离心风机性能测试实验

合集下载

风机性能曲线实验报告

风机性能曲线实验报告

教学实验泵与风机离心式风机性能实验实验报告班级:学号:姓名:能源与动力工程学院2017年11月离心式风机性能实验台实验指导书一、实验目的1.熟悉风机性能测定装置的结构与基本原理。

2.掌握利用实验装置测定风机特性的实验方法。

3.通过实验得出被测风机的气动性能(P-Q,P st-Q,ηin-Q,ηstin-Q ,N-Q曲线)4.通过计算将测得的风机特性换算成无因次参数特性曲线。

5.将试验结果换算成指定条件下的风机参数。

二、实验装置根据国家关于GB1236《通风机空气动力性能实验方法》标准,设计并制造了本试验装置。

本试验装置采用进气试验方法,风量采用锥形进口集流器方法测量。

装置主要分三部分(见图1)图1 实验装置示意图1.进口集流器2.节流网3.整流栅4.风管5.被测风机6.电动机7.测力矩力臂8.测压管9.测压管试验风管主要由测试管路,节流网、整流栅等组成。

空气流过风管时,利用集流器和风管测出空气流量和进入风机的静压Pest1,整流栅主要是使流入风机的气流均匀。

节流网起流量调节作用。

在此节流网位置上加铜丝网或均匀地加一些小纸片可以改变进入风机的流量。

测功率电机6,用它来测定输入风机的力矩,同时测出电机转速,就可得出输入风机的轴功率。

三、实验步骤1.将压力计(倾斜管压力计)通过联通管与试验风管的测压力孔相连接,在连接前检查测压管路有无漏气现象,应保证无漏气。

2.电动机启动前,在测力矩力臂上配加砝码,使力臂保持水平。

3.装上被测风机,卸下叶轮后,启动测功电机,再加砝码ΔG´使测力矩力臂保持水平,记下空载力矩(一般有指导教师事先做好)。

4.装上叶轮,接好进风口与试验风管,转动联轴节,检查叶轮是否与进风口有刮碰磨擦现象。

5.启动电机,运行10分钟后,在测力臂上加配砝码使力臂保持水平,待工况稳定后记下集流器压力ΔPn,静压Pest1,平衡重量G(全部砝码重量)和转速n。

6.在节流网前加铜丝网或小圆纸片,使流量逐渐减小直到零,来改变风机的工况,一般取十个测量工况(包括全开和全闭工况),每一工况稳定后记下读数。

风机性能曲线测定——流体输配管网

风机性能曲线测定——流体输配管网

风机性能曲线测定实验指导书一.实验目的1.熟悉风机性能测定装置的结构与基本原理。

2.掌握利用实验装置测定风机特性的实验方法。

3.通过实验得出被测风机的性能曲线(P-Q ,Pst-Q ,η-Q , N-Q 曲线)4.将试验结果换算成指定条件下的风机参数。

二.实验原理离心通风机是使气体流过风机时获得能量的一种机械。

气体实际所获得的能量,等于单位体积在风机出口与入口处所具有的能量差,若气体的位能忽略不计,则风机出口与进口的能量差为:2222221121212111()()()()[]222P P V P V P P V V Ps Pd mmH O ρρρ=+-+=-+-=- (1) 式中:P S =P 2-P l ——风机的静压Pd =ρ(V 22-V 11)/2——风机的动压 P =P s 十P d ——风机的全压如果风机是从静止的大气中抽取气体,即V 1≈0,P 1=P a ,则风机的静压就是风机出口静 压的表压值。

P S =P 2-P a [mmH 2O ] (2)风机的动压就是风机出口的动压。

Pd =ρV 22/2 (3)风机的性能曲线通常为流量与全压(Q-P),流量与静压(Q-Ps) ,流量与功率(Q-N),流量与效率(Q-η) 四条曲线。

若绘制这些曲线,需要测出实验状态和实验转速下的参数:静压Pst ,动压Pd 和流量Q 2。

三.测试计算1.风机的动压风机的动压是用毕托管测量得到,毕托管的直管必须垂直管壁,毕托管的弯管嘴应面对气流方向且与风管轴线平行,其平行度不大于5°。

2.风机的静压风机出口静压为静压点处静压Pst 加上从风机出口到静压点测量界面间的静压降。

出口静压 224.44[]DPst Pst Pd mmH O Dλξ=+⋅ (4)式中:λ一一测试管路沿程阻力系数,取λ=0.0253.风机出口处气体密度232013.60.359()[/]273Pst Pa kg m tρρ+=+ (5) 式中:Pa ——大气压力[mmHg]ρo ——标准状态下的空气密度ρo = 1.293 [kg/m 3] P st ——风机出口静压[mmH 2O] 4.风机的流量22222()[/]44D D Q V m s ππ=⋅=(6)式中:ξ——毕托管校正系数。

离心风机性能试验

离心风机性能试验

离心风机性能试验一.试验目的风机性能试验的目的在于掌握离心式风机性能测试的方法,求得离心式风机在给定转速下标准进气状态时的空气动力性能,并给出其特性曲线,从而提供风机合理的工作范围。

二.实验内容采用计算机自动测试的方法获取离心式风机性能曲线。

三.试验装置和仪器图1 进出气联合试验装置简图系统由风机试验台、传感器、数据采集器、PC机和打印机组成。

风机进出口静压测量采用FG300 A 06 BIN M5智能压力变送器,动压测量采用FG700 DP 3 S J1 B M3智能差压变送器,输出为4~20mA电流信号。

