药品生产企业GMP 对工艺用水
GMP对制药工艺用水的要求

GMP对制药工艺用水的要求标准一、简介药品生产企业的工艺用水主要是指制剂生产中洗瓶、配料等工序以及原料药生产的精制、洗涤等工序所用的水。
水的名称应避免和水的制造过程有关,如去离子水、除盐水、蒸馏水这样的名称,即水的制造过程与其名称脱钩,而是从化学和微生物的角度根据质量指标对水进行分类(如中国药典规定纯化水可以用三种不同方法制得,将来可能还会有更好得方法)。
二、制取方法注射用水一般用纯化水通过蒸馏法(还有反渗透法和超滤法)制得,化学纯度高达99.999%,无热原。
因纯蒸汽的制备过程与用蒸馏水制备注射用水的过程相同,可使用同一台多效蒸馏水机或单独的纯蒸汽发生器,三、水质类别与要求饮用水:1、制备纯化水的水源;2、口服剂瓶子初洗;3、设备、容器的初洗;4、中药材、中药饮片的清洗、浸润和提取应符合生活饮用水卫生标准(GB5749-85);纯化水:1、制备注射用水(纯蒸汽)的水源;2、非无菌药品直接接触药品的设备、器具和包装材料最后一次洗涤用水;3、注射剂、无菌药品瓶子的初洗;4、非无菌药品的配料;5、非无菌药品原料精制应符合中国药典标准;注射用水:1、无菌产品直接接触药品的包装材料最后一次精洗用水;2、注射剂、无菌冲洗剂配料;3、无菌原料药精制;4、无菌原料药直接接触无菌原料的包装材料的最后洗涤用水应符合中国药典标准。
纯蒸汽:1、无菌药品物料、容器、设备、无菌衣或其他物品需进入无菌作业区的湿热无菌处理。
2、培养基的湿热灭菌纯蒸汽冷凝水应符合中国药典注射用水标准。
四、总结想要制取符合GMP的工艺用水那就少不了符合GMP标准的纯化水设备,也就是GMP纯化水设备,纯化水设备要GMP标准要从刚开始的设计、选材,到后来的制造、安装甚至是纯化水的运输都有着严格的要求,所以想要符合GMP要求的纯化水就要从纯化水设备抓起。
以上资料来自科瑞水处理,如需转载请标明出处!!。
GMP认证制药用水要求

GMP认证制药用水要求一:制药用水分类及水质标1、制药用水(工艺用水:药品生产工艺中使用的水,包括饮用水、纯化水、注射用水)分类1)饮用水(Potable-Water):通常为自来水公司供应的自来水或深井水,又称原水,其质量必须符合国家标准GB5749-85《生活饮用水卫生标准》。
按2000中国药典规定,饮用水不能直接用作制剂的制备或试验用水。
2)纯化水(Purified Water):为原水经蒸馏法、离子交换法、反渗透法或其他适宜的方法制得的制药用的水、不含任何附加剂。
纯化水可作为配制普通药物制剂的溶剂或试验用水,不得用于注射剂的配制采用离子交换法、反渗透法、超滤法等非热处理制备的纯化水一般又称去离子水。
采用特殊设计的蒸馏器用蒸馏法制备的纯化水一般又称蒸馏水。
3)注射用水(Water for n):是以纯化水作为原水,经特殊设计的蒸馏器蒸馏,冷凝冷却后经膜过滤制备而得的水。
打针用水可作为配制打针剂用的溶剂。
4)灭菌打针用水(XXX):为打针用水依照打针剂生产工艺制备所得的水。
灭菌打针用水用于灭菌粉末的溶剂或打针液的稀释剂。
2、制药用水的水质尺度1)饮用水:应符合中华人民共和国国家标准《生活饮用水卫生标准》(GB5749-85)2)纯化水:应符合《2000中国药典》所收载的纯化水标准。
在制水工艺中通常采用在线检测纯化水的电阻率值的大小,来反映水中各种离子的浓度。
制药行业的纯化水的电阻率通常应≥0.5MΩ.CM/25℃,对于打针剂、滴眼液冲洗用的纯化水的电阻率应≥1MΩ.CM/25℃。
3)注射用水:应符合2000中国药典所收载的注射用水标准。
二:GMP对制药用水制备装置的要求1、结构设计应简单、可靠、拆装简便。
2、为便于拆装、更换、清洗零件,执行机构的设计尽量采用的尺度化、通用化、系统化零部件。
3、装备内外壁表面,要求光滑平整、无死角,容易清洗、灭菌。
零件表面应做镀铬等表面处置惩罚,以耐腐蚀,避免生锈。
2010版药品GMP指南水系统

