7-4一阶线性微分方程

合集下载

第七章 一阶线性偏微分方程

第七章  一阶线性偏微分方程

第七章 一阶线性偏微分方程7-1求下列方程组的通积分及满足指定条件的解。

1)⎪⎪⎩⎪⎪⎨⎧++=+=t y x dtdy y x dt dx 2)⎪⎪⎩⎪⎪⎨⎧-=-=y x dtdy y x dt dx 2 ,当0=t 时,1==y x 3)xy dz z x dy y z dx -=-=- 解 1) 方程组的两式相加,得t y x dt y x d ++=+)(2)(。

令 y x z +=,上方程化为一阶线性方程t z dtdz +=2, 解之得412121--=t e C z t 即得一个首次积分为121)4121(),,(C e t y x y x t t =+++=Φ-。

方程组的两式相减,得t dty x d -=-)(, 解之得另一个首次积分为 22221),,(C t y x y x t =+-=Φ。

易验证 021111det det 2211≠-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂Φ∂∂Φ∂∂Φ∂∂Φ∂x x y x 。

因此,11),,(C y x t =Φ和22),,(C y x t =Φ是两个独立的首次积分,所以,方程组的通积分为121)4121(),,(C e t y x y x t t =+++=Φ-, 22221),,(C t y x y x t =+-=Φ。

从中可解得通解为⎪⎪⎩⎪⎪⎨⎧--+'-'=---'+'=81414181414122212221t t C e C y t t C e C x t t 。

2)方程组的两式相比,得 yx y x dy dx --=2, 变形得恰当方程 02=--+x d y y d x y d y x d x ,解之得一个首次积分为 12222C xy y x =-+,即 =Φ),,(1y x t 2122)(C y y x =+-。

给方程组第一式乘以y ,第二式乘以x ,再相减得])[()22(2222y y x xy y x y x x y +--=-+-='-',1)(22-=+-'+'-'-'yy x y y y x y y x y , 1)(22=+-'+'-'-'-y y x y y y x y y x y 两边积分,得另一个首次积分为=Φ),,(2y x t 2arctanC t y x y =--, 易验证 211),,(C y x t =Φ和22),,(C y x t =Φ是两个独立的首次积分,所以,方程组的通积分为2122)(C y y x =+-,2arctan C t yx y =--, 通解为 ⎩⎨⎧'+'='-'+'+'=t C tC y t C C t C C x s i n c o s s i n )(c o s )(211212,其中211sin C C C =',212cos C C C ='。

第七章一阶线性偏微分方程

第七章一阶线性偏微分方程

Ψ ϕ1(x1, · · · , xn), · · · , ϕn−1(x1, · · · , xn)
= 常数
xj =ψj (xn)
(2) µ0dx + µ1dy1 + · · · + µndyn是某个函数ϕ的全微分,则ϕ = c就是方程的一个首次积 分。
【例1】 求方程组
的通积分。 【例2】 解方程组
dx xz
=
dy yz
=
dz xy
dx x
=
dy y
=
z
+
dz x2 + y2 + z2
7.2.4 一阶齐次线性偏微分方程的求解
7.2 一阶线性偏微分方程的求解
7.2.1 首次积分
定义 7.1 含有n个未知函数的一阶常微分方程组


dy1 dx
dy2 dx
= f1(x, y1, y2, · · · , yn), = f2(x, y1, y2, · · · , yn),

x2,
·
·
·
,
xn)
∂u ∂xi
=
0
(7.3)
则称其为一阶线性齐次偏微分方程。 4. 非线性偏微分方程 不是线性的偏微分方程为非线性偏微分方程。 5. 拟线性偏微分方程 若非线性偏微分方程关于其最高阶偏导数是线性的,则称它是拟线性偏微分方程。 本章讨论如下的一阶拟线性偏微分方程
n j=1
bj
(x1,பைடு நூலகம்
7.2 一阶线性偏微分方程的求解
5
7.2.3 利用首次积分求解常微分方程组
定义 7.2 称 方 程 组(7.5)的n个 互 相 独 立 的 首 次 积 分 全 体ϕj(x, y1, · · · , yn) = cj,j = 1, 2, · · · , n为方程组(7.5)的通积分。

一阶微分方程

一阶微分方程

一阶微分方程1. 简介微分方程是数学中的一个重要分支,它描述了函数与它的导数之间的关系。

一阶微分方程是指只包含一阶导数的方程。

在物理、工程、经济等领域中,许多问题都可以通过一阶微分方程来建模和解决。

本文将介绍一阶微分方程的基本概念、求解方法以及一些应用。

2. 基本概念在介绍一阶微分方程之前,我们需要先了解一些基本概念。

2.1 导数导数是微积分中的重要概念,它描述了函数在某一点的变化率。

对于函数f(x),它的导数可以表示为:f'(x) = lim_{h->0} (f(x+h) - f(x))/h其中,h表示一个无限小的增量。

导数可以理解为函数在某一点的斜率,它的值越大,表示函数在该点的变化越快。

2.2 一阶微分方程一阶微分方程是指只包含一阶导数的方程。

通常形式为:dy/dx = f(x, y)1其中,y是未知函数,x是自变量,f(x, y)是已知的函数。

这个方程描述了未知函数y的导数与x和y之间的关系。

3. 求解方法解一阶微分方程的方法有很多种,这里介绍两种常见的方法:分离变量法和常系数线性微分方程的求解。

3.1 分离变量法分离变量法是一种常用的求解一阶微分方程的方法。

它的基本思想是将方程中的变量分离开来,分别对x和y进行积分。

具体步骤如下:1.将一阶微分方程写成dy/dx=f(x, y)的形式;2.将方程两边关于x和y进行分离;3.对两边同时进行积分,得到一个含有常数C的通解;4.如果给定了一个初始条件y(x0) = y0,则可以通过代入初始条件来确定常数C,得到一个特解。

3.2 常系数线性微分方程的求解常系数线性微分方程是指形如dy/dx + P(x)y = Q(x)的方程。

它的求解方法基于特解与齐次方程解的叠加原理。

1.首先求解对应的齐次方程dy/dx + P(x)y = 0,得到一个通解;2.再寻找一个特解,使得它满足原方程dy/dx + P(x)y = Q(x);23.最终的通解等于齐次方程的通解与特解之和。