电机功率测量采用三相交流有功功率变送器,输出为0~+5V电压信号。

风机转速测量采用红外光电转速传感器,输出为脉冲信号。

数据采集器的任务是将传感器输出的电流、电压以及脉冲信号进行整形、滤波、放大,然后在8051单片机控制下进行A/D变换,所得的结果经RS232标准通讯接口传送给PC机,进行数据的分析、计算及显示,并可将计算结果存于硬盘或打印输出。

四.操作方法及实验步骤1.按规定要求连接传感器、数据采集器的电源线及信号线,然后开启电源。

2.在PC机上运行测试软件,从下拉式菜单上选择“数据采集”选项,此时屏幕显示风机的全压、静压、轴功率及效率坐标图,各坐标图上均有一红点,分别表示当前风机的全压、静压、轴功率及效率随流量的变化关系,当风机的工况改变时,红点亦会随之移动。

3.关闭风机出口节流锥,开启电机电源,缓慢开启节流锥,逐渐增大风机流量,同时观察计算机屏幕上四个坐标图中红点的位置,在需要采集数据的工况点,按“回车”键,此时屏幕上的红点变成白点,表示计算机已采集了该工况点处的数据。

按此方法,在0~最大流量范围内采集7~10个工况点的数据,数据采集工作即告结束。

4. 从计算机下拉式菜单上选择“特性曲线”选项,计算机立即将屏幕上全部的工况点拟合成特性曲线。

5. 通过打印机可打印出测试系统图,风机的全压、静压、轴功率及效率曲线,也可打印出原始的测试数据。

离心式风机性能测定实验总结与反思

离心式风机性能测定实验总结与反思

离心式风机性能测定实验总结与反思实验目的:本实验的目的是通过测定离心式风机的性能参数,包括风量、静压和功率,进一步了解离心式风机的工作原理和性能特点,并对风机的性能进行分析和评价。

实验内容:本实验采用了直接测量和间接测量相结合的方法来测定离心式风机的性能参数。

具体的实验内容包括:测定风机的风量、静压和功率;测定不同负载下的风机效率;绘制风机性能曲线。

实验结果:根据实验数据的测量和计算,得到了风机在不同负载下的风量、静压、功率和效率的数据。

通过绘制风机性能曲线,可以得到风机的最大风量和静压点。

实验总结:通过这次离心式风机性能测定实验,我对离心式风机的工作原理和性能有了更深入的了解。

实验中,我们使用了直接测量方法和间接测量方法相结合的方式来测定风机的性能参数。

直接测量的方法包括使用风量计来测量风量和使用压力计来测量静压;间接测量的方法是通过测量电压和电流来计算功率。

这样的综合测量不仅考虑到了风机的风量和静压,还考虑到了风机的功率和效率,可以全方位地了解风机的性能。

在实验过程中,我们还注意到了一些实验操作中可能出现的误差和问题。

首先,由于测量仪器和设备的精度有限,实际测量值与理论值存在一定的误差。

其次,风机的运行状态(如叶轮的转速、叶轮和壳体之间的间隙等)也会对性能参数的测量结果产生一定的影响。

此外,在测定风机的负载特性时,我们还发现风机的效率并不是随负载增加而增加的,而是在其中一负载点达到最大效率,然后随着负载继续增加而逐渐下降。

通过对实验结果的分析,可以得出以下结论:离心式风机的性能主要受到叶轮的设计和转速的影响,适当调整叶轮的叶片角度和叶轮的直径可以改变风机的风量和静压;风机的效率会受到负载的影响,最大效率点是在风机的额定工况下,随着负载的增加效率会下降。

实验反思:在进行这个实验的过程中,我深刻认识到了实验操作的重要性。

首先,测量仪器和设备的选择和使用要准确可靠,尽可能减小误差的产生。

其次,实验中的细节操作也十分重要,如将测量仪器与风机的连接处密封好,调整好叶轮的转速和负载等。

离心式风机性能测定实验总结与反思

离心式风机性能测定实验总结与反思

离心式风机性能测定实验总结与反思实验日期:XXXX年X月X日实验目的:测定离心式风机的性能参数,评估其风量和风压特性实验总结与反思:在本次离心式风机性能测定实验中,我们成功地测定了风机的性能参数,并对其风量和风压特性进行了评估。

以下是我们对实验的总结与反思:1.实验准备:在实验前,我们详细了解了离心式风机的工作原理和性能测定的方法。

我们正确选择了适合的实验设备,并对实验装置进行了校准和调试。

实验材料和工具准备充分,确保实验能够顺利进行。

2.实验步骤:我们按照实验计划和操作手册的指导,依次进行了实验步骤,包括启动风机、测量流量、测量风压等。

我们小心谨慎地操作,确保数据的准确性和可靠性。

3.数据记录与分析:我们仔细记录了每一组实验数据,并使用合适的工具和软件对数据进行了分析和处理。

我们绘制了风量-风压曲线图,并计算了相关的性能参数,如风机效率、功率等。

4.结果与讨论:通过对实验数据的分析,我们得出了对离心式风机性能的评估结论。

我们发现风机的风量随着风压的增加而递减,而风机效率在不同风压下具有一定的变化规律。

我们讨论了其中的原因,并与理论模型进行了比较和对照。

5.实验误差与改进:在实验过程中,我们也发现了一些误差和改进的空间。

例如,在测量流量时,由于实验条件的限制,可能存在一定的漏风和泄漏,导致结果的准确性有所影响。

下次实验中,我们将更加注意这些问题,并采取措施进行改进。

6.总结与展望:通过本次实验,我们对离心式风机的性能特性有了更深入的了解,也掌握了相应的实验技能和数据处理方法。

在以后的研究和工作中,我们将更加注重实验方法的改进和创新,以提高实验结果的可靠性和准确性。

通过这次实验的总结与反思,我们发现了实验中存在的问题,并提出了改进的方向。

我们将在以后的实验中借鉴这些经验,不断提升自己的实验能力,并取得更好的实验结果和研究成果。

离心风机性能测定实验

离心风机性能测定实验

实验报告实验项目名称:离心风机性能测定实验一、实验目的与要求1.熟悉风机各项性能参数及测试方法;2.测定固定转速下离心风机的特性曲线。

二、实验方案1.记录各项实验常数:ρ:空气密度(kg/m3),由温度计读出,查表得出'ρ:微压计内酒精密度(kg/m3)一般可取800 kg/m3α:微压倾角:( o )d:风管直径( m )A':风机出口面积(m2 )L:平均电机力臂长度L ( m )2.将阀门关闭,开启风机此时Q=0,测定零流量时的P、N值,对离心风机,此时功率最小,η=0。