水系统1、概述水在制药工业中是应用最广泛的工艺原料,用做药品的成份、溶剂、稀释剂等。
制药用水作为制药原料,各国药典定义了不同质量标准和使用用途的工艺用水,并要求定期检测。
水极易滋生微生物并助其生长,微生物指标是其最重要的质量指标,在水系统设计,安装,验证,运行和维护中需采取各种措施抑制其生长。
水是良好的溶剂、尤其是与自然界失去平衡的纯化水和注射用水,具有极强的溶解能力和极少的杂质,广泛用于制药设备和系统的清洗。
鉴于水在制药工业中的既作为原料又作为清洗剂,各国药典对制药用水的质量标准,用途都有明确的定义和要求;各个国家和组织的GMP将制药用水的生产和储存分配系统视为制药生产的关键系统,对其设计,安装,验证,运行和维护等提出明确要求。
在指南第二章将具体介绍我国和其他国家药典和GMP对制药用水的要求。
我国幅员辽阔,各地水质不同,季节的变化也会导致水质的巨大变化,我国制药企业使用的最初原料水未必常年符合饮用水的标准要求,需将其依次处理成饮用水,纯化水,注射用水等制药用水,适合不同的工艺需求。
在指南第三章中将介绍制药用水处理的各种技术,工艺和设备。
制药生产中其它原料、辅料、包装材料是按批检验和释放的,而作为原料的制药用水(饮用水,纯化水或注射用水)通常是通过管道连续流出的,随时取用的,其微生物属性等质量指标通常无法连续地实时检测到。
通常是先使用到产品中,若干天后才能知道其微生物指标是否合格,为保证制药用水系统生产出的水在任何时候是好的,即水系统生产质量的稳定性和一致性是各国药品监管部门和制药企业共同关注的重大问题。
各国GMP对水系统的设计和验证有严格要求,第四章将介绍水系统的设计和验证。
在水系统的设计、验证和运行过程中,制药企业、药监部门都遇到各种各样的疑问、问题和争议,我们参照国际组织尤其是ISPE(国际制药工程协会)的指南和工程实践,在第五章对常见问题进行了讨论。
第六章介绍一些关于水的化学和微生物知识以及水系统的钝化技术。
2010版药品GMP指南水系统

水系统1、概述水在制药工业中是应用最广泛的工艺原料,用做药品的成份、溶剂、稀释剂等。
制药用水作为制药原料,各国药典定义了不同质量标准和使用用途的工艺用水,并要求定期检测。
水极易滋生微生物并助其生长,微生物指标是其最重要的质量指标,在水系统设计,安装,验证,运行和维护中需采取各种措施抑制其生长。
水是良好的溶剂、尤其是与自然界失去平衡的纯化水和注射用水,具有极强的溶解能力和极少的杂质,广泛用于制药设备和系统的清洗。
鉴于水在制药工业中的既作为原料又作为清洗剂,各国药典对制药用水的质量标准,用途都有明确的定义和要求;各个国家和组织的GMP将制药用水的生产和储存分配系统视为制药生产的关键系统,对其设计,安装,验证,运行和维护等提出明确要求。
在指南第二章将具体介绍我国和其他国家药典和GMP对制药用水的要求。
我国幅员辽阔,各地水质不同,季节的变化也会导致水质的巨大变化,我国制药企业使用的最初原料水未必常年符合饮用水的标准要求,需将其依次处理成饮用水,纯化水,注射用水等制药用水,适合不同的工艺需求。
在指南第三章中将介绍制药用水处理的各种技术,工艺和设备。
制药生产中其它原料、辅料、包装材料是按批检验和释放的,而作为原料的制药用水(饮用水,纯化水或注射用水)通常是通过管道连续流出的,随时取用的,其微生物属性等质量指标通常无法连续地实时检测到。
通常是先使用到产品中,若干天后才能知道其微生物指标是否合格,为保证制药用水系统生产出的水在任何时候是好的,即水系统生产质量的稳定性和一致性是各国药品监管部门和制药企业共同关注的重大问题。
各国GMP对水系统的设计和验证有严格要求,第四章将介绍水系统的设计和验证。
在水系统的设计、验证和运行过程中,制药企业、药监部门都遇到各种各样的疑问、问题和争议,我们参照国际组织尤其是ISPE(国际制药工程协会)的指南和工程实践,在第五章对常见问题进行了讨论。
第六章介绍一些关于水的化学和微生物知识以及水系统的钝化技术。
制药企业生产用水管理规程(GMP)

目的:本程序依据《药品生产质量管理规范》(2010修订版)规定了生产用水的管理。
范围:本程序适用于各生产工序。
职责:质量管理部、生产部
内容:
1使用范围
1.1饮用水:一般生产区工艺用水及清洁、消毒液配制用水。
1.2纯化水:洁净区工艺用水及清洁用水。
2饮用水管理
2.1饮用水每一年由卫生防疫部门检测一次,有合格检测报告。
2.2二次给水设施(包括高低位水箱,水泵、管道),有专人管理,水池、水箱必须加盖。
2.3纯化水管理:
2.3.1制备的纯化水各项检验指标合格方可使用。
2.3.2化验室每周取样全检,并出具检测报告。
2.3.3制水系统水箱及管道每三个月清洗一次。
2.4贮罐和管路的清洁及消毒:
2.4.1清洁
a)清洁频次:每三个月一次。
b)清洁方法:
○1用饮用水冲洗管路及贮罐(必要时水加热)。
○2用纯水冲洗至中性。
2.4.2 消毒
a)消毒频次:供水时。
b)消毒方法:用紫外灯、臭氧消毒。
最新的GMP工艺用水检查指南

