高中数学竞赛教材讲义 第七章 解三角形讲义
新人教A版高中数学全套讲义:解三角形
正弦定理和余弦定理1.1.1正弦定理[新知初探] 1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即asin A=bsin B=csin C.[点睛]正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)正弦定理适用于任意三角形()(2)在△ABC中,等式b sin A=a sin B总能成立()(3)在△ABC中,已知a,b,A,则此三角形有唯一解()解析:(1)正确.正弦定理适用于任意三角形.(2)正确.由正弦定理知asin A=bsin B,即b sin A=a sin B.(3)错误.在△ABC中,已知a,b,A,此三角形的解有可能是无解、一解、两解的情况,具体情况由a,b,A的值来定.答案:(1)√(2)√(3)×2.在△ABC 中,下列式子与sin Aa的值相等的是( ) A.bc B.sin B sin A C.sin C cD.c sin C解析:选C 由正弦定理得,a sin A =c sin C, 所以sin A a =sin C c .3.在△ABC 中,已知A =30°,B =60°,a =10,则b 等于( ) A .5 2 B .10 3 C.1033D .5 6 解析:选B 由正弦定理得,b =a sin Bsin A=10×3212=10 3.4.在△ABC 中,A =π6,b =2,以下错误的是( )A .若a =1,则c 有一解B .若a =3,则c 有两解C .若a =45,则c 无解D .若a =3,则c 有两解解析:选D a =2 sin π6=1时,c 有一解;当a <1时,c 无解;当1<a <2时,c 有两个解;a >2时,c 有一解.故选D.已知两角及一边解三角形[典例] 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c . [解] A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1).已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角. (2)由正弦定理公式的变形,求另外的两条边.[注意] 若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.[活学活用]在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D.32解析:选B 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.已知两边及其中一边的对角解三角形[典例] 在△ABC 中,a =3,b =2,B =45°,求A ,C ,c . [解] 由正弦定理及已知条件,有3sin A =2sin 45°,得sin A =32.∵a >b ,∴A >B =45°.∴A =60°或120°. 当A =60°时,C =180°-45°-60°=75°,c =b sin Csin B =2sin 75°sin 45°=6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin Csin B =2sin 15°sin 45°=6-22. 综上可知:A =60°,C =75°,c =6+22或A =120°,C =15°,c =6-22.已知三角形两边和其中一边的对角解三角形的方法(1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.[活学活用]在△ABC 中,c =6,C =60°,a =2,求A ,B ,b . 解:∵a sin A =c sin C ,∴sin A =a sin C c =22. ∴A =45°或A =135°. 又∵c >a ,∴C >A .∴A =45°. ∴B =75°,b =c sin Bsin C =6·sin 75°sin 60°=3+1.三角形形状的判断 [典例] 在△ABC 中,a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,判断△ABC 的形状. 解:[法一 化角为边] ∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. [法二 化边为角]∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B.由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.利用正弦定理判断三角形的形状的两条途径(1)化角为边......将题目中的所有条件,利用正弦定理化角为边,再根据多项式的有关知识(分解因式、配方等)得到边的关系,如a =b ,a 2+b 2=c 2等,进而确定三角形的形状.利用的公式为:sin A =a 2R ,sin B =b 2R ,sin C =c2R. (2)化边为角......将题目中所有的条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.利用的公式为:a =2R sin A ,b =2R sin B ,c =2R sin C .[活学活用]在△ABC 中,已知a cos A =b cos B ,试判断△ABC 的形状. 解:由正弦定理,a sin A =b sin B =c sin C=2R ,所以a cos A =b cos B 可化为sin A cos A =sin B cos B ,sin 2A =sin 2B ,又△ABC 中,A ,B ,C ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 的形状为等腰或直角三角形.层级一 学业水平达标1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37D.57解析:选A 根据正弦定理得sin A sin B =a b =53. 