电子束与离子束的区别

合集下载

电子束与离子束加工原理及应用

电子束与离子束加工原理及应用

电子束与离子束加工原理及应用电子束与离子束加工原理及应用电子束加工1、电子束加工原理及特点(1)由于电子束能够极其微细地聚焦(束径可达微米级)且在微小面积上叮达到很大的功率密度,因此在轰击点处的瞬时温度可达数千度高温,足以使任何材料熔化或气化。

由此可知,电子束可用来加工任何材料的微孔或窄缝、半导体电路等,是一种精密微细加工方法(2)由于电子束的瞬时热能作用在极微小面积上,所以加工部位的热影响区很小;在加工过程中无机械力作用,故加工后不产生受力变形;此外电子束加工也不存在工具消耗问题。

所以它的加工梢度高、表面质量也好。

(3)能够通过磁场或电场对电子束的强度、位置、聚焦进行直接控制。

位置控制的准确度可达0.15m左右,强度和束斑的大小控制误差也易达到1%以下。

通过磁场或电场几乎可以无惯性、无功率地控制电子束.便于采用计算机控制.实现加工过程自动化。

(4)由于电子束加工是在真空中进行,因此污染少.加工点处能保持原来材料的纯度:适合于加工易级化的金属及合金材料,特别是要求纯度极高的半导体材料。

(5)电子束加工需要一套价格昂贵的专用设备,加工中心成本高,2、电子束加工的应用电子束加工可分为两类;一类称为‘.热型”.即利用电子束把材料的局部加热至熔化或气化点进行加工,如打孔、切割、焊接等;另一类称为“非热型”.即利用电子束的化学效应进行刻蚀的技术,如电子束的光刻等。

(1)电子束的热效应加工。

在电子束的热效应加工中,可通过调整功率密度来达到不同的加工目的,如淬火、熔炼、切割、打孔等。

(2)电子束化学效应加工。

用低功率密度的电子束照射工件表面虽不会引起表面的温升,但入射电子与高分子材料的碰撞,会导致它们的分子链的切断或重新聚合.从而使高分子材料的化学性质和分子量产生变化,这种现象叫电子束的化学效应.利用这种效应进行加工的方法叫电子束光刻。

由于电子束曝光系统柔性大,又能连续扫描写图,既是精密微细图形写图设备,也是目前大规模(IST)及超大规模(VLST)掩膜或基片光刻的主要设备.除此之外,电子束可作为光源进行图形复印等工作。

电子 离子 激光束加工的区别

电子 离子 激光束加工的区别

电子束加工、离子束加工和激光束加工的区别:
⏹一、原理不同:①电子束加工:在真空中从灼热的灯丝阴极发射出的电子,在高电
压(30~200千伏)作用下被加速到很高的速度,通过电磁透镜会聚成一束高功率密度的电子束。

当冲击到工件时,电子束的动能立即转变成为热能,产生出极高的温度,。

②离子束加工:当离子(正离子)束打击到材料表面上,会产生所谓撞击效应、溅
射效应和注入效应,从而达到不同的加工目的。

③激光加工:经过透镜聚焦后,在焦点上达到很高的能量密度,光能转化为热能,靠光热效应来加工的
⏹二、应用不同:①电子束加工:1)高速打孔2)加工型孔及特殊表面4)焊接5)
热处理6)电子束光刻②离子束加工:1)刻蚀加工2)镀膜加工3)离子注入加工
③激光加工:1)激光切割2)激光打孔3)激光打标4)激光焊接5)激光热处理
6)激光雕刻
⏹三、装置不同:与电子束和离子束加工装置比起来,激光束加工装置比较简单。

⏹。

激光、电子束、离子束三束区别

激光、电子束、离子束三束区别

电子束、离子束、激光束是表面工程领域内的三大载体,号称三束改性。

都具有高能量密度特性。

顾名思义电子束加工是以激发电子作为载体,离子束则以离子。

离子束加工是一种元素注入过程,具有辐照损伤、喷丸作用、表面压缩、形成表面非晶态,形成弥散化合物质点等效应,而电子束与激光束的主要作用在高能量,没有辐照、表面压缩等特性。

