层次分析法(20210228083421)

合集下载

第1讲 层次分析法

第1讲 层次分析法

1 层次分析法层次分析法(Analytic Hierarchy Process ,简称AHP 法)是美国运筹学家沙旦(T L Saaty )于20世纪70年代提出的,是一种定性与定量分析相结合的多目标决策分析法,其主要特点是将决策者的经验判断给予量化,特别适用于那些完全用定量进行分析的复杂系统问题,如资源分配、选优排序、政策分析、冲突求解以及决策预报等.实例,某人节假日出行选择旅游景点,考虑费用、景色、居住、饮食、交通等因素,几个待选的旅游景点是杭州、泰山、承德.问题是怎样综合考虑各因素的重要性,从而确定理想的景点. 第一步 构造层次结构模型在对复杂系统的决策问题所涉及的各因素进行分析的基础上,可以建立层次结构模型.层次结构模型反映了复杂系统的决策问题所涉及的各因素之间相互连接关系.本例构造如下的层次结构模型:目标层Z 准则层C措施层P层次结构模型中的层次分析法一般可以分为三类:最高层,它是分析问题的预定目标或理想结果,又称目标层;中间层,包括为实现目标所涉及的中间环节,它可以由若干层次组成,又称准则层;最低层,它是为实现目标而供选择的各种措施、决策方案,又称为措施层. 第二步 构造判断矩阵理论上,假设各因素n X X X ,,,21 关于目标Z 的相对重要性排序为n ωωω,,,21 ,则对于判断矩阵n n ij a A ⨯=)(,有jiij a ωω= ),,2,1;,,2,1(n j n i ==, (1) 即⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n n n n A ωωωωωωωωωωωωωωωωωω212221212111 (2)判断矩阵n n j i a A ⨯=)(满足下面两个条件: 1°,,,110==>ii ijji ij a a a a )21(n j i ,,,, =.由此可称A 为正互反矩阵. 2°,ik jk ij a a a =)21(n k j i ,,,,, =.由此可称A 为一致性矩阵.⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n A ωωωωωω1,,1,12121 (3) 记T 21),,,(n w ωωω =,并称之为排序向量,则有nw w w Aw n =⎪⎪⎭⎫⎝⎛=ωωω1,,1,121 (4) 这表明w 为判断矩阵A 关于特征值n 的特征向量,也就是说,要找的排序向量w 即为判断矩阵A 的关于特征值n 的特征向量.由此得出层次分析法的基本原理:求出判断矩阵A 的关于特征值n 的特征向量,得到各因素关于目标的相对重要性的排序结果.为比较起来方便,常把求出的特征向量进行归一化处理,即w w nωωω+++=* 211(5)习惯上仍记为w ,又称为权向量,反映各因素在目标中所占的比重.如果矩阵A 满足一致性条件,即A 由(3)式完全确定,则n 一定是A 的特征值,此时A 的秩为1,所以A 的其它1-n 个特征值都是零.实际应用中,判断矩阵并不全部满足上述两个条件,这是因为判断矩阵中的元素是人们主观判断的量化结果,而由于人们对复杂事物认识的多样性以及可能产生的片面性,理论与实际的误差是可能产生的.实际处理时,人们对判断矩阵的一致性要求到一定的满意程度即可.这里不介绍判断矩阵一致性满意程度的检验方法.实际计算时,往往求出A 的最大的正特征值所对应的特征向量,再进行归一化处理,认为得到的就是权向量.判断矩阵的元素是人们对两个因素之间关于目标的相对重要性进行比较的结果.在决策时,人们是根据因素的重要性而作出选择的.两个因素之间关于目标的相对重要性可以根据沙旦引用的数字1~9标度法,对因素间进行两两比较得到,下面给出前面示例中某个人的初步判断结果:判断矩阵:C Z - ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1123151112315121211417133412155721 上面矩阵的)32(,元等于4,含义是对于选择旅游景点)(Z 来说,景色)(2C 与居住条件)(3C 之间重要程度的比值是4:1,反映的是某人的一种感觉或认识.判断矩阵:P C -1 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛138311581511 上面矩阵的)31(,元等于81,含义是对于费用)(1C 来说,1P 与3P 的优劣程度的比值是1:8,也就是说选择承德)(3P 更节俭.这种比值是可以计算的,例如去承德花费100元,去杭州花费800元.类似地,给出:判断矩阵:P C -2 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛121512121521 判断矩阵:P C -3 ⎪⎪⎪⎪⎭⎫ ⎝⎛13131311311判断矩阵:P C -4 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛11411131431判断矩阵:P C -5 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛14441114111 第三步 相邻层次间各因素关于目标相对重要性排序根据第二步中的理论和方法,经计算,前面示例中相邻层次间的排序结果如下::C Z - T )099.0,099.0,058.0,265.0,479.0(=z w:P C -1 T )661.0,272.0,067.0(1=c w :P C -2 T )128.0,276.0,595.0(2=c w :P C -3 T )143.0,429.0,429.0(3=c w :P C -4 T )174.0,192.0,634.0(4=c w :P C -5 T )667.0,167.0,167.0(5=c w第四步 层次总排序计算同一层次(一般为措施层)对于最高层(总目标)相对重要性的排序权值,从而依此作出决策,这一过程是由最高层到最低层逐层进行的.结合前面示例,利用矩阵的形式表示这一过程.将P 层关于C 层各因素的排序向量按顺序组成矩阵),,,,(54321c c c c c P w w w w w C = (6)则P 层关于目标层Z 的总排序为z p p w C w = (7)计算得)442.0,264.0,294.0(=p w从排序向量上看,此人应该选择去承德旅游较为理想.当然,这个结论只是针对此人的,反映了此人的意愿.如果对于判断矩阵)(C Z -有不同的选择,例如另外一个人突出景色的重要性,显然应该去杭州旅游.。