3.逐渐加大阀门开度,每加大一次开度,测定一组Q,P,N值和计算一次η值,逐次加大开度可得出不同流量Q下的P,Q,η值。

4.将实验结果点绘在方格纸上,即为转速n下的P-Q,N-Q和η-Q曲线。

5.完成表2三、实验结果和数据处理表2 风机的性能参数四、结论答:离心风机转速固定不变时,由上表数据规律可得:风量与风轴功率成正比关系,随着风量的增加而增加;风量与全压成反比关系,随着风量的增加而减少;风量与风机效率成抛物线关系,随着风量的增加而先增大后减小,故选择合适的工作状态点对于充分发挥风机的效能有很大的作用,而不是风机的轴功率越大其效率越大。

这里我们可以选择风机性能曲线中的Q-η的最高点。

五、问题与讨论1.绘制所测风机的性能曲线图2.为什么离心式泵与风机性能曲线中的Q-η曲线有一个最高效率点?答:风机的全压效率η=有效功率/轴功率=PQ/N S;因为上式分子部分有效功率中全压P与风量Q成反比关系,分母部分中轴功率N S与风量Q成正比关系,所以当风量增加时性能曲线中的Q-η曲线有一个最高效率点。

泵与风机实验指导书

泵与风机实验指导书

《泵与风机实验》实验指导书及实验报告工程热物理教研室编泵与风机实验室华北电力大学(北京)二OO八年五月前言⒈实验总体目标通过学生亲自实践《泵与风机》课程的三个实验,增强学生综合分析能力、实验动手能力、数据处理及查阅资料能力,培养学生的实践与创新能力。

⒉适用专业热能与动力工程专业、核能与动力工程专业、建筑环境与设备工程专业。

⒊先修课程泵与风机、热工测量、工程流体力学。

⒋实验课时分配⒌实验环境(对实验室、机房、服务器、打印机、投影机、网络设备等配置及数量要求)泵与风机实验对实验环境有如下要求:①实验室最好安排在一层,要求实验室离教室和办公室有一定距离,以防止实验时的噪声影响正常的教学和办公。

②风机实验室安排在窗户较多的屋子,做实验时室外最好风力不要太大。

③离心泵实验室要求有自来水或离取水位置较近。

④实验室内要求有黑板。

⒍实验总体要求对于泵与风机实验,有以下几点总体要求:①在做实验前,要求学生认真学习实验指导书,并复习所学《泵与风机》、《热工测量》、《工程流体力学》等课程的相关知识。

②实验前,要求实验室向学生开放,以便学生了解实验设备和测量设备,以及对整个实验有感性认识。

③对于验证性实验,要求学生在实验前就已很好地掌握了测量设备的工作原理、使用方法以及实验步骤。

④对于综合性、设计性实验,应适当提前向学生布置任务。

学生应根据实验任务,查阅资料,进行理论分析和研究,确定实验方案,或根据规定的实验方案,确定实验步骤。

学生拟定的实验方案或实验步骤,应经过指导教师审查同意后方可进行实验。

实验后,要求学生按要求整理实验数据,撰写实验报告,并提出或回答相关问题。

⒎本实验的重点、难点及教学方法建议①本实验的重点:是对教材所讲科学规律进行验证,掌握相关参数的测量方法。

②本实验的难点:综合性设计性实验的实验方案确定、实验步骤的确定。

③教学方法建议:采用多媒体手段对实验进行必要的讲解和布置实验任务;综合性设计性实验分组进行方案论证;实验现场更多发挥学生的主动性,教师只做必要的辅导。

离心式氧化风机的性能试验分析

离心式氧化风机的性能试验分析

摘要:本文总结了在性能试验中离心式氧化风机的各项参数、能耗、脱硫效率、氧化效果等情况。

对亚硫酸钙氧化效果仍然存在的问题进行了分析,并提出了解决的建议。

关键词:FGD 氧化风机石灰石-石膏控制液位0引言本厂#2脱硫吸收塔在2006年投产时一直使用最大出力为8000Nm 3/h 的罗茨风机,根据95%的脱硫效率计算,能够处理的原烟气SO 2量的设计值为2909mg/Nm 3。

由于燃煤成本较高,各火力发电厂均进行了不同程度的掺烧,煤质变化比较频繁,入口原烟气的硫份经常超过脱硫吸收塔的设计值,最高甚至可达5000mg/Nm 3以上。

氧化风量成为阻碍SO 2吸收以及石膏品质的主要因素,因此本厂为了解决亚硫酸钙氧化率差的问题,进行了氧化风机的扩容改造,增加了一台最大出力能到达16000Nm 3/h 离心式氧化风机。

1风机改造后石膏品质状况本次性能试验的目的是找出风机的经济运行参数,在保证石膏品质的前提下控制电耗。

因此在不同负荷及原烟气含硫量下的设定氧化风入口风量,以确定石膏氧化效果最好,以及最经济的运行参数设定。

图1-4分别是2A 氧化风机试运期间每日#2发电机组平均负荷、平均原烟气硫份、石膏中亚硫酸钙残余、碳酸钙残余的变化曲线:(根据石膏取样时间,以上数据均取当天8:00至次日8:00的平均值较为准确。

