吡啶类化合物的应用举例

合集下载

吡唑并吡啶类化合物的合成

吡唑并吡啶类化合物的合成

吡唑并吡啶类化合物的合成陈婷贺红武*(华中师范大学化学学院教育部农药与分子生物学重点实验室武汉 430079)摘要吡唑并吡啶类化合物是近年来研究得颇多的一类稠杂环化合物。

这类化合物具有较高的药理学研究价值,还具有一定的除草和杀菌活性。

本文就不同结构类型的吡唑并吡啶类化合物的合成方法进行了介绍。

关键词吡唑并吡啶类化合物合成稠杂环类化合物The Synthesis of PyrazolopyridinesChen Ting, He Hongwu*(Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry,Central China Normal University, Wuhan 430079)Abstract Pyrazolopyridines are a kind of fused heterocyclic compounds received more and more attention in the recent years. Literatures have reported the pharmaceutical researches of this kind of compounds, together with several herbicidal activities and fungicidal activities. Research progress on the synthesis of pyrazolopyridines in the latest twenty years are introduced with respect to their different structures.Key words Pyrazolopyridine, Synthesis, Fused heterocyclic compounds近年来,稠杂环类化合物以其显著的生理活性,引起了广大医药和农药科研工作者们的兴趣。

吡啶化合物的合成及应用研究

吡啶化合物的合成及应用研究

吡啶化合物的合成及应用研究引言:吡啶是一种重要的芳香化合物,具有广泛的应用领域。

本文将介绍吡啶化合物的合成方法以及其在药物合成、农药生产等方面的应用研究。

一、吡啶化合物的合成方法1. 吡啶的传统合成方法:传统的吡啶合成方法主要有湿法和干法两种。

其中,湿法是利用醛或酮与亚硝酸盐反应生成吡啶,该方法操作简单,但产率较低。

而干法则是利用α,β-不饱和酮与氨反应生成吡啶,产率较高,适用于工业生产。

2. 高效合成方法:随着有机合成化学的发展,吡啶合成的高效方法相继出现。

例如,金属催化合成是一种常用的方法,通过金属催化剂的参与,可以提高产率和选择性,同时缩短反应时间。

此外,还有采用微波辐射、超声波辐射等非常规反应条件进行吡啶合成的方法。

二、吡啶化合物在药物合成中的应用1. 抗肿瘤药物:吡啶化合物在抗肿瘤药物的研发中扮演着重要角色。

通过合成不同结构的吡啶衍生物,可以调控药物的溶解度、活性和药代动力学等性质。

举例来说,含有吡啶结构的多巴胺受体拮抗剂对乳腺癌等恶性肿瘤有一定的抑制作用。

2. 抗炎药物:吡啶化合物在抗炎药物的研究中也有广泛应用。

例如,一些含有吡啶结构的抗感染药物可以干扰微生物DNA复制,从而达到杀菌的效果。

此外,吡啶化合物还可以通过抑制炎性介质的生成来缓解炎症反应。

3. 抗抑郁药物:吡啶结构的化合物在抗抑郁药物的合成中有着独特的作用。

一些吡啶类化合物通过调节神经递质的平衡,减轻抑郁症状。

这些抗抑郁药物的应用对改善人们的心理健康具有重要的意义。

三、吡啶化合物在农药生产中的应用1. 杀虫剂:吡啶化合物在农药杀虫剂的研发中有着广泛的应用。

其中,以氨基苯并吡啶类农药最为常见,具有较强的杀虫活性,并且对多种害虫有较高的选择性。

这些化合物可以通过作用于害虫神经系统,抑制其正常运作,从而实现杀虫的效果。

2. 除草剂:吡啶化合物也可以用来制备除草剂。

这些除草剂通过作用于植物的生理代谢,抑制其生长和发育。

与传统的除草剂相比,吡啶类化合物通常具有更高的效果和更好的环境友好性。

吡啶及其化合物在药物合成中的应用

吡啶及其化合物在药物合成中的应用

吡啶及其化合物在药物合成中的应用王磊;肖陆飞;梁建军【摘要】吡啶及其化合物是重要的化工原料或中间体,由于其分子结构具有良好的生物活性,被广泛应用于吡啶类药物的合成.本文综述了吡啶及其化合物在医药和农药产品合成上的应用,主要包括抗菌、抗抑郁、抗感染、质子泵抑制剂、抗结核、血管扩张、中枢神经兴奋等医药产品,以及杀虫、除草、抗菌、增产和杀鼠等农药产品.【期刊名称】《湖南城市学院学报(自然科学版)》【年(卷),期】2018(027)006【总页数】4页(P71-74)【关键词】吡啶;吡啶衍生物;医药;农药;合成【作者】王磊;肖陆飞;梁建军【作者单位】滁州职业技术学院食品与环境工程系,安徽滁州 239000;滁州职业技术学院食品与环境工程系,安徽滁州 239000;滁州职业技术学院食品与环境工程系,安徽滁州 239000【正文语种】中文【中图分类】TQ460.31吡啶及其衍生物统称为吡啶碱﹒吡啶,是一种具有共轭结构的六元杂环化合物,分子式C5H5N﹒吡啶衍生物主要是不同取代位置的甲基吡啶,如2-甲基吡啶、3-甲基吡啶和4-甲基吡啶等﹒吡啶由于环上氮原子的吸电子作用,一般较难发生亲电取代反应,但吡啶环上的亲核取代反应较容易发生,利用这一性质,以吡啶及其衍生物为原料可制备出多种重要的吡啶化合物[1-3],因它们往往具有良好的生物活性,常被用于合成医药和农药的重要原料或中间体,在吡啶类药物的合成上发挥着重要作用﹒因此,研究吡啶及其化合物在药物合成中的应用将具有重要的参考价值和实际意义﹒文献[4]以2, 6-二氯-3-硝基吡啶为原料,经过5步反应合成得到依诺沙星(Enoxacin),其结构式如图1所示﹒依诺沙星是一种喹诺酮类广谱抗菌药,对革兰阴性杆菌的抗菌活性很高,可用于治疗各种细菌病毒所起的泌尿、生殖系统、呼吸道、消化道、皮肤软组织及耳眼部感染﹒近年来,随着超分子药物的迅速发展,依诺沙星通过分子修饰而得到的衍生物[5]抗菌活性更高﹒巴洛沙星(Balofloxacin),是一种氟喹诺酮类广谱抗菌药物,它针对革兰氏阳性菌、肺炎链球菌、肺炎支原体、沙眼衣原体等均具有较强的抗菌活性﹒其合成路线为:以3-氨基吡啶为原料经氨基保护、甲基化、脱保护以及催化加氢得到3-甲氨基哌啶[6],再与1-环丙基-6,7-二氟-8-甲氧基-1, 4-二氢-4-氧代喹啉-3-羧酸二乙酯的螯合物经缩合、水解得到巴洛沙星[7],其结构式如图2所示﹒米氮平(Mirtazapine),商品名为瑞美隆,是全球第一个去甲肾上腺素能和特异性5-羟色胺能抗抑郁药﹒文献[8]以2-氯-3-氰基吡啶和中间体1-甲基-3-苯基哌嗪为原料,经亲核取代、水解、还原和环合反应得到米氮平,结构式如图3所示﹒奈韦拉平(Nevirapine),商品名Viramune,是一种非核苷类逆转录酶抑制剂,与其它抗HIV-1药物联合用药可更好的治疗HIV-1感染,亦可用于预防母婴传播﹒文献[9-11]以4-甲基吡啶为原料,经硝化、硝基迁移、还原、氯化得到2-氯-3-氨基-4-甲基吡啶,再与2-氯烟酰氯经缩合、氨解、环合得到奈韦拉平,其结构式如图4所示﹒兰索拉唑(Lansoprazole),是一种新型质子泵抑制剂,对胃溃疡、十二指肠溃疡、返流性食管炎等的治疗效果较好﹒文献[12-13]以2, 3-二甲基吡啶为原料,经氧化、硝化、三氟乙氧基取代和苯磺酰氯反应得到中间体2-氯甲基-3-甲-4-(2, 2, 