高数-7_4一阶线性微分方程-PPT精选文档

高数-7_4一阶线性微分方程-PPT精选文档

ln y P ( x ) d x ln C
P ( x ) d x y C e
目录 上页 下页 ) 2. 解非齐次方程 d x
用常数变易法: 作变换 y ( x ) u ( x ) e
P ( x ) d x
,则
Q (x )
代入非齐次方程得
1 (x u 1 )2
P ( x ) d x e dy Q ( x ) e d x C 2 d x dy 2y y 0, 即 解: 先解
P ( x ) d x
3 2 u ( x 1 ) 2 C 解得 3 3 2 2 2 ( x 1 ) ( x 1 ) C 故原方程通解为 y 3
3. 注意用变量代换将方程化为已知类型的方程 dy 1 例如, 解方程 dx x y dx 法1. 取 y 作自变量: 线性方程 x y dy d y du 法2. 作变换 u u x , 1 x y ,则 y dx dx du 1 1 , 代入原方程得 dx u
齐次方程通解

非齐次方程特解
目录 上页 下页 返回 结束
5 d y 2 y 2. ( x 1 ) 例1. 解方程 d x x 1
d y P (x )yQ (x ) d x
y x 1 dx x 1 2 积分得 ln 即 y y 2 ln x 1 ln C , C ( x 1 ) 2 y u ( x ) ( x 1 ) ,则 用常数变易法求解. 令 2 y u ( x 1 ) 2 u ( x 1 )
P ( x ) d x P ( x ) d x Q ( x ) e d x C
y e

7-4 一阶线性微分方程(高等数学)

7-4 一阶线性微分方程(高等数学)

§7.4 一阶线性微分方程教学内容:一.一阶线性微分方程一阶线性微分方程的标准形式为()()y P x y Q x '+=,其中()()P x Q x ,为已知连续函数,()Q x 称为方程的自由项.当()0Q x ≠时,称()()y P x y Q x '+=为一阶线性非齐次微分方程.当()0Q x =时,称()0y P x y '+=为()()y P x y Q x '+=所对应的一阶线性齐次微分方程.1. 一阶齐次线性微分方程一阶齐次线性微分方程()0y P x y '+=是可分离变量的微分方程,通解为()d e P x x y C -⎰=.注 对于一阶线性齐次微分方程()0y P x y '+=的求解有两种常用方法:(1)利用分离变量法求其通解;(2)利用通解公式法求其通解.先化为标准形式确定()P x ,再代入通解公式求解.2.一阶非齐次线性微分方程()()y P x y Q x '+=的通解为()()d ()d ()e d e P x x P x x y Q x x C -⎰⎰=+⎰(常数变易法).注:对于一阶非齐次线性微分方程()()y p x y Q x '+=的求解有两种常用方法:(1)先求出对应的齐次方程通解,再利用常数变易法求其通解.(2)直接利用非齐次方程的通解公式求其通解.二.伯努利方程1.形如d ()()(0,1)d n y P x y Q x y n x +=≠的方程为伯努利方程.2.伯努利方程的解法:令1n z y -=,可化成关于z 为未知函数的一阶线性微分方程d (1)()(1)()d z n P x z n Q x x+-=-,解出z 后代入变换关系1n z y -=即得方程原方程的通解.三.例题讲解例1.求微分方程e sin 0y y x -'-=的通解.例2.求2d (21)d y x y x=-的通解. 例3.求20y xy '-=满足03x y ==的特解.例4.医学研究发现,刀割伤口表面恢复的速度为()2d 51d =-≥y t t t (2cm /day ),其中,y 表示伤口 的面积,t 表示时间,假设215cm t y ==,问受伤5天后该病人的伤口表面积为多少.例5.求微分方程)ln ln 1(x y y y x -+='的通解.例6.求方程30xy y x '=>()的通解. 例7.求方程23(0)xy x y x '=+>的通解.例8.求一阶线性微分方程230xy x y x '=+>()满足初始条件12x y ==的特解.例9.已知汽艇在静水中行驶时受到的阻力与汽艇的行驶速度成正比,若一汽艇以10km/h 的速度在静水中行驶时关闭了发动机,经20s 后汽艇的速度减至6km /h ,试确定发动机停止2min 后汽艇的速度. 例10.求解微分方程2d (ln )(0)d y y x y x x x+=>.。

电路理论基础 第七章(上) 一阶电路和二阶电路的时域分析(上)

电路理论基础 第七章(上) 一阶电路和二阶电路的时域分析(上)

二阶电路
dx a1 a0 x e(t ) t 0 dt
2
二阶电路中有二个动态元件,描述 电路的方程是二阶线性微分方程。
dx dx a2 2 a1 a0 x e(t ) t 0 dt dt
返 回 上 页 下 页
高阶电路
n
电路中有多个动态元件,描述 电路的方程是高阶微分方程。
前一个稳定状态
O
?
t1
u uL= 0,L i=US /R
过渡状态
有一过渡期 t
返 回 上 页 下 页
+ US -
(t →∞) R i + uL –
L
+ US
(t ∞) R i + S uL –
L
S未动作前,电路处于稳定状态: uL= 0, S断开瞬间
i=US /R
i = 0 , uL =∞
注意 工程实际中在切断电容或电感电路时
f (0 ) f (0 )
0- O 0+ t
注意 初始条件为 t = 0+时,u 、i 及其各阶导
数的值。
返 回 上 页 下 页
例1-1 图示为电容放电电路,电容原先带有电压Uo,
解 求开关闭合后电容电压随时间的变化。 (t=0)
Ri uC 0 (t 0)
duC RC uC 0 dt 特征根方程: RCp 1 0
会出现过电压和过电流现象。
返 回
上 页
下 页
换路
电路结构、状态发生变化 支路接入或断开 电路参数变化
过渡过程产生的原因 电路内部含有储能元件 L、C,电路在换路时 能量发生变化,而能量的储存和释放都需要一定的 时间来完成。
ΔW p Δt

7-2一阶微分方程习题答案

7-2一阶微分方程习题答案

河海大学理学院《高等数学》
2. 线性非齐次方程 dy P( x) y Q( x).
常数变易法:
dx
把齐次通解中的常数变易为待定函数的方பைடு நூலகம்.
实质: 未知函数的变量代换. ( y Ce P( x)dx )
新未知函数 u( x) 原未知函数 y( x),
作变换 y u( x)e P( x)dx

y
xu,
dy
u
x
du
,
x
代入原式
u
x du
f (u),
dx
dx
dx
即 du f (u) u .
dx
x
可分离变量的方程
河海大学理学院《高等数学》
du f (u) u .