)结合图1-4可看出,试验期间石膏品质与机组负荷及硫份变化关系:8月22日(试运第8天)开始经过连续两天的低负荷低硫份运行后,石膏亚硫酸钙含量已降到了2.2%,23日(试运第9天)将入口流量值降至12000m 3/h后,亚硫酸钙含量又出现回升,目测石膏在22日由飘灰状变为较大颗粒状。

由于23日出现供浆不当的情况,碳酸钙含量偏高可能对氧化反应有一定影响,导致石膏品质有变差趋势,于是在随后的24、25日(试运第10、11天)调整氧化空气的入口流量为15000Nm 3/h,石膏又呈变干好转趋势,但26日(试运第12天)降低风量至13500Nm 3/h 后亚硫酸钙再次达到9.66%。

离心风机性能测试实验

离心风机性能测试实验

离心风机性能测试实验一、实验目的1、了解风机的构造,掌握风机操作和调节方法2、测定风机在恒定转速情况下的特性曲线并确定该风机最佳工作范围 二、基本原理1、基本概念和基本关系式 1.1、风量风机的风量是指单位时间内从风机出口排出的气体的体积,并以风机入口处气体的状态计,用Q 表示,单位为m 3/h 。

1.2、风压风机的风压是指单位体积的气体流过风机时获得的能量,以t P 表示,单位为J/m 3=N/m 2,由于t P 的单位与压力的单位相同,所以称为风压。

用下标1,2分别表示进口与出口的状态。

在风机的吸入口与压出口之间,列柏努力方程:fH g u g p z H g u g p z ∑+++=+++2222222111ρρ (1)上式各项均乘以 g ρ并加以整理得:fH g u u p p z z g gH ∑+-+-+-=ρρρρ2)()()(21221212 (2)对于气体,式中ρ(气体密度)值比较小,故)(12z z g -ρ可以忽略;因进口管段很短, f H g ∑ρ 也可以忽略。

当空气直接由大气进入通风机,则21u 也可以忽略。

因此,上述的柏努力方程可以简化成:2)(2212u p p gH P t ρρ+-== (3)上式中)(12p p -称为静风压,以st P 表示。

222u ρ 称为动风压,用dP 表示。

离心风机出口处气体流速比较大,因此动风压不能忽略。

离心风机的风压为静风压和动风压之和,又称为全风压或全压。

风机性能表上所列的风压指的就是全风压。

2、风机实验流体流经风机时,不可避免的会遇到种种流动阻力,产生能量损失。

由于流动的复杂性,这些能量损失无法从理论上作出精确计算,也因此无法从理论上求得实际风压的数值。

因此,一定转速下的风机的t P —Q, st P —Q ,N —Q,t η—Q ,st η—Q 之间的关系,即特性曲线,需要实验测定。

2.1、风量Q 的测定我们可以通过测量管路中期体的动风压来确定风量的大小。

离心鼓风机的气动性能测试与评估

离心鼓风机的气动性能测试与评估

离心鼓风机的气动性能测试与评估离心鼓风机是一种常用的工业设备,广泛应用于空调系统、炉窑通风、风电设备等领域。

为了确保离心鼓风机的工作性能达到预期,需要进行气动性能测试与评估。

本文将对离心鼓风机的气动性能测试与评估方法进行介绍,并分析其意义和应用。

气动性能测试是对离心鼓风机的风量、风压、效率等参数进行测量和分析的过程。

通过准确评估离心鼓风机的气动性能,可以确保其正常运行和高效工作。

首先,进行离心鼓风机的风量测试。

风量是离心鼓风机最基本的性能指标之一,也是用户选择鼓风机的重要参考标准。

风量测试可以通过直接测量或间接测量的方法来获取。

直接测量方法一般使用风量计或流速仪器,安装在离心鼓风机进口或出口的管道中。

通过测量风量仪表的读数,即可得到鼓风机的实际风量。

在进行测试时,需要注意管道的安装和密封,以保证测量结果的准确性。

间接测量方法通常使用静压法或动压法。

静压法利用离心鼓风机进口和出口的静压差来计算风量,需要在进口和出口处设置压差传感器,并通过计算公式推算出风量。

动压法则通过演算进口、出口和射线速度等参数,结合流体力学原理来计算风量。

除了风量测试,离心鼓风机的风压测试也是评估其气动性能的关键指标之一。

风压是鼓风机对气体施加的压力,通常用帕斯卡(Pascal)或毫米水柱(mmH₂O)表示。

通过风压测试可以评估离心鼓风机的输送能力和压力能力。

风压测试可以使用静压测量仪器进行,测量仪器分别安装在鼓风机进口和出口处的管道中,通过测量压力差来计算风压。

同时,还需要注意管道的密封性和风压测量仪器的精确度,确保测试结果的准确性。

此外,还可以通过效率测试来评估离心鼓风机的气动性能。

效率是指鼓风机将输入功率转化为能有效传递给气体的能力,通常以百分比形式表示。

高效率的离心鼓风机可以提高工作效率,降低能源消耗和运行成本。

效率测试可通过直接功率测量法或间接方法来进行。

直接功率测量法使用功率计测量进口和出口两个位置的功率差,然后将其与输入功率进行比较,计算出鼓风机的效率。

无蜗壳离心风机的实验性能对比

无蜗壳离心风机的实验性能对比

无蜗壳离心风机的实验性能对比无蜗壳离心风机一般多以设备冷却风扇的形式使用,具有风量大、压力高、噪声低、结构紧凑等优点,是普通轴流风机和普通离心风机无法替代的产品。