最新的GMP工艺用水检查指南最新的GMP(Good Manufacturing Practice)工艺用水检查指南是一项对工艺水的质量和安全性进行评估的指南。
工艺用水是在制药、食品和化妆品等工业领域中广泛使用的水源,其质量和纯度对产品的质量和安全性至关重要。
以下是一份关于最新的GMP工艺用水检查指南的详细介绍,内容超过1200字。
第一部分:导言导言介绍了GMP工艺用水检查指南的目的和适用范围。
它强调了工艺用水对产品质量和安全性的重要性,并提供了整个检查指南的结构和内容概述。
第二部分:术语和定义这一部分提供了与工艺用水相关的术语和定义的解释。
这有助于确保在整个指南中使用相同的术语和理解,以提高指南的一致性和可读性。
第三部分:工艺用水质量标准这一部分详细介绍了工艺用水的质量标准。
它列出了各种可能的污染物和限制值,如微生物、重金属、悬浮物、有机物等,并提供了相应的监测方法。
此外,还介绍了工艺用水处理的常见方法和技术,以确保水源符合质量标准。
第四部分:工艺用水系统设计与维护这一部分讨论了工艺用水系统的设计和维护要求。
它包括了净水设备的选取和设计准则,如反渗透、离子交换、臭氧消毒等。
还强调了定期维护和监督,以确保工艺用水系统的长期可靠性和性能。
第五部分:工艺用水系统验证这一部分介绍了工艺用水系统验证的原理和方法。
它详细描述了验证的步骤和程序,如验证计划、验证方案的编制、实施验证和验证报告的编写等。
此外,还讨论了验证结果的分析和解释,以及针对验证中的问题的纠正和预防措施。
第六部分:工艺用水监测这一部分讨论了工艺用水系统的监测要求和方法。
它介绍了定期监测的重要性,并提供了具体的监测频率和项目,如微生物监测、化学物质测定等。
此外,还讨论了监测结果的分析和报告,以及根据监测结果采取的纠正措施和预防措施。
第七部分:变更管理和持续改进这一部分强调了工艺用水系统变更管理和持续改进的重要性。
它介绍了变更管理的步骤和程序,如变更评估、变更控制、记录和报告等。
GMP认证制药用水标准要求

GMP认证制药用水标准要求在世界许多发达国家如美国,注射用水(Water for Injection, WFI)必须由蒸馏工艺制备这一局限早已被突破,技术更先进、更节能、品质更稳定可靠的高纯水(Highly Purified Water, HPW)及其制备工艺早在1975年已经得到正式确认(美国药典第19版:USP19);现在,美国药典已经在其连续7个版本中明确确认了以反渗透(RO)为基础的HPW 工艺可以作为制取注射用水的法定工艺,并且历经数十年的医药实践,HPW注射用水生产技术已被证明是最先进、可靠的方法之一,以至于在美国的药物专利25条中,反渗透方法是最常用的注射用水生产工艺,由于HPW符合甚至超过WFI的各项理化参数指标,自2002年6月起正式被欧洲认可为第三水质级别。
今天,以RO为基础的HPW已经为代表医药先进技术的世界主要发达国家所确认,成为医用纯化水的标准制备方法之一。
在与国际接轨过程中我国药典亦对医药用水的法定制备方法进行了重新定义。
中国药典(2000年版)中所收载的制药用水,因其使用的范围不同而分为纯化水、注射用水及灭菌注射用水,首次将过去的蒸馏水改为纯化水,并且对纯化水具体定义为“纯化水为采用蒸馏法、离子交换法、反渗透法或其它适宜的方法制得供药用的水”,实际上放弃了对生产工艺“必须为蒸馏法”的限定,为相关企业采用国际上广为流行的反渗透HPW方法制备纯化水奠定了法律基础。
更为重要的是,新的国家药典将注射用水定义为“纯化水经蒸馏所得的水”,从而使RO技术进入注射用水制备过程成为可能。
2000年版国家药典在制约用水技术上朝国际先进领域迈进了一大步。
与传统的蒸馏法相比较,以反渗透法为基础的联合了最新电去离子(EDI)技术的新工艺具有明显的优越性和先进性。
1.高效节能。
蒸馏法系历史最为悠久的医药用水制备工艺,主要有多级蒸馏、高压分级蒸馏和离心净化蒸馏几种工艺。
所有蒸馏方法均在120℃高温状态下进行,所以可以得到完全无菌的水。
GMP工艺用水的管理

目的:规范饮用水、纯化水、注射用水的管理。
范围:适用于饮用水及纯化水、注射用水制备与使用全过程。
责任:质量保证部、公用工程部、生产技术部负责实施。
内容:1.定义:工艺用水是指药品生产中使用的水,包括饮用水、纯化水和注射用水,其输水管道均直接通往相应岗位的贮水罐或用水点。
根据工艺要求企业制订有饮用水、纯化水、注射用水的用水标准,并按规定配备和使用。
2.工艺用水要求3. 饮用水3.1饮用水的制备由市政供水部门统一处理供应。
3.2一般饮用水每月检查部分项目一次,每年送卫生防疫部门作一次全检。
3.3如果出现水质不符合标准情况,应有再处理记录及处理后水质检测记录和报告。
取样部位为随机抽取。
3.纯化水4.1纯化水以饮用水为水源,经一级反渗透加混床处理制得。
纯化水每2小时在制水工序抽样检查部分理化项目,制水点及用水点每周全检一次,用水点可轮流取样,但需保证每个用水点每月不少于一次。
4.2取样部位应随机抽取贮水罐、总送水口、总回水口、各使用点进行测试。
对出现水质不符合标准情况应有处理记录及处理后水质检测记录。
4.3 纯化水贮水罐、输水管道、管件阀门为304不锈钢制造,贮水罐密闭,排气口有无菌过滤装置,管线能防止滞留,管件用快速接头,易于拆洗、消毒。
5注射用水5.1注射用水是以纯化水为水源经蒸馏制得。
5.2注射用水的制备间应有有效的排水,排气设施。
5.3注射用水系统应每周用纯蒸汽进行一次灭菌,在制备过程中应随时对水质进行监测。
5.4对pH值、氯化物、电导率、水温等项目至少每二小时检测一次,有监测记录。
5.5注射用水至少每周作一次全检,结果应符合规定。
有检验记录和报告。
5.6取样部位应随机取蒸馏水机出口、贮罐出口、总送水口、总回水口、使用点各位置进行测试。
对水质不符合标准的情况应有再处理的记录及检测报告。
6.纯化水、注射用水的其它要求6.1纯化水在室温下用不锈钢罐密闭贮存,注射用水用316L优质低碳不锈钢储罐密闭贮存,并在80℃以上保温或65℃以上保温循环,贮水罐的通气口均应安装不脱落纤维的疏水性除菌滤器。
中国药典制药用水要求详解