dx f (u)
u
x
0时,

f
du (u)
u
ln C1x ,

x
Ce(u) ,((u)
du ) f (u) u
定义定义二齐次方程二齐次方程河海大学理学院高等数学dxdu求解微分方程dx求解微分方程河海大学理学院高等数学经过适当的变量代换三可化为齐次或可分离变量的方程三可化为齐次或可分离变量的方程检查应取何值可使方程化为齐次dxdydxxydy河海大学理学院高等数学为齐次方程
一阶常微分方程的求解
河海大学理学院《高等数学》
y u( x)e P( x)dx u( x)[ P( x)]e P( x)dx ,
河海大学理学院《高等数学》
将y和y代入原方程得u( x)e P( x)dx Q( x),
积分得 u( x) Q( x)e P( x)dxdx C,
一阶线性非齐次微分方程的通解为:

高等数学第七章4节一阶微分线性方程

高等数学第七章4节一阶微分线性方程

一阶齐次线性微分方程 一阶非齐次线性微分方程
2

dy P x y Qx dx
(1)
dy 为一阶非齐次线性微分方程, 则方程 Px y 0 dx
称为对应于(1)的齐次线性微分方程.
2. 一阶齐次线
dy P x y 0, dx dy 得 P x dx , y dy P x dx , y
u x Q x e P x dx dx C .
求得() 的通解为:
y [ Q x e P x dx dx C ]e P x dx .
7

y Ce P x dx e P x dx Q x e P x dx dx
第四节
一阶线性微分方程
dy P x y Qx dx
一、一阶线性微分方程 二、伯努利方程
dy P x y Q x y n dx
n 0 ,1
1
一、一阶线性微分方程
1.定义 形如
dy 称为一阶线性微分 P x y Q x 的方程, dx
将 y u x e
P x dx
代入() , 得
u x e
即 积分得
P x dx
u x e
P x dx
P x
P x u x e
P x dx
Q x
P x dx u x Q x e
齐次线性微分方程的通解
非齐次线性微分方程的特解
即 非齐次线性微分方程的通解等于对应的齐次线性方程的通解 与非齐次线性方程的一个特解之和.
8
5 dy 2y x 1 2 的通解 . 例1 求方程 dx x 1

同济高数第七版上册考研数学考纲

同济高数第七版上册考研数学考纲
习题5-3:
1(4)(7)(10)(18)
(19)(21)(25)(26)
2,5,6,7(10)(11)(13)
5.4反常积分
无穷限的反常积分
了解概念,会计算反常积分
例1~7
习题5-4:
1(4)(8)(10)
2,3(记住结论),4
无界函数的反常积分
5.5反常积分的审敛法
不作要求
总习题五
总结归纳本章的基本概念、基本定理、基本公式、基本方法
P120习题2-5:
1,3(3)(6),
4(4)(6)(7)
基本初等函数的微分方程
掌握
微分运算的法则
(微分形式不变性)
了解(会求
函数的微分)
微分在近似计算中的应用
不作要求
总习题二
总结归纳本章的基本概念、基本定理、基本公式、基本方法
P122中习题二:
2,3,6(1),7,11
12(1),13,14
数三不做12,13
掌握
章节
教材内容
考纲要求
必做例题
必做习题
1.6极限存在准则,两个重要极限
极限存在的两个准则(夹逼准则、单调有界数列必有极限)
掌握(数一数二)
了解(数三)
P52习题1-6:
1(4)(6),2,4
利用两个重要极限求极限的方法
掌握【重点】
例1~4
柯西审敛原理
不作要求
1.7无穷小的比较
无穷小阶的定义及无穷小量的比较方法
习题5-2:
3,5(2),6,7,8(3)
(8)(11)(12),
11(2),12,13,14,15,16
牛顿-莱布尼茨共识
掌握【重点】
(定理会证明)

自动控制原理考试试题第七章习题与答案

自动控制原理考试试题第七章习题与答案

第七章非线性控制系统分析练习题及答案7-1设一阶非线性系统的微分方程为xx3 x试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。

解令x0得3(21)(1)(1)0xxxxxxx系统平衡状态x e0,1,1其中:x0:稳定的平衡状态;ex1,1:不稳定平衡状态。

e计算列表,画出相轨迹如图解7-1所示。

x-2-11301312x-600.3850-0.38506x112010211图解7-1系统相轨迹可见:当x(0)1时,系统最终收敛到稳定的平衡状态;当x(0)1时,系统发散;x(0)1 时,x(t);x(0)1时,x(t)。

注:系统为一阶,故其相轨迹只有一条,不可能在整个x~x平面上任意分布。

7-2试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。

(1)xxx0(2) x1x2xx122xx12解(1)系统方程为1:xxx0(x0):xxx0(x0)令xx0,得平衡点:x e0。

系统特征方程及特征根:132:ss10,sj(稳定的焦点)1,2222:ss10,s1.618,0.618(鞍点)1,2xf(x,x)xx, d xdxxxxdx dx 1xx,1xxx11I:1(x0)1II:1(x0)计算列表-∞-3-1-1/301/313∞x0:11-1-2/302-∞-4-2-4/3-1x0:11-1-4/3-2-4∞20-2/3-1用等倾斜线法绘制系统相平面图如图解7-2(a)所示。

2图解7-2(a)系统相平面图(2)xxx112①x22xx②12由式①:x2x1x1③式③代入②:(x1x1)2x1(x1x1)即x12x1x10④令x1x10得平衡点:x e0由式④得特征方程及特征根为2.4142ss2101,2(鞍点)0.414画相轨迹,由④式xx 11 d x1dxx12x1x1x 1 x1 2计算列表322.53∞11.52=1/(-2)∞210-1-2∞用等倾斜线法绘制系统相平面图如图解7-2(b)所示。

高数下册第七章第五节一阶线性方程全微分方程

高数下册第七章第五节一阶线性方程全微分方程

x

2). 3
25
五、1、( x y)2 2x C ;
2、 y 1 sin x 1 ; xC
2、2x ln y ln2 y C ;
3、 x Cy3 1 y2. 2
二、1、 y sin x 5ecos x 1;
2、2 y