鉴于无蜗壳离心风机良好的低噪声性能,目前也有厂家推出箱式无蜗壳风机用于建筑物通风换气。

蜗壳的作用:机壳的任务是将离开叶轮的气体导向机壳出口,并将气体的一部分动能转变为静压。

蜗壳中不同截面处的流量是不同的,在任意截面处,气体的容积流量与位置角φ成正比。

一般气流在蜗壳进口处是沿圆周均匀分布,因此在不同φ角截面上的流量q vφ可表示为q vφ=q v4(φ/360°)。

q v4为蜗壳进口处流量,通常蜗壳中速度变化不大,气体密度可认为是定值。

若蜗壳的型线能保证气体自由流动,这时蜗壳壁对气流就不会发生作用,那么在不考虑粘性情况下,气体在蜗壳内的运动将遵循动量矩不变定律,即c u R=常数。

经分析得知,气体最多6次被蜗壳碰撞导至出口,蜗壳很好地收集了气体。

并且气体在叶轮流向蜗壳时容积变大,一部分动能转变为静压。

离心通风机的主要功能是完成气体的输送,若无机壳就不可能实现这一功能,无蜗壳也不可能很好地实现叶轮的功效。

箱体与叶轮装配见图1和图2。

其中箱体均由铝型材框架和夹心面板制成。

六面体只有一面敞开,它强制气流从一个方向流出,并有消声作用。

它与常规箱体机相比,其制作简单,节约空间,降低了成本。

图中1020×1020×880为箱体1;1060×1027×880为箱体2。

试验采用标准出气侧试验风室,风室横截面积为3000mm×3000mm,风室中采用孔板测定流量,其结构如图1所示。

在上述风室装置中对700mm后向离心叶轮的3种机型风机进行试验,3种机型的试验安装示意图如图2所示。

考虑到3种机型的不同结构有不同的出口面积,采用静压数据作为测试结果进行对比。

由测试结果(见图3)可以看出,普通离心风机的压力要比另外2种机型高,而且随着风量的减小,其压力的增幅加大。

离心风机性能测试的方法

离心风机性能测试的方法

离心风机性能测试的方法1. 流量测试流量是离心风机性能的一个关键指标。

为了测试离心风机的流量,可以采用以下步骤:1. 安装流量计:在离心风机出口处安装一个流量计。

确保流量计的安装位置不会影响风机的正常运行。

2. 风机负载设置:根据需要设置风机的负载。

这可以通过调整出口阀门或其他控制设备来实现。

3. 流量测试:打开风机,并记录流量计显示的值。

在稳定的运行状态下,记录一段时间内的平均流量。

4. 重复测试:为了确保结果的准确性,可以重复多次测试,并取平均值作为最终结果。

2. 功率测试功率是另一个重要的离心风机性能参数。

要测试离心风机的功率,可以按照以下步骤进行:1. 安装功率计:在离心风机的电力供应线路上安装一个功率计。

确保功率计的安装位置不会干扰风机的正常运行。

2. 风机负载设置:根据需要设置风机的负载。

3. 功率测试:打开风机,并记录功率计显示的值。

在稳定的运行状态下,记录一段时间内的平均功率。

4. 重复测试:为了确保结果的准确性,可以重复多次测试,并取平均值作为最终结果。

3. 效率计算离心风机的效率是评估其能源利用情况的指标。

要计算离心风机的效率,可以使用以下公式:效率(%)= (风机输出功率 / 风机输入功率)× 100其中,风机输出功率可以通过功率测试得到,风机输入功率可以通过流量测试和压力测试计算得到。

4. 压力测试离心风机的压力也是其性能的一个重要参数。

要测试离心风机的压力,可以按照以下步骤进行:1. 安装压力计:在离心风机进口和出口处分别安装压力计。

确保压力计的安装位置不会干扰风机的正常运行。

2. 风机负载设置:根据需要设置风机的负载。

3. 压力测试:打开风机,并记录进口和出口处的压力计显示的值。

在稳定的运行状态下,记录一段时间内的平均压力。

4. 重复测试:为了确保结果的准确性,可以重复多次测试,并取平均值作为最终结果。

请注意,以上方法只是离心风机性能测试的基本步骤。

实际测试过程中,可能需要根据具体情况进行调整和补充。

无蜗壳离心通风机性能研究

无蜗壳离心通风机性能研究

1 前言
2 1 试 验 装 置 及 方 法 .
叶轮 和蜗壳 是 离 心通 风 机 的两 大 主要 部 件 。 在 离心通风 机 中 , 有 前 向或 后 向不 同离心 叶轮 装 的风 机 , 其性 能也有 很大差 异 , 种性 能的差异 主 这 要取决 于叶 轮 的 型式 。 同时 , 壳 对 风机 性 能 的 蜗 影 响也不 能忽视 , 作用 主要 有 : 1 将 叶轮 中甩 出 () 来 的气体 导 向通 风机 出 口 ; 2 将 叶 轮 出 口的 动 () 压 力转变 为 静压 力 ¨。J 。但 是 , 没 有 蜗 壳 的情 在 况 下 , 于分别装 有 前 向和后 向叶轮 的两 种风 机 对 性能各 有 多大 变化 ?一 般 说来 , 于 有蜗 壳 的风 对

