:导电性介于良导电体与绝缘体之间,利用半导体材料特殊电特性来完成特定功能的电子器件。

(器件的基础结构:金属—半导体接触,p-n 结,异质结,MOS 结构)Physics of Semiconductor半导体材料半导体的电导率则介于绝缘体及导体之间。

元素(Element)半导体:在周期表第Ⅳ族中的元素如硅(Si)及锗(Ge)都是由单一原子所组成的元素(element)半导体。

化合物(Compound)半导体:二元化合物半导体是由周期表中的两种元素组成。

几种常见的晶体结构晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性结构非晶体:组成固体的粒子只有短程序,但无长程周期性准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性能带的形成原子靠近→电子云发生重叠→电子之间存在相互作用→分立的能级发生分裂。

从另外一方面来说,这也是泡利不相容原理所要求的。

一个能带只能有N 个允许的状态;考虑电子有两种自旋状态,故一个能带能容纳2N 个电子;对于复式格子,每个能带允许的电子数还要乘上原胞内的原子个数;对于简并能带,状态总数要乘以简并度。

金属、半导体、绝缘体金属导体:最高填充带部分填充;绝缘体和半导体:T=0K,最高填充带为填满电子的带。

T>0K,一定数量电子激发到上面的空带。

绝缘体的Eg 大,导带电子极少;半导体的Eg 小,导带电子较多。

根据能带填充情况和Eg 大小来区分金属、半导体和绝缘体。

(全满带中的电子不导电;部分填充带:对称填充,未加外场宏观电流为零。

加外场,电子逆电场方向在k 空间移动。

散射最终造成稳定的不对称分布,产生宏观电流(电场方向)。

)有效质量电子共有化运动的加速度与力的关系和经典力学相同,即:m*具有质量量纲,称为晶体中电子的有效质量。

(能带越宽,有效质量越小;能带越窄,有效质量越大。

)m* 的意义:晶体中的电子除受到外力,还受到周期场力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

△I
反向击穿状态下,工作
电流IZ在Izmax和Izmin 之间变化时,其两端电 △ U
压近似为常数
i
正向同 二极管
u
I zm in
I zm ax
i
稳压二极管的主要 参数
(1) 稳定电压UZ ——
在规定的稳压管反向工作电流IZ下U Z,所对应的I z m反i n 向工作电u压。
(2) 动态电阻rZ ——
形成内电场 阻止多子扩散,促使少子漂移。 内电场E
P型半导体 空间电荷区 N型半导体
- - -- + + + +
- - -- + + + +
- - -- + + + +
少子漂移电流
耗尽层
多子扩散电流
少子飘移
补充耗尽层失去的多子,耗尽层窄,E
多子扩散
又失去多子,耗尽层宽,E
内电场E
动画演示
P型半导体 耗尽层 N型半导体
二. 二极管
结构
二极管 = PN结 + 管壳 + 引线
符号
P
+
阳极
N
-
阴极
二极管按结构分三大类:
(1) 点接触型二极管
PN结面积小,结电容小, 用于检波和变频等高频电路。
金 属触 丝 正 极引 线
负 极引 线
外壳
N型 锗
(2) 面接触型二极管
正极引线
P型 硅
铝合金小球 N型 硅
底座 负极引线
(3) 平面型二极管
第1章-半导体器件基础1分解
杂质半导体
在本征半导体中掺入某些微量杂质元素后的 半导体称为杂质半导体。
1. N型半导体
在本征半导体中掺入五价杂质元素,例如磷,砷等
,称为N型半导体。
2. P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓等。
2. PN结及其单向导电性
1 . PN结的形成
PN结合 因多子浓度差 多子的扩散 空间电荷区
PN结面积大,用 于工频大电流整流电路。
用于集成电路制造工艺中。 PN 结面积可大可小,用 于高频整流和开关电路中。
正 极引 线
S iO 2
P型 硅 N型 硅
负 极引 线
半导体二极管的型号
国家标准对半导体器件型号的命名举例如下:
2AP9
用数字代表同类器件的不同规格。
代表器件的类型,P为普通管,Z为整流管,K为开关管。 代表器件的材料,A为N型Ge,B为P型Ge, C为N 型Si, D为P型Si。 2代表二极管,3代表三极管。