电子束、离子束、激光束是表面工程领域内的三大载体,号称三束改性。

都具有高能量密度特性。

顾名思义电子束加工是以激发电子作为载体,离子束则以离子。

离子束加工是一种元素注入过程,具有辐照损伤、喷丸作用、表面压缩、形成表面非晶态,形成弥散化合物质点等效应,而电子束与激光束的主要作用在高能量,没有辐照、表面压缩等特性电子束聚焦点最细最深,激光束次之,离子束最粗。

电子束聚焦直径(打孔)最小可以小于1um。

电子束由电子组成,而离子束一般由金属粒子组成,本质的原理是一样的。

都有溅射作用,对样品损伤也没一定的规律。

但对于石英材料来讲,损伤很明显。

电子束不会造成成分污染,但离子束会,相当于离子注入。

3.加工特点:电子束:(1).束径小、能量密度高;(2).非接触加工,加工过程中工具与加工工件之间不存在明显的机械切削力,不产生宏观应力和变形;(3).被加工对象范围广;(4).电子束能量高,加工速度快、效率高;(5).电子束加工需要一套专用设备和真空系统,价格昂贵。

离子束:(1).加工精度和表面质量高;(2).加工材料广泛;(3).加工方法丰富;(4).性能好,易于实现自动化;(5).应用范围广泛,可根据加工要求选择。

激光束:(1).加工精度高;(2).加工材料范围广;(3).加工性能好;(4).加工速度快、效率高;(5).价格昂贵加工方法:电子束;(1).电子束扫描曝光;(2).电子束投影曝光;(3).电子束表面改性。

离子束:(1).离子束溅射去除加工;(2).离子束溅射镀膜加工;(3).离子束注入加工;(4).离子束曝光加工。

第6章-电子束和离子束加工

第6章-电子束和离子束加工

离子注入—演示
用高能量粒子直接击入工件,令工件表面层改性。
(3)离子束加工的特点
1)离子束流密度及离子能量可以精确控制。离子束加工是所 有特种加工方法中最精密、最精细的加工方法,是当代毫微 米(纳米)加工技术的基础。 2)离子加工在高真空中进行,所以污染少,适于对易氧化金 属、合金材料和高纯度半导体材料的加工。 3)离子束加工是靠离子轰击材料表面的原子来实现的。宏观 压力很小,加工应力、热变形等极小,加工质量高。 4)利用机械碰撞能量加工,故加工范围广,适合于对各种材 料和低刚度零件的加工。 5)加工过程容易控制,易实现自动化。 6)离子束加工设备费用高、成本高,加工效率低。
电子束加工分类
通过控制电子束能量密度的大小和能量注入时 间,就可以达到不同的加工目的。 电子束打孔、切割等加工:高电子束能能量密度, 使材料融化和气化,就可以进行; 电子束焊接:使材料局部融化就可以进行; 电子束热处理:只使材料局部加热就可以进行; 电子束光刻加工:利用较低能量密度的电子束轰击 高分子材料时产生化学变化的原理,即可进行。
解加工,最后焊接成整件 。
焊接加工样件
焊接加工样件
卫星姿态发动机气瓶直径约300mm,由不锈钢板冲压成半球。 要求用电子束焊接将两半球焊在一起,同时要求将焊口对侧内 壁毛刺熔融。
(4)表面改性/热处理
加热冷却速度快,获得超细晶粒和很高的表面硬度。 热转化效率高,可达90%,而激光的转换效率只有7%-10%。 可实现合金化
刻蚀
功率密度对加工模式的影响
a) 低密度
b) 中低密度
c) 高密度
表面改性
电子束焊接
电子束打孔、切槽
电子束加工的应用范围
(1)高速打孔
特点