F U D MAC N RY L I HI E
V 1 3 No 4, 0 0 o . 8。 , 2 1
文 章 编 号 : 10 -0 2 (0 0 ( —o o —0 0 5 -3 9 2 1 )4 04 4 - )
无蜗 壳 离 心通 风 机性 能研 究
刘春 霞 , 聂 波, 陈金 鑫
置 。试 验采 用风 机 进 口连 接 测试 风筒 , 口直接 出
进 入大 气 的进 气性 能试 验 。进 口采 用 9 。 O 圆弧进
风机能 够获得 更高 的能量 头 。对 于没有 蜗壳 的前
口喷嘴 的进气 方式来 测 定流 量 。试 验装 置 如 图 l
所示
向和后 向离 心风 机 , 性 能有 何 差异 呢?针 对此 其
向 叶轮 的整 机试 验 。根 据无 蜗 壳风 机 的使 用 环
境, 同时也为 了测试性 能 的需 要 , 无蜗壳 时的 叶 将 轮装在 一个有 唯一确定 出 口的箱 体 中。试 验平 台

离心风机性能测试的方法

离心风机性能测试的方法

离心风机性能测试的方法简介本文档旨在介绍离心风机性能测试的方法。

离心风机是一种常用的工业设备,用于产生气流流体力学性能测试对于评估和改进离心风机的性能至关重要。

测试设备进行离心风机性能测试时,需要准备以下设备:1. 测试台:用于安装和操作离心风机。

2. 流量计:用于测量风机的气流量。

3. 压力计:用于测量风机的出口压力。

4. 温度计:用于测量风机的进口和出口温度。

5. 速度计:用于测量风机的转速。

测试步骤离心风机性能测试的步骤如下:1. 安装离心风机:将离心风机正确而安全地安装在测试台上。

2. 连接仪器:将流量计、压力计、温度计和速度计正确地连接到离心风机的进口和出口。

3. 测量进口条件:在测试开始之前,记录并测量离心风机的进口条件,包括温度和压力。

4. 启动风机:启动离心风机,并调整风机的转速到所需的测试速度。

5. 测量风流:使用流量计测量风机的气流量。

6. 测量压力:使用压力计测量风机的出口压力。

7. 测量温度:使用温度计测量风机的进口和出口温度。

8. 记录数据:将所有测量结果记录下来,并进行必要的计算和分析。

9. 停止风机:在测试结束后,停止离心风机的运行。

10. 数据分析:根据记录的数据进行性能分析,并评估离心风机的性能。

结论通过以上步骤,可以进行离心风机性能测试,并评估风机的气流流体力学性能。

这些测试可以帮助工程师评估和改进离心风机的设计和性能,从而提高其效率和可靠性。

请注意,离心风机性能测试应根据实际情况和要求进行调整和扩展,以确保测试的准确性和可重复性。

离心风机检验报告

离心风机检验报告
+0.8~+1.9
9
最高全压效率(%)
≥79
82.0
合格
/
10
噪声【LSA(dB)】
≤25
合格
/
11
电动机最大输出功(kW)
≤35
8.1
合格
1
9.2
2
12
振动速度有效值(mm/s)
≤4.6
2.6
合格
1
2.0
2
审核:测试:
附上:测试数据的原始数据,计算数据汇总表,通风机空气动力性能曲线。
机壳上设置有起吊用的吊耳,在机壳的底部设置有底脚,有4个联接螺栓孔;叶轮焊缝无裂纹;通风机焊缝整齐,无焊瘤、弧坑、飞溅物等;机壳外表面清洁、平整,无油污、铁锈,无明显磕碰、划伤等缺陷;紧固件齐全,无损伤,并作防锈处理,螺栓露出长度整齐;内外表面油漆颜色一致,无流挂、气泡、缩皱、划伤、碰伤等缺陷。
合格
合格
2
外观质量
机壳上适当位置设置起吊用的吊耳,在机壳的底部设置安装用的底脚,联接螺栓孔不少于4个;叶轮焊缝不得有裂纹;通风机焊缝应整齐,无焊瘤、弧坑、飞溅物等;机壳外表面应清洁、平整,不应有油污、铁锈,无明显磕碰、划伤等缺陷;紧固件应齐全,无损伤,并作防锈处理,螺栓露出长度应整齐;内外表面油漆颜色一致,无流挂、气泡、缩皱、划伤、碰伤等缺陷。
/
3
电动机绕组冷态绝缘电阻(MΩ)
≥50
500
合格
1
500
2
4
机械运转试验
运转平稳,无异常声响。
运转平稳,无异常声响。
合格
序号
检验项目
标准值
实际值
结果
判定
备注
5

风机测试实验指导书

风机测试实验指导书

研究生机电综合实验风机性能测试实验指导书西安科技大学机械工程学院通风机是煤矿安全生产中的重要设备,其性能关系到工作人员的人身安全和运行的经济性。

该实验系统可完成空气密度ρ、风量v q 、静压st p 、轴功率sh P 、静压效率st η、转速n 等主要参数的测试和计算,并可将通风机的压力、功率和效率等随通风机的流量的不同而变化的关系绘成曲线,即通风机的性能曲,以此来评价通风机的性能。

实验系统主要有通风机、变频器、压力、温度、湿度、功率、风速传感器、数据采集装置、微型计算机系统、测试分析软件等组成。

一、 实验目的1. 通过本实验使学生了解矿井通风系统的组成,了解流量、压力、功率等各参数的关系,加强对风机运行工况的认识。

2. 学习本实验中所涉及的各种参数的测量方法,掌握风机性能分析的方法。

3. 通过标准环境和实验环境的对比,了解环境因数对风机性能的影响。

4. 学习计算机测试系统的构成方式及简单虚拟仪器的设计。

二、 实验对象轴流风机、离心风机 。

三、 实验原理与方法本实验采用标准为中华人民共和国安全生产行业标准《AQ 1011—2005煤矿在用主通风机系统安全检测检验规范》,按本规范要求对实验室现有轴流风机、离心风机进行通风机性能测试。