中国药典制药用水要求详解中国药典中对GMP制药用水的要求非常严格,主要包括以下方面的要求:源水质量、处理系统、水质监控和操作规范等。
下面将对这些要求进行详解。
首先,源水质量的要求。
制药用水的源水必须符合国家相关标准的要求,例如GB3838《地表水环境质量标准》和GB5749《生活饮用水卫生标准》等。
源水的硬度、总溶解固体、细菌等指标必须控制在一定范围内,以保证经过处理后的水质符合GMP规定的标准。
其次,处理系统的要求。
制药用水的处理系统应该使用适当的工艺和设备,确保水质符合GMP标准。
处理设备必须符合相关国家标准,并定期进行维护和保养,以保证其正常运行和稳定性。
处理系统应该包括预处理、反渗透(RO)或电离(DI)等水质处理工艺,以去除源水中的悬浮物、杂质和离子等。
同时,处理系统还应设有适当的消毒装置,以保证制药用水在输送过程中不会被污染。
第三,水质监控的要求。
制药用水的质量必须经过严格的监控和检测。
监控方案应包括源水和处理水的定期监测,以及系统设备运行参数的实时监控。
监控指标包括水质指标(如溶解氧、电导率、总溶解固体、细菌总数等)、温度、流量等。
同时,制药用水应进行定期的微生物监测,确保不会存在细菌、霉菌和其他微生物的污染。
最后,操作规范的要求。
制药用水的生产和使用过程应该符合相关的操作规范,包括工艺和设备的操作规范、生产记录的填写要求、设施和设备的清洁消毒规范等。
制药用水的输送和储存设施应有专门的管理和维护人员,负责设施、设备的日常维护和保养,以及水质监控和检查等工作。
总之,中国药典对GMP制药用水的要求非常严格,主要包括源水质量、处理系统、水质监控和操作规范等方面。
这些要求旨在确保制药用水的质量稳定和安全,保证药品的质量符合相关标准。
制药企业在生产和使用制药用水时,需严格按照中国药典的要求进行操作和管理,以保证药品质量和安全性。
制药工艺用水

无菌原料药:精制工艺用水(附录四、15) 直接接触无菌原料药包装材料的最后洗涤用水(附录四、
15) 无菌制剂(注射剂、洗剂)的配料 直接接触无菌制剂的包装材料的最后精洗用水(附录二、
6)
注射用水
配制注射剂的溶剂或稀释剂 注射用容器的精洗 也可作为滴眼剂配置的溶剂
23.02.2021
纯化水:
配置普通药物制剂的容器或试验用水
可作为中药注射剂、滴眼剂等灭菌制剂所用药材的提供溶 剂
口服、外用制剂配制用溶剂或稀释剂 非灭菌制剂用器具的精洗用水 也用作非灭菌制剂所用药材的提取溶剂 纯化水不得用于注射剂和配制与稀释
23.02.2021
12
2、各种工艺用水的用途(98版 GMP/ 2005药典) (3)
13
2.制药工艺用水的用途
工艺用水
实验室
分析
研究/中试
非GMP要求
GMP要求
23.02.2021
药品生产
清洁
无菌生产
非无菌生 产
中药
终洗
注射用水 绿化水 饮用水
初洗
14
3、GMP对工艺用水系统的要 求(1)
纯化水、注射用水的制备、储存和分配应能防止微 生物的滋生和污染;
储罐和输送管道所用材料应无毒、耐腐蚀;
23.02.2021
7
1.2 纯化水和注射用水2005年版
新增微生物限度 纯化水:细菌、霉菌和酵母菌总数每毫 升不得超过100个。 注射用水: 细菌、霉菌和酵母菌总数每 100毫升不得超过10个。
23.02.2021
8
1.3 中国药典2005版、欧洲药典、美国药典28版 关于纯化水 的标准
中国2005版
药材净制时的漂洗,制药用具的粗洗用水。也可 作为药材的提取溶剂
2023版gmp指南纯化水解读