2-三氟乙氧基)吡啶,再与2-巯基-1H-苯并咪唑缩合、氧化得到目标产物,其结构式如图5所示﹒帕司烟肼(Pasiniazide)又名百生肼、对氨基水杨酸异烟肼,是一种强效抗结核病药物,于2001年上市,药效比异烟肼强5倍﹒帕司烟肼[14]是由吡啶经氧化、酰化后,再与对氨基水杨酸加合而成,其结构式如图6所示﹒盐酸倍他司汀,化学名为N-甲基-2-吡啶乙胺二盐酸盐,是一种组胺类血管扩张类药物,可用于治疗冠状动脉系统供血不足,缺血性脑血管疾病如脑血栓、脑梗塞及高血压引起的头晕、耳鸣等症﹒该药可通过原料2-甲基吡啶[15]经反应得到,其结构式如图7所示﹒盐酸右哌甲酯,商品名为Focalin,是一种中枢神经系统兴奋药,用于治疗6岁及以上儿童的注意缺陷多动障碍﹒该药以吡啶的还原产物哌啶为原料,经过6步反应合成而得到[16],其结构式如图8所示﹒吡虫啉和啶虫脒[17-19],均属于广谱性烟碱类杀虫剂,具有高效、速效、低度、内吸性强、残效期长、残留量低等优点﹒它们均以由吡啶经甲醇甲基化、氯取代后生成2-氯-5-氯甲基吡啶原料经反应而成,其结构式如图9所示﹒氯虫苯甲酰胺(Chlorantraniliprole),是由美国杜邦公司研发的新一代新型、高效、微毒级杀虫剂,对鳞翅目害虫有特效,与其它杀虫剂无交互抗性,主要通过诱导昆虫鱼尼汀受体调控胞内的钙离子释放而表现出杀虫作用﹒文献[20]以2, 3-二氯吡啶、顺丁烯二酸酐为起始原料,经8步反应合成氯虫苯甲酰胺,其结构式如图10所示﹒盐酸氨丙啉是一种抗球虫药,对鸡艾美耳球虫、羔羊以及犊牛球虫等效果显著,且具有毒性小、残留少和安全范围大等特点﹒文献[21]以2-甲基吡啶和4-氨基-(5-甲氧基甲基)-2-丙基嘧啶为原料进行取代反应,再与氯化氢成盐制备得到盐酸氨丙啉,其结构式如图11所示﹒烟嘧磺隆,商品名玉农乐,是一种广谱、高效、低毒、低残留磺酰脲类除草剂,广泛用于玉米田地除杂草,其合成路线[22]如图12所示﹒由图12可知,2-磺酰氯基-N, N-二甲基烟酰胺是以2-氯烟酸为起始原料,经过酰胺化、巯基化、磺胺化、酯化等4步反应制备而得﹒异噁草醚属杂环氧苯丙酸类除草剂,药剂通过叶片吸收,通过抑制分生组织的生长使幼嫩组织失绿坏死,主要用于水稻和小麦田除杂草,具有高效低毒的特点﹒文献[23]以2, 3, 5-三氯吡啶为原料,通过醚化、羧酸氯化、酰化等反应制得异噁草醚,其结构式如图13所示﹒啶酰菌胺,属于烟酰胺类杀菌剂,是由德国巴斯夫公司研制开发而成,具有广谱、内吸性杀菌的特点,还可以和多种农药混合使用,能用于多种作物防治灰霉病等真菌病害﹒文献[24]以4-氯苯肼、苯胺、2-氯烟酰氯为原料,通过2步反应合成得到啶酰菌胺,其反应路线如图14所示﹒氟吡菌胺(Fluopicolide),是一种新型广谱杀菌剂,通过抑制琥珀酸脱氢酶的电子转移而抑制线粒体呼吸,主要用于防治卵菌纲病害如葡萄霜霉病和马铃薯晚疫病等﹒文献[25]以2, 3-二氯-5-三氟甲基吡啶为起始原料,经硝基甲烷取代和硝基还原反应,得到2-氨基甲基-3-氯-5-三氟甲基吡啶,再与2, 6-二氯苯甲酰氯缩合得氟吡菌胺,其结构式如图15所示﹒氟啶胺(Fluazinam),又名福帅得,是一种预防保护性杀菌剂,它具有活性高、持效期长和无抗性等特点,对灰葡萄孢引起的多种灰霉病有特效﹒文献[26]以2, 3-二氯-5-三氟甲基吡啶为起始原料,经氨水取代反应得到2-氨基-3-氯-5-三氟甲基吡啶,再与2, 6-二硝基-4-三氟甲基-5-氯苯胺得到氟啶胺,其结构式如图16所示﹒吡啶醇,又名增产醇,是一种对大豆、花生等作物具有显著增产效果的植物生长调节剂﹒文献[27]以2-甲基吡啶为原料,依次和苯钠、环氧乙烷反应得到的产物,经酸化得到吡啶醇,其结构式如图17所示﹒灭鼠安,化学名为3-吡啶甲基-N-(对-硝基苯基)-氨基甲酸酯,它是一种氨基甲酸酯类杀虫剂,由美国罗门哈斯公司研发,毒杀作用强,对各种鼠类均有效﹒文献[28]以3-氰基吡啶为原料,催化加氢得到3-羟甲基吡啶,再与异氰酸对硝基苯酯加成得到灭鼠安,其结构式如图18所示﹒综上所述,吡啶及其化合物在吡啶类医药和农药合成方面发挥着重要作用,是重要的化工基础原料或中间体﹒然而目前通过化学方法合成吡啶及其化合物尚不能满足国内需求,因此,接下来进一步研究吡啶化合物的合成工艺并拓宽其应用范围将具有重要的意义﹒【相关文献】[1]徐兆瑜. 吡啶化合物的合成技术与应用进展[J]. 精细化工原料及中间体, 2009(2): 3-8.[2]周焕文, 于世钧, 徐杰, 等. 吡啶及其衍生物催化合成进展及应用前景[J]. 工业催化, 2001, 9(3): 26-32.[3]王青林, 梁爽, 曾凌. 一种基于柔性双(吡啶)-双(酰胺)配体和Keggin型多酸的杂化物的合成及性能[J]. 渤海大学学报: 自然科学版, 2018, 39(2): 119-124.[4]MATSUMOTO J I, MIYAMOTO T, MINAMIDA A, et al. Synthesis of fluorinated pyridines by the Balz-Schiemann reaction. An alternative route to enoxacin, a new antibacterial pyridonecarboxylic acid[J]. Journal of Heterocyclic Chemistry, 1984, 21(3): 673-679. [5]单绍军, 梁碧仪, 卢增杰. 葡萄糖酸依诺沙星的合成工艺研究[J]. 化工时刊, 2017, 31(5): 17-18, 36.[6]穆飞虎, 魏运洋, 刘霖. 3-甲氨基哌啶二盐酸盐的合成[J]. 化学试剂, 2007, 29(9): 557-558, 565.[7]何新蕾, 郝二军, 张玲, 等. 离子液体辅助巴洛沙星的绿色合成[J]. 中国医学创新, 2014, 11(24): 127-129.[8]张涛, 吴范宏. 抗抑郁药米氮平的合成[J]. 华东理工大学学报:自然科学版, 2006, 32(3): 318-320,326.[9]刘刚, 孙林, 陈玉静, 等. 2-氯-3-氨基-4-甲基吡啶的合成[J]. 中国医药工业杂志, 2015, 46(6): 571-573.[10]姜芳, 赵晨光, 潘雷, 等. 奈韦拉平的合成工艺[J]. 沈阳药科大学学报, 2010, 27(3): 200-201.[11]孟庆伟, 曾伟, 赖琼, 等. 奈韦拉平的合成[J]. 中国医药工业杂志, 2006, 37(1): 5-7.[12]王庆河, 沙宇, 王晋芳, 等. 兰索拉唑的合成工艺改进[J]. 中国药物化学杂志, 2009, 19(1): 42-44.[13]陈立江, 赵京华, 梁飞, 等. 工业高纯度兰索拉唑的合成工艺改进[J]. 辽宁大学学报: 自然科学版, 2016, 43(4): 343-346.[14]金国有, 姚柳端, 朱艺基. 帕司烟肼的合成[J]. 中国医药工业杂志, 2015, 46(5): 457-458.[15]叶瑾亮, 张小春, 陈伟健. N-甲基-2-吡啶乙胺二盐酸盐的合成[J]. 广东化工, 2008, 35(8): 22-23.[16]张杰, 陈灵灵, 张林, 等. 盐酸右哌甲酯的合成[J]. 中国医药工业杂志, 2016, 47(8): 973-976.[17]陆阳, 陶京朝, 张志荣. 高效杀虫剂吡虫啉的合成新工艺[J]. 化工中间体, 2008(10): 25-28.[18]什罗夫, 贾殷, 乔社里, 等. 制备杀虫剂吡虫啉的方法: CN101011057A[P]. 2007-08-08[2018-09-12].[19]陆阳, 陶京朝, 周志莲. 啶虫脒的合成技术[J]. 化工中间体, 2010(5): 37-41.[20]于海波, 孙克, 张敏恒. 氯虫苯甲酰胺合成方法述评[J]. 农药, 2012, 51(12): 929-932.[21]吕民主, 杨立荣. 抗球虫药-盐酸氨丙啉的合成研究[J]. 饲料研究, 2007(7): 17-18.[22]薛谊, 王文魁, 钟劲松, 等. 一种合成烟嘧磺隆的方法: CN101671327B[P]. 2011-04-06[2018-09-12].[23]杨桂秋, 侯岳华, 程学明, 等. 异噁草醚的合成及其除草活性[J]. 现代农药, 2013, 12(1): 28-30, 36.[24]程传杰, 曹星星, 白雄雄, 等. 啶酰菌胺的合成[J]. 农药, 2016, 55(2): 96-98.[25]高玉清, 石强强, 潘炳庆, 等. 氟吡菌胺的合成工艺研究[J]. 现代农药, 2017, 16(1): 26-29.[26]杜友兴, 何立. 氟啶胺的合成工艺研究[J]. 有机氟工业, 2018(1): 5-9.[27]陈万义. 农药生产与合成[M]. 北京: 化学工业出版社, 2000: 607-608.[28]邵志武. 灭鼠安的研究[J]. 农药, 1982(1): 12-14.。