特种加工技术---第六章:电子束和离子束加工

特种加工技术---第六章:电子束和离子束加工

h
17
2 离子束加工在高真空环境下进行,所以污染少,特别适用于对易 氧化的金属、合金材料和高纯度半导体进行加工。
3 离子束加工是靠离子轰击材料表面的原子来实现的,是一种微观 作用,宏观压力很小,所以加工应力、热变形极小,加工质量高, 适合于加工各种材料和低刚度薄壁零件。
4 与电子束加工类似,离子束加工设备费用贵、成本高,应用范围 受到一定的限制。
h
4
三 电子束加工装置 一般说来,一套典型的电子束加工装置主要包括以下几个 主要组成部分
➢ 电子枪 ➢ 真空系统 ➢ 控制系统 ➢ 电源
h
5
1 电子枪 作用:发射电子束 组成:发射阴极,控制栅极、加速阳极
h
6
2 真空系统 真空系统的主要作用是保证电子束加工时维持1.33×10-21.33×10-4Pa的真空度,因为只有在真空中,电子才能高 速运动。此外,加工时产生的金属蒸汽会影响电子的发射 和运动,因此也需要不断地把加工中产生的金属蒸汽不断 抽走。
第六章 电子束和离子束加工
电子束加工-----Electron Beam Machining
离子束加工-----Ion Beam Machining
电子束加工主要用于打孔、焊接、切割、刻蚀、热处理和光刻 加工等方面。 离子束加工主要用于离子刻蚀、离子镀膜加工以及离子注入 加工等方面。
h
1
第一节 电子束加工
3 控制系统和电源
电子束加工设备控制系统主要包括:束流聚焦控制、束流位置 控制和束流强度控制。
束流的位置控制是为了改变电子束的方向,常用电磁偏转来控制
电子束焦点的位置。
电子束加工设备对电源电压的稳压性要求较高,因为电压波动
会影响电子束聚焦的稳定性。 h

离子束加工原理

离子束加工原理

离子束加工原理离子束加工原理与电子束加工类似,也是在真空条件下,将Ar、Kr、Xe等情性气体通过离子源电离产生离子束,并经过加速、集束、聚焦后,投射到工件表面的加工部位,以实现去除加工。

所不同的是离子的质量比电子的质量大成千上万倍,例如最小的氢离子,其质量是电子质量的1840倍,氖离子的质量是电子质量的7.2万倍。

由于离子的质量大,故在同样的速度下,离子束比电子束具有更大的能量。

高速电子撞击工件材料时,因电子质量小速度大,动能几乎全部转化为热能,使工件材料局部熔化、气化,通过热效应进行加工。

而离子本身质量较大,速度较低,撞击工件材料时,将引起变形、分别、破坏等机械作用。

离子加速到几十电子伏到几千电子伏时,主要用于离子溅射加工;假如加速到一万到几万电子伏,且离子入射方向与被加工表面成25°~30°角时,则离子可将工件表面的原子或分子撞击出去,以实现离子铣削、离子蚀刻或离子抛光等,当加速到几十万电子伏或更高时,离子可穿入被加工材料内部,称为离子注入。

离子束加工具有下列的特点:1)易于精确掌握由于离子束可以通过离子光学系统进行扫描,使离子束可以聚焦到光班直径1μm以内进行加工,同时离子束流密度和离子的能量可以精确掌握,因此能精确掌握加工效果,如掌握注入深度和浓度。

抛光时,可以一层层地把工件表面的原子抛掉,从而加工出没有缺陷的光整表面。

此外,借助于掩膜技术可以在半导体上刻出小于1μm宽的沟槽。

2)加工干净因加工是在真空中进行,离子的纯度比较高,因此特殊适合于加工易氧化的金属、合金和半导体材料等。

3)加工应力变形小离子束加工是靠离子撞击工件表面的原子而实现的,这是一种微观作用,宏观作用力很小,不会引起工件产生应力和变形,对脆性、半导体、高分子等材料都可以加工。