层次分析法介绍

层次分析法介绍

2 层次分析法2.1层次分析法的简单介绍层次分析法(Analytic Hierarchy Process 简称AHP),是20世纪80年代由美国运筹学教授T. L. Satty 提出的一种简便、灵活而又实用的多准则决策方法,它根据问题的性质和要达到的目标分解出问题的组成因素,并按因素间的相互关系将因素层次化,组成一个层次结构模型,然后按层分析,最终获得最低层因素对于最高层(总目标)的重要性权值。

在经营决策中经常会遇到多指标、多方案的综合比较问题, 由于经常出现多个方案互有好坏的情况。

因此要从成百上千个指标、方案中选择最佳的组合方案就成了一个较为麻烦的问题。

在实际应用中,尽管人们还不能解决多个方案的综合比较问题, 但是如果就2个方案之间进行比较还是可以判断出相对好坏的。

于是, 设法在数学上找到1种方法, 使之从多方案比较过渡到两两之间的比较,从而解决多方案比较的问题, 这就是AHP法的基本思想。

2.2层次分析法的基本层次结构第一类:最高层,又称顶层、目标层。

第二类:中间层,又称准则层。

第三类:最底层,又称措施层、方案层。

层次结构图(一)层次之间的支配关系是完全的结构模型层(二) 层次之间的支配关系是不完全的结构模型2.3 判断矩阵设要比较n 个因素)...,,(21n y y y y =对目标z 的影响,从而确定它们在z 中所占的比重,每次取两个因素i y 和j y 用ij a 表示i y 与j y 对z 的影响程度之比,按1~9的比例标度来度量ij a ,n 个被比较的元素构成一个两两比较(成对比较)的判断矩阵.)(n n ij a ⨯=A 显然,判断矩阵具有性质:⎪⎪⎪⎪⎪⎭⎫⎝⎛=A nn n n n n a a aa a a a a a212222111211 ,0>ij a ,1ijji a a =1=ii a )...,2,1,(n j i =所以又称判断矩阵为正互反矩阵(简称正互阵,又称成对比较阵)。

层次分析法概述

层次分析法概述

层次分析法一、层次分析法概述层次分析法(Analytic Hierarchy Process )是美国运筹学家T. L. Saaty教授于20世纪70年代初期提出的一种简便、灵活而又实用的多方案或多目标的决策方法,它是一种定性和定量相结合的、系统化的、层次化的分析方法,是一种具有定性分析与定量分析相结合的决策方法,可将决策者对复杂对象的决策思维过程系统化、模型化、数量化。

其基本思想是通过分析复杂问题包含的各种因素及其相互关系,将问题所研究的全部元素按不同的层次进行分类,标出上一层与下层元素之间的联系,形成一个多层次结构。

在每一层次,均按某一准则对该层元素进行相对重要性判断,构造判断矩阵,并通过解矩阵特征值问题,确定元素的排序权重,最后再进一步计算出各层次元素对总目标的组合权重,为决策问题提供数量化的决策依据。

层次分析法特别适用于无结构问题的建模。

自1982年被介绍到我国以来,由于它在处理复杂的决策问题上的实用性和有效性,以及其系统灵活简洁的优点,迅速地在我国社会经济各个领域内,如能源系统分析、城市规划、经济管理、科研评价行为科学、军事指挥、运输、农业、教育、人才、医疗、环境保护、冲突求解及决策预报等领域得到了广泛的重视和应用。

二、层次分析法的基本思想基本思想层次分析法的采用先分解后综合的系统思想,整理、综合人们的主观判断,将所要分析的问题层次化,根据问题的性质和要达到的总目标,将问题分解成不同的组成因素,按照因素间的相互关系及隶属关系,将因素按不同层次聚集组合,形成一个多层分析结构模型,最终归结为最低层(方案、措施、指标等)、中间层(准则层)、最高层(总目标)。

把实际问题转化为分析同层因素间相对重要程度的权重值或相对优劣次序的问题,使定性分析与定量分析有机结合,实现定量化决策。

三、确定权重值的基本原理人们在进行社会、经济以及科学管理领域问题的系统分析中,面临的常常是一个相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。