2023版GMP指南纯化水解读在医药制造过程中,保障制药产品的质量和安全是至关重要的。
而在这个过程中,纯化水作为制药工艺中不可或缺的一部分,其质量和纯度直接关系到最终产品的质量。
对于纯化水的要求在GMP指南中有着非常详细的规定。
本篇文章将从深度和广度两个方面来解读2023版GMP指南中对纯化水的要求,帮助读者更深入地理解这一重要内容。
一、深度解读1. 纯化水的定义和分类在2023版GMP指南中,纯化水是指去离子水或经纯化处理后的水,用于制药生产过程中的各种用途。
根据纯净度和适用范围的不同,纯化水可以分为不同等级,包括注射用水、工艺用水等。
这些不同等级的纯化水在药品生产中有着不同的应用要求,需要严格遵守相关规定。
2. 纯化水的生产和储存GMP指南中对纯化水的生产和储存也有着详细的规定。
从水源的选择、制备过程的控制到储存条件的要求,都需要严格执行相关标准。
纯化水的管道输送、消毒和监测等方面也有着具体的要求,以确保纯化水的质量及时可靠。
3. 纯化水系统的验证和监控在实际的药品生产过程中,纯化水系统的验证和监控是至关重要的环节。
GMP指南中对于纯化水系统的设计、验证和持续监控都有着具体要求,包括系统的安全性、稳定性、可靠性等方面。
这些要求旨在确保纯化水系统能够持续地满足药品生产的需要,保障最终产品的质量和安全。
二、广度解读通过深度解读,我们对2023版GMP指南中关于纯化水的要求有了更深入的了解。
而在广度上,我们还可以从其他方面对这一主题进行探讨,例如国际GMP对纯化水的统一要求、纯化水在药品生产中的重要性、纯化水在不同药品生产过程中的应用等。
总结和回顾2023版GMP指南中对纯化水的要求作为保障药品质量和安全的重要环节,涵盖了纯化水的定义、分类、生产和储存、系统验证和监控等方面。
通过对这些要求的深度和广度解读,我们对纯化水在药品生产中的重要作用有了更全面、深刻的理解。
个人认为在实际的药品生产过程中,应严格遵守GMP指南对纯化水的要求,以确保最终产品的质量和安全。
GMP对制药用水的要求(GMP课件)

非无菌药品生产
最终灭菌无菌药品
一、纯化水制备系统
(一)纯化水应用范围 非无菌药品:配料、设备清洗、原料药精制工艺用水、饮片提取溶剂 灭菌药品:设备包材粗洗、中药注射剂提取溶剂 注射用水水源 (二)纯化水制备系统 1、多介质过滤器 2、活性炭过滤器 3、软化器:离子交换树脂 4、膜技术:微滤、超滤、纳米技术和反渗透
对比项目 来源 性状 pH 氨 硝酸盐 亚硝酸盐 重金属 易氧化物 细菌内毒素 三菌总数 应用范围
知识链接
纯化水、注射用水质量检测标准
纯化水
注射用水
蒸馏、离子交换、反渗透等方法制得
纯化水经蒸馏所得
无色澄明液体,无臭,无味
无色澄明液体,无臭,无味
符合规定
5.0~7.0
≤3.00×10-6g/100ml
CONTENT
第
三
GMP对制药用水的要求
节
制药用水
GMP(2010版)第九十六条规定量标准及相关要求。制药用水至少应当采用饮用水。
饮用水:为天然水经净化处理所得的水,符合《生活饮用水卫生标准》。 纯化水:为饮用水经蒸馏法、离子交换法、反渗透法或其他适宜的方法制得的制药用 水,符合纯化水项下的规定。 注射用水:为纯化水经蒸馏所得的水。符合注射用水项下的规定。 灭菌注射用水:本品为注射用水参照注射剂生产工艺制备所得。
一、纯化水制备系统
(一)纯化水应用范围 非无菌药品:配料、设备清洗、原料药精制工艺用水、饮片提取溶剂 灭菌药品:设备包材粗洗、中药注射剂提取溶剂 注射用水水源 (二)纯化水制备系统 1、多介质过滤器 2、活性炭过滤器 3、软化器:离子交换树脂 4、膜技术:微滤、超滤、纳米技 术和反渗透
二级反渗透纯化水制备工艺流程图
工艺用水系统《GMP》认证方案

工艺用水系统《GMP》认证方案范围:工艺用水系统职责:生产部、质量部对本规程的实施负责正文:1.验证对象及范围——该验证方案是针对大输液车间工艺用水系统的验证而制定的,包含纯化水、注射用水系统的读者设计预确认,安装确认(IQ),运行确认(QQ),性能确认(PQ)。
2.验证目的——水系统验证的目的,就是要检查并确认水处理设备及管路的安装是否符合设计要求,其资料与文件是否符合《GMP》的管理要求,该水处理系统是否能够稳固可靠地生产出规定数量与质量的合格工艺用水。
3.水系统总体设计的预确认3.1有质量部门认可的水系统工艺流程图,标明所有的仪器仪表、操纵与运行所需的阀门,系统灭菌消毒工艺流程。
纯化水系统工艺流程图(见附件1)注射用水系统工艺流程图(见附件2)检查人日期3.2系统描述本系统是大输液车间工艺用水的制备、储存与分配系统,它所提供的合格纯化水、注射用水,用于洁净区容器具、洁具、设备的清洗与配制药液等。
纯化水要紧以饮用水为源水,通过预处理→二级反渗透装置制得,预处理由计量加PAC混凝→多介质过滤器→活性炭吸附器→3μ精滤器构成,多介质过滤器可除去机械杂质,活性炭吸附器可吸附水中大量的有机、无机物(特别余氯几乎100%吸附),3μ精滤器要紧截留活性炭粉沫,保护反渗透膜。
二级反渗透装置由高压泵、反渗透膜壳与中间水箱构成,第一级反渗透的成品水做为第二级反渗透的进料水,第二级反渗透的器→超滤器经处理后成无“热源”纯化水,被送入循环线至用水点。
纯化水系统的产水量为10m3/h。
在本系统中注射用水循环泵后配置了0.2u的微滤器,通过滤的注射用水进入循环线及使用点。
消毒灭菌系统配置了高纯度的纯蒸汽(即过热蒸汽)发生器,产汽量不小于200kg/h,用过热蒸汽消毒效果较干饱与纯蒸汽好,可用于循环线、贮罐、使用点消毒灭菌。
纯化水贮罐、多效蒸馏水机、注射用水贮罐、循环管线均使用316L不锈钢材料。
3.3系统中设备的全面规格详见“水系统设备一览表”(附件3)检查人日期4.纯化水系统验证4.1纯化水系系统仪器仪表的校验纯化水系统各设备、管路上所安装的仪器仪表均已校验,并贴上合格标志。
GMP工艺用水使用管理规程