x3

x
3e
1 x2
1
.
三、v

k1 k2
t

k1m k22
(1

k0
em
t
).
四、1、 xy x C ;
2、
x2 y2

C

2 3
x3 (ln

两端积分得对应齐u次 方Q程( x通)e解 P
(
x
)yd x C dx
e P C
(
x
)d
x
故原方程的通解
y

e
P(
x)d
x

Q(
x
)
e

P
(
x
)
d
x
d
x

C


y Ce P( x)d x
e P(x)d x
Q(
x
)
e

P
(
x
)d
x
d
x
齐次方程通解
u

2(x
3
1)2

C
3
4
例2. 求方程
dx xy


2 y

x y3

d
y

第七章微分方程习题解答

第七章微分方程习题解答

第七章各节习题答案习题7-11. (1)一阶 (2)一阶 (3)二阶 (4)一阶 (5)二阶 (6)二阶2. 用隐函数求导法求出yx y x y 22--=',带入方程验证.因为022=+-y xy x 中没有任意常数,故是特解.3. C y =',因为)(C f Cx y +=中有任意常数,故是通解.4. 通解5. 不是解,代入可知,不满足方程.6. 特解331x y =7. 方法同2题,特解2)41(1615+=-x e y 8. 2ln +=x k y 9. 设物体的温度)(x T ,则 []0)()(T x T k x T -='()0(>k10. 设该质点的运动规律为)(t x x =,)(00t x x =,由已知得)()(t v dtt dx =,所以⎰⎰=tt t t dt t v t dx 0)()( ⎰=tt t t dt t v t x 00)()(即 ⎰=-t t dt t v t x t x 0)()()(0 亦即 ⎰+=tt dt t v x t x 0)()(0习题7-21. (1) 112-=-xCey (2) θcos Cr =(3) 2)1(2x y e C e += (4) C e e x y+=221 (5) C x x y ++=221arctan2. (1) )cos (sin 1C x x x xy +-=(2) 原方程化为 x x a y x x dx dy ln )ln 1(ln 1+=+,可求得通解ax x Cy +=ln .(3) 原方程化为y x ydy dx ln 211+=-,这是一个关于x x ',的一阶线性非齐次微分方程,可以求得通解)ln (ln 2C y y y x ++=.(4) xx Ce x x e y -++-=)21(212(5) 原方程化为y x y y dy dx 112-=-+,方法同题(3),可求得通解y Cye x y -=1. (6) 原方程化为y yx dydx2sin cos =-,方法同题(3),可求得通解2sin 2sin --=y Ce x y .3. (1) 221121ln 222-++=+e x y y (2) x y 21ln 2-=(3) )22(2255x x e e e e y -+=- (4) )224(2255xx e e e e y -+=-(5) ⎥⎦⎤⎢⎣⎡++-+=-t RL t L e L R R L I LR cos sin )1(12221. 设曲线方程为)(x f y =,曲线上任意点),(y x P 处切线的方程为)(x X y y Y -'=-,令0=Y ,得点A 的横坐标为y y x X '-=,222,)(y x OP x y y x AP +=-'-= 由OP AP =得方程x y y ±=',解得xy x y 2,2==.2. 曲线上任取点),(y x P ,点P 处切线的方程为)(x X y y Y -'=-,令0=X ,得切线在y 轴上的截距为y x y '-,由所给条件得方程x y x y ='-,解此方程求得曲线方程为x x Cx y ln -=.3. 设速度)(t v v =,物体所受外力(沿运动方向)有两个,一个是重力mg 沿斜面方向的分力αsin mg ,另一个是与运动方向相反的摩擦力lp kv +,即外力)(sin lp kv mg f +-=α(p 为重力mg 垂直于斜面的分力即αcos mg p =), 故ααcos sin lmg kv mg f +-=,由f dtdvm =得方程)cos (sin ααl mg kv dt dvm -=+.0=t 时,物体的初速度为00=v .求初值问题: ⎪⎩⎪⎨⎧=-=+0)0()cos (sin v l mg kv dtdv m αα得)1)(cos (sin t mke l k mg v ---=αα. 4. 设t 时刻输入的空气中CO 2的含量为)(tf ,车间的容积为=V 30×30×6,每分钟输入的空气量为v ∆,由所给条件解初值问题⎪⎩⎪⎨⎧=∆=∆+'%12.0)0(%04.0)()(f Vv V v t f t f 得%04.0%08.0)(+=∆-t Vv et f ,将%06.0)30(=f 代入,求得=∆v 250m 3/min.5. 设t 时刻船速)(t v ,船受到的阻力为kv ,由f dt dv m =得kv dtdvm -=(-号表示阻力与船速方向相反),解初值问题⎪⎩⎪⎨⎧=-=5)0(v kvdt dv m 得t m ke v -=5,将3)5(=v 代入,求得t v 5)53(5=.6. 设t 时刻物体温度为)(t T ,已知物体冷却速率与物体和介质的温差成正比,即)0(),(0〉--=k T T k dt dT ,由所给条件解初值问题⎪⎩⎪⎨⎧===+20,100)0(00T T kT kt dt dT得kte T -+=8020,10min 后物体温度降到60℃,代入特解可求得t e T 102ln 8020--+=,设0t t =时25=T ,代入解得400=t min.7. 设t 时刻电流为)(t I ,由基尔霍夫第二定律可知E RI dtdIL=+,得通解R E Ce I t L R+=-, 将初始条件0=t 时,0=I 代入,求得特解)1(t L R e REI --=.1. 逐次积分原方程求出213cos 32C x C x x y ++-=. 2. 逐次积分原方程求出2122sin 1cos 2C x C ax x aax a y ++--=.3. 令p dx dy y ==',则p dxdpy '=='',原方程化为22x p p =+',可求得412121221+-+=-x x e C p x ,从而求得22123414161C e C x x x y x +-+-=-.4. 解法同3,=y .5. 令p dxdyy ==',则dy dp p dx dy dy dp dx dp y ==='',原方程化为x xp p =+'2,可求得 )21(221x x e C e p +=-,从而求得6. 解法同5,x C e C C y 1211+=.习题7-51. 不能,因为1C 与2C 可合并;是通解,因为这里的1C 与2C 不可合并.2. 求出y '与y '',代入方程即可.3. 通解为xx e C e C y -+=221,特解为x x e e y -+=21212.4. 因为x y =*1,x e y =*2,x e y -*=3是所给方程的三个特解,所以**-21y y ,**-31y y 是对应的齐次方程的两个线性无关的特解,故原方程的通解为)()(21xxe x C e x C y --+-=.5. (1) x xe C eC y 421--+= (2) x e C C y 321+=(3) )(215x C C e y x+= (4) )3sin 3cos (212x C x C e y x+=-(5) x x e C eC y 22341+=- (6) xxe C e C y )21(2)21(1--+-+=6. (1)C Bx Ax y ++=*2 (2))(2C Bx Ax x y ++=*(3)D Cx Bx Ax y +++=*23 (4)x Axe y 23-*=(5))2sin 2cos (x B x A xe y x+=-*7. 1)(212++=-x C C ey x8. x x eC C y x47412221+-+=- 9. 自由项可以看成x e x f 31)(=与22)(x x f =之和,分别求方程xe y y y 3=+'+''与 2x y y y =+'+''的特解,再求原方程对应的齐次方程的通解,得所求为)23sin 23cos (1312212132x C x C e e x x y x +++-=-10. 252532++-=x xe e y11. x xx e x x e e y )(21232-+-=- 12. (1)先求质点的运动方程设质点的运动方程为)(t s s =,则加速度2dtsd a s =,由已知得t t s dt s d ssin 3)(42+-=,解初值问题⎪⎩⎪⎨⎧='==+0)0(,0)0(sin 3)(42s s tt s dt s d s 求得)cos 1sin(t s -= (2)再求)(t s 的最大值89)41(cos 2)(2+--='t t s ,令0)(='t s ,得21cos -=t 时,433max =s . 13. 设潜水艇的下沉深度为)(t h h =,下沉速度为dt dh,潜水艇所受外力有阻力(与下沉方向相反)dt dhk 及重力mg ,由f ma =得mg dt dh k dth d m =+22,解初值问题 ⎪⎩⎪⎨⎧='==+0)0(,)0(22h h h mg dt dh k dth d m 得)1(22t mke k g m t k mg h ---=. 14. 设时间由0到t 时浮筒下沉h 米,其浮力为hr D 2)2(π,r 为水的比重33/10m kg ,D 为筒的直径,浮力与运动方向相反,利用f ma =得,mg rh D dth d m +=2224π,解初值问题⎪⎩⎪⎨⎧='==+)0(,0)0(4222h h g h rD dt h d π 得)2cos 1(42t m r D rD mg h ππ-= 将2=t 时0=h 代入特解,有1cos =mrDπ 即ππ2=mrD,故)(9.19kg m ≈.15. 设开始时链条离钉子12m 处的一端为原点,轴向下为正,经过时间t 链条下滑了)(t x x =m.运动过程中的外力为[]g x x f ρ)8()12(--+=(ρ为链条的密度即单位长度上的质量),由f ma =得方程g x dt x d ρρ)24(2022+=,即解初值问题⎪⎩⎪⎨⎧='=+=0)0(,0)0(10222x x g xdt x d 得特解为21010-+=-t g t g eex 将0t t =时,8=x 代入特解,可求得)625ln(100+=gt s.综合测试题七1. (1) 不是,因为1y 与2y 不是线性无关.(2) 是,因为1cy 代入方程满足,且含有一个任意常数. (3) 2-=p , 1=q .(4) *2*1y y y y ++=(5) x x y y sin +=+''的特解为)sin cos (*x D x C x y += (6) C y x =+222. (1) B (2)C (3)D (4)C (5)A (6)D3. (1)× (2) × (3) ×(4)√4. (1) C x y =-+2212 (2) 1)1(22--=x C y (3) 221x y =+ (4) )(3xe C x y += (5) )1ln 2(yy y C y x -++= 5. (1) xx e C e C y 221+= (2) x ex C C y 5121)(-+=(3) )2cos 2sin (21x C x C ey x+=- (4) x x e C e C y -+=241(5) xex C C y 621)(+=(6) 原方程化为1)(2-=xy x y dx dy ,令u xy=,则u x u y '+=',将y 、y '代入方程, 可求得xy Ce y =.6. (1) xe y --=2 (2) 22221121ln ex y y ++-=+(3) xy 323)(ln 3-= 7. (1) x e x C C y 321)(92++=(2) x xx e x x eC e C y )2(2221+++=- (3) )2cos 225122sin 2259()2cos 2sin (212x x e x C x C e y xx +++=-8. (1) 解初值问题⎪⎩⎪⎨⎧=--='1)2(1y x y y 特解24x x y -=(2) 解初值问题⎪⎪⎩⎪⎪⎨⎧==+-==0,0)0()(0222t dt dx x mg dt dx k dtx d m方程mg dtdx k dt x d m +-=222)(化为mg kv v m +-='2令k m =2μ,上式为dt v g dv =-222μμ,两边积分得tgCe vg v g μμμ2=-+由0)0(=v 得1=C 再解出1122+-=tgtgee gv μμμ,即1122+-='tgtgee gx μμμ, ⎰+-=dt ee gx tgtg1122μμμ, 令y etg=μ2,则y gt ln 2μ=,dy yg dt 12μ=,所以⎰⋅+-=dy yg y y gx 1211μμ,解得 C ee x tgtg++=μμμ2222)1(ln2由0)0(=x ,得2ln 2μ-=C ,所以路程x 与t 的关系为2ln )1(ln222222μμμμ-+=tgtgee x .。

