韦达定理的应用
韦达定理在解析几何中的应用
韦达定理在解析几何中的应用陈历强一,求弦长在有关解析几何的高考题型中不乏弦长问题以及直线与圆锥曲线相交的问题。
求直线与圆锥曲线相交所截得的弦长,可以联立它们的方程,解方程组求出交点坐标,再利用两点间距离公式即可求出,但计算比较麻烦。
能否另擗捷径呢?能!仔细观察弦长公式:∣AB ∣=∣x 1-x 2∣21k +⋅=)1](4)[(221221k x x x x +-+或∣AB ∣=∣y 1-y 2∣211k +⋅ =)11](4)[(221221ky y y y +-+ , 立刻发现里面藏着韦达定理(其中x 1、x 2分别表示弦的两个端点的横坐标,y 1、y 2分别表示弦的两个端点的纵坐标)。
请看下面的例子:例1,已知直线 L 的斜率为2,且过抛物线y 2=2px 的焦点,求直线 L 被抛物线截得的弦长。
解:易知直线的方程为y=2(x-2p ). 联立方程组y 2=2px 和y=2(x-2p ) 消去x 得y 2-py-p 2=0.∵△=5p 2>0,∴直线与抛物线有两个不同的交点。
由韦达定理得y 1+y 2=p,y 1y 2=-p 2.故弦长d=25p 例2,直线y=kx-2交椭圆x 2+4y 2=80交于不同的两点P 、Q ,若PQ 中点的横坐标为2,则∣PQ ∣等于___________.分析:联立方程组y=kx-2和x 2+4y 2=80消去y 得(4k 2+1)x 2-16kx-64=0设P(x 1,y 1),Q(x 2,y 2). 由韦达定理得x 1+x 2=14162+k k = 4得k=21.x 1x 2= -32∣PQ ∣=6 . 练习1:过抛物线 y 2=4x 的焦点作直线交抛物线A(x 1,y 1),B(x 2,y 2)两点,如果x 1+x 2=6, 那么|AB|=( ) (A)10 (B)8 (C)6 (D)4 (文尾有提示.下同) 二,判定曲线交点的个数例3,曲线 y = ax 2(a>0)与曲线 y 2+3= x 2+4y 交点的个数应是___________个. 分析:联立方程组y=ax 2(a>0)与y 2+3=x 2+4y.消去x 得y 2-(1/a+4)y+3=0(a>0) 因为 ⎪⎩⎪⎨⎧>=>+=+>>-+=∆030/14)0(012)4/1(21212y y a y y a a 所以,方程有两个不等正实根。
韦达定理在圆锥曲线中的应用
韦达定理在圆锥曲线中的应用
1、韦达定理
韦达定理是17世纪法国数学家威塔·韦达在有关圆锥曲线几何方面发现的一条定理,定理指出:在位于同一直线上且圆交于同一直径的任意两个圆,两个圆可以推出之间的比例关系,即将外圆的半径写成内圆的半径 n 倍,这条关系称为韦达定理。
2、圆锥曲线中韦达定理的应用
在圆锥曲线中,韦达定理可以用来解决三维空间中的圆相关问题,例如圆锥曲线上两个圆相交的情况,韦达定理可以利用外圆半径除以内圆半径的比例来定义椭圆圆环上两个圆的关系。
在抛物线中,韦达定理也可以应用,将一条抛物线分成两段,这样通过比例关系,可以将抛物线分成两个相类似的曲线,从而得到所需的抛物线函数,这种方法也可以应用于圆锥曲线的参数方程求解中。
此外,在计算形态学上,可以利用韦达定理在xy平面上椭圆圆环上找到曲线加权最小值以及凹曲面研究。
3、实例分析
下面我们给出一个简单的例子,假设有一个圆锥曲线,外圆半径为R,内圆半径为r,则韦达定理指出,外圆与内圆之间的比例是:
R:r = n
即外圆为内圆n倍半径,我们可以根据这一比例关系,计算出内圆的
半径。
例如,假设椭圆圆环的外圆半径为 5m,那么按照韦达定理,椭
圆圆环的内圆的半径就可以推算出来,半径为: R:r = 5:1,即内圆的半
径为1m。
4、结论
针对圆锥曲线,韦达定理对诸多几何形状求解有着十分重要的作用,圆锥曲线的外圆与内圆之间的比例关系是韦达定理指出的,从而可以
计算出内圆的半径值。
另外,韦达定理也能够用于椭圆圆环、抛物线
等函数中,从而求解所需的曲线参数。
韦达定理适用范围
韦达定理适用范围1. 引言韦达定理是一种在微积分中常用的定理,它是数学家韦达在17世纪提出的。
韦达定理的核心思想是将函数的导数与原函数的关系进行转换,从而简化计算过程。
在数学和物理学等领域,韦达定理被广泛应用于求解函数的极值、曲线的弧长、曲线的曲率等问题。
本文将介绍韦达定理的基本概念、公式推导以及适用范围,以帮助读者更好地理解和应用韦达定理。
2. 韦达定理的基本概念韦达定理是微积分中的一条基本定理,它建立了函数的导数与原函数的关系。
在微积分中,函数的导数表示了函数在某一点上的斜率或变化率,而原函数则表示了函数在某一区间上的积分。
韦达定理的基本概念可以用以下公式表示:∫fba′(x)dx=f(b)−f(a)其中,f′(x)表示函数f(x)的导数,∫ba 表示对x从a到b的积分,f(b)和f(a)分别表示函数f(x)在点b和点a上的取值。
3. 韦达定理的公式推导要理解韦达定理的公式推导,我们首先需要了解定积分和不定积分的概念。
定积分表示区间上函数的积分,可以用以下公式表示:∫fba(x)dx=F(b)−F(a)其中,f(x)表示函数f(x)在区间[a,b]上的取值,F(x)表示函数f(x)的原函数。
不定积分表示函数的原函数,可以用以下公式表示:∫f′(x)dx=f(x)+C其中,f′(x)表示函数f(x)的导数,C表示常数。
韦达定理的公式推导基于这两个基本概念。
我们可以将定积分的上限b看作是一个变量x,并将定积分的下限a看作是一个常数。
这样,我们可以将定积分表示为不定积分的形式:x(t)dt=F(x)−F(a)∫fa接下来,我们对上式两边求导数,根据链式法则和基本求导法则,可以得到:f(x)=F′(x)这就是韦达定理的公式推导过程。
它表明,函数的导数等于函数的原函数的导数。
4. 韦达定理的适用范围韦达定理的适用范围非常广泛,它可以用于求解函数的极值、曲线的弧长、曲线的曲率等问题。
4.1 函数的极值在求解函数的极值时,韦达定理可以帮助我们简化计算过程。
韦达定理的原理应用是什么
韦达定理的原理应用是什么1. 韦达定理简介韦达定理(Vieta’s theorem)是一个用于解二次方程的定理,它通过多项式的系数与根之间的关系,揭示了根与系数之间的重要特征。
这个定理是以法国数学家弗朗索瓦·韦达(François Viète)的名字命名的,他在16世纪首次提出了这个定理。
2. 韦达定理的表述如果我们有一个二次方程:ax2+bx+c=0其中a、b、c是实数,x是未知数。
韦达定理给出了与这个二次方程相关的根之间的关系:如果r1和r2是方程的两个实数根,那么他们满足以下关系:r1 + r2 = -b / ar1 * r2 = c / a这些关系将帮助我们解决二次方程并找到其根的值。
3. 韦达定理的应用韦达定理有广泛的应用。
下面列举几个常见的应用场景:3.1. 求二次方程的根韦达定理为我们提供了一个实用的方法来求解二次方程的根。
我们只需要根据方程的系数,计算出和与积的值,然后利用韦达定理的关系式即可得到方程的两个根。
例如,对于方程 2x^2 + 3x - 5 = 0,我们可以使用韦达定理计算出: - 和的值:-3 / 2 - 积的值:-5 / 2这样我们就得到了方程的两个根。
3.2. 寻找根与系数之间的关系韦达定理不仅仅是一个用于解二次方程的工具,它还揭示了根与系数之间的重要关系。
通过韦达定理,我们可以发现以下一些有趣的规律:•和的值与一次项系数的相反数成比例:根的和与一次项系数的相反数成正比。
即 r1 + r2 = -b / a•积的值与常数项成比例:根的积与常数项成正比。
即 r1 * r2 = c / a这些规律对于我们研究多项式方程的性质以及根的特性都非常有用。
3.3. 解决实际问题韦达定理可以应用于解决一些实际的问题。
例如,假设我们正在研究一个投掷物体的运动,我们希望知道在什么时候物体落地。
我们可以将物体的运动模型建立为二次方程,然后通过韦达定理求解出方程的根。
韦达定理的数学运用,这类学生很容易搞错
韦达定理的数学运用,这类学生很容易搞错韦达定理是一种基本的数学定理,它在解决三角形问题中有着广泛的应用。
在学习韦达定理时,学生往往会遇到一些困难,容易搞错。
本文将介绍韦达定理的数学运用,并提供一些解决问题的技巧和方法。
一、韦达定理的定义韦达定理是指在三角形ABC中,如果从顶点A向边BC引一条平分线AD,则有:\frac{AB}{AC}=\frac{BD}{DC}其中,AB、AC、BD、DC分别表示三角形ABC中的边长和平分线AD所分割的边长。