2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选B 由题意有a sin A =b =b sin B,则sin B =1, 即角B 为直角,故△ABC 是直角三角形.3.在△ABC 中,若sin A a =cos Cc ,则C 的值为( ) A .30° B .45° C .60°D .90°解析:选B 由正弦定理得,sin A a =sin C c =cos Cc, 则cos C =sin C ,即C =45°,故选B.4.△ABC 中,A =π6,B =π4,b =2,则a 等于( )A .1B .2 C. 3D .2 3解析:选A 由正弦定理得asin π6=2sin π4, ∴a =1,故选A.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( ) A. 3 B.33C.63D .-63解析:选B 由正弦定理得a =2R sin A ,b =2R sin B ,所以sin A =3sin B sin A ,故sin B =33. 6.下列条件判断三角形解的情况,正确的是______(填序号). ①a =8,b =16,A =30°,有两解; ②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解; ④a =40,b =30,A =120°,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°,有一解.综上,④正确.答案:④7.在△ABC 中,若(sin A +sin B )(sin A -sin B )=sin 2C ,则△ABC 的形状是________. 解析:由已知得sin 2A -sin 2B =sin 2C ,根据正弦定理知sin A =a 2R ,sin B =b2R ,sin C=c2R, 所以⎝⎛⎭⎫a 2R 2-⎝⎛⎭⎫b 2R 2=⎝⎛⎭⎫c 2R 2,即a 2-b 2=c 2,故b 2+c 2=a 2.所以△ABC 是直角三角形. 答案:直角三角形8.在锐角△ABC 中,BC =1,B =2A ,则ACcos A=________. 解析:由正弦定理及已知得1sin A =AC sin 2A ,∴AC cos A=2. 答案:29.已知一个三角形的两个内角分别是45°,60°,它们所夹边的长是1,求最小边长. 解:设△ABC 中,A =45°,B =60°, 则C =180°-(A +B )=75°. 因为C >B >A ,所以最小边为a . 又因为c =1,由正弦定理得, a =c sin A sin C =1×sin 45°sin 75°=3-1,所以最小边长为3-1.10.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解:∵a sin A =b sin B =c sin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∴C =180°-(A +B )=180°-(30°+45°)=105°, ∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=42sin(30°+45°)=2+2 3.层级二 应试能力达标1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°解析:选A ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C ,∴tan C =- 3.又0°<C <180°,∴C =120°.故选A.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若△ABC 的周长为4(2+1),且sin B +sin C =2sin A ,则a =( )A. 2 B .2 C .4D .2 2解析:选C 根据正弦定理,sin B +sin C =2sin A 可化为b +c =2a , ∵△ABC 的周长为4(2+1),∴⎩⎨⎧a +b +c =4(2+1),b +c =2a ,解得a =4.故选C.3.在△ABC 中,A =60°,a =13,则a +b +c sin A +sin B +sin C 等于( )A.833B.2393C.2633D .2 3解析:选B 由a =2R sin A ,b =2R sin B ,c =2R sin C 得a +b +c sin A +sin B +sin C=2R =asin A =13sin 60°=2393. 4.在△ABC 中,若A <B <C ,且A +C =2B ,最大边为最小边的2倍,则三个角A ∶B ∶C =( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .4∶5∶6解析:选A 由A <B <C ,且A +C =2B ,A +B +C =π,可得B =π3,又最大边为最小边的2倍,所以c =2a ,所以sin C =2sin A ,即sin ⎝⎛⎭⎫2π3-A =2sin A ⇒tan A =33,又0<A <π,所以A =π6,从而C =π2,则三个角A ∶B ∶C =1∶2∶3,故选A.5.在△ABC 中,A =60°,B =45°,a +b =12,则a =________. 解析:因为a sin A =b sin B ,所以a sin 60°=b sin 45°,所以32b =22a ,① 又因为a +b =12,② 由①②可知a =12(3-6). 答案:12(3-6)6.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =_______. 解析:由正弦定理,得AB sin C =BC sin A ,即sin C =AB ·sin ABC =5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C ) =sin 60°·cos C -cos 60°·sin C =3314. 答案:33147.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a sin A =c3cos C .(1)求角C 的大小;(2)如果CA ·CB =4,求△ABC 的面积. 