卤代吡啶类化合物的合成及应用

卤代吡啶类化合物的合成及应用

徐杰教授中科院大连化学物理研究所精细化工研究室主任1958年10月生。

博士,教授,博士研究生导师,《催化学报》编委。

1981 年12月大学毕业获学士学位,1988年6月获硕士学位,1998年11月大连化学物理研究所毕业获博士学位。

1991年11月破格晋副教授;1994年2月~1995 年3月应邀赴美国Tr uman University作访问学者;1995年11月破格晋教授;2000年11月评为博士研究生导师,2003年起担任。

近年来主要从事烃类选择氧化、催化加氢和催化氟氯化等领域的基础与应用研究,先后主持和承担中石化“环己烷催化氧化合成环己酮新技术研究”(已结题)、中石化“苯加氢合成环己烯”(已结题)、国家863-2“空间飞行器阻燃防火材料探究”(已验收)、国家高技术发展计划(863)项目“用于清法生产的烃类选择氧化催化新材料”(在研)、自然科学基金重点项目“环境友好选控催化氧化生产己内酰胺中间体新方法” (在研)等项目,已发表、交流研究论文140余篇;发明专利44件;合著1部:鉴定成果5项;多次获得科研奖励。

Prof.Xu JieDir ec tor,Fine C hem istry Office of Dalian Institute of C hemistry and P hysic s,theChinese Acade myofSciencesMr.Xu was born in O c tober 1958.He is a doc tor,pr ofes s or,tutor ofdoc tor al stud ents and m ember of th e Editorial B oard of“Catalysis Journal”.He gr aduat ed fr o m u ni v er si ty with a bac helor's degree in Dec ember1981 a n d wo n a mas ter‟s degree in J une 1988 and a doctor‟s degr ee in Dalian Institute and Phys i c s in Nov ember1998.He was promoted to associated pr ofes s or i n November ofChemis try1991。