第7章--非线性系统分析--练习与解答

第7章--非线性系统分析--练习与解答

第七章 非线性控制系统分析习题与解答7-1 设一阶非线性系统的微分方程为3x x x+-= 试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。

解 令 x=0 得 -+=-=-+=x x x x x x x 321110()()()系统平衡状态x e =-+011,,其中:0=e x :稳定的平衡状态;1,1+-=e x :不稳定平衡状态。

计算列表,画出相轨迹如图解7-1所示。

可见:当x ()01<时,系统最终收敛到稳定的平衡状态;当x ()01>时,系统发散;1)0(-<x 时,x t ()→-∞; 1)0(>x 时,x t ()→∞。

注:系统为一阶,故其相轨迹只有一条,不可能在整个 ~xx 平面上任意分布。

7-2 试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。

(1) x xx ++=0 (2) ⎩⎨⎧+=+=2122112x x xx x x解 (1) 系统方程为图解7-1 系统相轨迹⎩⎨⎧<=-+I I >=++I )0(0:)0(0:x x x x x x x x令0x x ==,得平衡点:0e x =。

系统特征方程及特征根:21,221,21:10,()2:10, 1.618,0.618()s s s s s s I II ⎧++==-±⎪⎨⎪+-==-+⎩稳定的焦点鞍点(, ) , , x f x x x x dxdxxx x dx dx x x x x x==--=--==--=-+=ααβ111⎪⎪⎩⎪⎪⎨⎧<-=>--=)0(11:II )0(11:I x x βαβα计算列表用等倾斜线法绘制系统相平面图如图解7-2(a )所示。

图解7-2(a )系统相平面图(2)xx x 112=+ ① 2122x x x+= ② 由式①: x xx 211=- ③ 式③代入②: ( )( )x x x x x 111112-=+- 即 x x x 11120--= ④ 令 x x110== 得平衡点: x e =0 由式④得特征方程及特征根为 ⎩⎨⎧-==--414.0414.20122,12λs s (鞍点) 画相轨迹,由④式x xdxdx x x x 1111112===+α xx 112=-α 计算列表用等倾斜线法绘制系统相平面图如图解7-2(b )所示。