解:(1)由⎩⎨⎧a sin A =c sin C,asin A =c3cos C,得sin C =3cos C ,故tan C =3,又C ∈(0,π),所以 C =π3.(2)由CA ·CB =|CA ||CB |cos C =12ba =4得ab =8, 所以S △ABC =12ab sin C =12×8×32=2 3.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0.(1)求B ;(2)若b =3,求a +c 的取值范围.解:(1)由正弦定理知:sin B cos C +3sin B sin C -sin A -sin C =0, ∵sin A =sin (B +C )=sin B cos C +cos B sin C 代入上式得: 3sin B sin C -cos B sin C -sin C =0. ∵sin C >0,∴3sin B -cos B -1=0, 即sin ⎝⎛⎭⎫B -π6=12, ∵B ∈(0,π),∴B =π3.(2)由(1)得:2R =bsin B=2,a +c =2R (sin A +sin C ) =23sin ⎝⎛⎭⎫C +π6. ∵C ∈⎝⎛⎭⎫0,2π3,∴23sin ⎝⎛⎭⎫C +π6∈(3,23], ∴a +c 的取值范围为(3,23].1.1.2 余弦定理(1)余弦定理的内容是什么?预习课本P5~6,思考并完成以下问题[新知初探]余弦定理[点睛]余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形()(2)在△ABC中,若a2>b2+c2,则△ABC一定为钝角三角形()(3)在△ABC中,已知两边和其夹角时,△ABC不唯一()解析:(1)正确.余弦定理反映了任意三角形的边角关系,它适合于任何三角形.(2)正确.当a2>b2+c2时,cos A=b2+c2-a22bc<0.因为0<A<π,故A一定为钝角,△ABC为钝角三角形.(3)错误.当△ABC已知两边及其夹角时可利用余弦定理求得第三边长且唯一,因此△ABC唯一确定.答案:(1)√ (2)√ (3)×2.在△ABC 中,已知a =9,b =23,C =150°,则c 等于( ) A.39 B .8 3 C .10 2D .7 3解析:选D 由余弦定理得:c =92+(23)2-2×9×23×cos 150° =147 =7 3.3.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .60° B .45° C .120°D .30° 解析:选C 由cos A =b 2+c 2-a 22bc =-12,∴A =120°.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24D.23解析:选B 由b 2=ac且c =2a 得cos B =a 2+c 2-b 22ac=a 2+4a 2-2a 22a ·2a =34.故选 B.已知两边与一角解三角形[典例] (1)在△ABC 中,已知b =60 cm ,c =60 3 cm ,A =π6,则a =________cm ;(2)在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________. [解析](1)由余弦定理得: a =602+(603)2-2×60×603×cos π6=4×602-3×602=60(cm).(2)由余弦定理得:(5)2=52+BC 2-2×5×BC ×910,所以BC 2-9BC +20=0,解得BC =4或BC =5.[答案] (1)60 (2)4或5已知三角形的两边及一角解三角形的方法先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理(已知两边和一边的对角)求解.若用正弦定理求解,需对角的取值进行取舍,而用余弦定理就不存在这些问题(在(0,π)上,余弦值所对角的值是唯一的),故用余弦定理求解较好.[活学活用]在△ABC 中,a =23,c =6+2,B =45°,解这个三角形. 解:根据余弦定理得,b 2=a 2+c 2-2ac cos B =(23)2+(6+2)2-2×23×(6+2)×cos 45°=8, ∴b =2 2.又∵cos A =b 2+c 2-a 22bc =8+(6+2)2-(23)22×22×(6+2)=12,∴A =60°,C =180°-(A +B )=75°.已知三角形的三边解三角形[典例] 在△ABC 中,已知a =23,b =6,c =3+3,解此三角形. [解] 法一:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.同理可求B =30°,故C =180°-A -B =180°-45°-30°=105°. 法二:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.由正弦定理a sin A =b sin B 知23sin 45°=6sin B ,得sin B =6·sin 45°23=12. 由a >b 知A >B ,∴B =30°.故C =180°-A -B =180°-45°-30°=105°.(1)已知三边求角的基本思路是:利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为负,角为钝角,其思路清晰,结果唯一.(2)若已知三角形的三边的关系或比例关系,常根据边的关系直接代入化简或利用比例性质,转化为已知三边求解.[活学活用]已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )·(a +b +c )=ab ,则C 的大小为( )A .60°B .90°C .120°D .150°解析:选C ∵(a +b -c )(a +b +c )=ab , ∴c 2=a 2+b 2+ab ,由余弦定理可得,cos C =a 2+b 2-c 22ab=a 2+b 2-(a 2+b 2+ab )2ab =-ab 2ab =-12,∵0°<C <180°,∴C =120°,故选C.