层次分析法

层次分析法

1. 层次分析法(The analytic hierarchy process, 简称AHP)用于解决评价类问题,例如:选择那种方案最好、哪位运动员或者员工表现的更优秀。

评价类问题可以用打分解决。

层次分析法 (The Analytic Hierarchy Process即 AHP)是由美国运筹学家、匹兹堡大学教授T. L. Saaty于20世纪70年代创立的一种系统分析与决策的综合评价方法, 是在充分研究了人类思维过程的基础上提出来的, 它较合理地解决了定性问题定量化的处理过程。

AHP的主要特点是通过建立递阶层次结构, 把人类的判断转化到若干因素两两之间重要度的比较上, 从而把难于量化的定性判断转化为可操作的重要度的比较上面。

在许多情况下, 决策者可以直接使用AHP进行决策, 极大地提高了决策的有效性、可靠性和可行性, 但其本质是一种思维方式, 它把复杂问题分解成多个组成因素, 又将这些因素按支配关系分别形成递阶层次结构, 通过两两比较的方法确定决策方案相对重要度的总排序。

整个过程体现了人类决策思维的基本特征,即分解、判断、综合,克服了其他方法回避决策者主观判断的缺点。

1.1模型介绍1.1.1引例高考结束了,小明该选择华科还是五武大?小明最关心四个方面:学习氛围0.4、就业前景0.3、男女比例0.2、校园景色0.19(权重和为1)(1)学习氛围:经查阅资料查到“学在华工,玩在武大,爱在华师”一句话,因此在学习氛围方面给华科0.7,给武汉大学0.3.(2)就业前景:搜索两所学校就业率差不多,因此在就业前景方面对两所学校均赋予0.5的权重。

(3)男女比例:经查询,华科男女比例2:1,武大1.35:1,因此武大0.7分,华科0.3分(4)校园景色:华科0.25分,武大0.75分整理权重表格:指标权重华科武大学习氛围0.40.70.3就业前景0.30.50.5男女比例0.20.30.7校园景色0.10.250.75华科最终的得分:0.7*0.4+0.5*0.3+0.3*0.2+0.25+*0.1=0.515分武大最终得分:0.3*0.4+0.5*0.3+0.7*0.2+0.75*0.1=0.485分1.1.2 模型1、关键词:打分法、确定评价指标、形成评价体系2、解决评价类问题,首先确定以下三个问题:(1)评价的目标是什么(2)为了达到这个目标有哪几种可选的方案(3)评价的准则或者说指标是什么(我们根据什么东西来评价好坏)。

层次分析法介绍

层次分析法介绍

2 层次分析法2.1层次分析法的简单介绍层次分析法(Analytic Hierarchy Process 简称AHP),是20世纪80年代由美国运筹学教授T. L. Satty 提出的一种简便、灵活而又实用的多准则决策方法,它根据问题的性质和要达到的目标分解出问题的组成因素,并按因素间的相互关系将因素层次化,组成一个层次结构模型,然后按层分析,最终获得最低层因素对于最高层(总目标)的重要性权值。

在经营决策中经常会遇到多指标、多方案的综合比较问题, 由于经常出现多个方案互有好坏的情况。

因此要从成百上千个指标、方案中选择最佳的组合方案就成了一个较为麻烦的问题。

在实际应用中,尽管人们还不能解决多个方案的综合比较问题, 但是如果就2个方案之间进行比较还是可以判断出相对好坏的。

于是, 设法在数学上找到1种方法, 使之从多方案比较过渡到两两之间的比较,从而解决多方案比较的问题, 这就是AHP法的基本思想。

2.2层次分析法的基本层次结构第一类:最高层,又称顶层、目标层。

第二类:中间层,又称准则层。

第三类:最底层,又称措施层、方案层。

层次结构图(一)层次之间的支配关系是完全的结构模型层(二) 层次之间的支配关系是不完全的结构模型2.3 判断矩阵设要比较n 个因素)...,,(21n y y y y =对目标z 的影响,从而确定它们在z 中所占的比重,每次取两个因素i y 和j y 用ij a 表示i y 与j y 对z 的影响程度之比,按1~9的比例标度来度量ij a ,n 个被比较的元素构成一个两两比较(成对比较)的判断矩阵.)(n n ij a ⨯=A 显然,判断矩阵具有性质:⎪⎪⎪⎪⎪⎭⎫⎝⎛=A nn n n n n a a aa a a a a a212222111211 ,0>ij a ,1ijji a a =1=ii a )...,2,1,(n j i =所以又称判断矩阵为正互反矩阵(简称正互阵,又称成对比较阵)。

层次分析法

层次分析法

层次分析法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

尤其适合于对决策结果难于直接准确计量的场合。

在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升学志愿的问题等等。

在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。

比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游地的景色、景点的居住条件和饮食状况以及交通状况等等。

