10 组合变形
第10章-组合变形
![第10章-组合变形](https://img.taocdn.com/s3/m/c3fc4807bb68a98271fefa0b.png)
应力状态-单向+纯剪切 强度条件(塑性材料)
2 r3 M N 4 T [ ] 2 2 r4 M N 3 T [ ] 2
单辉祖:材料力学教程
15
例 题
例10-3 图示钢质传动轴,Fy = 3.64 kN, Fz= 10 kN, F’z =1.82 kN, F’y = 5 kN, D1 = 0.2 m, D2 = 0.4 m, [] = 100 MPa, 轴径 d=52 mm, 试按第四强度理论校核轴的强度
③ 将所得结果叠加,即得杆件组合变形时的应力。
单辉祖:材料力学教程 5
§2 弯拉(压)组合 §3 偏心压缩
弯拉(压)组合 例题
偏心压缩
单辉祖:材料力学教程
6
弯拉(压)组合
产生弯曲与轴向拉压的组合变形的情况:
杆上除作用有横向力外,同时还作用有轴向力; 外力作用线虽然平行于杆轴,但不通过截面形心。
max
8.66 103 N 8.27 103 N m 111.5MPa [ ] 3 2 5 3 1.8110 m 7.75 10 m
9
单辉祖:材料力学教程
例10-2 图中所示结构,承受载荷F=12kN作用。横梁AC用 No14工字钢制成,许用应力[σ]=160MPa,试校核其强度。
2 2 M T r3 [ ] W
2 2 r4 M 3 T [ ]
2 2 M 0 . 75 T r4 [ ] W 单辉祖:材料力学教程
14
弯拉(压)扭组合强度计算
弯拉扭组合 危险截面-截面A 危 险 点- a
a M N M
第10章 组合变形
![第10章 组合变形](https://img.taocdn.com/s3/m/e615982da5e9856a56126030.png)
10.1 组合变形的概念 工程中大多数的杆件在荷载作用下,往往同时发生两种或两种以上的变形。
在小变形的前提下,一般采用叠加原理计算组合变形的强度问题。即当杆件 承受复杂荷载作用而同时产生几种变形时,只要将荷载进行适当地分解,使 杆在各分荷载的作用下发生基本变形,再分别计算各基本变形所引起的应力, 然后将计算结果叠加,就可得到总的应力。实践证明:在线弹性、小变形的 情况下,用叠加原理所得到的结果与实际情况是相当符合的。
第10章 组合变形
【本章教学要点】 知识模块 组合变形的概念 叠加原理 掌握程度 掌握 掌握 掌握 理解 斜弯曲构件 重点掌握 偏心受压(受拉)构 件 截面核心的概念 理解 重点掌握 了解 知识要点 基本变形、组合变形 适用条件:小变形、线弹性 叠加法求解组合变形的步骤 斜弯曲概念 危险截面、危险点的确定;应力公式;强度条 件 偏心受压(受拉)概念
危险截面、危险点的确定;应力公式;强度条 件
截面核心
【本章技能要点】
技能要点
掌握程度
应用方向
斜弯曲构件计算
偏心受压(受拉)构件 计算 截面核心
掌握
掌握 了解
危险截面、危险点的判别;强度校核、截面设 计、许可荷载确定
危险截面、危险点的判别;强度校核、截面设 计、许可荷载确定 截面核心的确定
【导入案例】 工程结构的变形:单一或多样?
例10-5 试求图10.16所示偏心受拉杆的最大正应力。
7.5 I I 50
K z y I-I 截面 (b) 图 10.16
P 2kN
20
10 40 15 (a)
10.4 截面核心 10.4.1 截面核心的概念 人为地将偏心压力的作用点限制在截面形心周围的一个区域,则杆件整 个横截面上就只产生压应力而不出现拉应力,这个荷载作用的区域就称 为截面核心。 10.4.2 截面核心的确定
精选题10组合变形
![精选题10组合变形](https://img.taocdn.com/s3/m/5e841eec284ac850ad024295.png)
组合变形1. 偏心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e 和中性轴到形心的距离d 之间的关系有四种答案:(A) e d =; (B) e d >; (C) e 越小,d 越大; (D) e 越大,d 越大。
答:C2. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为max1σ、max 2σ和max 3σ,现有下列四种答案:(A)max1max 2max 3σσσ==; (B)max1max 2max 3σσσ>=; (C)max 2max1max 3σσσ>=; (D)max1max3σσσ<=max2。
答:C3.重合)。
立柱受沿图示a-a(A)斜弯曲与轴向压缩的组合; (B)平面弯曲与轴向压缩的组合; (C)斜弯曲; (D)平面弯曲。
答:B4. (A) A 点; (B) B 点; (C) C 点; (D) D 点。
答:C5. 图示矩形截面拉杆,中间开有深度为/2h 的缺口,与不开口的拉杆相比,开口处最大正应力将是不开口杆的 倍: (A) 2倍; (B) 4倍; (C) 8倍; (D) 16倍。