微分方程的基本概念

微分方程的基本概念

§7-1 微分方程的基本概念一、判断题1.y=ce x 2(c 的任意常数)是y '=2x 的特解。

( )2.y=(y '')3是二阶微分方程。

( )3.微分方程的通解包含了所有特解。

( )4.若微分方程的解中含有任意常数,则这个解称为通解。

( )5.微分方程的通解中任意常数的个数等于微分方程的阶数。

( ) 二、填空题1.微分方程.(7x-6y)dx+dy=0的阶数是 。

2. 函数y=3sinx-4cosx 微分方程的解。

3. 积分曲线y=(c 1+c 2x)e x 2中满足y x=0=0,y 'x=0=1的曲线是 。

三、选择题1.下列方程中 是常微分方程(A )、x 2+y 2=a 2(B)、 y+0)(arctan =xe dx d (C)、22x a ∂∂+22ya ∂∂=0 (D )、y ''=x 2+y 2 2.下列方程中 是二阶微分方程(A )(y '')+x 2y '+x 2=0 (B) (y ') 2+3x 2y=x 3 (C) y '''+3y ''+y=0 (D)y '-y 2=sinx3.微分方程22dx y d +w 2y=0的通解是 其中c.c 1.c 2均为任意常数(A )y=ccoswx (B)y=c sinwx (C)y=c 1coswx+c 2sinwx (D)y=c coswx+c sinwx 4. C 是任意常数,则微分方程y '=323y 的一个特解是 (A )y-=(x+2)3(B)y=x 3+1 (C) y=(x+c)3(D)y=c(x+1)3四、试求以下述函数为通解的微分方程。

1.22C Cx y +=(其中C 为任意常数) 2.x x e C e C y 3221+=(其中21,C C 为任意常数) 五、质量为m 的物体自液面上方高为h 处由静止开始自由落下,已知物体在液体中受的阻力与运动的速度成正比。

第七章 一阶线性偏微分方程 常微分方程课件 高教社ppt 王高雄教材配套课件

第七章  一阶线性偏微分方程 常微分方程课件 高教社ppt 王高雄教材配套课件

第七章一阶线性偏微分方程§7.1 首次积分和求解常微分方程组基本概念(,,)ni 1n i 1i u X x x 0x =∂=∂∑(,,)(,,)ni1n1ni 1iuX x x Z x x x =∂=∂∑(,,,)(,,,)ni 1n 1n i 1i uY x x u Z x x u x =∂=∂∑例丨例1解x yu uc0u cu0 x y∂∂+=+=∂∂即例2例2 解(,,)(,,)x y y x u g x y u u g x y u 0-=(,)()()(,)xy x y y x x y u y y x u x x y y u xyu u u v u v u v u g g u u g g u u g u g 0v v x y ∂==-=-⋅--⋅=-⋅=∂(,(,,))((,,))u g x y u 0u g x y u ϕΦ==或特征方程定义•齐次线性偏微分方程特征方程•拟线性偏微分方程特征方程(,,)ni1n i 1iu X x x 0x =∂=∂∑(,,,)(,,,)ni 1n 1n i 1iu Y x x u Z x x u x =∂=∂∑d d d n1212nx x x X X X ===d d d d n 1212n x x x uY Y Y Z====首次积分定义首次积分d (,,,),(),,,6d 0ii 1n i 0i y f x y y y x y i 1nx===()首次积分彼此独立彼此独立(,,)(,,)n 1111n 1n n 1nny y D D y y y y ψψψψψψ∂∂∂∂=∂∂∂∂n 1111n 11nn x x x x ϕϕϕϕ--∂∂⎡⎤⎢⎥∂∂⎢⎥⎢⎥⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦一阶线性偏微分方程与常微分方程组的关系d (,)d yf x y 8x=()d (,)d y f x y 0x y x x yψψψψ∂∂∂∂+=+=∂∂∂∂(,)u u f x y 09x y∂∂+=∂∂()d d (,)d d u u u y u uf x y 0x x y x x y ∂∂∂∂=+=+=∂∂∂∂定理1定理112n 12nf f f 010x y y y ψψψψ∂∂∂∂++++=∂∂∂∂()d (,,,),(),,,d 0ii 1n i 0i y f x y y y x y i 1n 6x===()证(,,,)0001n x y y G∈()(,,,)i i 0y x i 12n ϕ==(,(),,())1n x x x const ψϕϕ=d(,(),,())d 1n x x x 0x ψϕϕ=(,,,)(,,,)(,,,)n00000001n i 01n 01n i 1i x y y f x y y x y y 0x y ψψ=∂∂+=∂∂∑(,,,)0001n x y y G ∈12n 12nf f f 010x y y y ψψψψ∂∂∂∂++++=∂∂∂∂()(),,,d(,(),,())d i i 1n 12n y x 12n i 12nx x x f f f 0xxy y y ϕψψψψψϕϕ==⎛⎫∂∂∂∂=++++= ⎪∂∂∂∂⎝⎭(,(),,())1n x x x constψϕϕ=d (,,,),(),,,d 0ii 1n i 0i y f x y y y x y i 1n 6x===()§7.3 利用首次积分求解常微分方程组定理2d(,,,),,,dii1nyf x y y i1n11x==()(,,,),,,i1n ix y y c i1n12ψ==(),证(,,,)(,,,)12n 12n 0y y y ψψψ∂≠∂(,,,),,,i 1n i x y y c i 1n 12ψ==()(,,,),,,i 1n i x y y c i 1n 13ϕ==()(,(,,,),,(,,,)),,,j 11n n 1n j x x c c x c c c j 12n ψϕϕ==d (,,,)(,,,),,,d n i j 1n j 1n i 1ix x 0j 12nxy xϕψϕϕψϕϕ=∂∂+⋅==∂∂∑,,,,j j j1n 1nf f 0j 12n 14x y y ψψψ∂∂∂+++==∂∂∂()(,,,),,,nj ii 1n d f x 0j 12ny dxψϕϕϕ∂⎡⎤-==⎢⎥∂⎣⎦∑(,,,)(,,,)(,,,),,,nj 1n i 1n j 1n i 1i x f x x 0j 12n x y ψϕϕϕϕψϕϕ=∂∂+⋅==∂∂∑d (,,,),,,d ii 1n y f x y y i 1n 11x==()(,,,),,,i 1n i x y y c i 1n 12ψ==()(,,,)(,,,)12n 12n 0y y y ψψψ∂≠∂d (,,,),,,d ii 1n f x j 12nx ϕϕϕ==(,,,),,,,i i 1n y x c c i 12nϕ==(,,,,),,,,i i 01n y x x y y i 12nϕ==(,,,)(,,,)i i 01n c x y y i 12n ψ==(,,,)(,,,)i i 1n y x c c i 12n ϕ==(,,,,)(,,,)(,,,)i 001n i i 01n x x y y y x c c i 12n ϕϕ===(,,,)(,,,,),,,,i 1n i 01n x c c x x y y i 12n ϕϕ==(,,,,)(,,,)i i 01n y x x y y i 12n ϕ==(,,,)(,,,)i i i 01n c c x y y i 12n ψ===,d (,,,),,,d ii 1n y f x y y i 1n 11x==()求首次积分方法(,)(,,)x c y x c 00c cϕψ∂∂≠≠∂∂或d d d d n12012ny y y x g g g g ====(,,)i 0i g g f i 1n ==,,,01nμμμ,d d d d 0011n n 011n n g g g 0x y y μμμμμμϕ+++=+++=d (,,,),,,d ii 1n y f x y y i 1n 11x==()例1 求解方程组d d d d 222222y2xy x x y z z 2xz x x y z ⎧=⎪--⎪⎨⎪=⎪--⎩d d d 222x y zx y z 2xy 2xz==--d d y z yz=1y c z=d d d d ()222x x y y z z yx x y z 2xy++=++2222x y zc y++=12222yc z x y z c y ⎧=⎪⎪⎨++⎪=⎪⎩例2 求方程组的通积分d d d x y z xz yz xy==,,012g xz g yz g xy===,,012y x 2z μμμ===-001122g g g 0μμμ++=()2012dx dy dz d xy z μμμ++=-21xy z c -=2xc y=212xy z c x cy ⎧-=⎪⎨=⎪⎩。