这些因素是相互制约、相互影响的。

我们将这样的复杂系统称为一个决策系统。

这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。

层次分析法是解决这类问题的行之有效的方法。

层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析、决策提供定量的依据。

[编辑本段]层次分析法定义所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法,称为层次分析法。

层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。

层次分析法

层次分析法

层次分析法1. 简介层次分析法(Analytic Hierarchy Process,AHP)是一种常用的定性与定量相结合的多标准决策分析方法。

它由美国学者托马斯·L·萨亨于1970年提出,被广泛应用于各种决策问题中。

2. 原理层次分析法的基本思想是将复杂的决策问题分解为一系列具有层次结构的子问题,然后通过对这些子问题的比较与权重评估,最终得出整体问题的决策结果。

2.1 层次结构在层次分析法中,决策问题被组织成一个层次结构。

层次结构通常包括三个层次:目标层、准则层和方案层。

•目标层:表示决策问题的最终目标,通常只有一个。

•准则层:用于评价方案的一组准则,通常包括两个或更多的准则。

•方案层:表示可选择的方案,每个方案都和准则层有关联。

每个层次下面还可以有更多的子层次,形成一个完整的层次结构。

2.2 权重评估层次分析法通过对准则层的权重评估,来确定各个准则的重要性。

权重评估通常采用两两比较的方式,即对准则层中的两个准则进行比较,判断它们的相对重要性。

对两个准则的比较通常使用1至9的九分比较法,其中1表示相同重要性,3表示轻微重要性差异,5表示中等重要性差异,7表示强烈重要性差异,9表示极端重要性差异。

通过两两比较得到的比较矩阵可以利用特征向量法计算权重向量,从而确定准则层的权重。

2.3 方案评估在确定了准则层的权重后,可以利用这些权重对方案进行评估和排序。

通常使用两两比较法将方案与准则进行比较,得到方案层的比较矩阵。

然后,利用准则层的权重和方案层的比较矩阵计算加权矩阵,最终得到方案层的权重。

3. 应用场景层次分析法在各个领域中都有广泛的应用,尤其适用于以下情况:•多准则决策问题:当决策问题涉及到多个准则时,层次分析法可以帮助决策者合理权衡各个准则的重要性,从而做出最佳决策。

•项目评估与选择:当需要评估和选择多个候选项目时,层次分析法可以通过对项目的多个准则进行比较和权重评估,为项目选择提供科学依据。

层次分析法

层次分析法

e1
1 4.511
0.778
0.172
,
3 0.665
0.4 6 7 e2 Ae1 0.565, e2 3.014,
1.9 9 1
01.55 0.471 e2 0.184, e3 0.559, e3 3.018,
0.661 1.988
0.156 0.473 e3 0.185, e4 0.561,
(4)定义未知参数 在这种问题中,运用层次分析法建立表达式 来表达未曾定义过的量。典型的例子是价值 工程,产品的价值V被定义为
VF C
其中F,C分别为产品的功能系数与成本系数, 它们可以用层次分析来定义。下面是一个 经济学例子。
例5 弹性系数的确定 经济学中有名的Cobb-Douglas生产函 数是
e (1,2,,n )T ,则权系数可取: wi i ,i 1,2,, n
在具体计算中,当
ek 与ek 1
接近到一定程度时,就取 e ek
例1 评价影视作品的水平, 用以下三个变量作评价指标 :
x1 教育性,x2 艺术性,x3 娱乐性
设有一名专家赋值:
x2 1, x3 5, x3 3
w1, w2 ,, wn
这 n 个常数便是权系数, 层次分析法给出了确定它们 的量化方法,其过程如下:
1.成对比较
从x1, x2,, xn中任取xi , xj ,比较它们
对y贡献的大小,给xi xj 赋值如下:
xi
xj
1,当认为“xi与x
贡献程度相同”时
j
xi
xj
3,当认为“xi比x
的贡献略大”时
x1
的概率估值为0.134+0.219+0.026=0.379,

第一讲 层次分析法简介

第一讲 层次分析法简介

第一讲 层次分析法简介§ 1.1 引例层次分析法(Analytic Hierarchy Process ,简称AHP )是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。

人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。

在这样的系统中,人们感兴趣的问题之一是:就n 个不同事物所共有的某一性质而言,应该怎样对任一事物的所给性质表现出来的程度(排序权重)赋值,使得这些数值能客观地反映不同事物之间在该性质上的差异?层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。

它把复杂问题分解成组成因素,并按支配关系形成层次结构,然后用两两比较的方法确定决策方案的相对重要性。

层次分析法在经济、科技、文化、军事、环境乃至社会发展等方面的管理决策中都有广泛的应用。

常用来解决诸如综合评价、选择决策方案、估计和预测、投入量的分配等问题。

引例1.1.1:综合评价某公司招聘工作人员,拟从能力、知识和仪态三个方面考核应聘者的综合表现。

为此建立了如下评价指标的层次结构:图1.1.1 评价指标结构图其中 x 1 = 写作水平,x 2 = 外语程度,x 3 = 公关能力,x 4 = 国内外政治经济时事, x 5 =计算机操作知识,x 6 = 容貌与风度,x 7 = 体形高矮与肥瘦,x 8 = 音色。