文件制修订记录1.0目的建立工艺用水使用的管理规程,根据车间工艺用水要求,合理安排生产用水。
2.0范围生产过程各岗位工艺用水。
3.0责任技术开发部、质量管理部监控员、车间主任、车间技术员、操作工4.0内容4.1制药工艺用水包括饮用水、纯化水。
天然水不得作为制药工艺用水。
4.2饮用水:为天然水经净化处理所得的水,其质量符合国家标准GB5749-85《生活饮用水卫生标准》。
饮用水使用范围为:4.2.1制药器具的粗洗用水;4.2.2中药材前处理用水;4.2.3净药材水提用水;4.2.4房间清洁卫生;设备、容器初洗用水;4.2.5制备纯化水水源;4.2.6工作衣洗涤。
4.3纯化水:为饮用水经蒸馏法、离子交换法、反渗透法或其它适宜方法制备的制药用水。
其质量符合中国药典2000年版二部纯化水项下的规定,纯化水不得含任何附加剂。
纯化水的使用范围为:4.3.1非无菌药品配料工艺用水及直接接触药品的设备、器具和包装材料最后一次洗涤用水;设备及容器具精洗;4.3.2口服液的配液;4.3.3生产过程各工序用水,必须根据水质标准及用途项下规定,有检测中心的检验合格报告书方可使用,并将报告书贴于制水岗位生产记录的后面备查。
4.3.3.1按“纯化水监测标准操作规程”,检测中心每周对纯化水按药典项下进行全检,并有检验报告书。
4.3.3.2纯化水岗位每2小时监测一次电导率,并有记录。
4.3.3.3制水岗位的监测记录及检验报告书,月底交车间技术员统一保存。
5.0记录纯化水生产运行记录纯化水管路(储罐)清洗、消毒记录纯化水站设备再生记录纯化水生产监测记录制水系统储罐清洁记录反渗透膜停运保护记录。
制药用医药用水设备制水标准