答:C6. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为max1σ、max 2σ和max 3σ,现有下列四种答案:(A)max1max 2max3σσσ<<; (B)max1max 2max3σσσ<=; (C)max1max3max 2σσσ<<; (D)max1max 3max 2σσσ=<。
答:C7. 正方形等截面立柱,受纵向压力F移至B 时,柱内最大压应力的比值max maxA B σσ(A) 1:2; (B) 2:5; (C) 4:7; (D) 5:2。
答:C8. 图示矩形截面偏心受压杆,其变形有下列四种答案:(A)轴向压缩和平面弯曲的组合; (B)轴向压缩、平面弯曲和扭转的组合; (C)缩和斜弯曲的组合;(D)轴向压缩、斜弯曲和扭转的组合。
材料力学10组合变形
![材料力学10组合变形](https://img.taocdn.com/s3/m/b1029e27793e0912a21614791711cc7931b7783f.png)
材料力学10组合变形组合变形是指当结构受到外力作用时,由于各个零件的不同材料及尺寸性质的差异,导致各个零件产生不同的变形现象,从而使整个结构发生整体的变形。
组合变形是结构力学的重要内容,对于工程结构的设计、安全性评估和结构稳定性分析都至关重要。
本文将介绍组合变形的概念、分析方法和影响因素。
组合变形的概念:组合变形是指由于结构中不同零件的尺寸和材料性质的不一致,而导致结构在受力时产生的整体变形。
组合变形分为两类:一是刚体体变形,即结构在受力作用下整体平移、旋转或缩放;二是构件本身变形,即结构中各零件由于尺寸和材料的不一致而产生的内部变形。
组合变形的分析方法:组合变形的分析方法主要有两种:力法和位移法。
力法是指根据梁的变形方程和杨氏模量的定义,通过计算各零件在各个截面上的张力或弯矩,从而得到整体的变形情况。
位移法是指根据构件的位移和应变关系,通过求解位移方程组,从而得到整体的变形情况。
力法和位移法都是基于弹性理论,适用于较小变形和线性弹性材料的情况。
组合变形的影响因素:组合变形的大小与结构的几何形状、零件尺寸和材料性质有关。
影响组合变形的因素主要有以下几个方面:1.结构的几何形状:结构的几何形状对组合变形有重要影响。
例如,在长梁的弯曲变形中,梁的长度和曲率半径都会影响变形的大小。
2.零件的尺寸:零件的尺寸对组合变形有重要影响。
例如,在梁的弯曲变形中,梁的截面积和转动惯量会影响变形的大小。
3.零件的材料性质:零件的材料性质对组合变形有重要影响。
例如,在梁的弯曲变形中,梁的弹性模量和截面剪切模量会影响变形的大小。
4.外力的作用方式:外力的作用方式对组合变形有重要影响。
例如,在梁的弯曲变形中,集中力和均布力对变形的影响是不同的。
除了以上几个因素外,结构的边界条件和连接方式也会影响组合变形的大小。
此外,在实际工程中,结构中可能存在的缝隙、温度变化、材料老化等因素也会对组合变形产生影响。
对于设计工程结构来说,合理控制组合变形是非常重要的。
材料力学10组合变形
![材料力学10组合变形](https://img.taocdn.com/s3/m/df6d99bdd4d8d15abe234ea9.png)
10 组合变形110 组合变形10.1 斜弯曲10.2 拉伸(压缩)与弯曲组合变形10.3 弯曲与扭转组合变形10.4 偏心拉伸与压缩10.5 截面核心23轴向拉压M eM e扭转○○○F平面弯曲一、基本变形回顾FF4轴向拉压AF N=σFFFF NFσ5扭转PI M T ρτ=Pm axW M T =τM eM eM eM TM Tτmaxτmaxρτ6平面弯曲z z I y M =σ中性层xyz主轴平面xyσ(M z )中性轴zzW M ±=m in m ax σσF Qy M z7zx yσ(M y )中性轴平面弯曲yy I z M =σyy W M ±=m in m axσσ中性层xyz主轴平面xzF Qz M yyxz8事实上,基本变形不过是简化模型,只有在一种变形特别突出,其余变形可以忽略不计的情况下才有可能发生。
FF q <<FFF当几种基本变形的影响相近时再用简单模型计算,将会引起较大的误差。
二、组合变形结构上同时发生两种或两种以上的基本变形。
F檩条斜弯曲:两平面弯曲的组合910压弯组合变形ABF AxF AyPF F xF y压弯组合变形1112偏心压缩拉弯组合变形1314q弯扭组合变形15弯扭组合变形F双向弯曲与扭转组合变形16组合变形的形式有很多种,本章学习四种典型形式。
1. 斜弯曲;2. 拉伸(压缩)与弯曲组合;3. 弯曲与扭转组合;4. 偏心拉伸与压缩。
应注意通过这四种典型组合变形的学习,学会一般组合变形的计算原理和方法。
1718三、组合变形下的计算⑤用强度理论进行强度计算。
基本解法:①外力分解或简化:使每一组力只产生一个方向的一种基本变形;②分别计算各基本变形下的内力及应力;④对危险点进行应力分析;分析方法:叠加法前提条件:小变形思考题1. 分析组合变形时,先分后合的依据是什么?2.叠加原理的适用条件是什么?能否应用于大变形情况?1920平面弯曲斜弯曲:两个相互垂直平面内平面弯曲的组合一、斜弯曲的特征10.1 斜弯曲21受力特征:外力作用线通过截面的弯曲中心,但不与任一形心主轴重合或平行;变形特征:变形后的挠曲线不与外力作用面相重合或平行。