二、韦达定理的数学运用1. 求三角形的内心内心是三角形三条角平分线的交点,也是三角形内接圆的圆心。
利用韦达定理可以求出三角形的内心坐标。
假设三角形ABC的三个顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则三角形内心的坐标为:x=\frac{ax1+bx2+cx3}{a+b+c}y=\frac{ay1+by2+cy3}{a+b+c}其中,a、b、c分别表示三角形BC、AC、AB的边长。
2. 求三角形的外心外心是三角形三条垂直平分线的交点,也是三角形外接圆的圆心。
利用韦达定理可以求出三角形的外心坐标。
假设三角形ABC的三个顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则三角形外心的坐标为:x=\frac{a(x1^2+y1^2)+b(x2^2+y2^2)+c(x3^2+y3^2)}{2S}y=\frac{a(x1^2+y1^2)+b(x2^2+y2^2)+c(x3^2+y3^2)}{2S}其中,a、b、c分别表示三角形BC、AC、AB的边长,S表示三角形的面积。
3. 求三角形的垂心垂心是三角形三条高线的交点。
利用韦达定理可以求出三角形的垂心坐标。
假设三角形ABC的三个顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则三角形垂心的坐标为:x=\frac{(x1+x2+x3)(a^2+b^2-c^2)}{2(a^2+b^2+c^2)-(x1^2+x2^2+x3 ^2)}y=\frac{(y1+y2+y3)(a^2+b^2-c^2)}{2(a^2+b^2+c^2)-(y1^2+y2^2+y3 ^2)}其中,a、b、c分别表示三角形BC、AC、AB的边长。
初中数学 一元二次方程的韦达定理有什么应用
初中数学一元二次方程的韦达定理有什么应用一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算一元二次方程根的和与积的方法。
韦达定理在实际生活中有着广泛的应用,下面将详细介绍一些常见的应用场景。
1. 判定方程根的性质:韦达定理可以用来判定方程的根的性质。
通过计算根的和与积,我们可以得到关于根的一些信息。
例如,当根的和与根的积都为正数时,说明方程的两个根都是正数;当根的和为负数而根的积为正数时,说明方程的两个根一个为正数一个为负数。
这种信息对于解决实际问题非常有用,可以帮助我们了解方程的解的情况。
2. 求解方程的根:韦达定理可以用于求解一元二次方程的根。
通过将方程的系数带入韦达定理的公式,我们可以计算出方程的根的和与积。
进一步求解根的具体数值,可以使用一些代数方法,如配方法、因式分解或求根公式。
韦达定理为我们提供了一个快速计算根的和与积的方法,从而更方便地解决一元二次方程。
3. 拟合数据:韦达定理可以用于数据的拟合。
通过找到满足给定数据点的一元二次方程,我们可以使用韦达定理计算方程的根的和与积。
根的和与积可以提供关于数据的整体趋势和特征的信息。
这种方法在统计学和数据分析中非常有用,可以帮助我们找到最佳拟合曲线并预测未知数据的值。
4. 解决实际问题:韦达定理在解决实际问题中起到重要的作用。
例如,在物理学中,我们可以使用韦达定理来计算自由落体运动中物体的最大高度和落地时间;在经济学中,韦达定理可以用来分析成本和收益之间的关系,帮助我们做出合理的决策;在工程学中,韦达定理可以用于计算电路中的电流和电压,从而设计合适的电路。
总结:一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算方程根的和与积的方法。
韦达定理在判定方程根的性质、求解方程的根、拟合数据以及解决实际问题等方面有着广泛的应用。
了解韦达定理及其应用可以帮助我们更好地理解和解决一元二次方程相关的数学问题,同时也可以在实际生活中应用这些知识来解决各种问题。
韦达定理适用范围
韦达定理适用范围摘要:一、韦达定理简介1.韦达定理的定义2.韦达定理的发现者二、韦达定理的适用范围1.多项式的系数2.复数域上的韦达定理3.实数域上的韦达定理三、韦达定理的应用1.代数中的应用2.几何中的应用3.三角函数中的应用四、韦达定理与其他定理的关系1.笛卡尔定理与韦达定理的关系2.完全平方公式与韦达定理的关系正文:韦达定理,又称Vieta定理,是由法国数学家弗朗索瓦·韦达(FranoisViète)提出的。
这个定理在代数学中有着广泛的应用,它为我们解决代数问题提供了一个强有力的工具。
首先,让我们来了解一下韦达定理的基本概念。
韦达定理是一个关于多项式系数的定理,它告诉我们,如果多项式方程的根已知,那么我们可以通过根与系数之间的关系,求得多项式的系数。
这个定理的表达式为:若ax^2 + bx + c = 0的两根为α、β,则有α + β = -b/a,αβ = c/a。
韦达定理不仅适用于实数域,还适用于复数域。
在复数域上,韦达定理的形式略有不同,但本质相同。
复数域上的韦达定理可以推广到更高次的方程,例如三次方程和四次方程。
韦达定理在代数学中有广泛的应用,例如求解线性方程组、二次方程、三次方程等。
此外,韦达定理还可以帮助我们理解几何图形,例如在求解椭圆、双曲线和抛物线的性质时,韦达定理可以发挥重要作用。
在三角函数中,韦达定理也有应用,例如求解正弦函数和余弦函数的性质。
韦达定理与其他一些著名定理也有密切关系。
例如,笛卡尔定理与韦达定理在某些情况下可以相互转化。
另外,韦达定理与完全平方公式也有联系,通过完全平方公式,我们可以将韦达定理推广到更高次的方程。
总之,韦达定理在代数学中具有重要地位,它的适用范围广泛,既可以应用于实数域,也可以应用于复数域。
韦达定理在解决代数问题和几何问题中都发挥着重要作用,同时它与其他一些著名定理也有着密切关系。
韦达定理应用
韦达定理应用(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除韦达定理的应用一、典型例题例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。
解:设另一个根为x1,则相加,得x例2:已知方程x-5x+8=0的两根为x1,x2,求作一个新的一元二次方程,使它的两根分别为和.解:∵又∴代入得,∴新方程为例3:判断是不是方程9x-10x-2=0的一个实数根?解:∵二次实数方程实根共轭,∴若是,则另一根为∴,。
∴以为根的一元二次方程即为.例4:解方程组解:设∴.∴A=5. ∴x-y=5 又xy=-6.∴解方程组∴可解得例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值解:不妨设斜边为C=13,两条直角边为a,b,则2。
又a,b为方程两根。
∴ab=4m(m-2)∴S但a,b为实数且∴∴∴m=5或6 当m=6时,∴m=5 ∴S.例6:M为何值时,方程8x-(m-1)x+m-7=0的两根①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数解:①∵∴m>7②∵∴不存在这样的情况。
③∴m<7④∴m=7⑤∴m=15.但使∴不存在这种情况【模拟试题】(答题时间:30分钟)1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q=3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为()A.±8 B.8 C.-8 D.±44. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等?5. 已知方程(a+3)x+1=ax有负数根,求a的取值范围。
6. 已知方程组的两组解分别为,,求代数式a1b2+a2b1的值。
7. ABC中,AB=AC, A,B,C的对边分别为a,b,c,已知a=3,b和c是关于x 的方程x+mx+2-m=0的两个实数根,求ABC的周长。
韦达定理怎么运用
韦达定理怎么运用
中国南宋伟大的数学家秦九韶在他1247年编写的世界数学名著《数书九章》一书中提出了数字一元三次方程与任何高次方程的解法“正负开方术”,提出“商常为正,实常为负,从常为正,益常为负”的原则,纯用代数加法,给出统一的运算规律,并且扩充到任何高次方程中去。
那么,接下来就让我们一起来了解以下关于一元三次方程韦达定理怎么用的具体方法吧。
文章仅供大家的参考借鉴!希望文章能够帮助到大家!