8电子束离子束加工

8电子束离子束加工

第八章电子束和离子束加工8.1 电子束加工概述电子束作为高能量密度热源,早已为人们所注意。

但直到1949年,联邦德国的斯太格瓦尔德才在0.5mm厚的不锈钢薄板上,用电子束钻出直径为0.2mm的孔。

1952年,研制出加速电压为125kV、功率为2.5kW的电子束装置,并钻出人造纤维喷丝板。

1957年,法国原子能委员会的斯托尔研制成功世界第一台用于生产的电子束焊接机。

原来用氩弧焊接的原子反应堆燃料元件锆包装封口,废品率高达30%,而采用电子束焊接后,所制产品全部合格。

这一成果显示出电子束加工的潜在前景,引起了世界各国重视。

1959年,联邦德国研制出多种用途的电子束加工机,可以用来钻孔、铣切和焊接。

20世纪60年代初,电子束打孔、铣切、焊接、镀膜、熔炼、区熔等技术,已成功地应用到原子能、航天、航空、电子和精密机械等部门中,促进了尖端技术的发展。

20世纪60年代中期,电子束加工技术又在新的领域内得到应用。

这一新技术就是电子束曝光。

随着微电子学的发展、集成度的提高,要突破常规光刻工艺所能达到的最小线宽——2μm的极限,必须探索新的光刻工艺。

受到扫描电镜高分辨率的启发,人们利用扫描电镜在光致抗蚀剂上进行曝光,终于得到了高分辨率的线条。

当时,单线条宽度可以达到45nm。

1967年,日本电子公司研制成JBX-2型扫描电子束曝光机。

此后,法国、美国等也研制出了扫描电子束曝光机。

70年代,人们开始致力于扫描电子束曝光机在电子器件生产线上的实用化研究,以提高微电子器件的生产效率和产品率。

目前扫描电子束曝光技术在微电子学工艺中制作掩膜或器件所能达到的最小线宽小于0.1μm。

我国对电子束加工技术的研究始于1960年。

最初是从电子束焊接和打孔着手。

60年代初先后研制出电子束焊接机、电子束打孔机以及人造纤维喷丝板电子束打孔机。

60年代中期,还研制出多种电子束熔炉、区域熔炼炉、镀膜机等设备。

70年代又进行了电子束曝光技术的研究,取得了许多领先的研究成果。

特种加工论文-电子束加工和离子束技术的原理及电子束加工的应用

特种加工论文-电子束加工和离子束技术的原理及电子束加工的应用

电子束加工和离子束技术的原理及电子束加工的应用一、电子束加工和离子束技术的原理及其比较1、电子束加工的原理电子束是在真空条件下,利用聚焦后能量极高(106~109w/cm2)的电子束,以极高的速度冲击到工件表面极小面积上,在极短的时间(几分之一微妙)内,其能量的大部分转变为热能,使被冲击部分的工件材料达到几千摄氏度以上的高温,从而引起材料的局部熔化,被真空系统抽走。

下面特殊介绍一下快速扫描电子束加工技术原理,通过对电子枪偏转线圈和聚焦线圈的控制,使电子束在工件上按特定的轨迹、速率和能量快速偏转而实现快速扫描电子束加工。

由于电子束几乎没有质量和惯性,可以实现非接触的偏转,而且通过电压控制,可以在不同的位置切换时控制束流通断,这样,束流就可以在构件的不同位置以极高的频率切换。

由于材料的热惯性,通过束流与材料的相互作用,在这些位置上就会同时产生冶金效果,实现电子束的扫描加工。

总的来说,电子束加工的基本原理是:在真空中从灼热的灯丝阴极发射出的电子,在高电压(30~200千伏)作用下被加速到很高的速度,通过电磁透镜会聚成一束高功率密度(105~109w/cm2)的电子束。