材料力学(单辉祖)第十章组合变形
![材料力学(单辉祖)第十章组合变形](https://img.taocdn.com/s3/m/22826af40242a8956bece4b8.png)
弯压组合
可见,危险截面为C截面 其轴力和弯矩分别为
FNC 3 kN M c M max 4 2 8kN m
A
FAy
10kN m a x
g g f
C m
FBy
B
危险点 截面C上的最低点f 和最高点g
FN M c s A W
f
18
弯压组合
A I
4
10kN
解 首先计算折杆的支座反力 由平衡方程可得 FAx A
FAx 0, FAy 5kN, FBy 5kN
FAy
m
10kN
C 1.2m B 1.6m FBy
a x 1.6m
m
由于折杆左右对称,所以只需分析一半即可。 折杆AC部分任一截面上的内力
FN FAy sin 3 kN FS FAy cos 4 kN M xFAy cos
杆件变形分析步骤 首先, 在杆件原始尺寸上分别计算由横向力和 轴向力引起变形、应力 然后, 利用叠加原理,合成在横向力和轴向力 共同作用下杆件变形、应变和应力等物理量 若杆件抗弯刚度EI较大,轴力引起杆件的弯曲 变形较小,可以忽略
10
弯拉组合
细长杆件强度问题, 受力如图,抗弯刚度 EI,截面抗弯模量W , 横截面面积A。
n
e n
P
z b h y
30
偏心拉伸(压缩)
解: 1. 力系简化 力P对竖直杆作用等效于作 用在杆轴线上一对轴力P和 一对作用在竖直平面内力 偶mz=Pe
FN P 2000 N, M z mz Pe 120 N m
mz P
n
e n
P
mz P
可见,竖直杆发生弯拉组合变形
材料力学第10章 组合变形
![材料力学第10章 组合变形](https://img.taocdn.com/s3/m/54ad90dc89eb172ded63b7a6.png)
如,如图10.1(b)所示的传动轴,在将齿轮啮合力向轴心简化后发现齿轮
轴将同时产生扭转与斜弯曲变形。将这种由两种或两种以上的基本变形所组 成的变形称为组合变形。
页
退出
材料力学
出版社 理工分社
图10.1
页
退出
材料力学
出版社 理工分社
10.2 两个相互垂直平面内的弯曲 如图10.2(a)所示的具有双对称截面的悬臂梁为例,横向外力F1和F2分 别作用在梁的水平和垂直两纵向对称平面内。此时,梁在F1和F2作用下分别 在水平对称面(xz平面)和铅垂对称面(xy平面)内发生对称弯曲,距离自 由端为x的横截面m—m上,由F1和F2引起的弯矩依次为 (a) 因此,横截面m—m上任意点C(y,z)处由弯矩My和Mz引起的正应力分别为 (b) 于是,利用叠加原理,在F1和F2分别同时作用下,横截面m—m上C点处的正 应力为 (10.1)
可得中性轴方程为 (10.2)
可见,中性轴是一条通过横截面形心的直线(见图10.2(c)),其与y轴的
夹角θ 为 (10.3)
页
退出
材料力学
出版社 理工分社
式中φ ——横截面上合成弯矩M=M2y+M2z矢量与y轴间的夹角。图10.2
图10.2
对于圆形、正方形等截面,惯性矩Iy=Iz,所以有φ =θ 。此时,正应力 也可用合成弯矩M= 进行计算。需要注意的是,由于梁各横截面上的
(1)如材料为钢材,许用应力[σ ]=160 MPa,试选择AC杆的工字钢型号。
(2)如材料为铸铁,许用拉应力[σ t]=30 MPa,许用压应力[σ c]=160 MPa,且AC杆截面形式和尺寸如图10.6(e)所示,A=15×10-3 m2,z0=75mm
上篇 工程力学部分 第10章 组合变形
![上篇 工程力学部分 第10章 组合变形](https://img.taocdn.com/s3/m/6bb3d32e3169a4517723a3f7.png)
返回
下一页
第二节
斜 弯 曲
外力F的作用线只通过横截面的形心而不 与截面的对称轴重合,梁弯曲后的挠曲线不再 位于梁的纵向对称平面内,这类弯曲称为斜弯 斜弯 曲。斜弯曲是两个平面弯曲的组合,下面将讨 论斜弯曲时的正应力及其强度计算。
一、正应力计算
斜弯曲时,梁的横截面上同时存在正应力和剪应力,但因剪应 力值很小,一般不予考虑。 斜弯曲梁的正应力计算的思路可以归纳为“先分后合”,具体 计算过程如下: 1.外力的分解:由图10-3(a)可知:Fy=Fcosφ,Fz=Fsinφ 2.内力的计算 距右端为l1的横截面上由Fy、Fz引起的弯矩分别是: Mz=Fya=Facosφ My=Fza=Fasinφ 3.正应力的计算 由Mz和My在该截面引起K点正应力分别为σ’=±Mzy/Iz , σ’’=±Myz/Iy Mz和My共同作用下K点的正应力为
上一页
返回
下一页
二、双向偏心压缩(拉伸)时的 双向偏心压缩(拉伸) 正应力计算