韦达定理怎么运用
应用范围1:已知两个根其中的一个,就可以代入韦达定理的关系式里的任何来求得另一个根,并且还可以用另一个关系式来检验。
应用范围2:根据根与系数的关系,把已知的两个根的和的相反数做所求方程的一次项系数,两根的积做常数项,而把二次项系数作为1,这样,就能作出这个方程。
应用范围3:根据根与系数的关系,可以把所求的两个数当作一元二次方程当中的系数,然后解这个方程,那么方程的两个根就是这两个数。
应用范围4:已知一个一元二次方程,不解这个方程,求某些代数式的值(这些代数式是方程两个根的对称式)。
应用范围5:已知一个一元二次方程,不解这个方程,求作另一个方程,使它的根与原方程的根有某些特殊关系。
应用范围6:利用给出的条件,确定一个一元二次方程中某些字母系数的值。
韦达定理应用复习
a(x- x1 )(x- x2).
1.设x1、x2是方程2x2-6x+3=0的根,
则
(1)
x2
x1
x1 x2
(2)(x1 2)(x2 2)
(3) x1 x2
(4).x1 x2
2.若方程x2-3x-2=0的两根为x1、
10.*已知实数a、b满足2a2-a = 2b2-b=2,
求
a b
+
b a
的值.
11.已知一元二次方程ax2-√2 bx+c=0的两个根满足|x1x2|=2-√2,a、b、c分别是 △ABC中∠A、∠B、∠C 的对边,并且c=√2a,试判断 △ABC是什么三角形?并证 明.
韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a
,
如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一种根为零.
6.若有关x的方程x2+(2k+1)x+k2-
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
韦达定理的分类应用
韦达定理的分类应用引言韦达定理,也被称为平面解析几何的圆锥曲线定理,是数学中重要的定理之一。
它揭示了平面上一条直线与一个圆锥曲线的关系,具有广泛的应用价值。
本文将介绍韦达定理的分类应用,包括判断直线与圆锥曲线的位置关系,求解直线与圆锥曲线的交点等。
定理表述韦达定理的一般表述为:平面上一条直线与一个圆锥曲线相交点的数量等于该直线与曲线的方程的次数之和。
应用场景1. 判断直线与圆锥曲线的位置关系利用韦达定理,可以通过判断直线与圆锥曲线的交点数量来确定它们的位置关系。
如果交点数量为零,则说明直线与圆锥曲线没有交点,两者不相交;如果交点数量为一个,则说明直线与圆锥曲线相切;如果交点数量为两个,则说明直线穿过圆锥曲线。
2. 求解直线与圆锥曲线的交点除了判断位置关系,韦达定理还可以帮助求解直线与圆锥曲线的交点坐标。
首先,根据直线与曲线的方程构成一个方程组,然后通过解方程组可以求得交点的坐标。
案例分析下面通过一个简单的案例来说明韦达定理的应用。
案例:求解直线与椭圆的交点坐标。
已知椭圆的方程为:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$直线的方程为:$y = mx + c$将直线的方程代入椭圆的方程,得到:$$\frac{x^2}{a^2} + \frac{(mx + c)^2}{b^2} = 1$$整理后可得二次方程:$$(a^2m^2 + b^2)x^2 + 2a^2mcx + (a^2c^2 - a^2b^2) = 0$$利用韦达定理,可以求解该二次方程的解,即直线与椭圆的交点坐标。
结论韦达定理是一项重要的数学工具,可以方便地判断直线与圆锥曲线的位置关系,以及求解它们的交点坐标。
在实际问题中,对于涉及圆锥曲线的分析和计算,韦达定理具有广泛的应用价值。
韦达定理在实际问题中的应用
韦达定理在实际问题中的应用韦达定理是一个非常有用的几何定理,它被广泛应用于各种实际问题中,包括工程学、物理学和金融学等领域。
本文将讨论韦达定理的定义、证明和一些实际应用。
一、韦达定理的定义韦达定理是一个三角形内部的一个重要定理,它阐述了三角形内任意一点到三边的距离之积等于这个点到三边的三条距离之积。
图1:韦达定理示意图设三角形ABC的三条边分别为AB、BC和AC,三角形内任意一点P到三条边的距离分别为d1、d2和d3,则根据韦达定理有:AB × PC × d1= BC × PA × d2= AC × PB × d3二、韦达定理的证明韦达定理的证明可以使用相似三角形和割线定理来完成。
首先,我们利用相似三角形证明了韦达定理在三角形底边上的一个特殊情况。
例如,在图1中,我们可以通过相似三角形证明: PB/AB = PC/AC令 d1 = h1、d2 = h2,则 h1/h2 = PB/PC因此,韦达定理的底边情况成立。
接下来,我们可以使用割线定理继续证明韦达定理。
在图1中,我们从点P引一条平行于AB的直线,它与BC和AC的交点分别为Q和R。
根据割线定理,有:PB/PC = BQ/CR又因为三角形PAB和PCQ相似,三角形PAR和PRB相似,因此有以下等式成立:PA/PC = AB/BQRA/RB = AP/PB将上述等式代入割线定理公式中得:PB/PC = AB/BQ = AP/CR = RA/RB = h3/h4因此,有以下等式成立:AB × PC × d1 = BC × PA × d2 = AC × PB × d3 = h1 × h2 × h3/h4由此可知,韦达定理成立。
三、韦达定理在许多实际问题中都有广泛的应用。
以下是一些例子。
1.测量塔的高度韦达定理可以用于测量一座塔的高度,方法是测量一个与塔底线平行的直线段和它到塔顶的距离,以及一个与塔底线垂直的直线段和它到塔顶的距离。
浅谈韦达定理在解题中的应用
浅谈韦达定理在解题中的应用韦达定理是反映一元二次方程根与系数关系的重要定理.纵观近年各省、市的中考(竞赛)试题可以发现,关于涉及此定理的题目屡见不鲜,且条件隐蔽.在证(解)题时,学生往往因未看出题目中所隐含的韦达定理的条件而导致思路闭塞,或解法呆板,过程繁琐冗长.下面举例谈谈韦达定理在解题中的应用,供大家参考.一、直接应用韦达定理若已知条件或待证结论中含有a+b和a·b形式的式子,可考虑直接应用韦达定理.例1 在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,D是AB边上一点,且BC=DC,设AD=d.求证:(1)c+d=2bcosA;(2)c·d=b2-a2.分析:观察所要证明的结论,自然可联想到韦达定理,从而构造一元二次方程进行证明.证明:如图,在△ABC和△ADC中,由余弦定理,有a2=b2+c2-2bccosA;a2=b2+d2-2bdcosA(CD=BC=a).∴ c2-2bccosA+b2-a2=0,d2-2bdcosA+b2-a2=0.于是,c、d是方程x2-2bxcosA+b2-a2=0的两个根.由韦达定理,有c+d=2bcosA,c·d=b2-a2.例2 已知a+a2-1=0,b+b2-1=0,a≠b,求ab+a+b的值.分析:显然已知二式具有共同的形式:x2+x-1=0.于是a和b可视为该一元二次方程的两个根.再观察待求式的结构,容易想到直接应用韦达定理求解.