当冲击到工件时,电子束的动能立即转变成为热能,产生出极高的温度,足以使任何材料瞬时熔化、气化,从而可进行焊接、穿孔、刻槽和切割等加工。

由于电子束和气体分子碰撞时会产生能量损失和散射,因此,加工一般在真空中进行。

电子束加工机由产生电子束的电子枪、控制电子束的聚束线圈、使电子束扫描的偏转线圈、电源系统和放置工件的真空室,以及观察装置等部分组成。

先进的电子束加工机采用计算机数控装置,对加工条件和加工操作进行控制,以实现高精度的自动化加工。

电子束加工机的功率根据用途不同而有所不同,一般为几千瓦至几十千瓦。

2、离子束技术的原理离子束加工技术是在真空条件下,将氩、氪、氙等惰性气体通过离子源产生离子束,经加速、集束、聚焦后,射到被加工表面上以实现各种加工的方法。

电子行业电子束和离子束加工

电子行业电子束和离子束加工

电子行业电子束和离子束加工简介在电子行业中,电子束和离子束加工是两种常用的微细加工技术。

它们利用高能电子束和离子束对材料进行加工,具有高精度、高效率和非接触等特点,在电子器件制造、表面改性和纳米加工等领域有广泛应用。

电子束加工基本原理电子束加工利用高速运动的电子束对材料表面进行加工。

通过控制电子束的能量和聚焦方式,可以实现在纳米到微米级别的精确加工。

其基本原理如下:•加速电子:采用电子枪将电子加速到较高能量,通常在几十千伏至几百千伏之间。

•焦点控制:利用一系列电场和磁场聚焦系统,将电子束聚焦到较小的直径,达到高分辨率的效果。

•扫描加工:通过控制电子束的位置和扫描速度,实现对材料表面的精确加工。

应用领域电子束加工在电子行业中有广泛的应用,包括但不限于以下领域:1.纳米微型器件加工:电子束加工可用于制造微型电子器件,如纳米线、纳米晶体管和MEMS器件等。

2.光刻:电子束激光刻蚀技术是集成电路制造中常用的工艺之一。

3.表面改性:通过控制电子束的能量和扫描方式,可以实现对材料表面的纹理、硬度和导电性等物理性质的改变。

4.纳米加工:电子束可以直接对纳米颗粒进行加工,制备纳米材料和纳米结构。

离子束加工基本原理离子束加工利用高能离子束对材料进行加工。

与电子束加工相比,离子束加工具有更高的穿透能力和更大的功率密度,可以实现更深入和更精确的加工效果。

其基本原理如下:•加速离子:采用离子源将离子加速到高能量,通常在几百电子伏至几千电子伏之间。

•焦点控制:通过控制电场和磁场分别作用的方式,实现对离子束的聚焦控制。

•碰撞损伤:高速离子束与材料表面相碰撞,产生碰撞损伤和表面变化。

应用领域离子束加工在电子行业中也有广泛的应用,主要应用于以下领域:1.纳米加工:离子束加工可用于纳米线、纳米颗粒和纳米薄膜的制备。

2.材料改性:通过离子束的碰撞和改变材料表面的结构,可以实现材料的硬化、改变导电性和抗腐蚀等性能。

3.表面涂层:离子束沉积技术可以实现对材料表面的镀膜、涂层和纳米颗粒的制备。

先进制造技术——三束加工—激光束、电子束、离子束

先进制造技术——三束加工—激光束、电子束、离子束

在目前的工业生产中,离子束加工主要应用于刻蚀加工(如加工空气轴承 的沟槽,加工极薄材料等)、镀膜加工(如在金属或非金属材料上镀制金属或 非金属材料)、注入加工(如某些特殊的半导体器件)等。
图1.激光加工示意图

激光束加工设备
激光机工的基本设备由激光器、导光聚焦系统和加工机(激光 机工系统)三部分组成。 1.激光器:激光器是激光加工的重要设备,他的任务是把电能 转换为光能,产生所需要的激光束。按工作物质的种类可分为 固体激光器、气体激光器、液体激光器和半导体激光器四大类。 2.导光聚焦系统:根据被加工工件的性能要求,光束经过放大、 整形、聚焦后作用于加工部位,这种从激光器输出窗口到被加 工工件之间的装置成为导光聚焦系统。 3.激光加工系统:激光加工系统主要包括床身、能够在三维坐 标范围之内移动的工作台及机电控制系统等。
抽真 空系 统
聚焦系统
电子束
工件 电源 及控 制系 统
图2.电子束加工装置的结构示意

电子束加工的特点
(1) 电子束能够极其微细地聚焦(可达l~0.1 μ m),故可进行微细加工。 (2) 加工材料的范围广。由于电子束能量密度高,可使任何材料瞬时熔化、 汽化且机械力的作用极小,不易产生变形和应力,故能加工各种力学性能的 导体、半导体和非导体材料。
①激光打孔
利用激光束可对各种材料加工小孔和微孔,最小孔径达几微米,
深度可达直径的 50倍。激光打孔时,用高功率密度脉冲激光源,影响加工 质量的因素有激光束的参数(能量、脉宽)、波形、焦距、偏焦量、脉冲次 数、被加工材料等。
②激光切割 激光切割常用二氧化碳气体激光器,连续或脉冲方式,所切割 的切缝窄、边缘质量好,几乎无切割残渣,切割速度高,也可切割金属,也 可切割非金属;既可切割无机物,也可切割有机物。可代替刀具切割木材, 代替剪刀切割布料、纸张,还可切割无法进行机械接触的工件。由于激光加 工对被切材料几乎不产生机械冲击力和压力,故适合切割玻璃、陶瓷和半导 体材料。

特种加工试题与答案[最终版]

特种加工试题与答案[最终版]

特种加工试题与答案[最终版]第一篇:特种加工试题与答案[最终版]特种加工试题一、名词解释:1.极性效应在电火花加工中,把由于正负极性接法不同而蚀除速度不同的现象叫极性效应。