图10-7(a)所示的偏心受拉杆,平行于轴线的拉力 的作用点不在截面的任何一个对称轴上,与z轴、y轴 的距离分别为ey和ez,此变形称为双向偏心拉伸 双向偏心拉伸,当F 双向偏心拉伸 为压力时,称为双向偏心压缩 双向偏心压缩。 双向偏心压缩 双向偏心压缩(拉伸)实际上是轴向压缩(拉伸) 与两个平面弯曲的组合变形。任一点的正应力由三部 分组成,计算这类杆件任一点正应力的方法,与单向 偏心压缩(拉伸)类似。 三者共同作用下,横截面上ABCD上任意点K的总 正应力为以上三部分叠加,即 F Mz y M yz / // /// (10-6) σ = σ +σ +σ = ± ± A Iz Iy
Mz FN (b) _ h (a) +
材料力学 第十章 组合变形(4,5,6)
![材料力学 第十章 组合变形(4,5,6)](https://img.taocdn.com/s3/m/2275da257375a417866f8f49.png)
[例10-7]:偏心拉伸杆,弹 性模量为E,尺寸、受力如图 所示。求: (1)最大拉应力和最大压 应力的位置和数值; (2)AB长度的改变量。 分析:这是偏心拉伸问题
最大拉应力发生在AB线 上各点,最大压应力发 生在CD线上各点。
CL11TU24
解:(1)应力分析
Ph Pb N P, M y , M z 2 2 t N M y Mz c A Wy Wz
3.算例 [例10-4]求高h,宽b的矩形截面的截面核。 b (1)作中性轴Ⅰ,z , a y a 解:
(2)求载荷点① , 2 iy b2 2 b zF ② az 2 6 b 3 z iz ③ yF 0 ① ay ④ (3)作中性轴Ⅱ , h a z , a y 2 b y b (4)求载荷点② , 2 2 2 Ⅰ 2 2 iy iz h h h z F 0, yF ay 6 2 3 az
(1)过截面周边上的一点作切线,以此作为第一 根中性轴; (2)据第一根中性轴的截距求第一个载荷点坐标; (3)过截面周边上相邻的另一点作切线,以此作 为第二根中性轴; (4)按(2)求于第二个中性轴对应的第二个载荷 点坐标; (5)按以上步骤求于切于周边的各特征中性轴对应 的若干个载荷点,依次连接成封闭曲线即截面核心。
中性轴把横截面分为受拉区和受压区,两个 区范围的大小受载荷作用点坐标的控制。 定义:使横截面仅受一种性质的力时载荷作用 的最大范围成为截面核心。
二.截面核心的求法 1.截距与载荷坐标的关系
z F , az ; zF , az
2.作截面核心的方法
zF 0, az ; zF , az 0
解:(1)简化外力:
建筑力学_Chapter10组合变形
![建筑力学_Chapter10组合变形](https://img.taocdn.com/s3/m/ef5ad6d428ea81c758f578da.png)
危险点——“ab”边各点有最大的拉应力, 边各点有最大的拉应力, 危险点 边各点有最大的拉应力 边各点有最大的压应力( 边各点有最大的压应力 或最小拉应力)。 “cd”边各点有最大的压应力(或最小拉应力)。
σ t max
M F = z max + N Wz A
σ c max
M z max FN =− + Wz A
A 解:1、外力分解 q z = q sin α = 800 × 0.447 = 358 N / m B
L
q y = q cos α = 800 × 0.894 = 714 N / m
y
2、内力分析
M z max 714 × 3.32 = = = 972 Nm 8 8 q y L2
2
b=80mm h=120mm qz
σ t max = −σ c max
M z max ymax M y max z max M z max M y max = + = + Iz Iy Wz Wy
强度条件—— 强度条件
σ max ≤ [σ ]
y
x
4、刚度计算
f y max =
f max =
Fy L
3
3EI z
,
f z max
Fz L3 = 3EI y
160 3 ×103 6 40 ×10 = + 3 ≤ 140 Wz A
Fy 300 FNCD C
Fx
B F X
160 3kN 3
40kNm X
采用试选的方法
M
M max 40 ×106 3 3 = ≤ 140. ⇒ Wz ≥ 285.7 ×10 (mm ) Wz Wz
选两根18号槽型钢 每根 选两根 号槽型钢,每根 Wz = 152.2 cm3,A=29.29 cm2。 号槽型钢
第十章 组合变形
![第十章 组合变形](https://img.taocdn.com/s3/m/d777be5df5335a8102d22096.png)
max
FN A
M max Wz
FN bh
6F2l bh2
6 103 0.12 0.15
6 4103 0.12 0.152
解: (1)分析梁的变形:
F1
BC段:在F2 作用下只在水平 对称平面内发生平面弯曲;
AB 段:在F2、F1 作用下发生斜弯曲 组合变形。
(2)危险截面是固端截面 M zmax F1l1 2 103 1N.m=2kN.m
Mymax F2l2 1103 2N.m=2kN.m
20
Wz
FN bh
F2a
1 6
bh2
6103 0.12 0.15
6 2.4103 0.12 0.152