解:由已知可构造一个一元二次方程x2+x-1=0,其二根为a、b.由韦达定理,得a+b=-1,a·b=-1.故ab+a+b=-2.二、先恒等变形,再应用韦达定理若已知条件或待证结论,经过恒等变形或换元等方法,构造出形如a+b、a·b 形式的式子,则可考虑应用韦达定理.例3若实数x、y、z满足x=6-y,z2=xy-9.求证:x=y.证明:将已知二式变形为x+y=6,xy=z2+9.由韦达定理知x、y是方程u2-6u+(z2+9)=0的两个根.∵ x、y是实数,∴△=36-4z2-36≥0.则z2≤0,又∵z为实数,∴z2=0,即△=0.于是,方程u2-6u+(z2+9)=0有等根,故x=y.由已知二式,易知x、y是t2+3t-8=0的两个根,由韦达定理三、已知一元二次方程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑用韦达定理例5 已知方程x2+px+q=0的二根之比为1∶2,方程的判别式的值为1.求p与q之值,解此方程.解:设x2+px+q=0的两根为a、2a,则由韦达定理,有a+2a=-P,①a·2a=q,②P2-4q=1.③把①、②代入③,得(-3a)2-4×2a2=1,即9a2-8a2=1,于是a=±1.∴方程为x2-3x+2=0或x2+3x+2=0.解得x1=1,x2=2,或x1=-1,x2=-2.例6 设方程x2+px+q=0的两根之差等于方程x2+qx+p=0的两根之差,求证:p=q或p+q=-4.证明:设方程x2+px+q=0的两根为α、β,x2+qx+P=0的两根为α'、β'.由题意知α-β=α'-β',故有α2-2αβ+β2=α'2-2α'β'+β'2.从而有(α+β)2-4αβ=(α'+β')2-4α'β'.①把②代入①,有p2-4q=q2-4p,即p2-q2+4p-4q=0,即(p+q)(p-q)+4(p -q)=0,即(p-q)(p+q+4)=0.故p-q=0或p+q+4=0,即p=q或p+q=-4.四、关于两个一元二次方程有公共根的题目,可考虑用韦达定理例7 m为问值时,方程x2+mx-3=0与方程x2-4x-(m-1)=0有一个公共根?并求出这个公共根.解:设公共根为α,易知,原方程x2+mx-3=0的两根为α、-m-α;x2-4x-(m-1)=0的两根为α、4-α.由韦达定理,得α(m+α)=3,①α(4-α)=-(m-1).②由②得m=1-4α+α2,③把③代入①得α3-3α2+α-3=0,即(α-3)(α2+1)=0.∵α2+1>0,∴α-3=0即α=3.把α=3代入③,得m=-2.故当m=-2时,两个已知方程有一个公共根,这个公共根为3.。
韦达定理初三常考题型
韦达定理初三常考题型1. 韦达定理的基本概念:韦达定理,也称为乘法定理,是指对于一个多项式函数,如果其两个根分别为a和b,那么可以通过这两个根来表示该多项式的一个因式。
具体而言,如果多项式的根为a和b,那么可以将多项式表示为(x-a)(x-b)的形式。
2. 韦达定理的应用:韦达定理在初三数学中常常用于解多项式方程和因式分解。
通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。
在考试中,常常会给出一个多项式的根,然后要求解出该多项式的其他根或进行因式分解。
3. 韦达定理的相关题型:a) 解多项式方程,考题可能给出一个多项式的一个根,然后要求解出该多项式的其他根。
解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程得到其他根。
b) 因式分解,考题可能给出一个多项式的一个根,然后要求进行因式分解。
解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后将多项式进行因式分解。
c) 综合运用,考题可能给出一个多项式的两个根,然后要求解出该多项式的其他根或进行因式分解。
解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程或进行因式分解。
4. 解题步骤:a) 根据题目给出的已知条件,确定多项式的一个或多个根。
b) 使用韦达定理,将已知的根代入(x-a)(x-b)的形式。
c) 根据题目要求,进行方程求解或因式分解,得到其他根或多项式的因式。
总结:韦达定理是初中数学中的一个重要定理,常常在初三的数学考试中出现。
通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。
解题时需要注意题目给出的已知条件,正确运用韦达定理,并根据题目要求进行方程求解或因式分解。
希望以上解答能够帮助到你,如果还有其他问题,请继续提问。
韦达定理及其应用
韦达定理及其应用
韦达定理是一种基本的数学定理,它描述了一个三角形中两条边的长度与第三边的夹
角之间的关系。
它可以用来求解一个三角形的性质,甚至解决更复杂的几何问题。
韦达定理由法国数学家查尔斯·韦达提出,于1806年于科学期刊《乌拉法叶斯特》
上发表。
它首先被用来证明三角形的直角性质,然后被扩展用来证明更多其它的相关性质。
韦达定理可以用下面的公式表示:
a^2+b^2=c^2-2*c*a*cos(B)
其中a,b,c分别表示三角形ABC的3条边的长度,B表示边AC与BC之间的夹角。
由于韦达定理可以用来求解三角形的特性,因此它可以用来解决几何问题。
例如,如
果我们有一个三角形ABC,我们想求解它的外角A、边BC的长度和边AB的长度,则可以
用韦达定理:
假设a=3,c=4,B°=30°,根据韦达定理,
即 b^2= 16-24*cos(30°)=16-24*3^(1/2)/2
所以b=√5
另外,由余弦定理可以求出A°=60°
因此,三角形ABC的三角形性质为a=3,b=√5,c=4,A=60°,B=30°。
此外,韦达定理还有许多额外的应用。
例如,它可以用来求解由全等三角形的边来确
定的三角形的外角的性质,用来解决椭圆的几何上的直角形之间的关系等等。
它的应用非常广泛,几乎每一门数学和几何课程中都会涉及到它。
韦达定理不但可以
帮助我们在解决几何问题中取得关键性的进展,而且还多次提供了无穷多有用的解法。
人教九上:专题三--韦达定理的应用(含解析)