2.线性电解液电解加工速度与电流密度的关系曲线为通过原点的直线的电解液。

3.倍频现象通入线圈的电流为交流正弦波,每周期的正半波和负半波引起磁场两次大小变化,使换能器也伸缩两次,引起振动节奏模糊且共振长度变短的现象。

4.混粉电火花加工在电火花工作液中混入一定比例的导电或半导电微细粉末,以降低表面粗糙度、消除微观裂纹,使加工后表面达到类似镜面的效果的电火花加工方法。

5.振动切削加工通过在切削刀具上施加某种有规律的可控振动,使切削速度、切削深度产生周期性的改变,从而得到特殊的切削效果的方法。

二、判断题(判断正误并改正)1.电火花和电化学加工是非接触加工,加工后的工件表面无残余应力。

(√)2.电化学反应时,金属的电极电位越正,越易失去电子变成正离子溶解到溶液中。

(√)3.激光加工与离子束加工要求有真空装置。

(×)激光加工不需真空装置。

4.超声波加工时变幅杆可以将振动的振幅放大是利用能量在不同截面是相同的原理。

(√)5.电解磨削时主要靠砂轮的磨削作用来去除金属,电化学作用是为了加速磨削过程。

(×)电化学作用是是去除金属的主要作用,磨削为辅助作用。

三、简答题1、电火花加工按工具电极和工件相对运动方式和用途的不同分哪几种类型?答:可分五类:①利用成型工具电极,相对工件作简单进给运动的电火花成形加工;②利用轴向移动的金属丝作工具电极,工件按所需形状和尺寸作轨迹运动,以切割导电材料的电火花线切割加工;③利用金属丝或成形导电磨轮作工具电极,进行小孔磨削或成形磨削的电火花磨削;④用于加工螺纹环规、螺纹塞规、齿轮等的电火花共轭回转加工;⑤小孔加工、刻印、表面合金化、表面强化等其他种类的加工。

2、电火花加工中的极性效应是什么?加工中如何利用极性效应来提高加工效率降低工具损耗?线切割加工一般采用什么极性加工,为什么?答:1)电火花加工中,把由于正负极性接法不同而蚀除速度不同的现象叫极性效应。

简析电子束、离子束、激光束加工的区别

简析电子束、离子束、激光束加工的区别

简析电子束、离子束、激光束加工的区别
答案:
1.加工原理:电子束和离子束的加工原理相似,都是发生撞击效应、溅射效应和注入效应,从而实现加工;而激光束加工的机理是热效应。

2.加工装置:电子束和离子束相似,主要由电子枪系统、真空系统、控制系统、和电源系统做成;而激光束是由激光器、电源、光学系统、机械系统等组成。

3.加工特点:
电子束:
(1).束径小、能量密度高;
(2).非接触加工,加工过程中工具与加工工件之间不存在明显的机械切削力,不产生宏观应力和变形;
(3).被加工对象范围广;
(4).电子束能量高,加工速度快、效率高;
(5).电子束加工需要一套专用设备和真空系统,价格昂贵。

离子束:
(1).加工精度和表面质量高;
(2).加工材料广泛;
(3).加工方法丰富;
(4).性能好,易于实现自动化;
(5).应用范围广泛,可根据加工要求选择。

激光束:
(1).加工精度高;
(2).加工材料范围广;
(3).加工性能好;
(4).加工速度快、效率高;(5).价格昂贵
加工方法:
电子束;
(1).电子束扫描曝光;(2).电子束投影曝光;(3).电子束表面改性。