如能知道底层指标x 1, …, x 8对最高层的权系数w 1, …, w 8以及各底层指标的得分,就可以按照如下的评价公式∑==81i i i x w S对应聘者进行考核、排序。

引例1.1.2:综合决策某地要改善一条河道的过河运输条件,为此需要确定是否要建立桥梁或隧道以代替现有的轮渡。

在此问题中过河方式的确定取决于过河的效益与代价(即成本)。

通常我们用费效比(即效益/代价)作为选择方案的标准。

层次分析法

层次分析法

(一)层次分析法1、层次分析法的概念“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。

”12、层次分析法的主要步骤(1)构建层次分析的结构模型首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次。

其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。

准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。

1张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年层次分析法的结构模型在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指标,C层次为方案层元素,也可称为二级指标。

(2)专家评分建立层次分析法判断矩阵为了建立指标权重评判标准和构造判断矩阵,Saaty提出相对重要性比例标度,即1~9 层次比例标度,相对重要性比例标度的含义如表2-3所示。

假设有n个元素C1、C2,...,C n给定一个准则,利用上表所给的相对重要性比例标度方,对元素C i和C j做两两比较判断,获得相对重要度的值a ij,构成矩阵。

专家根据评判准则对各个因素的权重两两比较并进行了打分之后,经过整理,可以得到因素权重的判断矩阵A:矩阵 A中的各元素a ij表示行指标A i对列指标A j相对重要性的比例标度,则判断矩阵A中指标两两比较的特点有a ij>0,a ij=1,a ij=1/a ji(i ,j=1,2,........n )。

如果a ij <1,表示A j 比A i 重要; 如果a ij >1,表示A i 比A j 重要; 如果a ij =1,表示A j 与A i 同样重要。

层次分析法步骤介绍

层次分析法步骤介绍

层次分析法整个计算过程包括以下五个部分。

(1)建立递阶层次结构应用AHP解决实际问题,首先明确目标;接下来分析影响目标决策的各个因素,并将它们之间的关系条理化、层次化;最后,用线将各个层次、各个因素间的关系连接起来就构成了递阶层次结构。

[25]通常,递阶层次结构包括以下三个基本层次:1.目标层:通过分析,明确目标是什么,将其作为最高层的元素,必须是唯一的,如:选择最合适的供应商2.准则层:即中间层,元素包含所有可能影响目标实现的准则,且会随着问题的复杂程度增多。

这时,需要详细分析各准则元素间的相互关系(是同级关系还是隶属关系)。

如果是隶属关系,则需要构建子准则层甚至更下一层准则。

3.措施层:即方案层。

分析解决问题的方案有哪些,并将其作为最底层因素。

(2)构造判断矩阵并赋值1.构造判断矩阵:将每一个具有向下隶属关系的元素作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。

2.填写判断矩阵:最常用的方法是咨询专家,将两个元素两两比较,按照重要性程度表赋值(见下表)。

表3 重要性标度含义表设填写后的判断矩阵为A=(a ij)n×n,判断矩阵具有如下三个性质:1.a ii=12.a ji=1/a ij3.a ij>0(3)层次单排序与检验1.层次单排序利用数学方法将专家填写后的判断矩阵进行层次排序。

层次单排序是将每一个因2素对于其准则的重要性进行排序,实际就是计算权向量。

计算权向量有特征根法、和法等,以下详细介绍特征根法的计算方法。

A. 计算判断矩阵每一行元素的乘积∏==nj ij i a M 1 (3.2)式中:M i 第i 行各元素的乘积a ij 第i 个元素与第j 个元素的关系比值B. 计算Mi 的n 次方根n i i M W = (3.3)式中:W i 第i 行各元素的乘积的n 次方根M i 第i 行各元素的乘积C. 对向量正规化(归一化处理)∑==ni i ii W W W 1 (3.4)式中:i W 特征向量W i 第i 行各元素的乘积的n 次方根D. 计算判断矩阵的特征根 j nj ij i W a ∑-=1λ (3.5) 式中:λi 第i 个特征根 a ij 第i 个元素与第j 个元素的关系比值W j 第j 个特征向量E. 计算判断矩阵的最大特征根∑=⨯=n i i iW n 1max λλ (3.6) 式中:λmax 最大特征根λi 特征根n 判断矩阵的阶数W 特征向量2. 层次单排序一致性检验需要特别注意:在层层排序中,要对判断矩阵进行一致性检验。