5MPa
同理:B 点的正应力
B
FN A
M Wz
FN bh
6M bh2
5.7MPa
26
第三节 拉伸(压缩)与弯曲的组合变形
[例10 – 3] 矩形截面杆受力如图所示,F1 的作用线与杆的轴线重合,F2 作用在杆的 对称平面内。已知F1 = 6 kN,F2 = 2 kN,a = 1 .2 m,l = 2 m,b= 120 mm, h = 150 mm。 试求:(1)n - n 截面上A 点和B 点的正应力;(2)杆中的最大压应力。
中性轴仍与加载(合成载荷)轴垂直,但挠度曲线不再为加载面内的平面曲线。
12
第二节 斜弯曲
一、正应力计算 斜弯曲时,梁的横截面上一般是同时存在正应力和切应力, 切应力忽略不计! [例题] 计算矩形截面悬臂梁K点的正应力。
材料力学 第十章组合变形(1,2,3)
![材料力学 第十章组合变形(1,2,3)](https://img.taocdn.com/s3/m/a73c48bf65ce050876321348.png)
1.2m
解:求支反力,由平衡方程
FB B
FA
' FA
F ' A 0,
FA FB 5kN
A
1.6m 1.6m
m g f A
10kN C
m FAy
作折杆的受力图,折杆及 受力对称,只需分析一半 即杆AC 将FA分解, 得杆的轴力 FN、弯矩M (x)
B
FAx
FN FAx 3kN
3 10 8 10 t 81.1 2 3 c d / 4 d / 32 81.9
3 3
M W
[例10-2]圆截面杆的偏心压缩时不产生拉 力的载荷作用范围
P
y
P
y
Pa
a
z
z
CL11TU12
P
y
Pa
y
P
y
Pa
z
z
z
P
y y
Pa
y
P
z
Pa
z P
y y
z
Pa
y
P
CL11TU10
解: X A 3kN, A 4kN Y
任意横截面x上的内力:
FN X A 3kN FS YA 4kN M ( x) YA x 4 x
1 1截面上危险截面, 其上:FN 3kN,M 8kN m
FN A
M W
t FN M c A W
CL11TU5
y0 Iz tg tg z0 Iz
为中性轴与z轴夹角
3.强度计算:
1)危险截面:当x=0时 M Z , M y 同时取最大,固定端处为危险面 2)危险点:危险面上 D1 , D2点 3)最大应力
工程力学-组合变形汇总
![工程力学-组合变形汇总](https://img.taocdn.com/s3/m/98b8b6a164ce0508763231126edb6f1aff007186.png)
⼯程⼒学-组合变形汇总10 组合变形1、斜弯曲,弯扭,拉(压)弯,偏⼼拉伸(压缩)等组合变形的概念;2、危险截⾯和危险点的确定,中性轴的确定;如双向偏⼼拉伸, 中性轴⽅程为3、危险点的应⼒计算,强度计算,变形计算、。
4、截⾯核⼼。
10.1、定性分析图10.1 ⽰结构中各构件将发⽣哪些基本变形图 10.1[解](a )AD 杆时压缩、弯曲组合变形,BC 杆是压缩、弯曲组合变形;AC 杆不发⽣变形。
(b )AB 杆是压弯组合变形,BC 杆是弯曲变形。
(c )AB 是压缩弯曲组合变形,BC 是压弯组合变形。
(d )CD 是弯曲变形,BD 发⽣压缩变形,AB 发⽣弯伸变形,BC 发⽣拉弯组合变形。
10.2 分析图10.2中各杆的受⼒和变形情况。
解题范例图 10.2[解] (a)⼒可分解成⽔平和竖直⽅向的分⼒,为压弯变形。
(b)所受外⼒偶矩作⽤,产⽣弯曲变形。
(c)该杆受竖向集中荷载,产⽣弯曲变形.(d)该杆受⽔平集中荷载,偏⼼受压,产⽣压缩和弯曲变形。
(e)AB段:受弯,弯曲变形,BC段:弯曲。
(f)AB段:受弯,弯曲变形,BC段:压弯组合。
(g)AB段:斜弯曲,BC段:弯纽扭合。
10.3分析图10.3 ⽰构件中 (AB、BC和CD) 各段将发⽣哪些变形?图10.3[解] AB 段发⽣弯曲变形,BC 段发⽣弯曲、扭转变形;CD 段发⽣拉伸、双向弯曲变形。
10.4⼀悬臂滑车架如图 10.4 所⽰,杆AB 为18号⼯字钢(截⾯⾯积30.6cm 2,Wz=185cm 3),其长度为l =2.6m 。
试求当荷载F=25kN 作⽤在AB 的中点处时,杆内的最⼤正应⼒。
设⼯字钢的⾃重可略去不计。
图 10.4[解] 取AB 为研究对象,对A 点取矩可得NBCY F 12.5kN = 则 3225==NBCX NAB F F 分别作出AB 的轴⼒图和弯矩图:kN3225kN.mNBCX轴⼒作⽤时截⾯正应⼒均匀分布,AF N=σ(压)弯矩作⽤时截⾯正应⼒三⾓形分布,WzM=σ(下拉上压)可知D 截⾯处上边缘压应⼒最⼤,叠加可得最⼤正应⼒94.9MPa (压10.5如图 10.5 所⽰,截⾯为 16a 号槽钢的简⽀梁,跨长 L=4.2m, 受集度为 q 的均布荷载作⽤ ,q=2KN/m 。
ch10 组合变形(3rd)
![ch10 组合变形(3rd)](https://img.taocdn.com/s3/m/8a3ac17bb4daa58da0114a68.png)