专题三韦达定理的应用1.设x1、x2是关于x的方程x2+kx+2=0的两个实数根,求代数式1x1+1x2+k2的值.2.已知关于x的一元二次方程x2−(k+3)x+3k=0.(1)求证:无论k为何值,此方程总有一个根是定值;(2)若直角三角形的一边为4,另两边恰好是这个方程的两根,求k的值.3.已知关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2.(1)求k的取值范围;(2)若x1,x2满足x21+x22=1+x1⋅x2,求实数k的值.4.已知关于x的方程x2−2x+m−1=0.有一个实数根是5,求此方程的另一个根以及m的值.5.关于x的一元二次方程x2−6x+k=0,若方程的一个根x1=2,求k的值和方程的另一个根x2.6.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.7.关于x的一元二次方程x2+2x−3m=0有两个不相等的实数根.(1)求m的取值范围;(2)当m=1时,求方程的根.8.已知x1,x2是关于x的一元二次方程.x2+2x+c=0的两个不相等的实数根.(1)求c的取值范围;(2)若x1x2=−1,直接写出c的值;(3)若x1=−3,直接写出c的值.9.若关于x的一元二次方程x2+4x+m−1=0有两个相等的实数根,求m的值及方程的根.10.已知3,t是方程2x2+2mx−3m=0的两个实数根,求m及t的值.11.若关于x的一元二次方程x2+bx−6=0有一个根是x=2,求b的值及方程的另一个根.12.已知关于x的一元二次方程x2−(m+1)x+m+6=0的其中一个根为3.求m的值及方程的另一个根.13.关于x的一元二次方程x2−8x+m=0有一个根是x=3,求m的值及方程的另一个根.14.已知关于x的方程x2−kx+12=0的一个根为3,求k的值及它的另一个根.15.若关于x的一元二次方程x2−4x+m+3=0有两个相等的实数根,求m的值及此方程的根.16.关于x的一元二次方程x2+2x−m=0有两个不相等的实数根.(1)求m的取值范围:(2)当m=8时,求方程的根.17.已知:关于x的方程x2+mx−8=0有一个根是−4,求另一个根及m的值.18.已知x=−1是一元二次方程x2−2x+c=0的一个根,求c的值及方程另一个根.参考答案1.0【分析】利用根与系数的关系求出x1+x2=−k,x1x2=2,然后根据分式的加减对原式进行变形,整体代入计算即可求出答案.【详解】解:∵x1、x2是关于x的方程x2+kx+2=0的两个实数根,∴x1+x2=−k,x1x2=2,又∵边长k>0,∴k=7,综上所述,k的值为5或7.3.(1)k≤1312(2)k=1【分析】本题主要考查了一元二次方程根的判别式,一元二次方程根与系数的关系,解一元二次方程,对于一元二次方程ax2+bx+c=0(a≠0),若Δ=b2−4ac>0,则方程有两个不相等的实数根,若Δ=b2−4ac=0,则方程有两个相等的实数根,若Δ=b2−4ac<0,则方程没有实数根,若x1,x2是该方程的两个实数根,则x1+x2=−b,x1x2=c a.a(1)根据题意可得Δ=(2k−3)2−4(k2−1)≥0,据此可得答案;(2)根据根与系数的关系得到x1+x2=−(2k−3),x1⋅x2=k2−1,再由已知条件和完全平方公式的变形得到(2k−3)2−3(k2−1)=1,解方程即可得到答案.【详解】(1)解:∵关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2,∴Δ=(2k−3)2−4(k2−1)≥0,∴4k2−12k+9−4k2+4≥0,∴k≤13;12(2)解:∵关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2,∴x1+x2=−(2k−3),x1⋅x2=k2−1,∵x21+x22=1+x1⋅x2,∴x21+x22−x1⋅x2=1∴(x1+x2)2−3x1x2=1,∴(2k−3)2−3(k2−1)=1,∴4k2−12k+9−3k2+3=1,∴k2−12k+11=0解得:k1=1,k2=11(舍去)∴k=1.4.x2=−3;m=−14.【分析】本题考查了一元二次方程的解以及根与系数的关系,代入x=5可求出m的值,再利用两根之和等于−b,即可求出方程的另一个根,解题的关键是熟练掌握一元二次方程根与系数的关系.a【详解】解:当x=5时,原方程为52−2×5+m−1=0,解得:m=−14,设方程的另一个实数根为x2,∵5+x2=2,∴x2=−3,∴方程的另一个根为−3,m的值为−14.5.k=8,x2=4【分析】利用根与系数的关系表示出两根之和与两根之积,由一个根为2,求出另一根,进而确定出k的值.【详解】设另一根为x2,∴2+x2=6,2x2=k,则x2=4,k=8,则6∴1把则7(2)((【详解】(1)解:∵一元二次方程有两个不相等的实数根,∴Δ=b2−4ac=4−4×1×(−3m)>0,解得:m>−1,3(2)当m=1时,方程为x2+2x−3=0,(x+3)(x−1)=0,解得x1=−3,x2=1.8.(1)c<1(2)c=−1(3)c=−3【分析】本题考查了根与系数的关系、根的判别式以及一元二次方程的解.(1)根据方程的系数,结合根的判别式Δ<0,可得出关于c的一元一次不等式,解之即可得出c的取值范围;(2)利用根与系数的关系,可得出x1x2=c,结合x1x2=−1,即可得出c的值;(3)代入x1=−3,即可求出c的值.【详解】(1)解:∵关于x的一元二次方程x2+2x+c=0有两个不相等的实数根,∴Δ=22−4×1×c>0,解得:c<1,∴c的取值范围是c<1;(2)解:∵x1,x2是关于x的一元二次方程x2+2x+c=0的两个不相等的实数根,∴x1x2=c,又∵x1x2=−1,∴c=−1;(3)解:将x1=−3代入原方程得9+2×(−3)+c=0,解得:c=−3,∴若x1=−3,则c的值为−3.9.m=5,x1=x2=−2【分析】本题考查一元二次方程根的判别式及解法,根据当Δ=0时,方程有两个相等的实数根求得m 值,进而解一元二次方程即可求解.【详解】解:∵一元二次方程x2+4x+m−1=0有两个相等的实数根,∴Δ=42−4(m−1)=0,则m=5,∴x2+4x+4=0,解得x1=x2=−2.10.t=3,m=−6【分析】利用根与系数的关系,建立二元一次方程组进行求解.【详解】解:∵3,t是方程2x2+2mx−3m=0的两个实数根,∴3+t=−2m2,3t=−3m2,3+t=−m①2t=−m②,∴3+t=2t,解得:t=3,∴m=−2×3=−6,答:t=3,m=−6.【点睛】本题考查了根与系数的关系,二元一次方程组,解题的关键是能利用根与系数的关系建立二元一次方程组.11.b=1,方程的另一个根为−3【分析】本题考查了一元二次方程的根及解一元二次方程.将x=2代入x2+bx−6=0求得b的值,然后解方程组即可.【详解】∵x=2是方程x2+bx−6=0有一个根,∴4+2b−6=0,∴b=1当b=1时,原方程为x2+x−6=0,解得x1=2,x2=−3.∴b=1,方程的另一个根为−3.12.m=6,另一个根为4【分析】把x=3代入方程求出m的值,然后解方程求出另一个根即可.【详解】解:把x=3代入x2−(m+1)x+m+6=0,得9−3(m+1)+m+6=0,解得m=6,把m=6代入原方程得x2−7x+12=0,∴(x−3)(x−4)=0,∴x1=3,x2=4,即方程的另一个根为4.【点睛】本题考查了一元二次方程的解,以及一元二次方程的解法,熟练掌握一元二次方程的解法是解答本题的关键.13.m的值为15,另一根为5【分析】本题考查一元二次方程的根与系数的关系,掌握ax2+bx+c=0(a≠0)的两根为x1,x2,则有x1+x2=−ba ,x1x2=ca是解题的关键.【详解】解:设另一根为a,则a+3=8,3a=m,解得:a=5,m=15,∴m的值为15,另一根为5.14.k=7,另一根为4【分析】由于一根为3,把x=3代入方程即可求得k的值.然后根据两根之积即可求得另一根.【详解】解:∵方程x2−kx+12=0的一个根为3,∴32−k×3+12=0,解得k=7,设另一根为x,∵3x=12,∴x=4,∴另一根为4.