层次分析法的详细步骤

层次分析法的详细步骤

每一层中的各因素对上一层因素的相对重要性可以用问题1中的方法确 定,由层次关系可以计算出措施层各方案最高层的相对权重,从而给出 各方案的优劣次序。
层次单排序
不同准则对目标的影响已经在问题1中得到了解决,现假定不同措施 对各准则的影响如下:
1.不同措施对调动职工劳动生产积极性影响的成对比较矩阵 (12)
问题1
某工厂在扩大企业自主权后,厂领导正在考虑如何合理地使用企业留 成的利润。在决策时需要考虑的因素主要有
(1) 调动职工劳动生产积极性; (2) 提高职工文化水平; (3) 改善职工物质文化生活状况。
请你对这些因素的重要性进行排序,以供厂领导作参考。
分析和试探求解
这个问题涉及到多个因素的综合比较。由于不存在定量的指标,单凭 个人的主观判断虽然可以比较两个因素的相对优劣,但往往很难给出一 个比较客观的多因素优劣次序。为了解决这个问题,我们能不能把复杂 的多因素综合比较问题转化为简单的两因素相对比较问题呢?运筹学家 想出了一个好办法:首先找出所有两两比较的结果,并且把它们定量 化;然后再运用适当的数学方法从所有两两相对比较的结果之中求出多
决策。
解答
划分层次 显然这是一个多目标的决策,问题涉及到许多因素,各种因素的作用
相互交叉,情况比较复杂。要处理这类复杂的决策问题,首先需要对问 题所涉及的因素进行分析:哪些是要相互比较的;哪些是相互影响的。 把那些要相互比较的因素归成同一类,构造出一个各因素类之间相互联 结的层次结构模型。各因素类的层次级别由其与目标的关系而定。在上 述问题中,因素可以分为三类:
一致性的缺少是造成两种类比方法结果不同的原因。利用最小二乘法 可以证明:用求解特征方程得到的权重向量平均误差较小。因此我们最 好采用这个方法来求解权重向量。

层次分析法课件ppt

层次分析法课件ppt

按行相加为:
Wi= 1nbij
(i =1,2,….n)
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
o对向量W=( W1, W2…… Wn)t归一 化处理:
Wi=
Wi 1nWj
(i =1,2,….n)
层次分析法(AHP)具体步骤:
✓明确问题 在分析社会、经济的以及科学管
理等领域的问题时,首先要对问题有 明确的认识,弄清问题的范围,了解 问题所包含的因素,确定出因素之间 的关联关系和隶属关系。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
9 两个元素比较,一元素比另一元素极端重要
2,4,6,8 表示需要在上述两个标准之间拆衷时的标度
1/bij 两个元素的反比较
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
判断矩阵B具有如下特征:
o bii = 1 o bji = 1/ bij o bij = bik/ bjk
j1
Wi
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
层次分析法(AHP)具体步骤:
✓层次总排序 利用层次单排序的计算结果,进
一步综合出对更上一层次的优劣顺序 ,就是层次总排序的任务。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益

层次分析法

层次分析法


最底层(方案层):这一层次包括了为实 现目标可供选择的各种措施、决策方案等。
旅游地选择的层次结构模型
目标层 选择旅游地
景 准则层 色 用
费 住
居 食
饮 途旅层来自P1P2P3例:招聘干部模型
背景:假设某公司要招聘一名干部。应
聘者有三人:A、B、C。设该公司招聘 干部的标准有五个方面:品德、才能、 资历、年龄和群众关系。建立层次结构 模型 .
一致性检验: ①检查矩阵A是否 是一致矩阵
♦ 一般有两种方法,一种是逐个验证(1) 一般有两种方法,一种是逐个验证( )
中等式是否全部成立。 例如, 中等式是否全部成立 。 例如 , 上面举的 矩阵A, 矩阵 , a12·a23=2×4=8,但 a13=7,故 A不是 × 但 故 不是 一致矩阵。 一致矩阵。 ♦ 另一种方法是计算矩阵 的“最大特征 另一种方法是计算矩阵A的 如果矩阵A的最大特征值等于 的最大特征值等于n, 值”。如果矩阵 的最大特征值等于 , 那么它必是一致矩阵。 那么它必是一致矩阵。如果矩阵不具有 一致性, 一致性,可以证明它的最大特征值一定 大于n。 大于 。
②一致性检验
♦矩阵 的最大特征值比 大得越多, 矩阵A的最大特征值比 大得越多, 的最大特征值比n大得越多
不一致程度就越严重。 不一致程度就越严重。这时就要重 新审视两两比较矩阵, 新审视两两比较矩阵,加以适当修 直至达到满意的一致性为止。 改,直至达到满意的一致性为止。 ♦如果它的最大特征值与n相差不太 如果它的最大特征值与 相差不太 说明矩阵不一致程度不太严重, 大,说明矩阵不一致程度不太严重, 这时可以认为矩阵满足一致性要求。 这时可以认为矩阵满足一致性要求。
B4 = 1 / 3 1 1 1/ 4 1 1