常微分方程公式大全

常微分方程公式大全

常微分方程公式大全1、一阶微分方程:一阶微分方程是一类含自变量x与未知数y(x)及其一阶导函数y'(x)的方程,它可以表示为 F(x,y,y′)=0 。

如果可以解出y',可表示为: dydx=f(x,y)2、一阶微分方程的其中一种解法--分离变量法:形如 dydx=M(x)·N(y) :若N(y)≠0,我们可以化成(分离变量法): 1N(y)dy=M(x)dx 然后两边同时积分:∫1N(y)dy=∫M(x)dx ,则得结果: F(y)=G(x)+C3、齐次方程:如果一阶微分方程可以化为如下形式: dydx=φ(yx) ,则称此类方程为齐次方程。

4、齐次方程一般解法:引出新的位置变量函数 u=yx ,就可以把它化成可以分离变量的方程!(1)由u=yx得到 y=ux(2)两边取x的微分得到 dydx=xdudx+u ,并代入dydx=φ(yx)(3)得到 u+xdudx=φ(u) 再换一下位置 duφ(u)−u=dxx(4)两边积分,得到∫duφ(u)−u=∫dxx(5)设Φ(u) 是 1φ(u)−u 的一个原函数,则得通解:Φ(u)=ln|x|+C ,再把 u=yx 代回这个式子,就得到齐次方程的通解。

5、一些可以转化成一阶齐次微分方程的一阶微分方程:形如 dydx=ax+by+ca1x+b1y+c1 ,其中 aa1≠bb1 (原因是只有这样才可以解出h和k)当c=c1=0时,方程是齐次的,否则是不齐次的。

在非齐次型的情况下,可用以下步骤解:(1)作代换 x=X+h ; y=Y+k 。

(2)求常数h和k:因为dx=dX;dy=dY。

所以方程代换后变成:dYdX=aX+bY+(ah+bk+c)a1X+b1Y+(a1h+b1k+c1) ,因为要使得方程是齐次,所以令后面的常数项为0,即 ah+bk+c=0 以及 a1h+b1k+c1=0联立这两个方程就可以解出h和k。

(3)求 dYdX=aX+bYa1X+b1Y 的通解后,把x-h代X,y-k 代Y,就得到原方程的通解。

高数下册 第七章 第四、五节 一阶线性方程全微分方程

高数下册 第七章 第四、五节 一阶线性方程全微分方程
17
2) 再解定解问题
y′ + y = 0 , x > 1
y x =1 = y(1) = 2 − 2e−1
此齐次线性方程的通解为 y = C2e−x ( x ≥ 1) 利用衔接条件得 C2 = 2(e − 1) y = 2(e − 1) e−x ( x ≥ 1) 因此有 3) 原问题的解为 2(1 −e−x ), 0 ≤ x ≤ 1 y= −x 2(e − 1) e , x ≥ 1
4.求微分方程 x ln xdy + ( y − ln x)dx = 0 满足条件 求微分方程 1 1 y = (ln x + ) y x=e = 1 的解。 2 ln x 19
= 0 的解。 x 1 y= − 2 x
2
x y′ + y = xex 满足条件 y x=1 = 1的特解。 5.求微分方程 1 1 x −1 x 1 6. y = x ln x − x y= e + x x 3 9 1 6.求微分方程 xy′ + 2 y = xln x , y x=1 = − 求微分方程 的特解。 的特解。 9 y 1 7.过点 ( , 0 ) 且满足关系式 y′ arcsin x + 1 − x2 = 1 过点 1− 2 1 yarcsin x = x − 的曲线方程为 2 的一个解, y = ex 是微分方程 x y′ + p( x) y = x 的一个解,则 8.设 设
1 2y + − 3x = 0 y
21
练 习 题
一、求下列微分方程的通解: 求下列微分方程的通解: 1、 1、 y ′ + y cos x = e − sin x ; 2、 2、 y ln ydx + ( x − ln y )dy = 0 ; dy 2 3、 3、( y − 6 x ) + 2 y = 0 . dx 二、求下列微分方程满足所给初始条件的特解: 求下列微分方程满足所给初始条件的特解: dy 1、 1、 + y cot x = 5e cos x , y π = −4 ; x= dx 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dy 1 (2) 1 dx x y
(5) y( xy 1)dx x(1 xy x y )dy 0
2 2
3. 求一连续可导函数
使其满足下列方程: 令
u x t
提示:
f ( x) sin x f (u )d u
0
x
则有
f ( x) f ( x) cos x
两端积分得
u ln | u 1 | x ln C
以uxy代入上式:y ln | x y 1 | ln C ,
或 x Ce y y 1.
作业:P315 1(1),(3),(7);2(2),(4);7(1),(3) 内容小结
1. 一阶线性方程 方法1 先解齐次方程 , 再用常数变易法. 方法2 用通解公式
例2 求方程 y
解:
1 sin x y 的通解. x x sin x 1 , P ( x ) , Q( x ) x x P ( x )dxdx C ]e P ( x )dx y [ Q( x )e