1. 通风机主要性能参数风机的基本性能参数包括流量v q 、全压p 、静压s p 、功率a P 、全压效率t η、静压效率s η、转速n 、比转速等,它们从不同的角度表示了风机的工作性质。

(1) 流量。

风机流量是指单位时间内通过风机进口的气体的体积,单位为 m 3/s ,m 3/h 。

(2) 全压。

风机全压指单位体积气体从风机进口截面经叶轮到风机出口截面所获得的机械能,单位为Pa 。

若忽略位能的变化,风机的全压可表示为:22221111()()22p p v p v ρρ=+-+ (1)式中:2p ,1p ——风机出口、进口截面处气体的压强,单位为Pa ;2v ,1v ——风机出口、进口截面处气体的平均速度,单位为m/s 。

实验指导书

实验指导书

热电偶的标定与校验一、实验目的1.掌握热电偶的温度标定与校验方法,初步了解铜――康铜热电偶的特性;掌握热电偶测温的基本原理;2.掌握单支热电偶采用冰浴法的连接线路;3.掌握电位差计的使用;4.学会制作热电偶丝;5.能利用误差理论对所得的数据进行处理。

二、实验内容1.对单支热电偶进行温度校验(或标定);2.绘制铜-康铜热电偶的热电势――温度特性曲线。

三、实验仪器、设备及材料1.UJ33d数字式直流电位差计;2.DHT-2型热学实验仪;3.铜-康铜热电偶丝;4.0~50℃二级标准水银温度计;5.电冰箱;6.保温杯;7.手锤;8.塑料杯;9.调压器;10.砂纸。

四、实验原理将A、B两种不同材质的金属丝的两端点焊接成一个闭合回路。

当两个接点处于不同温度时(如图1),在闭合回路中就会产生热电势,这种现象称为热电效应。

图1图2 为了测量温差电动势,就需要在图1的回路中接入电位差计,但测量仪器的引入不能影响热电偶原来的性质。

根据中间导体定则,在热电偶回路中接入第三种导体,只要与第三种导体相连接的两端温度相同,接入第三导体后,对热电偶回路中的总电势没有影响。

在A、B两种金属之间接入第三种金属C时,若它与A、B的两连接点处于同一温度T0(图2),则该闭合回路的温差电动势与上述只有A、B两种金属组成回路时的数值完全相同。

所以,我们把A、B 两根不同化学成份的金属丝的一端焊在一起,构成热电偶的热端(工作端)。

将另两端各与铜引线(即第三种金属C)焊接,构成两个同温度(T0)的冷端(自由端)。

铜引线与电位差计相连,这样就组成一个热电偶温度计。

如图3所示。

图 3当热电偶材料一定时,回路中的总电势E AB(T,T0)成为温度T和温度T0的函数差,即E AB(T,T0)=f(T)-f(T0)当热端温度T为测量点的实际温度时,若使冷端的温度T0不变,即f(T0)=C(常数),则E AB(T,T0)=f(T)-C回路中产生的热电势仅是热端温度T的单值函数。

离心风机性能特性测试

离心风机性能特性测试

离心风机性能特性实验测试梁士民 王刚 谷敏杰 胡松涛青岛理工大学摘 要:采用标准风管对同一系列的四台离心风机进行了实验测试,并且对该系列风机进行了无因次分析,得到了该系列离心风机的性能曲线和无因次性能曲线。

关键词:离心风机 性能曲线 无因次性能曲线1 引言随着机械化的发展,离心风机在国民生产的各个领域得到了广泛的应用,是工业生产中的重要设备之一。

离心风机的性能、运行可靠性和经济性直接影响到国民经济的效益和发展。

可见提高离心风机的运行特性和效率,对国民经济的发展和节能有着重大影响。

研究表明,要想扩大工况范围、提高效率及安全性,必须对离心叶轮机械内部流动进行深入的了解和研究,以便根据流动特点改善运行条件,得到最佳流动工况,达到提高运行效率和节约能源的目的[1]。

因此,在对离心风机性能测试时,必须按照GB/T1236-2000进行测试,采用标准风管,测量尽量减小测试带来的误差影响。

2 实验装置对离心风机的性能测试采用《工业通风机——用标准化风道进行性能试验》(GB/T1236-2000)[2]中的进气实验装置,该实验台由集流器、风筒、整流珊和网珊节流器等部分组成。

实验装置图如1图所示。

图1 实验装置图本实验对同一系列四台型号离心风机进行了测试,其分别为MDC5001、MDC3001、MDC2001、MDC1021,它们叶轮直径分别为330mm 、305mm 、260mm 和230mm ,风机转速n=2900r/min ,采用管径分别为Φ150、Φ200的风管进行测试。

现场图如图2所示。

图2 现场试验图进气流量计算公式:112d P Q ρ= (1)式中:1Q 为进气流量,m 3/s ;1A 为进气管道的截面积,m 2;ρ为进口气体密度,kg/m 3;1d P 为进口气体动压,Pa 。

风管的管段能量损失包括风管的沿程损失和整流珊的局部损失。

取整流珊的局部阻力系数为0.1ζ=,风管的沿程阻力系数0.025λ=,则可得管段能量损失为:11()0.15w d d lP p p dζλ=+= (2)则风机静压为:110.85j j d P P P =- (3)风机全压计算公式:21111210.85()2j d j d A P p p P P V A ρ∆=+=-+(4) 式中:P ∆为风机全压,Pa ;1j P 为进口气流静压,Pa ;1d P 为进口气流动压,Pa ;1A 为进气管道的截面积,m 2;2A 为出气管道的截面积,m 2;ρ为进口气体密度,kg/m 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心风机性能测试实验
一、实验目的
1、了解风机的构造,掌握风机操作和调节方法
2、测定风机在恒定转速情况下的特性曲线并确定该风机最佳工作范围
二、基本原理
1、基本概念和基本关系式 1.1、风量
风机的风量是指单位时间内从风机出口排出的气体的体积,并以风机入口处气体的状态计,用Q 表示,单位为m 3/h 。