→少子漂移形成反向电流I R
P
空间电荷区
N
在一定的温度- 下,- 由-本 - + + + +
征激发产生的少-子浓-度是- - + + + +
一定的,故IR基-本上-与外- -
++ ++
IR
加反压的大小无关,所以 内电场 E
称为反向饱和电流。但IR
与温度有关。
EW
R
PN结加正向电压时,具有较大的正向 扩散电流,呈现低电阻, PN结导通;
例: R
串联电压源模型 R
理想二极管模型 R
1kΩ
E
I
10V
1kΩ
E
I
10V
0.7V
1kΩ
E
I
10V
测量值 9.32mA
I(100.7)V9.3mA 1K
I 10V10mA 1K
相对误差
相对误差
9.3 9.3 292.1 30 00 00.200 19 0.3 9.32 210000 700
例 : 二 极 管 构 成 的 限 幅 电 路 如 图 所 示 , R = 1kΩ ,
- - -- + + + +
- - -- + + + +
- - -- + + + +
少子漂移电流
动态平衡: 扩散电流 = 漂移电流
势垒 UO
硅 0.5V 锗 0.1V
多子扩散电流
总电流=0
2. PN结的单向导电性
(1) 加正向电压(正偏)——电源正极接P区,负极接N区 外电场的方向与内电场方向相反。
R
1 k
u o U RE U F D 2 V 0. 7 2V .7V
(2)如果ui为幅度±4V的交流三角波,波形如图(b)所 示,分别采用理想二极管模型和理想二极管串联电压源模
型分析电路并画出相应的输出电压波形。
ui
R
4V
2V
+
I+
t
ui
uO
0
-
U REF
-
-4V
uo
解:①采用理想二极管
2V
t
模型分析。波形如图所示。
ui
4V
R
2.7V
t
+
I+
0
ui
u O -4V
-
U REF
-
uo
2.7V
②采用理想二极管串联
t
电压源模型分析,波形
0
如图所示。
三.
二极管的主要参数
二极管长期连续工
(1) 最大整流电流IF——
作时,允许通过二 极管 反向击穿电压UBR———
(3) 反向电流IR——
UREF=2V,输入信号为ui。
(1)若 ui为4V的直流信号,分别采用理想二极管模型、
理想二极管串联电压源模型计算电流I和输出电压uo
解:(1)采用理想模型分析。
R
+
I= uiURE F4V2V 2mA
R
1k
ui
uoURE F2V
-
I+
uO
U REF
-
采用理想二极管串联电压源模型分析。
I= u i U R- E U F D4 V 2 V 0 .7 V 1 .3 mA
二极管反向电流 急剧增加时对应的反向 电压值称为反向击穿
电压UBR。
在室温下,在规定的反向电压下的反向电流值。 硅二极管的反向电流一般在纳安(nA)级;锗二极 管在微安(A)级。
三、稳压二极管 稳压二极管是应用在反向击穿区的特殊二极管
++
反偏电压≥UZ
UZ -
-
DZ
反向击穿
稳定 电压
限流电阻
UZ
当稳压二极管工作在
▪Si二极管
GaAs-AlGaAs 谐振腔发光二极管
Ge二极管
1 、半导体二极管的V—A特性曲线
实验曲线
i

击穿电压UBR
(1) 正向特性 i
u
V
mA
(2) 反向特性
i u
V
uA
0 反向饱和电流
u
导通压降 硅:0.7 V
死区
电压
E
锗:0.3V
硅:0.5 V 锗: 0.1 V
E
二极管的近似分析计算
PN结加反向电压时,具有很小的反向 漂移电流,呈现高电阻, PN结截止。
由此可以得出结论:PN结具有单向导 电性。
动画演示1 动画演示2
3. PN结的伏安特性曲线及表达式
根据理论推导,PN结的伏安特性曲线如图
反向饱和电流 反向击穿电压
IF(多子扩散) 正偏
反偏
反向击穿
IR(少子漂移)
电击穿——可逆 热击穿——烧坏PN结
外电场削弱内电场 →耗尽层变窄 →扩散运动>漂移运动
→多子扩散形成正向电流I F
P型半导体 空间电荷区 N型半导体
- - --
++ ++
- - - -正向电流 + + + +
- - -- ++ + +
内电场 E
EW
R
(2) 加反向电压——电源正极接N区,负极接P区
外电场的方向与内电场方向相同。 外电场加强内电场 →耗尽层变宽 →漂移运动>扩散运动
相关文档
最新文档