吡啶类化合物的合成及应用研究进展

吡啶类化合物的合成及应用研究进展

的第 1 苯并 咪 唑类 胃酸质子 泵抑 制剂 ( P ) 代 P I, 18 98年首次 上市 , 用于 治疗 消化 性 胃溃 疡 和 反食 性
胃炎等 疾病 。制备过 程 如式 ( ) 示 。 4所
c 三 c
7 : : - - : :
吡 啶 类化 合 物 的合成 及应 用研 究 进 展
要 晓丽 , 崔建 兰, 杨 玉芬
( 中北大学化 工与环境 学院 , 山西 太原 0 05 ) 3 0 1
摘 要: 合论述 了吡啶类化合物 的合成及应用研究进展 , 综 对其 中较重 要的几类化合 物进行 了讨论 , 并介绍 了该类化合物在医药方面的应用情况 。
关键词 : 吡啶类化合物 ; 医药 ; 应用
中图分 类号 :Q 5 . T 2 32 文献标识码 : A 文章编号 :0 47 5 {02)102 -4 10 —0 0 2 1 0 -0 80
通 常将 吡啶及 其 衍 生物 统 称 为 吡 啶类 化 合 物 , 此 类化合 物是 开发 应 用 范 围最 广 的精 细 化 工 原 料 。 吡啶具 有芳 香性 , 与苯环 结构相 类似 , 环上 的氮原 子
1 2 1 2 甲基 吡啶 . . 一
吡啶类 化合 物化学 性 质 非 常 活泼 , 参 与 多种 亲 电 能 和亲核 反应 , 经过 一 系列 反 应 可 以合 成 多 种重 要 的 精 细有 机 合 成 中间 体 , 在农 药 、 医药 、 染料 、 香料 、 橡 胶、 饲料 以及 日用化 工等 领域应 用 十分广泛 J 1。
含 有一对 孤对 电子 而具 有 一 定 的 亲核 能 力 。因 此 ,
1 2 烷基 吡啶 .
烷 基 吡啶分 为一 甲基 吡啶 ( 考林 ) 二 甲基 吡 皮 、 啶 ( 剔 啶 ) 三 甲基 吡 啶 ( 卢 、 可力 丁 ) 2甲基 _. 和 . 5乙 基吡 啶 ( P 等 , 泛 用 于 医药 、 药 、 料 、 业 ME ) 广 农 香 工 产 品等 的合 成 。近 年来 , 基 吡啶 的应 用 领 域 不 断 烷 扩大 , 需求增 长很 快 , 已引起 广泛 的关 注 | 。 3 J

吡啶类化合物在医药领域的应用

吡啶类化合物在医药领域的应用

144中外医疗 CH IN A F OR EI G N ME DI C AL T R EA TM EN T药 物 研 究1 吡啶类药物在治疗癌症方面的应用癌症是严重威胁人类生命和健康的恶性疾病,据世界卫生组织报告,2008年全球估计有1240万人罹患癌症,760万人死于癌症,到2010年,癌症将超越心脏病成为人类的头号杀手。

癌症成为和人们关系最为密切的疾病之一,发病率和死亡率都位居“前三甲”,严重危及人体健康和生命健康。

迄今为止,治疗癌症的药物已达几十种,但是由于癌症发病机理复杂,能治愈癌症的药物还很罕见。

因此,研究防癌和抗癌药物及其作用机制具有重大的现实意义和理论价值。

在防治癌症方面,吡唑并(3,4-b)吡啶化合物是一类非常重要的药物,该类物质为稠杂环,由于其特定的生理活性以及和吲哚、氮杂吲哚等在结构上的类似性,引起了人们广泛的兴趣。

临床研究表明该类化合物在防治肿瘤和癌症方面有很好的疗效。

因此人们对该类化合物的研究愈来愈深入和广泛,目前已合成出成千上万种吡唑并吡啶衍生物。

传统的临床抗癌药物主要是顺式铂配合物,但在其发展过程中也遇到了一些困难和问题。

以铂类抗癌药物为例,它们在临床使用中容易产生毒副作用,如神经毒性、肝毒性、肾毒性、耳毒性、骨髓毒性等,这严重制约了铂类药物的疗效和长期使用。

为了降低这些药物的毒性和提高药物的适用性。

一系列新的药物被设计和合成出来,其中比较重要的就是吡啶类药物,该结构经研究表明具有良好的广谱抗癌活性,图1。

2 吡啶类药物在治疗乙型病毒性肝炎方面的应用乙型病毒性肝炎是由乙型肝炎病毒感染引起的一种常见的世界性传染疾病,传染性也很强,一直严重危害人类健康,至今仍是世界性的医学难题。

世界卫生组织估计全世界大约有20亿乙型肝炎病毒感染者,其中3.5亿人为慢性乙型肝炎病毒感染者,每年约有100万人死于H BV 感染所致的肝衰竭、肝硬化和原发性肝细胞癌。

我国有1.2亿病毒携带者。

属乙型肝炎病毒感染高流行区,一般人群的乙型肝炎病毒感染率为9.09%,乙肝病毒感染已成为危害人类健康的重要疾病。

吡啶化合物的合成技术与应用进展_徐兆瑜

吡啶化合物的合成技术与应用进展_徐兆瑜
1 吡啶的基本特性
一般而言,含 N、O 等杂原子的刚性芳香环分子 结构具有优异的热稳定性、化学稳定性;有的还具有 良好的极性和介电性能。它与苯环结构相类似,苯环 上卤素取代化合物的合成方法, 基本上都可以应用 于吡啶环上卤化物的合成上。 但由于吡啶环上含有 氮原子, 故吡啶环上卤素取代化合物的合成和特性 与苯环上的卤素化合物相比,存在较大的差异,难度 大。 一般情况下,4 位的反应活性较高,弱的亲核试 剂在温和的条件下就可以取代;其次是 2、6 位;最难 取代是 3,5 位, 需要像甲氧基这样强的亲核试剂方 能取代。
2-氯-3-氟-吡 啶 是 一 种 重 要 的 医 药 中 间 体 , 是 治疗细菌感染性疾病药物依诺沙星的合成原料,又 可用来合成治疗心血管疾病的药物 N-(Pyri-2-yl) thiazolamines。 另外,用 2-氯-3-氟吡啶制备羟基化 2,2-联吡啶,在生物工程上有着广泛的用途。
如 : 在 500mL 四 口 园 底 烧 瓶 中 , 加 入 175mL
40%(1.05mol)的氟硼酸,在搅拌下分多批加入 38.6g (0.3mol)2-氯-3-氨 基 吡 啶 , 冰 盐 浴 冷 却 至-10~5℃,滴 加 21.6g 亚 硝 酸 钠 (0.315mol)配 成 饱 和 水 溶 液, 控制温度在-10~-5℃,继续反应搅拌 1h, 有大量 白色固体析出。将重氮盐反应液置于冰箱中过夜,使 重氮盐充分沉淀。真空抽滤,所得沉淀依次用无水乙 醚、无水乙醇洗至几乎无色,置真空烘箱中烘干即得 重氮盐。
合成方法一般有两种,一是从煤焦油中提取,二 是从氨和甲醛、乙醛合成。 过去我国一直采用前者, 产量仅数百吨, 市场需求主要依靠进口, 最大的进
-4-
专家论坛 精细化工原料及中间体