第十章 组合变形10-2 图a 所示板件,b =20mm ,δ=5mm ,载荷F = 12 kN ,许用应力[σ] = 100 MPa ,试求板边切口的允许深度x 。
题10-2图解:在切口处切取左半段为研究对象(图b ),该处横截面上的轴力与弯矩分别为F F =N)(a b F M -= (a)显然,222xb x b a -=-=(b)将式(b)代入式(a),得2FxM =切口段处于弯拉组合受力状态,该处横截面上的最大拉应力为22N max 432(2a)6 22a Fxa F Fx a F W M A F δδδδσ+=+=+=根据强度要求,在极限情况下,][4322σδδ=+a Fx a F 将式(b)与相关数据代入上式,得01039.61277.042=⨯+--x x由此得切口的允许深度为m m 20.5=x10-3 图示矩形截面钢杆,用应变片测得上、下表面的纵向正应变分别为aε=1.0×10-3与b ε=0.4×10-3,材料的弹性模量E =210GPa 。
试绘横截面上的正应力分布图,并求拉力F 及其偏心距e 的数值。
题10-3图解:1.求a σ和b σ截面的上、下边缘处均处于单向受力状态,故有MPa84Pa 104.010210 MPa 210Pa 100.1102103939=⨯⨯⨯===⨯⨯⨯==--b b a a E εσE εσ偏心拉伸问题,正应力沿截面高度线性变化,据此即可绘出横截面上的正应力分布图,如图10-3所示。
图10-32.求F 和e将F 平移至杆轴线,得 Fe M F F ==,N于是有 a za E εW Fe A F σ=+=E εW Fe AF σzb =-=代入相关数据后,上述方程分别成为 26250240=+Fe F 10500240=-Fe F 经联立求解,于是得mm 786.1m 10786.1kN 38.18N 183753=⨯=≈=-e F ,10-6 图示直径为d 的圆截面铸铁杆,承受偏心距为e 的载荷F 作用。
材料力学第10章 组合变形综述资料.
![材料力学第10章 组合变形综述资料.](https://img.taocdn.com/s3/m/01bd61fa783e0912a3162a37.png)
当力和弯矩作用在一个非对称平面上,杆件弯曲方向?
2020/7/3
F F
F F
16
材料力学-第10章 组合变形
两相互垂直平面内的弯曲
矩形截面分析:
中性轴
Mz z
My
M
z
θ
M
y
y
如果弯曲平面和弯矩作用平面一致,那么必须
2020/7/3
17
材料力学-第10章 组合变形
14
材料力学-第10章 组合变形
两相互垂直平面内的弯曲
对于圆形截面,杆的变形与弯矩作用平面在同一平面内
A
A
F
F
F
w
w
弯曲平面在哪 个方向?
对于矩形截面,变形与弯矩作用平面是否仍在同一 平面?
2020/7/3
15
材料力学-第10章 组合变形
两相互垂直平面内的弯曲
圆形截面:任何通过轴心的力引起的弯矩所作用的平面均为 截面的对称面
2020/7/3
10
叠加原理
材料力学-第10章 组合变形
基本方法
变形
线弹性、小变形
分解
基本变形1 基本变形2 基本变形n
叠加
组合变形
2020/7/3
11
2020/7/3
材料力学-第10章 组合变形
计算简图
借助于带轮或齿轮传递功率 的传动轴,工作时在齿轮的齿上 均有外力作用。
将作用在齿轮上的力向轴的 截面形心简化便得到与之等效的 力和力偶,这表明轴将承受横向 载荷和扭转载荷。
矩形截面应力分析:
矩形截面内任一点的弯曲正应力
Mz z
My
Mz
材料力学第10章 组合变形
![材料力学第10章 组合变形](https://img.taocdn.com/s3/m/c8fc762a10661ed9ad51f3ea.png)
5
第二节 斜弯曲 在第6章讨论过平面弯曲,例如,如图10.2(a) 所示的矩形截面梁,外力F1,F2作用于同一纵向 平面内,作用线通过截面的弯心,且与形心主惯性 轴之一平行,梁弯曲后,梁的挠曲线位于外力所在 的形心主惯性平面内,这类弯曲为平面弯曲。如图 10.2(b)所示的矩形截面梁,外力F的作用线虽然通 过截面的弯心,但它与截面的形心主惯性轴斜交, 此时,梁弯曲后的挠曲线不再位于外力F所在的纵 向平面内,这类弯曲则称为斜弯曲(oblique bendin g)。
13
图10.4
图10.5
14
在梁的斜弯曲问题中,一般不考虑切应力的影 响,直接对危险截面上的危险点进行正应力强度计 算,其强度条件为
对于矩形、工字形及槽形截面梁,则可写成
15
五、斜弯曲梁的变形计算 梁在斜弯曲情况下的变形,仍可根据叠加原理 求解。如图10.3所示悬臂梁在自由端的挠度就等于 力F的分量Fy,Fz在各自弯曲平面内的挠度的矢量 和。因为
第10章
第一节 概述 一、组合变形的概念 前面有关章节分别讨论了杆件在各基本变形情 况下的强度计算和刚度计算。在实际工程中,许多 常用杆件往往并不处于单一的基本变形,而可能同 时存在着几种基本变形,它们的每一种变形所对应 的应力或变形属同一量级,在杆件设计计算时都必 须考虑。
1
图10.1
2