1.2、风压
风机的风压是指单位体积的气体流过风机时获得的能量,以t P 表示,单位为J/m 3=N/m 2,由于t P 的单位与压力的单位相同,所以称为风压。

用下标1,2分别表示进口与出口的状态。

在风机的吸入口与压出口之间,列柏努力方程:
f
H g u g p z H g u g p z ∑+++=+++222
2
222111ρρ (1)
上式各项均乘以 g ρ并加以整理得:
f
H g u u p p z z g gH ∑+-+
-+-=ρρρρ2
)
()()(212
21212 (2)
对于气体,式中ρ(气体密度)值比较小,故)(12z z g -ρ可以忽略;因进口管段很短, f H g ∑ρ 也可以忽略。

当空气直接由大气进入通
风机,则2
1u 也可以忽略。

因此,上述的柏努力方程可以简化成:
2)(2
2
12u p p gH P t ρρ+
-== (3)
上式中)(12p p -称为静风压,以st P 表示。

222
u ρ 称为动风压,用d
P 表示。

离心风机出口处气体流速比较大,因此动风压不能忽略。

离心风机的风压为静风压和动风压之和,又称为全风压或全压。

风机性能表上所列的风压指的就是全风压。

2、风机实验
流体流经风机时,不可避免的会遇到种种流动阻力,产生能量损失。

由于流动的复杂性,这些能量损失无法从理论上作出精确计算,也因此无法从理论上求得实际风压的数值。

因此,一定转速下的风机的t P —Q, st P —Q ,N —Q,t η—Q ,st η—Q 之间的关系,即特性曲线,需
要实验测定。

2.1、风量Q 的测定
我们可以通过测量管路中期体的动风压来确定风量的大小。

我们在管路的适当位置(必须使气体流动的稳定管段)安装一个测量动压头的装置——皮托管。

假设皮托管测得的动风压为d P ,测量中,动风压常用水柱高度d h 表示:
d d gh P 水ρ=
则有:
22
2
u gh P d d ρρ=
=水 [Pa]
所以:ρρρ
d
d
gh P u 水222=
=
[m/s]
若假设测量位置的管径为D
则有: 3600
242
••
=
•=ρρπd
gh D u A Q 水 [m 3/h]
另外,测量风量我们还可以用孔板流量计,对于孔板流量计的原理这里略去。

下面直接给出计算公式:
gh S C V s 200••= [ m 3/s]
或者:
ρ
ρρ)
(200-•
•=r s Rg S C V [ m 3/s]
式中:
R ——U 型压差计的读数 [m]
r ρ——压差计中指示液的密度 [kg/m 3] ρ ——被测流体的密度 [kg/m 3]
C 0——孔流系数 S 0——孔口面积
2.2、静风压和全风压的测定
由前面的式(3)可以得到实验中测定静风压和全风压的方法。

)(12p p -为静风压,可以通过风机出口处的静压管测得,由于1p 为大
气压强,因此静压管的一端可以直接和大气相通;222
u ρ为动风压,可
以通过管路中安装的皮托管测量得到。

2.3、风机的有效功率和功率
由于风机在运转过程中存在种种能量损失,使得风机的实际风压比理论风压值要低,而输入风机的功率要比理论值高,所以风机的总
效率可以表示为:
轴N N e
=
η
其中e N 为风机的有效功率:
6106.3⨯•=
t
e P Q N [kw]

N 为电机输入风机的功率:
传电电轴ηη•••=N K N 以上各式中:
Q ——风量,[m 3/h]
t P ——全风压,[N/m 2]
K ——用标准功率机校正功率标的校正系数,这里取1.0 电N —— 电机的输入功率,[kw]
电η——电机效率,通常取0.90
传η——传动装置的传动效率,一般取1.0
三、装置和流程
四、实验步骤和操作要点
1、检查管路上各测量仪器是否处于正常状态,确保风量调节阀处于全开或者全闭状态。

2、点击数显仪表盘,打开风机的电机电源,开始实验。

3、点击风量调节阀,调节不同的阀门开度
4、数显仪表会显示实时测量的各个量
5、等显示值稳定后记录各个仪表的数值。

6、至少测量五组以上不同阀门开度下的转速,电机功率,气体出口温度,风机出口静压;其中必须有阀门全开和全闭情况下的数值。

五、数据处理
风机的风压有全风压和静风压之分,所以,风机的特性曲线比离心泵特性曲线多两条,即一定转速下的t P —Q, st P —Q ,N —Q,η—Q ,
st η—Q 五条曲线。

由于标准的风机的特性曲线是在20 °C 及
760mmHg 条件下测定的,在此条件下空气的密度为1.2kg/m 3,因此,我们应当对测得的数据进行换算。

风压换算:
ρρ0
0=t
t p p 式中0t p ,0ρ为规定状态下的风压和气体密度;t p 和ρ为操作状态下
的风压和气体密度。

所以:
ρρρ2.100t t
t p p p == 计算功率时,如果t p 用实际风压,则Q 用实际风量;如果t p 用校正
为规定状态下的风压0t p,则风量也需校正到规定状态。

校正方法同上。

在本仿真实验的数据处单元里面包括如下四项内容
1、原始数据
2、计算结果
3、曲线绘制
4、设备参数
提示:您可以在“参数设置”里面选择别的风机型号。

(您必须有修改参数的权限)。

相关文档
最新文档