【点睛】本题考查了一元二次方程的解和根与系数的关系,解题时可利用根与系数的关系使问题简化,难度不大.15.m=1,x1=x2=2【分析】本题考查的是一元二次方程根的判别式的应用以及解一元一次方程,根据Δ=0时,方程有两个相等的两个实数根列出方程,解方程求出m,利用因式分解法解方程求出方程的根.【详解】解:∵关于x的方程x2−4x+m+3=0有两个相等的实数根,∴△=b2−4ac=(−4)2−4×1×(m+3)=4−4m=0,解得,m=1,∴方程为x2−4x+4=0,∴(x−2)2=0解得:x1=x2=2.16.(1)m>−1(2)x1=−4,x2=2【分析】本题考查一元二次方程根的判别式及解一元二次方程,对于一元二次方程ax2+bx+c=0(a≠0),判别式Δ>0时方程有两个不相等的实数根;Δ=0时方程有两个相等的实数根;Δ<0时方程没有实数根;熟练掌握一元二次方程根与判别式的关系及解一元二次方程的方法是解题关键.(1)根据方程x2+2x−m=0有两个不相等的实数根可得判别式Δ>0,列不等式求出m的取值范围即可;(2)把m=8代入x2+2x−m=0,利用因式分解法解一元二次方程即可.【详解】(1)解:∵关于x的一元二次方程x2+2x−m=0有两个不相等实数根,∴Δ=b2−4ac=22−4×1×(−m)>0,解得:m>−1.∴m的取值范围为m>−1.(∴∴x17∴∴18∴1∴c设另一个根为x2,则−1⋅x2=−3,∴x2=3,∴c的值是−3,另一个根是x=3.。
韦达定理适用范围
韦达定理适用范围(实用版)目录1.韦达定理的概述2.韦达定理的适用范围3.韦达定理的实际应用案例4.韦达定理的局限性正文【1.韦达定理的概述】韦达定理,又称 Vieta 定理,是由法国数学家弗朗索瓦·韦达于 16 世纪提出的一个数学定理。
该定理主要阐述了多项式方程的根与系数之间的关系。
简单来说,韦达定理描述了如何通过多项式方程的系数来求解方程的根。
这一定理在数学领域具有重要的地位,被广泛应用于代数、解析几何等数学分支。
【2.韦达定理的适用范围】韦达定理主要适用于以下情况:a.给定一个 n 次多项式方程,其中 n≥3;b.该多项式方程的系数不全为零;c.该多项式方程有实数根或复数根。
在这些条件下,韦达定理可以给出方程根的一些性质,例如根的和、根的积等。
【3.韦达定理的实际应用案例】韦达定理在数学中有许多实际应用,以下是一个简单的例子:已知三次多项式方程 x^3 - 3x^2 + 2x - 1 = 0,求解该方程的根。
根据韦达定理,该方程的三个根之和等于系数 x^2 的相反数除以 x,即 -(-3)/1 = 3。
同时,三个根的积等于常数项 -1 除以最高次项系数 1,即 -1/1 = -1。
根据这些信息,我们可以求得方程的三个根为 1, 1, -2。
【4.韦达定理的局限性】虽然韦达定理在许多情况下非常有用,但它也存在一定的局限性。
对于一次和二次多项式方程,韦达定理不适用。
此外,当多项式方程的系数为零时,韦达定理也无法给出方程根的性质。
总之,韦达定理是数学领域中一个重要的定理,对于解决多项式方程的根与系数之间的关系问题具有重要意义。
然而,它也存在局限性,不适用于所有情况。
韦达定理适用范围
韦达定理适用范围韦达定理,也被称为韦达方程或韦达公式,是一种用于求解三角形内角大小的公式。
它最初由法国数学家泰勒澄·韦达于19世纪提出,被广泛应用于数学、物理以及工程等领域。
韦达定理适用于任何三角形,不论是锐角三角形、直角三角形还是钝角三角形。
它可以用于解决以下几种问题:1.已知三角形边长,求三个内角的值:当已知三角形的三边长度分别为a、b、c时,可以利用韦达定理求解三个内角的大小。
根据韦达定理,我们可以得到如下公式:cosA = (b² + c² - a²) / (2bc)cosB = (a² + c² - b²) / (2ac)cosC = (a² + b² - c²) / (2ab)其中A、B、C为三角形的内角,a、b、c分别为三边的长度。
2.已知一个角和两条边的长度,求另外两个角的值:当已知两条边的长度a和b以及它们夹角C时,可以利用韦达定理求解剩余两个角的大小。
同样根据韦达定理,我们可以得到如下公式:cosA = (b² + c² - a²) / (2bc)cosB = (a² + c² - b²) / (2ac)其中A、B为剩余两个角的大小,a、b、c分别为两边的长度。
3.已知三个角的度数,求其余两边的长度:当已知三角形的三个内角A、B、C的度数时,可以利用韦达定理求解其余两边的长度。
韦达定理可以重写为以下形式:a² = b² + c² - 2bc * cosAb² = a² + c² - 2ac * cosBc² = a² + b² - 2ab * cosC其中A、B、C为三角形的内角的度数,a、b、c分别为三边的长度。
总结来说,韦达定理适用于任何三角形,无论是已知边长求角度或已知角度求边长,都可以通过韦达定理进行求解。
韦达定理适用范围
韦达定理适用范围摘要:一、引言二、韦达定理的定义及基本概念三、韦达定理的适用范围四、韦达定理在各领域的应用案例五、结论正文:一、引言韦达定理,又称Vieta定理,是由法国数学家弗朗索瓦·韦达(FranoisViète)提出的一个有关多项式的定理。
它在数学、物理、工程等领域具有广泛的应用,为我们解决复杂数学问题提供了一种方法。
本文将详细介绍韦达定理的适用范围及其在各领域的应用案例。
二、韦达定理的定义及基本概念韦达定理是指:若多项式f(x) = a0 + a1x + a2x + ...+ anx^n 的根为x1, x2, ..., xn,那么有:x1 + x2 + ...+ xn = -a1/a0x1x2 + x1x3 + ...+ xn-1xn = a2/a0x1x2x3 + ...+ xn-2xn-1xn = (-1)^(n-1)a3/a0...x1...xn-1xn^2 + x1...xn-1xn^3 = (-1)^nan^2/a0三、韦达定理的适用范围1.求多项式的根:当已知多项式的系数时,可以通过韦达定理求出多项式的根。
2.求解方程组:已知方程组的系数矩阵为A,可以将其看作一个多项式,利用韦达定理求出方程组的解。
3.线性代数中的行列式:利用韦达定理可以求解线性方程组,进而计算行列式。
4.复数域中的应用:在复数域中,韦达定理可以用于求解复多项式的根,以及分析复数域中的代数结构。
5.密码学:在密码学中,韦达定理可用于解决线性同余方程组,从而破解加密算法。
四、韦达定理在各领域的应用案例1.数学:求解三次方程、四次方程等复杂多项式方程;求解线性方程组;计算行列式。
2.物理:在电路分析中,利用韦达定理求解节点电压;在力学系统中,求解受力平衡问题。
3.工程:在控制系统、通信系统中,利用韦达定理分析系统的稳定性、动态性能等。
4.计算机科学:在编译器构造中,利用韦达定理求解文法产生的语法树;在程序优化中,利用韦达定理分析程序的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
韦达定理及其应用【趣题引路】韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。
韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。
人们为了纪念他在代数学上的功绩,称他为“代数学之父”。
历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。
国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。
消息传开,数学界为之震惊。
同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。
韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理。
你能利用韦达定理解决下面的问题吗?已知:①a2+2a-1=0,②b4-2b2-1=0且1-ab2≠0,求(221ab ba++)2004的值。
解析由①知1+21a-21a=0,即(1a)2-2·1a-1 =0,③由②知(b2)2-2b2-1=0,④∴1a,b2为一元二次方程x2-2x-1=0的两根.由韦达定理,得1a+b2=2,1a·b2=-1.∴221ab ba++=[(1a+b2)+2ba]2004=(2-1)2004=1.点评本题的关键是构造一元二次方程x2-2x-1=0,利用韦达定理求解,•难点是将①变形成③,易错点是忽视条件1-ab2≠0,而把a,-b2看作方程x2+2x-1=0的两根来求解.一、知识要点1、若一元二次方程()002≠=++a c bx ax 中,两根为1x ,2x 。
则ab x x -=+21, a c x x =∙21,;补充公式ax x ∆=-21 2、以1x ,2x 为两根的方程为()021212=∙+++x x x x x x 3、用韦达定理分解因式()()2122x x x x a a c x a b x a c bx ax --=⎪⎭⎫⎝⎛++=++ 【知识延伸】例1 已知关于x 的二次方程2x 2+ax -2a+1=0的两个实根的平方和为714,求a 的值. 解析 设方程的两实根为x 1,x 2,根据韦达定理,有1212,221.2a x x a x x ⎧+=-⎪⎪⎨-+⎪=⎪⎩于是,x 2212x x +=(x 1+x 2)2-2x 1·x 2 =(-2a )2-2·212a -+ =14(a 2+8a -4) 依题设,得14(a 2+8a -4)=714.解得a=-11或3.注意到x 1,x 2•为方程的两个实数根, 则△≥0,但a=-11时,△=(-11)2+16×(-11)-8=-63<0; a=3时,△=32-4×2×(-6+1)=49>0, 故a=3. 点评韦达定理应用的前提是方程有解,即判别式△≥0,本题容易忽视的就是求出a 的值后,没有考虑a 的值满足△≥0这一前提条件.例2 已知关于x 的方程x 2+2mx+m+2=0,求:(1)m 为何值时,•方程的两个根一个大于0,另一个小于0;(2)m 为何值时,方程的两个根都是正数;(3)m 为何值时,•方程的两个根一个大于1,另一个小于1.解析 (1)据题意知,m 应当满足条件21244(2)0,20.m m x x m ⎧∆=-+>⎨=+<⎩即 (1)(1)0,2.m m m -+>⎧⎨<-⎩由①,得m>2或m<-1, ∴m<-2.(2)m 应当满足的条件是2121244(2)0,20,20.m m x x m x x m ⎧∆=-+≥⎪+=->⎨⎪=+>⎩即21,0,2.m m m m ≥≤-⎧⎪<⎨⎪>-⎩或∴-2<m<-1.(3)m 应当满足的条件是21244(2)0,(1)(1)0.m m x x ⎧∆=-+>⎨--<⎩即21,2(2)10.m m m m ><-⎧⎨+--+<⎩或∴21,1.m m m ><-⎧⎨<-⎩或∴m<-1. 点评若已知含字母系数的一元二次方程的根的范围,求字母系数的范围,应根据已知和韦达定理,灵活地将字母系数应满足的条件一一列出来,然后再求解.【好题妙解】佳题新题品味例 已知△ABC 的边长分别为a,b,c,且a>b>c,2b=a+c,b 为正整数,若a 2+b 2+c 2=84,求b 的值.解析 依题设,有a+c=2b, ① a 2+b 2+c 2=84. ②②可变为(a +c)+2-2ac=84-b 2, ③①代入③,得 ac=25842b -, ④∴a 、c 是关于x 的一元二次方程x 2-2bx+25842b -=0的两个不相等的正实数根.222584440,25840.2b b b ⎧-∆=-⨯>⎪⎪⎨-⎪>⎪⎩ 即16<b 2<28.又b 为正整数,故b=5. 点评韦达定理的逆定理是:如果x 1,x 2满足x 1+x 2=-b a ,x 1·x 2=c a,那么x 1·x 2•是一元二次方程ax 2+bx+c=0的两个根,此解的独特之处在于利用a+c=2b,将a 2+b 2+c 2=84•转变为ac=25842b -,从而构造韦达定理逆定理所需的条件.中考真题欣赏例1 (2001年河南省)已知关于x 的方程4x 2+4bx+7b=0有两个相等的实数根,•y 1,y 2是关于y 的方程y 2+(2-b)y+4=0的两个根,.解析 ∵关于x 的方程4x 2+4bx+7b=0有两个相等的实数根, ∴ △=(4b)2-4×4×7b=0, 即b 2-7b=0. ∴b 1=0,b 2=7.当b=0时,,关于y 的方程化为y 2+2y+4=0, 因△=4-16=-12<0,方程无解.当b=7时,关于y 的方程可化为y 2-5y+4=0, 解得y 1=4,y 2=1.∴y 2-3y+2=0.点评本题既考查了判别式,韦达定理的逆定理,又考查了分类讨论的思想,b=0时得到的方程无解易忽视,应重视.例2 (2001年四川省)已知x 1,x 2是关于x 的一元二次方程4x 2+4(m -1)x+m2=0•的两个非零实数根,问x 1与x 2能否同号?若能同号,求出相应的m 的取值范围;•若不能同号,请说明理由.解析 ∵关于x 的一元二次方程4x 2+4(m -1)x+m 2=0有两个非零实数根, ∴△=[4(m -1)]2-4×4m 2=-32m+16≥0, ∴m≤12. 又x 1,x 2是方程4x 2+4(m -1)x+m 2=0的两个实数根. ∴x 1+x 2=-(m-1),x 1·x 2=14m 2 假设x 1,x 2同号,则有两种可能: ①若x 1>0,x 2>0,则12120,0.x x x x +>⎧⎨>⎩ 即2(1)0,10.4m m -->⎧⎪⎨>⎪⎩∴m<1且m≠0,此时,m≤12且m≠0; ②若x 1<0,x 2<0则有12120,0.x x x x +<⎧⎨>⎩ 即2(1)0,10.4m m --<⎧⎪⎨>⎪⎩而m≤12时方程才有实数根, ∴ 此种情况不可能.综上所述,当m 的取值范围为m≤12且m≠0时,方程的两实根同号. 点评存在性问题的探索一般是先假设存在,然后据已知和相关知识进行推理,若推理的结论与题设或概念、定理、事实等相矛盾,则假设不成立,从而不存在,•反之则存在.竞赛样题展示例 (1998年江苏初中数学竞赛题)求满足如下条件的所有k 值:使关于x •的方程kx 2+(k+1)x+(k-1)=0的根都是整数.