含四氢吡啶类化合物_概述及解释说明

含四氢吡啶类化合物_概述及解释说明

含四氢吡啶类化合物概述及解释说明1. 引言1.1 概述四氢吡啶(Tetrahydropyridine, THP)类化合物是一类含有四个碳原子的环状有机化合物,具有广泛的应用领域和重要的药物活性。

它们以其特殊的分子结构和化学性质,在医药、农药等领域起着重要作用。

本文将对四氢吡啶类化合物进行全面而系统的概述和解释说明。

1.2 文章结构本文将从以下几个方面对四氢吡啶类化合物进行讨论。

首先介绍了这类化合物的定义和基本性质,包括它们在结构上的共同特征以及常见的物理化学性质。

接着,文章将探讨四氢吡啶类化合物的合成方法,包括主要的合成路线、关键步骤以及示例反应及其机理解释。

然后,重点关注了这些化合物在医药领域中的应用,涵盖了抗菌药物、镇静催眠药物等方面,并介绍了其他医药领域中的应用案例。

最后,在结论与展望部分,对四氢吡啶类化合物的研究现状进行总结分析,展望了未来的研究方向,并对文章的主要观点进行了总结。

1.3 目的本文的目的是系统性地介绍和探讨四氢吡啶类化合物,将有助于读者全面了解这些化合物在医药领域中的重要性和应用前景。

通过对其定义、性质、合成方法和应用等方面进行详尽描述,旨在促进对四氢吡啶类化合物的深入理解和进一步研究。

同时,本文也希望为相关领域的科学家、研究人员和工程师提供有价值的参考和借鉴。

2. 四氢吡啶类化合物的定义和性质2.1 化合物的定义四氢吡啶(tetrahydropyridine)是一种由4个碳原子和5个氢原子组成的有机化合物,化学式为C5H11N。

它是吡啶的饱和衍生物,也被称为氮杂环戊烷。

四氢吡啶类化合物可以具有不同的取代基团,从而形成一系列衍生物。

2.2 化合物的分类四氢吡啶类化合物根据取代基团的不同可以分为不同类别,常见的包括:- 环丙基四氢吡啶: 取代基团为环丙基(cyclopropyl),具有稳定性好、解离活性小等特点。

- 异丁基四氢吡啶: 取代基团为异丁基(isobutyl),常用于抗胆碱酯酶药物中。

吡啶的药用合成

吡啶的药用合成

吡啶氯化 物用途
2-甲基-3-羟基吡啶是合成新药潘多拉唑的重 要中间体。潘多拉唑是由德国开发的新一代质 子泵抑制剂,主要治疗十二指肠和胃溃疡以及 缓解中之重度的反流性食管炎。该药同早期的 西米替丁,雷尼替听及近期的奥美拉唑相比, 不仅用药时间较短,而且治愈率高,因此有着 广阔的市场前景。
LOREM DOLOR
吡啶的,是含有一个氮杂原子的六元杂环化合物。可以看做苯分子中 的一个(CH)被N取代的化合物,故又称氮苯,无色或微黄色液体,有恶臭。 吡啶类化合物作为化学工业,特别是精细化工的重要原料,应用范围很广,涉及 医药中间体、医药制品、农药、农药中间体、饲料和饲料原料及其它多项领域。
1· 制头孢菌素、类固醇、磺胺的溶剂 2· 制抗组织胺类、解毒药用吡啶吸收氯 3· 制青霉素中用十五烷基溴化物作为蛋 白质的沉 淀剂
4· 提取金霉素时作破乳剂
5· 2-氯吡啶的亲核反应可生成抗阻胺剂、溴苯胺 马来酸酯、氯苯胺马来酸酯
吡啶衍生物在日化、医药方面有广泛应 用
01
吡啶氯化物
02
其他吡啶衍生物
IPSUM LOREM
IPSUM DOLOR
THANK YOU
The Ultimate Multipurpose PowerPoint Template
PPT制作: 资料搜集: 主讲人:

吡啶类化合物(硕士毕业论文)10

吡啶类化合物(硕士毕业论文)10

第一章 绪 论吡啶类化合物是一种十分重要的精细化工原料,广泛应用在农药、医药、染料等领域。

吡啶与苯是一对生物电子等排体,但两者的疏水性具有明显的差异(苯的疏水常数为1.96,吡啶为0.65),从而使得由吡啶取代苯环而制成的新化合物通常具有更高的生物活性、更低的毒性、更高的内吸性或更高的选择性等优点[1]。

因此,含吡啶环结构的化合物已成为近年新农药创制的主要方向之一。

2,3,5,6-四氯吡啶是一种有价值的商业化产品,能够用于杀虫剂的生产。

四氯吡啶也是一种十分重要的化工中间体,可用于制备低毒高效有机磷农药毒死蜱(O, O-二乙基-O-(3,5,6-三氯-2-二吡啶基)-硫代磷酸酯)及衍生物,还可以用于生产除草效率高的α-[4-(3,5,6-三氯吡啶-2-酰氧基)-苯氧基]-烷烃羧酸及其衍生物等。

1.1概述1.1.1 名称、结构及物理性质[2] 化学结构式:NClCl Cl Cl化学名称:2,3,5,6-四氯吡啶2,3,5,6-tetrachloropyridine其他名称:symmetrical tetrachloropyridine 分子式: C 5HCl 4N 分子量: 216.87 CAS NO.:2402-79-1物理性质:2,3,5,6-四氯吡啶为白色或淡黄色粉末或结晶体,熔点为90-91℃,沸点为251-252 ℃。