利用余弦定理判断三角形形状 [典例] 在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:[法一 化角为边] 将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得 b 2+c 2-b 2⎝⎛⎭⎫a 2+b 2-c 22ab 2-c 2⎝⎛⎭⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab ,∴b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a2=a 2. ∴A =90°.∴△ABC 是直角三角形. [法二 化边为角]由正弦定理,已知条件可化为sin 2C sin 2B +sin 2C sin 2B =2sin B sin C cos B cos C .又sin B sin C ≠0,∴sin B sin C =cos B cos C ,即cos(B +C )=0. 又∵0°<B +C <180°,∴B +C =90°,∴A =90°. ∴△ABC 是直角三角形.利用余弦定理判断三角形形状的两种途径(1)化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. (2)化角的关系:将条件转化为角与角之间关系,通过三角变换得出关系进行判断. [活学活用]在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.正、余弦定理的综合应用题点一:利用正、余弦定理解三角形1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sinB.(1)求角B 的大小;(2)若A =75°,b =2,求a ,c . 解:(1)由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B. 故cos B =22,因此B =45°. (2)sin A =sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故由正弦定理得a =b ·sin Asin B=1+ 3.由已知得,C =180°-45°-75°=60°, c =b ·sin Csin B =2×sin 60°sin 45°= 6.题点二:利用正、余弦定理证明三角形中的恒等式 2.在△ABC 中,求证a 2sin 2B +b 2sin 2A =2ab sin C . 证明:法一:(化为角的关系式)a 2sin 2B +b 2sin 2A =(2R ·sin A )2·2sin B ·cos B +(2R ·sin B )2·2sin A ·cos A =8R 2sin A ·sin B (sin A ·cos B +cos A sin B )=8R 2sin A sin B sin C =2·2R sin A ·2R sin B ·sin C =2ab sin C .∴原式得证.法二:(化为边的关系式)左边=a 2·2sin B cos B +b 2·2sin A cos A =a 2·2b 2R ·a 2+c 2-b 22ac +b 2·2a 2R ·b 2+c 2-a 22bc =ab 2Rc(a 2+c 2-b 2+b 2+c 2-a 2)=ab 2Rc ·2c 2=2ab ·c2R=2ab sin C =右边, ∴原式得证.题点三:正、余弦定理与三角函数、平面向量的交汇应用3.已知△ABC 的周长为4(2+1),角A ,B ,C 所对的边分别为a ,b ,c ,且有sin B +sin C =2sin A .(1)求边长a 的值;(2)若△ABC 的面积为S =3sin A ,求AB ·AC 的值. 解:(1)由正弦定理,得b +c =2a .① 又a +b +c =4(2+1),② 联立①②,解得a =4. (2)∵S △ABC =3sin A , ∴12bc sin A =3sin A ,即bc =6. 又∵b +c =2a =42, ∴由余弦定理得cos A =b 2+c 2-a 22bc =(b +c )2-2bc -a 22bc =13.∴AB ·AC =bc cos A =2.正、余弦定理是解决三角形问题的两个重要工具,这类题目往往结合基本的三角恒等变换,同时注意三角形中的一些重要性质,如内角和为180°、大边对大角等.层级一 学业水平达标1.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( ) A .30° B .60° C .120°D .150°解析:选B ∵(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°.2.在△ABC 中,若a =8,b =7,cos C =1314,则最大角的余弦值是( ) A .-15 B .-16 C .-17 D .-18解析:选C 由余弦定理,得c 2=a 2+b 2-2ab cos C =82+72-2×8×7×1314=9,所以c =3,故a 最大, 所以最大角的余弦值为cos A =b 2+c 2-a 22bc =72+32-822×7×3=-17.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形 解析:选C 由c 2-a 2-b 22ab>0得-cos C >0,所以cos C <0,从而C 为钝角,因此△ABC 一定是钝角三角形.4.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1D.23解析:选A 由(a +b )2-c 2=4,得a 2+b 2-c 2+2ab =4,由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos 60°=ab ,则ab +2ab =4,∴ab =43.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3或2π3C.π3D.π6或5π6解析:选B 因为(a 2+c 2-b 2)tan B =3ac , 所以2ac cos B tan B =3ac ,即sin B =32, 所以B =π3或B =2π3,故选 B.6.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________. 