层次分析法原理及计算过程详解

层次分析法原理及计算过程详解

层次分析法原理及计算过程详解写在前面:层次分析法是一个很早的决策算法了,它能够处理多目标多准则的决策问题,思维方式却很简单。

由于其系统性等优点,后续很多算法都有借鉴,所以这里写一写。

网上关于该方法的讲解很多也很详细,所以本篇都是在前辈的基础上进行整理加工。

文章尽量详细,然后加上一些我自己的理解,希望后面看到的人能够读起来更轻松,更容易接受。

注意:文中说的判断矩阵,又称成对比较阵目录:1.层次分析法概论1.2什么是决策1.3 决策分析法原理2.层次分析法的基本步骤2.1 层次分析法步骤2.2 建立层次结构模型2.3 构造判断矩阵2.4 计算单层权向量并做一致性检验2.5 计算组合权向量(层次总排序)并做一致性检验2.6 层次分析法基本步骤归纳3. 层次分析法的优缺点3.1 层次分析法的优点4.注意事项5.可应用的领域6. 完整例子分析6.1 旅游问题6.2 干部选择问题1.层次分析法概论1.1 什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代初期由美国匹兹堡大学运筹学家托马斯·塞蒂(T.L. Saaty)在为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”的课题时提出。

它是一种应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

是对社会、经济以及管理领域的问题进行系统分析时,面临的经常是一个由相互关联、相互制约的众多因素构成的复杂系统。

层次分析法则为研究这类复杂的系统,提供了一种新的、简洁的、实用的决策方法。

是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。

该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。

第八章层次析法

第八章层次析法

第八章层次分析法层次分析法(Analytic Hierarchy Process,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。

它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。

§ 1层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。

层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。

运用层次分析法建模,大体上可按下面四个步骤进行:(i)建立递阶层次结构模型;(ii)构造出各层次中的所有判断矩阵;(iii)层次单排序及一致性检验;(iv)层次总排序及一致性检验。

下面分别说明这四个步骤的实现过程。

1.1递阶层次结构的建立与特点应用AHP分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。

在这个模型下,复杂问题被分解为元素的组成部分。

这些元素又按其属性及关系形成若干层次。

上一层次的元素作为准则对下一层次有关元素起支配作用。

这些层次可以分为三类:(i)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。

(ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。

(iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。

递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。

每一层次中各元素所支配的元素一般不要超过9个。

这是因为支配的元素过多会给两两比较判断带来困难。

下面结合一个实例来说明递阶层次结构的建立。

例1假期旅游有R、F2、F3 3个旅游胜地供你选择,试确定一个最佳地点。

层次分析法

层次分析法

1.层次分析法层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

层次分析法是在20世纪70年代初,由美国著名的运筹学专家萨蒂教授提出的,萨蒂教授在进行"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题研究时,提出了一种层次权重分析的方法。

层次分析法简单来说,就是将需要解决的问题,归为一个系统。

并且将整个要解决的问题进行目标分解,从而形成多个层次指标通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

在进行层次分析法使用的过程中,需要根据问题按照总目标—子目标—评价准备的层次进行分解,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,最终权重最大的就是此问题的最优解决方案。

同时分析法的基本原理就是将问题进行系统化处理,汇总成一个总的目标,并且根据问题的不同以及因素的不同,再将问题进行分解,按照问题之间的关系形成一个彼此相连接的层次,在进行问题解决时逐层分析最终将问题分解到最低层,从而找出最优解。

层次分析法的应用比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。

因此层次分析法多被应用于社会、经济及管理领域的各种问题,因为这些领域的问题多是由许多相互关联,相互制约的因素所构成的在进行分析解决事很难有明确的判断,而通过层次分析法研究者可以将复杂的系统进行层次分解,使得问题更加的简洁从而帮助研究者找出解决问题的方法。

在安全科学和环境科学领域,层次分析法也被经常使用。

在安全生产科学方面,层次分析法常被应用于煤矿的安全研究、危化品评价、油库安全评价、城市灾害应急能力研究以及交通安全评价等。

在环境保护研究中的应用主要包括:水安全评价、水质指标和环境保护措施研究、生态环境质量评价指标体系研究以及水生野生动物保护区污染源确定等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

层次分析法(Analytic Hierarchy Process简称AHP)是将决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

该方法是美国运筹学家匹茨堡大学教授萨蒂于本世纪70 年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法,称为层次分析法。

层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。

这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。

层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。

其用法是构造判断矩阵,求出其最大特征值。

及其所对应的特征向量W,归一化后,即为某一层次
指标对于上一层次某相关指标的相对重要性权值。

层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从
而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

尤其适合于对决策结果难于直接准确计量的场合。

在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升学志愿的问题等等。

在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。

比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游地的景色、景点的居住条件和饮食状况以及交通状况等等。

这些因素是相互制约、相互影响的。

我们将这样的复杂系统称为一个决策系统。

这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。

层次分析法是解决这类问题的行之有效的方法。

层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因。

层次分析法的基本步骤建立层次结构模型
在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。

最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。

当准则过多时(譬如多于9 个)应进一步分解出子准则层。

构造成对比较阵
从层次结构模型的第2层开始,对于从属于(或影响)上一层每个
因素的同一层诸因素,用成对比较法和1—9 比较尺度构造成对比较阵,直到最下层。

计算权向量并做一致性检验
对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。

若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构追成对比较阵。

计算组合权向量并做组合一致性检验
计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。

美国运筹学家A.L.saaty 于20 世纪70 年代提出的层次分析法(AnalyticHi~hyProcess简称AHP方法),是对方案的多指标系统进行分析的一种层次化、结构化决策方法,它将决策者对复杂系统的决策思维过程模型化、数量化。