溶解性:微溶于水,易溶于乙醇、异丙醇、二氯甲烷、四氯化碳、乙酸乙酯、乙腈、甲苯、二甲苯。

稳定性:在一般贮存条件下稳定,在极强酸性条件下,会和HCl 络合。

1.1.2 用途2,3,5,6-四氯吡啶是一种重要的农药中间体。

可以用来制备各种杀虫剂和除草剂[3~6]。

例如,这种中间体可以用来制备毒死蜱(O ,O-二乙基-O-(3,5,6-三氯-2-二吡啶基)-硫代磷酸酯)、杀虫螨等系列农药;也可用于制备近年投放市场的除草剂绿草定(3,5,6-三氯-2-吡啶基氧乙酸)。

下面具体介绍2,3,5,6-四氯吡啶重要衍生物的合成与应用 (1)毒死碑PSC 2H 5OC 2H 5OONClClCl图1.1毒死蜱结构图a 毒死碑的物化性质和毒性介绍毒死蜱的纯品为白色结晶,工业品带硫醇味,相对密度:1.389( 43.5 ℃) ,熔点:42.5-43.5 ℃, 35 ℃水中溶解度为2 ppm ,易溶于异辛烷,甲醇等有机溶剂。

吡啶的应用领域

吡啶的应用领域

吡啶的应用领域4.1 吡啶类化合物吡啶类化合物作为化学工业,特别是精细化工的重要原料,应用范围很广,涉及医药中间体、医药制品、农药、农药中间体、饲料和饲料原料及其它多项领域。

表4.1 吡啶类化合物的应用领域表吡啶分类产品名称产品用途合成农用化学品除草剂(百草枯、敌草炔、毒莠定)除田间杂草,控制水生杂草杀虫剂(毒死蜱、甲基毒死蜱、菊酯)广谱杀虫剂,高效、低毒家用卫生杀虫剂合成吡啶硫酮盐吡啶硫酮锌或2-羟基吡啶-N-氧化物锌盐广谱抗菌剂,可杀革兰菌、真菌,是国际通用的去头屑洗发水的剂等等。

合成季盐十六烷基吡啶翁氯化物生产簌口水、护发品调节剂、相转移催化剂合成新型高分子化合物聚4-(3-吡咯啉基)吡啶(带有高效酰化催化剂基团)合成哌啶双吡啶基双秋姆四硫醚橡胶硬化促进剂N,N-二甲基吡啶翁盐氯化物植物生长调节剂树脂产品环氧固化剂有机合成产品基团保护剂、特殊溶剂合成染料蓝色基BB、蓝色基RR、分散蓝S-RB、可溶性还原灰IBL、可溶性还原蓝IBC等合成医药、医药中间体及其溶剂制头孢菌素、类固醇、磺胺的溶剂制抗组织胺类、解毒药用吡啶吸收氯制青霉素中用十五烷基溴化物作为蛋白质的沉淀剂提取金霉素时作破乳剂2-氯吡啶的亲核反应可生成抗阻胺剂、溴苯胺马来酸酯、氯苯胺马来酸酯这类吡啶衍生物在日化、医药方面有广泛应用二异焦酰胺治疗心率不齐药其它十二烷基吡啶翁盐氯化物人造丝纺织的润滑剂多种衍生物前体(如:吡啶-N-氧化物、吡啶翁过氯化物、苯基吡啶翁氯、卤代吡啶、氨基吡啶等)2-甲基吡啶合成农用化学品杀虫剂、除草剂、杀真菌剂、抑制球虫生长药合成化工中间体2-乙烯基吡啶,生产苯乙烯-丁二烯-乙烯基吡啶三元共聚乳胶轮胎帘布胶黏剂、纤维与弹性体间的胶黏剂、汽车V形传送带、丙烯酸纤维共聚单体(助染剂)兽用驱虫剂化学合成中间体3-甲基吡啶合成烟酸/烟酰胺血管扩张药治疗视神经萎缩、视网膜病变VE烟酸酯、肌醇烟酸酯、甘露醇烟酸酯、尼可杀米等动物饲料添加剂合成农用化学品吡啶醚除草剂控制野草生长氟禾草灵、吡氟氯禾草灵旱田除草剂哌草丹水田除草剂吡虫啉适于种子处理和农作物种子包衣(可早期持续防治,后期叶面喷雾防治)4-甲基吡啶合成化工中间体、医药中间体4-乙烯基吡啶、异烟肼、异烟酸离子交换、金属回收悬浮剂、催化剂载体和抗结合核药等4-二甲氨基吡啶催化剂、小分子的4-二甲氨基吡啶已广泛用于医药、农药、染料纯吡啶是重要的溶剂,可用于制造维生素、中枢神经兴奋剂、抗菌素以及一些高效农药和还原染料,其具体应用实例有:(1)医药:为氟哌酸,维生素A、D2、D3,头孢4号等40余种常用药的合成原料。

吡啶类下游产品2-氯-5-氯甲基吡啶和2,3-二氯-5-三氟甲基吡啶的应用和分析

  吡啶类下游产品2-氯-5-氯甲基吡啶和2,3-二氯-5-三氟甲基吡啶的应用和分析

吡啶类下游产品2-氯-5-氯甲基吡啶和2,3-二氯-5-三氟甲基吡啶的应用和分析1、概述吡啶类化合物主要有吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶、2-氯-5-氯甲基吡啶和2,3-二氯-5-三氟甲基吡啶及其它们的衍生物,是生产高附加值精细化工产品的重要有机原料,广泛应用于农药、医药、染料、香料、饲料添加剂、食品添加剂、橡胶助剂及合成材料等领域,用途广泛,深加工前景广阔。

尤其是作为农药中间体发展特别迅速,近年来国内外含有吡啶基团的农药发展很快,不仅有高效的杀虫剂、除草剂,而且开发出来高效杀菌剂,并逐渐形成一大类特有的农药系列,而这些系列吡啶衍生产品不仅对于已有的农药的开发与生产非常要,并且对于新农药的创制也具有非常重要的意义。

2、生产现状作为基础原料的吡啶,过去主要是从煤焦油中提取,现在主要由合成法获取,目前世界总生产能力约为10万t/a,其中合成法生产吡啶占总产量的90%以上。

2000年以前我国没有合成法吡啶生产,吡啶生产仍采用传统分离煤焦油法,生产能力小,不足200t/a,杂质多,严重制约了下游产品的开发与生产。

2000年比利时Reilly公司与南通醋酸化工厂合作建立了1.1万t/a的吡啶系列产品生产装置,填补了国内合成法吡啶生产空白,改变了我国吡啶系列产品一直依赖进口的局面,为我国大力开发吡啶下游产品提供了可靠的原料保证,因此近年来我国吡啶下游产品开发活跃,开发、研究与生产方兴未艾。