二、组合变形的求解方法 在小变形、线弹性材料的前提下,杆件同时存 在的几种基本变形,它们的每一种基本变形都是彼 此独立的,即在组合变形中的任一种基本变形都不 会改变另外一种基本变形相应的应力和变形。这样, 对于组合变形问题就能够用叠加原理来进行计算。
3
具体的方法及步骤是: ①荷载标准化。找出构成组合变形的所有基本 变形,将荷载化简为只引起这些基本变形的相当力 系。 ②基本变形计算。按构件原始形状和尺寸,计 算每一组基本变形的应力和变形。
(整理)题10-组合变形
![(整理)题10-组合变形](https://img.taocdn.com/s3/m/0f3225ba195f312b3169a59e.png)
组合变形1. 偏心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e 和中性轴到形心的距离d 之间的关系有四种答案:(A) e d =; (B) e d >; (C) e 越小,d 越大; (D) e 越大,d 越大。
答:C2. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为max1σ、max 2σ和max 3σ,现有下列四种答案:(A)max1max 2max 3σσσ==; (B)max1max 2max 3σσσ>=; (C)max 2max1max 3σσσ>=; (D)max1max3σσσ<=max2。
答:C3.重合)。
立柱受沿图示a-a(A)斜弯曲与轴向压缩的组合; (B)平面弯曲与轴向压缩的组合; (C)斜弯曲; (D)平面弯曲。
答:B4. (A) A 点; (B) B 点; (C) C 点; (D) D 点。
答:C5. 图示矩形截面拉杆,中间开有深度为/2h 的缺口,与不开口的拉杆相比,开口处最大正应力将是不开口杆的 倍: (A) 2倍; (B) 4倍; (C) 8倍; (D) 16倍。
答:C6. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为max1σ、max 2σ和max 3σ,现有下列四种答案:(A)max1max 2max3σσσ<<; (B)max1max 2max3σσσ<=; (C)max1max3max 2σσσ<<; (D)max1max 3max 2σσσ=<。
答:C7. 正方形等截面立柱,受纵向压力F移至B 时,柱内最大压应力的比值max maxA B σσ(A) 1:2; (B) 2:5; (C) 4:7; (D) 5:2。
答:C8. 图示矩形截面偏心受压杆,其变形有下列四种答案:(A)轴向压缩和平面弯曲的组合; (B)轴向压缩、平面弯曲和扭转的组合; (C)缩和斜弯曲的组合;(D)轴向压缩、斜弯曲和扭转的组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
z x
L
z
Pz
D1
h
y
D2
P
Py y
最大正应力 变形计算
tan fy fz
Lmax D1
Mz M y D 2 Wz W y
Py L3
fz
f
3 P L f y2 f z2 ( )2 ( z )2 3 EI z 3 EI y
f
fy
Iy Iz
6 10 3 5.29 10 2 8 128 10 6 10 3 3 10 10 2 2 1780 10 8
max 压
153 .2MPa
c max ,安全。
例10-2-5 如图所示简支梁由28a号工宇钢制成,已 知F=25kN,l=4m, 15 ,材料的许用应力 [ ]=170MPa,试按正应力强度条件校核此梁。
tan
当Iy = Iz时,即发生平面弯曲。
例10-2-2 矩形截面木檩条如图,跨长L=3m,h=2b ,受集度 为q=700N/m的均布力作用, []=10MPa,容许挠度 [f]=L/200 ,E=10GPa,试选择截面尺寸并校核刚度。 解:①、外力分析——分解q
q y q sin 700 0.438 307N/m
P
R
M
P
P
h
P
q
h
水坝
二、组合变形的研究方法 —— 叠加原理 ① 外力分析:外力向形心(或弯心)简化并沿主惯性轴
分解,确定各基本变形;
② 内力分析:求每个外力分量对应的内力方程和内力 图,确定危险面; ③ 应力分析:画危险面应力分布图,确定危险点, 叠加求危险点应力; ④ 强度计算:建立危险点的强度条件,进行强度计算。
y
qz q cos 700 0.899 629N/m
q
z
=26°
②、内力分析——求Mzmax、Mymax
q
A
L
B
307 3 2 M z max 345.4Nm 8 8 2 qz L 629 3 2 M y max 707.6Nm 8 8
q y L2
③、应力分析——求 max
z
Mz y Iz
P M y z Mz y x A Iy Iz
三、中性轴方程
x
M y z0 M z y0 P A Iz Iy
z P(yP,zP) y
P PyP y0 PzP z 0 2 2 A Ai z Ai y y P y0 z P z 0 P (1 2 )0 2 A iz iy
30kN
y C
30kN
D
h
x
b
100mm 100mm
100mm
A
My
B
C