1 1 x dx sin x x dx e e dx C x
验证 y e
一个特解:
P ( x ) dx P ( x )dx dx ) (e y Q( x )e
P ( x ) dx P ( x ) dx P ( x ) dx P ( x ) dx e .( P ( x )) Q ( x )e dx e Q ( x )e dx P ( x ) dx P ( x ) dx P ( x )e Q ( x )e dx Q ( x )
dy y3 方程变为 dx 不便求解 解: 把 y 看成是 x 的函数: 1 2 xy 2
dx y 2 y 2 x 1 则为一阶线性微分方程 但若写成: dy 3 dx 2 y2 x 0 于是对应齐次方程: y dy
3
1 常数变易法 x u( y ) 2 , y 1 代入原方程 u( y ) u( y ) ln | y | C y 1 故原方程的通解为 x 2 (ln | y | C ) y
线性方程
线性方程
(5) ( y sin x 2) y dx x d y
dy 2 sin x 2 y y 伯努利方程 dx x x
2、求下列方程的通解:
dy (1) ( x y)2 dx
(3) xy y y(ln x ln y)
(4) y y 2 2(sin x 1) y sin 2 x 2 sin x cos x 1
y C e P( x) d x 故通解为:
dy y 的通解. 例1 求方程 ( x 2) dx dy dx 解1: 原方程可变为 y x2 两边积分得 ln|y|ln|x2|lnC
方程的通解为 yC(x2)
dy P ( x ) y 0, y C e P ( x ) d x dx
y C e P( x) d x
dy 非齐次线性方程: P ( x ) y Q ( x ). dx
P ( x )dxdx C ]e P ( x )dx y [ Q( x )e
Ce
P ( x ) dx
e
P ( x ) dx
P ( x )dx dx Q( x )e
积分得 即 则
y C ( x 1)2
y u ( x 1)2 2 u ( x 1)
2 用常数变易法求特解. 令 y u ( x ) ( x 1) ,
代入非齐次方程得 解得
3 2 u ( x 1) 2 C 3
故原方程通解为
例4 求方程 y 3 dx (2 xy 2 1)dy 0 的通解.
f (0) 0
利用公式可求出
1 x f ( x) (cos x sin x e ) 2
伯努利(1654 – 1705) ( 雅各布第一 · 伯努利 ) 瑞士数学家, 他家祖孙三代出过十多
位数学家.
1694年他首次给出了直角坐
1695年
标和极坐标下的曲率半径公式,
年提出了著名的伯努利方程, 1713年出
P ( x ) dx
P ( x )dx dx 是非齐次线性方程的 Q( x )e
dy P ( x ) y Q( x ). dx
即: e
P ( x ) dx
P ( x )dx dx 是非齐次方程一个特解. Q( x )e
常数变易法: 把齐次方程通解中的常数变易为待定函数的方法. 齐次线性方程的通解
e

ln x
sin x ln x e dx C x
1 x
sin xdx C
1 cos x C . x
5 dy 2y 例3 解方程 ( x 1) 2 . dx x 1 dy 2y d y 2d x 解: 先解 0, 即 dx x 1 y x1
P ( x )d x
ye
2. 伯努利方程

P ( x ) d x dx C Q( x) e
令 u y1 n , 化为线性方程求解.
思考与练习
1、判别下列方程类型: 提示:
(1) x
dy dy y xy dx dx
y 1 dx dy y x dy y y ln dx x x
yy 2 xy 3, y cos y 1, 非线性的.
考察下列方程是否是(或能否化为)线性方程?
(1) ( x 2)
dy 1 dy y 0 是齐次线性方程. y dx x 2 dx (2) 3x25x5y 0 y 3x25x 是非齐次线性方程
dy P ( x ) y Q( x ) (一阶线性微分方程) dx
二、齐次线性方程的解法 (使用分离变量法)
dy 齐次方程 P ( x ) y 0 是变量可分离方程 dx dy P ( x )d x 分离变量: y
两边积分得: ln y P ( x )d x ln C
版了他的巨著《猜度术》, 这是组合数学与概率论史
上的一件大事, 书中给出的伯努利数在很多地方有用,
而伯努利定理则是大数定律的最早形式. 此外, 他对
双纽线, 悬链线和对数螺线都有深入的研究 .
P ( x ) dx
dy P ( x ) y Q( x ) dx
y u( x )e
P ( x ) dx
u( x )[ P ( x )]e
u( x )e
P ( x ) dx
P ( x ) dx
将y和y代入原方程得
Q( x ),
P ( x )dxdx C , 积分得 u( x ) Q( x )e
dy 1 x2 y dx 2 x 2 dx 1 y2 x dy 2 y 2
可分离变量方程
dy (2) x y (ln y ln x) dx
齐次型方程
(3) ( y x 3 ) dx 2 x d y 0 (4) 2 y dx ( y 3 x) d y 0
dx 2dy x C 1 分离变量,并积分得 , 1 y2 x y
dy 1 例5: 解方程 dx x y
法1. 取 y 作自变量:
dx x y 线性方程. dy
d y du 1 dx dx
法2. 作变换 u x y, 则 y u x ,
du 1 du u1 1 , 代入原方程得 dx u dx u u 可分离变量方程 du dx u1
第七章
第四节 一阶线性微分方程
一、一阶线性微分方程
二、齐次线性方程的解法
三、非齐次线性方程的解法
一、一阶线性微分方程
dy 一阶线性微分方程标准形式: P ( x ) y Q( x ) dx
若 Q(x) 0, 称为齐次方程 ; 若 Q(x) 0, 称为非齐次方程 .
dy dx 2 y x , x sin t t 2 , 线性的; 例如 dx dt
(3) y ycos x e sin x 是非齐次线性方程
dy 10 x y 不是线性方程 (4) dx dy x3 dx ( y 1)2 2 dy 3 0或 x 0 (5) ( y 1) 2 dx ( y 1) dx dy x3
不是线性方程
dy P ( x ) y 0, y C e P ( x ) d x . dx
即 y e v ( x )e P ( x )dx .
非齐次方程通解形式与齐次方程通解相比: C u( x )
y u( x )e
P ( x ) dx
.
y u( x )e
解2:这是齐次线性方程:
p( x ) 1 ( x 2)
dy 1 y dx ( x 2)
由通解公式得原方程的通解为:
y Ce
P ( x ) dx
Ce

1 dx ( x 2)
Ce ln( x 2) C ( x 2)
dy P ( x ) y Q( x ) 的解法 三、非齐次线性方程 dx dy dy Q( x ) P ( x ) y Q( x ), P ( x ) dx , dx y y Q( x ) dx P ( x )dx , 两边积分 ln y y Q( x ) 设 dx为v ( x ), ln y v ( x ) P ( x )dx , y
一阶线性非齐次微分方程的通解为:
P ( x )dxdx C ]e P ( x )dx y [ Q( x )e
相关文档
最新文档