目前我国部分厂家已初步开始生产吡啶系列化产品,而且其中大部分产品进入国际市场,如山海关万通助剂厂的乙烯基吡啶系列;天津京福精细化工厂的氯代吡啶系列;上海松江天南化工厂氨基吡啶系列;河北亚诺化工有限公司的羟基吡啶、溴代吡啶、氯代吡啶、氨基吡啶系列;营口中海精细化工厂N-乙基吡啶酮系列;武进江春化工厂烷基吡啶系列;浙江华义医药化工有限公司的药物用中间体吡啶系列;武进腾帆精细化工厂氰基和硝基吡啶系列、河南台前县香精香料厂的3-甲基吡啶系列,江苏威耳化工有限公司的2-氯-5-氯甲基吡啶和2,3-二氯-5-三氟甲基吡啶等等。

吡啶和巯基反应

吡啶和巯基反应

吡啶和巯基反应吡啶和巯基反应是有机合成中常见的一种反应类型。

吡啶是一种含有六元环的芳香化合物,具有很强的碱性。

巯基是一种含有硫原子的官能团,具有亲硫性质。

吡啶和巯基反应可以产生吡啶硫醇化合物,这种化合物在药物合成和材料科学中具有重要的应用价值。

吡啶和巯基反应的机理比较复杂,主要包括亲核进攻、质子转移和环化等步骤。

首先,巯基中的硫原子通过亲核进攻攻击吡啶环上的碳原子,形成一个中间体。

接下来,质子转移步骤发生,将质子从巯基转移到吡啶环上的氮原子上。

最后,经过环化反应,形成吡啶硫醇化合物。

吡啶硫醇化合物在药物合成中具有广泛的应用。

例如,一些抗癌药物中常常含有吡啶硫醇结构,这是因为吡啶硫醇化合物具有较强的抗氧化性能,可以有效地抑制肿瘤细胞的生长。

此外,吡啶硫醇化合物还可以用作材料科学中的催化剂,用于催化有机合成反应。

吡啶和巯基反应在实验室中可以通过不同的方法进行。

一种常见的方法是将吡啶和巯基溶解在有机溶剂中,在适当的温度下加入催化剂进行反应。

催化剂可以是金属盐类或有机化合物,能够加速反应速率并提高产率。

此外,还可以利用微波辐射或超声波等外部能源来促进反应进行。

除了实验室中的方法,吡啶和巯基反应在工业生产中也有广泛应用。

例如,在某些医药品的合成过程中,吡啶和巯基反应是不可或缺的步骤。

此外,在某些材料的制备过程中,也需要利用吡啶和巯基反应来引入特定的官能团。

总之,吡啶和巯基反应是一种重要的有机合成反应。

通过这种反应可以合成出具有重要应用价值的吡啶硫醇化合物。

在药物合成和材料科学领域,吡啶硫醇化合物具有广泛的应用前景。

通过不断深入研究吡啶和巯基反应的机理和方法,可以为药物合成和材料科学的发展做出更大贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吡啶类化合物的应用举例
吡啶类化合物作为化学工业,特别是精细化工的重要原料,应用范围很广,涉及医药中间体、医药制品、农药、农药中间体、饲料和饲料原料及其它多项领域。

以下举例几种比较常见的吡啶类化合物。

3-甲基吡啶
3-甲基吡啶是最重要、也是应用最为广泛的吡啶衍生物产品。

3-甲基吡啶既是合成吡啶类香料的重要中间体,又是制备吡啶类农药的重要中间体,同时,也是合成抗糙皮病的维生素、烟酸、烟酰胺等的原料,亦可作溶剂、酒精变性剂、染料和树脂中间体,用来生产橡胶硫化促进剂、防水剂和胶片感光剂添加物等。

3 -甲基吡啶的合成方法在工业化合成法出现以前,3-甲基吡啶主要从煤焦油中获得。

以煤焦油中的粗吡啶先脱渣得水吡啶,然后在填料塔内常压蒸馏,并用纯苯与水共沸蒸馏脱水,截取138℃~145℃馏分,可得纯度约95%的3 -甲基吡啶。

由于焦化副产物中吡啶组分多、分离困难,产品产率不高,提取装置复杂,现已基本被合成法所替代。

以丙烯醛和氨为原料这是古老的制备3 -甲基吡啶的方法,早在1970 年John 等申请了专利,Helmut Beschke等采用由氧化铝、硝酸镁、氟化氢铵制备的催化剂,此催化剂中铝、镁、氟的原子比例是1000: 50:100,采用流化床反应器,反应过程中通入氮气作为稀释剂,对3 -甲基吡啶的催化选择性较高,收率达到48.5%,同时副产24.8%的吡啶。

也有专利报道此方法合成3 -甲基吡啶收率可达66%。

乙醛与氨催化合成3-甲基吡啶时, 得到主要含3-甲基吡啶和4-甲基吡啶的混合物, 两者比例约为3:1.由于它们沸点接近, 性质相似, 用普通精馏法或其它分离方法如结晶、溶剂萃取等, 很难使二者得到经济有效的分离.采用对甲基苯磺酸为萃取剂可以明显提高萃取效率。

2 , 3一二氯吡啶:
2 , 3一二氯吡啶是重要的精细化工中间体泛应用于医药与农药研究领域"它是新型杀虫剂氯虫苯甲酞胺与H G w 86 的关键中间体.
2 ,
3 , 6一三氯吡啶还原法3 是2 , 3一二氯吡啶较早的一种合成方法, 以3一氯吡啶为起始原料合成2 , 3一二氯吡啶的文献报道较多, 主要有两条路线: 以乙酞次氟酸为试剂, 3一氯吡啶生成具有N 一F 键的一对共振体, 然后脱去H F 、二氯甲烷氯化, 选择性的生成2 ,3一二氯吡啶, 收率80 % 。

该法由于吡啶3 位活性不够强, 亲电取代不易进行, 原料3一氯吡啶价格较高, 不宜工业化开发。

以2一氯一3一氨基吡啶为起始原料合成2 , 3一二氯吡啶的方法其实是上面方法的一部分, 区别在于起始原料的不同"该合成法主要包括两步反应: 2-氯一3一氨基吡啶首先进行重氮化反应, 然后发生Sandmeyer 氯代反应得到2 , 3一二氯吡啶。

反应试剂便宜易得, 适宜于工业化生产"
4一二甲氨基吡啶:
用吡啶催化轻基化合物与酸配的反应, 是一种温和而可靠的酞化反应, 但是, 对于空间位阻较大的醇类的反应, 则酞化难于进行, 产率较低。

1967 年,Litvinenk。

和Kirichenk。

在间氯苯胺的苯甲酞化的动力学研究中发现, 用4一二甲氨基吡啶(简称DMAP ) 代替吡啶时, 反应速率大大增加。

D M A P 的酞化催化作用之所以胜于吡啶和三乙胺等, 这是因为D M A P 亲核性极强,并且在非极性溶剂中与亲核试剂形成浓度很高的N 一酞基一4 二甲氨基吡啶盐。