制药用医药用水设备制水标准一:制药用水分类及水质标1、制药用水(工艺用水:药品生产工艺中使用的水,包括饮用水、纯化水、注射用水)分类1)饮用水(Potable-Water):通常为自来水公司供应的自来水或深井水,又称原水,其质量必须符合国家标准GB5749-85《生活饮用水卫生标准》。
按2000中国药典规定,饮用水不能直截了当用作制剂的制备或试验用水。
2)纯化水(Purified Water):为原水经蒸馏法、离子交换法、反渗透法或其他适宜的方法制得的制药用的水、不含任何附加剂。
纯化水可作为配制一般药物制剂的溶剂或试验用水,不得用于注射剂的配制。
采纳离子交换法、反渗透法、超滤法等非热水处理设备的纯化水一样又称去离子水。
采纳专门设计的蒸馏器用蒸馏法制备的纯化水一样又称蒸馏水。
3)注射用水(Water for Injection):是以纯化水作为原水,经专门设计的蒸馏器蒸馏冷凝冷却后经膜过滤制备而得的水。
注射用水可作为配制注射剂用的溶剂。
4)灭菌注射用水(Sterile Water for Injection):为注射用水依照注射剂生产工艺制备所得的水。
灭菌注射用水用于灭菌粉末的溶剂或注射液的稀释剂。
2、制药用水的水质标准1)饮用水:应符合中华人民共和国国家标准《生活饮用水卫生标准》(GB5749-85)2)纯化水:应符合《2000中国药典》所收载的纯化水标准。
在制水工艺中通常采纳在线检测纯化水的电阻率值的大小,来反映水中各种离子的浓度。
制药行业的纯化水的电阻率通常应≥0.5MΩ.CM/25℃,关于注射剂、滴眼液容器冲洗用的纯化水的电阻率应≥1MΩ.CM/25℃。
3)注射用水:应符合2000中国药典所收载的注射用水标准。
二:GMP对制药用水制备装置的要求1、结构设计应简单、可靠、拆装简便。
2、为便于拆装、更换、清洗零件,执行机构的设计尽量采纳的标准化、通用化、系统化零部件。
3、设备内外壁表面,要求光滑平坦、无死角,容易清洗、灭菌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∙药品生产企业GMP 对工艺用水—注射用水水质标准药品生产企业的工艺用水主要是指制剂生产中洗瓶、配料等工序以及原料药生产的精制、洗涤等工序所用的水。
水的名称应避免和水的制造过程有关,如去离子水、除盐水、蒸馏水这样的名称,即水的制造过程与其名称脱钩,而是从化学和微生物的角度根据质量指标对水进行分类(如中国药典规定纯化水可以用三种不同方法制得,将来可能还会有更好得方法)。
注射用水一般用纯化水通过蒸馏法(还有反渗透法和超滤法)制得,化学纯度高达99.999% ,无热原。
因纯蒸汽的制备过程与用蒸馏水制备注射用水的过程相同,可使用同一台多效蒸馏水机或单独的纯蒸汽发生器,故将纯蒸汽放在注射用水一起讨论。
注射用水水质标准见表①欧洲药典中总有机碳(TOC )和易氧化物项目,可任选一项监控。
②美国药典中规定:a. 企业自用的纯化水监测TOC 和颠倒率,商业用的纯化水应符合无菌纯水的试验要求。
表中所列为企业自用纯化水的监测项目。
b. 纯化水不得用于制备肠外制剂。
③微生物超标纠正标准是指微生物污染达到某一数值,表明纯化水系统已经偏离了正常运行的条件,应采取纠偏措施,使系统回到正常的运行状态。
电导率概念及其测定原理∙电导率是物体传导电流的能力。
电导率测量仪的测量原理是将两块平行的极板,放到被测溶液中,在极板的两端加上一定的电势(通常为正弦波电压),然后测量极板间流过的电流。
根据欧姆定律,电导率(G)--电阻(R)的倒数,由导体本身决定的。
电导率的基本单位是西门子(S),原来被称为欧姆。
因为电导池的几何形状影响电导率值,标准的测量中用单位电导率S/cm来表示,以补偿各种电极尺寸造成的差别。
单位电导率(C)简单的说是所测电导率(G)与电导池常数(L/A)的乘积.这里的L为两块极板之间的液柱长度,A为极板的面积。
水溶液的电导率直接和溶解固体量浓度成正比,而且固体量浓度越高,电导率越大。
电导率和溶解固体量浓度的关系近似表示为:1.4μS/cm=1ppm或2μS/cm=1ppm(每百万单位CaCO3)。
利用电导率仪或总固体溶解量计可以间接得到水的总硬度值,如前述,为了近似换算方便,1μs/cm电导率= 0.5ppm硬度。
电导率是物质传送电流的能力,与电阻值相对,单位Siemens/cm (S/cm),该单位的10-6以μS/cm表示,10-3时以mS/cm表示。
但是需要注意:(1)以电导率间接测算水的硬度,其理论误差约20-30ppm(2)溶液的电导率大小决定分子的运动,温度影响分子的运动,为了比较测量结果,测试温度一般定为20℃或25℃(3)采用试剂检测可以获取比较准确的水的硬度值。
水的电导率与其所含无机酸、碱、盐的量有一定关系。
当它们的浓度较低时,电导率随浓度的增大而增加,因此,该指标常用于推测水中离子的总浓度或含盐量。
不同类型的水有不同的电导率。
新鲜蒸馏水的电导率为0.2-2μS/cm,但放置一段时间后,因吸收了CO2,增加到2—4μS/cm;超纯水的电导率小于0.10/μS/cm;天然水的电导率多在50—500μS/cm之间,矿化水可达500—1000μS/cm;含酸、碱、盐的工业废水电导率往往超过10 000μS/cm;海水的电导率约为30 000μS/cm。
电极常数常选用已知电导率的标准氯化钾溶液测定。
不同浓度氯化钾溶液的电导率(25℃)列于下表。
溶液的电导率与其温度、电极上的极化现象、电极分布电容等因素有关,仪器上一般都采用了补偿或消除措施。
水样采集后应尽快测定,如含有粗大悬浮物质、油和脂,干扰测定,应过滤或萃取除去。
什么叫做石英砂,石英砂的用途一、二氧化硅含量在98.5%以上的称石英石,二氧化硅含量在98.5%以下的称硅石。
二、石英石经破碎后称石英砂,石英砂分精制、半精制、普通。
三、特性:石英硬度为7,比重2.65,颜色呈乳白色、淡黄、褐色及灰色,石英有较高的耐火性能,熔点为1730摄氏度。
</p>四、用途:制造玻璃,耐火材料,冶炼硅铁,冶金熔剂,陶瓷,研磨材料,铸造,在建筑中利用石英很强的抗酸性介质浸蚀能力,用来制取耐酸混凝土及耐酸砂浆。
五、二氧化硅作为硅原料的核心原料在硅原料的生产与供应中起者不可替代的重要基础作用。