应用这种方法,决策者通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,就可以得出不同方案的权重,为最佳方案的选择提供依据。

运用AHP 方法,大体可分为以下三个步骤:
步骤1:分析系统中各因素间的关系,对同一层次各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵
步骤2:由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验;
步骤3:计算各层次对于系统的总排序权重,并进行排序。

最后,得到各方案对于总目标的总排序。

构造判断矩阵
层次分析法的一个重要特点就是用两两重要性程度之比的形式表示出两个方案的相应重要性程度等级。

如对某一准则,对其下的个方案进行两两对比,并按其重要性程度评定等级。

记为第和第因素的重要性之比,表3列出Saaty给出的9个重要性等级及其赋值。

按两两比较结果构成的矩阵称作判断矩阵。

判断矩阵具有如下性质:
,且/ ( =1,2, •即为正互反矩阵素的重要性来为分析、决策提
供定量的依据。

表3比例标度表
计算权重向量
为了从判断矩阵中提炼出有用信息,达到对事物的规律性的认识,为决策提供出科学依据,就需要计算判断矩阵的权重向量。

定义:判断矩阵,如对…,成立,则称满足一致性,并称为一致性矩阵。

一致性矩阵A具有下列简单性质:
1、存在唯一的非零特征值,其对应的特征向量归一化后记为,叫做权重向量,且;
2、的列向量之和经规范化后的向量,就是权重向量;
3、的任一列向量经规范化后的向量,就是权重向量;
4、对的全部列向量求每一分量的几何平均,再规范化后的向量,就是权重向量。

因此,对于构造出的判断矩阵,就可以求出最大特征值所对应的特征向量,然后归一化后作为权值。

根据上述定理中的性质2和性质4即得到判断矩阵满足一致性的条件下求取权值的方法,分别称为和法和根法。

而当判断矩阵不满足一致性时,用和法和根法计算权重向量则很不精确。

一致性检验
当判断矩阵的阶数时,通常难于构造出满足一致性的矩阵来。

但判断矩阵偏离一致性条件又应有一个度,为此,必须对判断矩阵是否可接受进行鉴别,这就是一致性检验的内涵。

定理:设是正互反矩阵的最大特征值则必有,其中等式当且仅当
为一致性矩阵时成立。

应用上面的定理,则可以根据是否成立来检验矩阵的一致性,如果比大得越多,则的非一致性程度就越严重。

因此,定义一致性指标(1)
CI越小,说明一致性越大。

考虑到一致性的偏离可能是由于随机原因造成的,因此在检验判断矩阵是否具有满意的一致性时,还需将C屿平均随机一致性指标RI进行比较,得出检验系数CR即
(2)
如果,则认为该判断矩阵通过一致性检验,否则就不具有满意一致性。

其中,随机一致性指标RI和判断矩阵的阶数有关,一般情况下,矩阵阶数越大,则出现一致性随机偏离的可能性也越大,其对应关系如表4:表4平均随机一致性指标RI标准值


3456789


RI0.51490.8931 1.1185 1.2494 1.3450 1.4200 1.4616可见,AHP方法不仅原理简单,而且具有扎实的理论基础,是定量
与定性方法相结合的优秀的决策方法,特别是定性因素起主导作用的
决策问题应用层次分析法的注意事项
如果所选的要素不合理,其含义混淆不清,或要素间的关系不正
确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。

为保证递阶层次结构的合理性,需把握以下原则:
1、分解简化问题时把握主要因素,不漏不多;
2、注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。

层次分析法应用实例
1、建立递阶层次结构;
2、构造两两比较判断矩阵;(正互反矩阵)对各指标之间进行两两对
比之后,然后按9 分位比率排定各评价
指标的相对优劣顺序,依次构造出评价指标的判断矩阵。

3、针对某一个标准,计算各备选元素的权重;关于判断矩阵权重计算
的方法有两种,即几何平均法(根法)和
规范列平均法(和法)。

(1)几何平均法(根法)
计算判断矩阵A各行各个元素mi的乘积;
计算mi 的n 次方根;
对向量进行归一化处理;
该向量即为所求权重向量。

2)规范列平均法(和法)
计算判断矩阵A各行各个元素mi的和;
将A 的各行元素的和进行归一化;该向量即为所求权重向量。

计算矩阵A的最大特征值?max
对于任意的i=1,2,…,忒中为向量AW的第i 个元素
(4)一致性检验构造好判断矩阵后,需要根据判断矩阵计算针对某一准则层各元素的相对权重,并进行一致性检验。

虽然在构造判断矩阵 A 时并不要求判断具有一致性,但判断偏离一致性过大也是不允许的。

因此需要对判断矩阵A进行一致性检验。

相关文档
最新文档