同时, 此盐分
子中的正电荷分散又使其成为一个松散的离子对, 在碱催化剂作用下, 有利于邻近阴离子向已活化的酞基上进行亲核进攻
DMPA 应用举例:
1、醇类的酰化反应
当醇类化合物的空间位阻大, 而使用吡啶催化无效时,DMAP 却有很高的催化作用。

如叔醇l , 1 一二苯基乙醇的空间位阻较大, 但在DMAP 的催化作用下, 与酸酐反应, 反应产率达8 0 - 9 5%。

2、由于2 ,4 ,6 一三甲基酚的羟基被两个甲基所屏蔽, 酞化困难, 但在D M AP 的催化作用下,生成高产率的相应酰化物。

多硝基吡啶类化合物
多数硝基吡啶化合物具有含氮量高、生成焓高和热安定性好等特点,近年来受到含能材料研究者的广泛关注。

目前,国内外广泛研究的硝基吡啶类化合物主要有2,6- 二氨基-3,5- 二硝基吡啶(ANPy)及其氧化物(ANPyO)、2,4,6- 三氨基-3,5- 二硝基吡啶(TANPy)及其氧化物(TANPyO)、2 , 4 , 6 - 三硝基吡啶(TNPy ) 及其氧化物(TNPyO)等。

1、2,6- 二氨基-3,5- 二硝基吡啶(ANPy)及其氧化物(ANPyO)
2,6- 二氨基-3,5- 二硝基吡啶可通过硝化2,6-二氨基吡啶而制备,但采用硝酸、硝硫混酸等硝化时副产物较多,产物难以提纯。

Riter-Licht 等人以2,6- 二氨基吡啶为原料,用硫酸和硝酸硝化得到2,6- 二氨基-3,5- 二硝基吡啶,进一步用H2O2/AcOH(乙醛)氧化得到2,6- 二氨基-3,5- 二硝基吡啶氧化物,收率为46%。

ANPyO有芳香环结构,分子中—NO2和—NH2形成的分子间和分子内氢键,使化合物更稳定,多个硝基又使ANPyO 具有较高的能量。

ANPyO的爆炸性能、热安定性和感度与三氨基三硝基苯(TATB)相当。

美国空军武器中心认为ANPyO 是一种钝感炸药,对其进行了晶体结构分析,并与TATB 和RDX(黑索今)的性能进行对比,结果表明,ANPyO 的感度与TATB的感度接近,ANPyO 的性能与RDX 接近。

2、2,4,6- 三氨基-3,5- 二硝基吡啶(TANPy)及其氧化物(TANPyO)
Ho l l in s 等人通过2 种不同的方法合成出2,4,6- 三氨基-3,5- 二硝基吡啶及其氧化物。

(1) 以3,5-二硝基-2- 氯- 吡啶为原料,用高锰酸钾和氨水为胺化剂,制得2,4,6- 三氨基-3,5- 二硝基吡啶和2,6- 二氨基-3,5- 二硝基吡啶的混合物,然后用H2O2/AcOH氧化2,4,6- 三氨基-3,5- 二硝基吡啶得到2,4,6- 三氨基-3,5- 二硝基吡啶氧化物,但是此种方法的产率较低;(2) 2,6- 二氨基-3,5- 二硝基吡啶和2,6- 二氨基-3,5- 二硝基吡啶氧化物与羟胺的KOH 水溶液反应分别制得2,4,6- 三氨基-3,5- 二硝基吡啶和2,4,6- 三氨基-3,5- 二硝基吡啶氧化物。

TANPy 和TANPyO 均为钝感炸药,TANPyO 替代RDX 不仅可以保证炸药的做功能力,且可以降低炸药的感度。

3、2 , 4 , 6 - 三硝基吡啶(TNPy ) 及其氧化物(TNPyO)
Riter-Licht 等人用磷酸催化环化2,2- 二硝基乙醇钾得到2 , 4 , 6 - 三硝基吡啶氧化物,产率为4 3%,然后将2 , 4 , 6 - 三硝基吡啶氧化物在亚硝酸钠中还原得到2 , 4 , 6 - 三硝基吡啶,产率为46%。

万道正也用2,2- 二硝基-1,3- 丙二醇钾在硝酸中通过环化一步得到2 , 4 , 6 - 三硝基吡啶。

TNPy 为淡黄色晶体,易溶于丙酮、二甲基亚砜(DMSO) 、硝基甲烷等,不溶于乙醚和苯,熔点为164℃,熔化热为22 kJ /mol,爆速为7 645 m/s(1.686 g/cm3),热安定性好,100℃恒温120 h 无质量损失,120℃恒温48 h 失质量0.35%,200℃才开始缓慢分解,DSC 第一放热分解峰温为3 2 1 . 5 ℃,4 1 3 ℃不发生爆炸。

参考文献:
1] John ,Anthony Corran .Catalytic process for themanufacture of pyridine or methylpridines : GB ,1 1 9 3 3 4 1[P].1970 -05 -28.
2]Helmut Beschke,Heinz Friedrich,Gerd Schreyer.Catalystfor the production of pyridine and
3 -methylpyridine: US,3960766[P].1976 -06 -01.
3] 王彩彬,李玉润.由丙烯醛合成β-甲基吡啶的研究[J].医药工业,1984( 6) : 1 -5.
4] 孙春霞, 彭盘英, 王玉萍, 崔世海, 3-甲基吡啶与4-甲基吡啶的分离。

[ 中图分类号] O626, [ 文献标识码] A, [ 文章编号] 1672- 1292( 2004) 02- 0011- 03
5] 2 , 3一二氯毗咤的合成与应用,张明星-, 陈广平2 精细与专用化学品,2012年1月p23。

6] 冯忖, 李惠.毛春晖.等. 一锅法合成2 , 3一二氯吡啶【J】. 精细化工中间体.2008.3.8(5):19一2 1.
7] 黄量等, 化学试剂, (1 9 8 2 )4(4 ) , 193。

8] 4—二甲氨基毗咤的应用及其合成研究,张白瑜,东石油化工专科学校学报1995年11月。

9]成健, 周新利, 乔珍等. 2,6- 二氨基- 3,5- 二硝基吡啶及其氮氧化物的氧化胺化反应[J]. 含能材料, 2009,17(3): 296-298.
10] Licht H H, Ritter H. 2,4,6-trinitropyridine and relatedcomp ou n ds sy n th e s i s an d ch ar a ct
e r i z at ion [ J ] .Propellants, Explosives, Pyrotechnics, 1988, 13(1):25-29.。

相关文档
最新文档