离子束:
(1).离子束溅射去除加工;(2).离子束溅射镀膜加工;(3).离子束注入加工;(4).离子束曝光加工。

激光束:
(1).加工精度高;
(2).加工材料范围广;(3).加工性能好;
(4).加工速度快、效率高;(5).价格昂贵。

第六章电子束与离子束加工

第六章电子束与离子束加工

第六章 电子束与离子束加工
3.离子注入
• 改善磁泡材料性能、制造超导材料
– 铌线表面注入锡形成表面具有超导的Nb3Sn的导
线
第二十八页,共29页。
第六章 电子束与离子束加工
双离子束溅射沉积系统
第二十九页,共29页。
• 分溅射沉积和离子镀两种形式。
• 可镀材料范围广泛,不论金属、非金属表面上 均可镀制金属或非金属薄膜,各种合金、化合
物、或某些合成材料、半导体材料、高熔点材 料亦均可镀覆;
• 用于镀制润滑膜、耐热膜、耐磨膜、装饰膜 和电气膜等。
• 离子束装饰膜。
• 离子束镀膜代替镀铬硬膜,可减少镀铬公害。
• 提高刀具的寿命。
要求高的材料;
6)需专用设备和真空系统,价格昂贵。
第三页,共29页。
第六章 电子束与离子束加工
二、电子束加工装置
组成: • 电子枪
– 阴极、控制栅 极、加速阳极、 光栅、电源
• 真空系统
• 控制系统
– 电磁透镜、偏 转线圈、工作 台控制
• 电源
第四页,共29页。
第六章 电子束与离子束加工
电子束运动轨迹
• 电子束加热可使材料在真空中维持熔化状态并 保持很长时间﹐实现材料的去气和杂质的选择 性蒸发﹐可用来制备高纯材料。
• 电子束加热是电能转为热能的有效方式之一﹐大 约有50%功率用于熔化和维持液化。
• 80年代已生产出600千瓦级的电子枪。如需更大 功率﹐可用几支电子枪同时工作。利用电子束加热 可铸造100吨的坯料
第十二页,共29页。
第六章 电子束与离子束加工
三、电子束加工应用
7、电子束曝光 • 是一种利用电子束辐射效应的加工方法
• 电子束光刻应用主要包括四个方面:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子束与离子束的原理及其异同
模具三班
一、1.电子束与离子束的加工原理比较
电子束加工是在真空条件下,利用聚焦后能量密度极高的电子束,以极高的速度冲击到工件表面极小面积上,在极短的时间(几分之一微秒)内,其能量的大部分转变为热能,使被冲击部分的工件材料达到几千摄氏度以上的高温,从而引起材料的局部熔化和气化,被真空系统抽走。

控制电子束能量密度的大小和能量注入时间,就可以达到不同的加工目的。

如只使材料局部加热就可进行电子束热处理;使材料局部熔化就可以进行电子束焊接;提高电子束能量密度,使材料熔化和气化,就可以进行打孔、切割等加工;利用较低能量密度的电子束轰击高分子光敏材料时产生化学变化的原理,即可以进行电子束光刻加工。

离子束加工的原理和电子束加工基本类似,也是在真空条件下,将离子源产生的离子束经过加速聚焦,使之撞击到工件表面。

不同的是离子带正电荷,其质量比电子大数千、数万倍,如氩离子的质量是电子的7.2万倍,所以一旦离子加速到较高速度时,离子束比电子束具有更大的撞击动能,它是靠微观的机械撞击能量,而不是靠动能转化为热能来加工的。

离子束加工的物理基础是离子束射到材料表面时所发生的撞击效应、溅射效应和注入效应。

具有一定动能的离子斜射到工件材料表面时,可以将表面的原子撞击出来,这就是离子的撞击效应和溅射效应
二、聚焦离子束
聚焦式离子束技术是利用静电透镜将离子束聚焦成非常小尺寸的显微切割技术。

由于镓元素具有低熔点、低蒸汽压以及良好的抗氧化力,因而液态金属离子源中的金属材料多为镓。

在离子柱顶端外加电场于液态金属离子源,可使液态金属或合金形成细小尖端,再加上负电场牵引尖端的金属或合金,从而导出离子束,然后通过静电透镜聚焦,经过一连串可变化孔径可决定离子束的大小,而后用E ×B质量分析器筛选出所需要的离子种类,最后通过八极偏转装置及物镜将离子束聚焦在样品上并扫描,离子束轰击样品,产生的二次电子和离子被收集并成像或利用物理碰撞来实现切割或研磨。

三、如何控制其方向
磁偏转与电偏转分别是利用磁场和电场对运动电荷施加作用,控制其运动方向。

这两种偏转有如下差别:
在磁偏转中,变化的使粒子做匀速曲线运动——匀速圆周运动,其运动规律分别从时(周期)、空(半径)两个方面给出在电偏转中,恒定的使粒子做匀变速曲线运动——类平抛运动,其运动规律分别从垂直于电场方向和平行于电场方向给出
磁偏转中,粒子的运动方向所能偏转的角度不受限制,且在相等时间内偏转的角度总是相等。

在电偏转中,在相等的时间内偏转的角度是不相等的。

相关文档
最新文档