它所具有的独特的物理、化学特性,使得其在航空、航天、电子、机械以及当今飞速发展的IT产业中占有举足轻重的地位,特别是其内在分子链结构、晶体形状和晶格变化规律,使其具有的耐高温、热膨胀系数小、高度绝缘、耐腐蚀、压电效应、谐振效应以及其独特的光学特性,使得其在许多高科技产品中发挥着越来越重要的作用,如,IT行业的核心技术产品--计算机芯片,光导纤维,电子产业的谐振器,新型电光源,高绝缘的封接材料,航空航天仪器,军工技术产品,特种光学玻璃,化学分析仪器等等,都离不开这些基础原料。
树脂进行离子交换反应的性能和再生问题一、交换能力氢型阳离子交换树脂在水中可解离出氢离子(H+),当遇到金属离子或其它阳离子,就发生互相交换作用,但交换后的树脂,就不再是氢型树脂了。
例如,当水中的阳离子如钙离子、镁离子的浓度相当大时,磺酸型的阳离子交换树脂中的氢离子,可和钙、镁离子进行交换,而形成「钙型」或「镁型」的阳离子交换树脂,如下式:2R-SO3H +Ca2+ → (R-SO3)2Ca +2H+ (钙型强酸性阳离子交换树脂)2R-SO3H +Mg2+ → (R-SO3)2Mg +2H+(镁型强酸性阳离子交换树脂)氢型阳离子交换树脂的交换能力与被交换的阳离子的价数有密切关系。
在常温下,低浓度水溶液中,交换能力随离子价数增加而增加,即价数越高的阳离子被交换的倾向越大。
此外,若价数相同,离子半径越大的阳离子被交换的倾向也越大。
如果以自来水中经常出现阳离子列为参考对象,则氢型阳离子交换树脂的交换能力顺序可表示如下:强酸性:Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+>K+>NH4+>Na+>H+ 弱酸性:H+>Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+>K+>NH4+>Na+ 由上述交换能力顺序可知:强酸性与弱酸性阳离子交换树脂的母体,对阳离子交换能力顺序完全相同,唯一的差异是:两者对H+的交换能力不同,强酸性对氢离子的亲和力最弱,弱酸性对氢离子的亲和力最强,这个特性可能会深深影响它们在水草缸的作用与功能。
虽然氢型弱酸性阳离子交换树脂对氢离子的亲合力最强,但氢离子(H+)与氢氧离子(OH-)结合成水(H2O)的亲合力更强,所以在碱性水质中,弱酸性阳离子交换树脂中的H+会快速被OH-所消耗,OH-主要来自KH 硬度(HCO3-)的水解反应:HCO3- +H2O ←→ H2CO3+OH- H+所遗留之「活性位置」再改由其它阳离子如Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+……等依序取代,一直持续到HCO3-完全被消除为止(KH=0)。
因此弱酸性阳离子交换树脂的主要作用区间是在于pH=5 ~ 14的水质。
由于HCO3-为暂时硬度的阴离子,因此当HCO3-完全被消除后,它的「当量阳离子」,如如钙、镁等离子也同时完全被取代,故能消除所有暂时硬度的「当量阳离子」。
氢型强酸性阳离子交换树脂对氢离子(H+)的亲合力最弱,使它在任何pH之下,它都具有交换能力,因此可以完全除去GH硬度(暂时硬度及永久硬度)。
二、交换容量离子交换树脂进行离子的交换反应的性能,主要由「交换容量」表现出来。
所谓交换容量是指每克干树脂所能交换离子的毫克当量数,以m mol/g为单位。
当离子为一价时(如K+),其毫克当量数即为其毫克分子数,对于二价(如Ca2+)或更多价离子(如Fe3+),其毫克当量数即为其毫克分子数乘以其离子价数。
交换容量又分为「总交换容量」、「操作交换容量」和「再生容量」等三种表示方法。
「总交换容量」表示每克干树脂所能进行离子交换反应的化学基总量,属于理论性计量。
「操作交换容量」表示每克干树脂在某一定条件下的离子交换能力,属于操作性计量,它与树脂种类、总交换容量,以及具体操作条件(如接触时间、温度)等因素有关,可用于显示操作效率。
「再生容量」表示每克干树脂在一定的再生剂量条件下,所取得的再生树脂之交换容量,可用于显示树脂再生效率。
由于树脂的结构不同(主要是活性基数目不同),强酸性与弱酸性阳离子交换树脂的交换容量也不相同。
一般而言,弱酸性的活性基数目通常多于于强酸性,故总交换容量较高约7.0 ~ 10.5 m mol/g,相形之下,强酸性仅约3.2 ~ 4.5m mol/g而已,但在实际应用中,弱酸性的操作交换容量却不一定高于强酸性,例如,pH值低于5时,弱酸性的操作交换容量为零,根本无交换作用。
在pH值为6.5时,两者的操作交换容量相似;但在碱性溶液中,弱酸性远高于强酸性。
在再生容量方面,弱酸性则通常高于强酸性,故弱酸性的使用寿命会更长一些。
三、再生离子相对浓度高低对树脂的交换性质会产生很大的影响。
当水溶液中氢离子的浓度相当大时,钙型或镁型的阳离子交换树脂中的钙离子或镁离子,可与氢离子进行交换,重新成为氢型阳离子交换树脂。
换言之,交换反应也可以反方向进行。
由于离子交换过程是可逆的,因此当交换树脂交换了一定量的离子后,可用相对浓度较高的氢离子再取代下来,使之一再重复被循环使用,这种作用称为再生(regeneration)。
其反应式如下:(R-SO3)2Ca +2H+ → 2R-SO3H +Ca2+ (R-COO)2Ca +2H+ →2R-COOH +Ca2+ 当氢型树脂中的氢离子,都被其它硬度离子交换后,这些树脂就没有软化水质作用,此时之状态称为「饱和」状态。
再生操作主要目的就是将已经达到「饱和」状态的树脂,利用「再生剂」洗出所交换来的阳离子,让树脂重新再回复到原有的交换容量,或所期望的容量程度,或原有的树脂型态等。
无论是强酸性或弱酸性阳离子交换树脂,都可以使用稀硫酸或稀盐酸作为再生剂,但一般认为以稀硫酸作为再生剂,效果可能会好一些。
因为树脂若吸附有机物的话,稀硫酸较稀盐酸更能解析出有机物,所以一般工艺多采用稀硫酸为再生剂。
不过实际应用时,可能因为硫酸的取得较为困难,所以多使用盐酸作为再生剂居多。
四、影响再生特性的主要因素氢型树脂的再生特性与它的类型和结构有密切关系,强酸性氢型树脂的再生比较困难,需要的再生酸液的剂量比理论值高许多,而且必须较长的接触时间。
相形之下,弱酸性氢型树脂的再生则比较容易,需要的再生酸液的剂量仅比理论值高一些,也不需要长的接触时间。
一般认为,在硫酸或盐酸的用量为其总交换容量的二倍时,每次再生树脂与再生酸液浸泡接触时间是:强酸性约30 ~ 60分;弱酸性约30 ~ 45分。
此外,氢型树脂的再生特性也与它们的「交联度」有关。
所谓交联度乃是定量树脂中所含的交联剂(如苯乙烯)的质量百分率。