解析 (1)当k=0时,方程为x -1=0,有整数根1;(2)当k≠0时,所给方程是一元二次方程,设该方程两整数根为x 1,x 2,则1212111,111.k x x k k k x x k k +⎧+=-=--⎪⎪⎨-⎪==-⎪⎩由①-②,得x 1+x 2-x 1·x 2=-2, 即(x 1-1)(x 2-1)=3. ∵x 1,x 2为整数, ∴1211,13,x x -=⎧⎨-=⎩或1211,13,x x -=-⎧⎨-=-⎩或1213,11,x x -=⎧⎨-=⎩或1213,1 1.x x -=-⎧⎨-=-⎩解得122,4,x x =⎧⎨=⎩或120,2,x x =⎧⎨=-⎩或124,2,x x =⎧⎨=⎩或122,0.x x =-⎧⎨=⎩代入①得k= -17或k=1. 又∵△=(k+1)2-4k(k -1)=-3k 2+6k+1,当k= -17,k=1时都大于0. ∴满足条件的k 值为k=0或k= -17或k=1. 点评注意到方程二次项系数是参变数k 所以方程可能是一次方程,也可能是二次方程应分别讨论.求参数时,通常由根与系数的关系列出关于k 的式子,消去k,然后因式分解及因数分解求出整数根,从而求参数k.全能训练A 卷1.已知方程x 2+3x+m=0的两根之差为5,求m 的值.2.已知x 1,x 2是方程3x 2-mx-2=0的两个根,且11x +21x =3,求3312x x 的值.3.已知方程x 2-4x+2-k 2=0,且k≠0,不解方程证明:(1)方程有两个不相等的实数根;(2)一个根大于1,另一根小于1.4.利用根与系数的关系,求一个一元二次方程,使它的两根分别比方程3x 2+2x-3=0的两个根的平方多1.5.关于x 的方程x 2-4nx -3n-1=0 ①,x 2-(2n+3)x -8n 2+2=0 ②,若方程①的两根的平方和等于方程②的一个整数根,求n 的值.6.若a 2+11a+16=0,b 2+11b+16=0,A 卷答案 1.-4 2.-12∵x 1、x 2为方程3x 2-mx-2=0的两根,∴x 1+x 2=3m ,x 1·x 2=-23而11x +21x =3,∴m=-6. 因此x 13+x 23=(x 1+x 2)(x 12-x 1x 2+x 22)=(x 1+x 2)[(x=1+x 2)2-3x 1x 2]=-12. 3.(1)∵△=(-4)2-4(2-k 2)=4k 2+8>0, ∴方程有两个不相等的实数根; (2)(x 1-1)(x 2-1)=x 1·x 2(x 1+x 2)+1=2-k 2-4+1=-k 2-1<0, ∴x 1-1,x 2-1中必有一个正数,一个负数. 即x 1,x 2中必有一个大于1,另一个小于1. 4.9y 2-40y+40=0.设方程3x 2+2x -3=0的根为x 1,x 2,所求方程的根为y 1,y 2,而x 1+x 2=-23,x 1·x 2=-1, ∴y 1+y 2=(x 12+1)+(x 22+1) =(x 1+x 2)2-2x 1x 2+2 =(-23)2-2×(-1)+2=409y 1·y 2=(x 12+1)(x 22+1)=(x 1·x 2)2+(x 12+x 22)+1=(x 1·x 2)+(x 1+x 2)2-2x 1x 2+1=409∴所求方程为y2-409y+409=0,即9y2-40y+40=0.5.0.提示:设方程①的两根为x1,x2,则x1+x2=4n,x1·x2=-3n-1.∴x12+x22=(x1+x2)2-2x1x2=(4n)2-2(-3n-1)=16n2+6n+2.解方程②得x1=4n+2,x2=1-2n.(1)当16n2+6n+2=4n+2时,n1=0,n2=-1 8 ,把n1=0,代入x1=4n+2,得x1=2;把n2=-18代入x1=4n+2,得x1=32不是整数,∴n=-18舍去;(2)当16n2+6n+2=1-2n时,n1=n2=-1 4 .把n=-14代入x2=1-2n,得x2=32不是整数,∴n=-14舍去.当n=0时,方程①的△1=4>0,∴n的值为0.6.0(1)当a=b时, -1=0;(2)当a≠b时,a、b是方程x2+11x+16=0两实根,从而有11,16.a bab+=-⎧⎨=⎩14(b-a)=±14=±14B卷1.已知α,β, 是方程x2-7x+8=0的两根,且α>β,不解方程,求2α+3β2的值.2.已知两数之积ab≠1,且2a 2+12234 567 890a+3=0,3b 2+1234 567 890b+2=0,求ab.3.已知x 1,x 2是方程x 2-2(k -2)x+(k 2+3k+5)=0(k 为实数)的两实根,求2212x x 的最小值.4.如果方程(x -1)(x 2-2x+m)=0的三个实根可以作为一个三角形的三条边,•求实数m 的取值范围.5.若方程(x 2-1)(x 2-4)=k 有四个非零实根,•且它们在数轴上对应的四个点等距排列,求k 值.6.已知a,b,c,d 是四个不同的有理数,且(a+c)(a+d)=1,(b+c)(b+d)=1,求(a+c)(b+c)的值.B 卷答案1. 18(403-). 由题意知α+β =7, αβ=8.于是α2+β2=(α+β)-2αβ=33,(α-β)2=( α+β)2-4αβ=17,又α>β,故α-.令A=2α+3β2,B=2β+3α2,则A+B=2α+2β+3(α2+β2) =2()αβαβ++3(α2+β2)=278⨯+3×33=4034, ①A-B==2α-2β+3β2 -3α2=2()βααβ-+3(β-α)(β+α)=(β-α)[2αβ+3(β+α)]=(28+3×7)=-②①,②两式相加,得A=18 (403-2.32.设1 234 567 890=m,则有2a2+ma+3=0,3b2+mb+2=0,即2(1b)2+m·1b+3=0 , 又a≠1b,故a与1b是二次方程2x2+mx+3=0的两个不等实根,故ab=a·1b=32.3.45049.由韦达定理得,x1+x2=2(k-2),x1·x2=k2+3k+5.∴x12+•x22=•(•x1+•x2)2-2x1x2=4(k-2)2-2(k2+3k+5)=2(k-112)2-1092又△=4(k-2)2-4(k2+3k+5)=-28k-4≥0,即k≤-17,故只有k=-17时,x12+x22取最小值为45049.4.34<m≤1.由已知x1=1,设另两根为x2,x3且x2≤x3,x2+x3=2,x2·x3=m.又x1>•x3-x2即解得m>34. 又△=(-2)2-4m≥0,∴m≤1,∴34<m≤1.5. 7 4 .设x 2=y,原方程变为y 2-5y+(4-k)=0,设此方程有实根α,β(0<α<β) , 则原方程的四个实根为,由于它们在数轴上等距排列,即β=9α,① 又54kαβαβ+=⎧⎨=-⎩ 由此求得k=74且满足△=25+k -16>0. 6.-1.∵ (a+c)(a+d)=1,(b+c)(b+d)=1,∴a 、b(a≠b)是方程(x+c)(x+d)=1的两个不同实根,即为方程x 2+(c+d)x+cd -•1=0的两个实根,∴a+b=-(c+d),ab=cd -1.∴(a+c)(b+c)=ab+(a+b)c+c 2=(cd -1)-(c+d)c+c 2=-1.。