2kN
D
x
+
Mz
2kN
解:(1)确定危险截面:
M Cy 1kNm
+
C D
x
M Cz 2kNm
A
B
(2)校核强度:
max
M Cy Wy M Cy
M Cz Wz
bh 6
2
hb 2 6 1 10 3 6
max
Mz M y Wz W y
④、强度计算——确定截面尺寸
M z M y 6 M z 6 M y 3 (2 M z M y ) max [ ] 2 2 3 Wz W y hb bh 2b
b3 3 (2 M z M y ) 2[ ] 59.4mm h 2b 118.8mm
x
外力向形心简化并分解: T - 扭转变形 P2z – xz面的平面弯曲
A
150
B
200
C
100
D y
P1 T
A
150
T
z P2z
x
C 100
P1、P2y – xy面的平面弯曲
轴发生弯扭组合变形
B
200
D
P2 y y
Mz
2、内力分析:确定危险 截面
C
x
My
A
B
D
x
作出每个外力分量对应 的内力方程和内力图
M y ( x) ; M z ( x) ; T ( x)
T
n
T
x
叠加弯矩,并画图
2 M ( x) M y ( x ) M z2 ( x )
M
Mmax
x
若Mmax在B,则危险 面为B截面
Mz B1
xB
M
x
1
M x
3、应力分析:确定危险点
xB 1
M max W
T B2
B
2
B1
m
y K
Py P sin
Pz P cos
M z Py ( L x )
· z
2、研究两个平面弯曲 ①
P ( L x ) sin 内 M sin 力 M y M cos
x
m
L ② M 引起K的应力: M y z M z cos y Iy Iy 应 力 Mz y M y Mz引起K的应力: sin Iz Iz
y yc
20 10 20 100
z
应力分析如图 FN M z max max A I yc
100 103 800 10
6
500 55 103 7.27 107
125 37.8 162 .8MPa
孔移至板中间时
A FN
max
100 10 162.8 10 6
20 10 20 100
20 10 20 zc 5m m 100 10 20 10
M
N
10 1003 I yc 10 100 52 12 10 203 [ 10 20 252 ] 12 7.27 105 m m4
M 5 P 103 500Nm
此梁满足强度要求。
§10-3 拉伸(压缩)与弯曲的组合 一、拉(压)弯组合变形:杆件同时受横向力(或纵截面
内力偶)和轴向力的作用而产生的变形。
P
R
x z
x
P
P
P
y
MY
z
y
MZ
MY
双向偏压 单向偏压
x
二、应力分析:
z y
P M y
Mz
P
My
Mz
z
y
xP
P A
xM
y
Myz Iy
xM
My
xB
T WP
4、建立强度条件
2 2 r 3 1 3 xB 4 1 xB1
B
xB
1
1
2 M max
W
2
4T 2
2 WP
2 M max T2
W
xB
B
1
1
2 2 r 4 xB 3 1 xB1
3
631.9 36.8mm
C
10kN 1.2m B
A
1.6m 1.6m 10kN
[ 例 10-3-3] 两 根 无 缝 钢 管 焊接而成的折杆。钢管外径 D=140mm , 壁 厚 t=10mm 。 求 危险截面上的最大拉应力和 最大压应力。 解:①求约束反力,确定 杆的受力:
⑤、校核刚度 4 qy 2 qz 2 5 L 2 2 f max f y max f z max ( ) ( ) 384E I z Iy
1.44 10
2
L m [ f ] 1.5 10 2 m 200
例10-2-3 两端铰支矩形截面梁,其尺寸 h=80mm , b=40mm, z 120MPa, 校核梁的强度。 z A B y
RA RB 5kN
X A RA YA
RB
X A 3kN, YA 4kN
10kN
X A 3kN, YA 4kN
XA
FN
A
YA
C
YB
B
② 确定危险截面:
XB
C处: FN 3kN , M 8kNm ③ 求最大应力
max FN M A W max
(kN) A
M
C
C 8
8
B
2 2 D 3 d 2 (D d ) 1 ( ) 4 32 D
FN
M
(kNm) A
其中
d=D-2t
B
63.8 MPa max max 65.2MPa
§10-4 弯曲与扭转的组合
P2 P1
80°
z
1、外力分析:确定基本 变形
§10-2
不共面。 二、斜弯曲的研究方法 :
斜弯曲
一、斜弯曲:杆件产生弯曲变形,但弯曲后,杆轴线与横向力
1、分解:将外载沿横截面的两个形心主轴分解,于是得到两个正 交的平面弯曲。 2、叠加:对两个平面弯曲进行研究;然后将计算结果叠加起来。
Z
Pz
Pz Py
P
Py y
1、将外载沿横截面的形心主轴分解:
y
z
x
e
解:两柱均为压应力
1max
P Pe A1 Wz1
350000 350 50 6 0.2 0.3 0.2 0.32 11.7MPa
2 max
图(1) 图(2)
P 350000 A 0.2 0.2 8.75MPa