解析:∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 120° =a 2+c 2+ac , ∴a 2+c 2+ac -b 2=0. 答案:07.在△ABC 中,若b =1,c =3,C =2π3,则a =________. 解析:∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos2π3, ∴a 2+a -2=0,即(a +2)(a -1)=0, ∴a =1,或a =-2(舍去).∴a =1. 答案:18.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:因为b +c =7,所以c =7-b . 由余弦定理得:b 2=a 2+c 2-2ac cos B , 即b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14, 解得b =4. 答案:49.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b . 解:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,已知a =7,b =3,c =5,求最大角和sin C . 解:∵a >c >b ,∴A 为最大角. 由余弦定理的推论,得cos A =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A <180°, ∴A =120°, ∴sin A =sin 120°=32. 由正弦定理,得sin C =c sin Aa =5×327=5314. ∴最大角A 为120°,sin C =5314. 层级二 应试能力达标1.在△ABC 中,有下列关系式:①a sin B =b sin A ;②a =b cos C +c cos B ;③a 2+b 2-c 2=2ab cos C ;④b =c sin A +a sin C . 一定成立的有( ) A .1个 B .2个 C .3个D .4个解析:选C 对于①③,由正弦、余弦定理,知一定成立.对于②,由正弦定理及sin A =sin(B +C )=sin B cos C +sin C cos B ,知显然成立.对于④,利用正弦定理,变形得sin B =sin C sin A +sin A sin C =2sin A sin C ,又sin B =sin(A +C )=cos C sin A +cos A sin C ,与上式不一定相等,所以④不一定成立.故选C.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C =120°,c =2a ,则a ,b 的大小关系为( )A .a >bB .a <bC .a =bD .不能确定解析:选A 在△ABC 中,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab ,∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .3.在△ABC 中,cos 2B 2=a +c 2c ,则△ABC 是( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形解析:选B ∵cos 2B 2=a +c2c ,∴cos B +12=a +c 2c ,∴cos B =ac ,∴a 2+c 2-b 22ac =a c ,∴a 2+c 2-b 2=2a 2,即a 2+b 2=c 2,∴△ABC 为直角三角形.4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若b 2+c 2+bc -a 2=0,则a sin (30°-C )b -c =( )A.12B.32C .-12D .-32解析:选A 由余弦定理得cos A =b 2+c 2-a 22bc ,又b 2+c 2+bc -a 2=0,则cos A =-12,又0°<A <180°,则A =120°,有B =60°-C ,所以a sin (30°-C )b -c =sin A sin (30°-C )sin (60°-C )-sin C=34cos C -34 sin C 32cos C -32sin C =12.故选A. 5.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.解析:∵cos C =BC 2+AC 2-AB 22BC ·AC =22,∴sin C =22,∴AD =AC sin C = 3. 答案: 36.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为________.解析:由余弦定理可得49=AC 2+25-2×5×AC ×cos 120°,整理得: AC 2+5·AC -24=0,解得AC =3或AC =-8(舍去), 再由正弦定理可得sin B sin C =AC AB =35.答案:357.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B=2c -ab .(1)求sin Csin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长.解:(1)由正弦定理可设a sin A =b sin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B ,所以cos A -2cos C cos B =2sin C -sin Asin B,即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π,所以sin C =2sin A , 因此sin Csin A =2.(2)由sin Csin A=2,得c =2a . 由余弦定理及cos B =14,得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2,所以b =2a .又a +b +c =5,所以a =1,因此b =2.8.如图,D 是直角三角形△ABC 斜边BC 上一点,AC =3DC . (1)若∠DAC =30°,求B ;(2)若BD =2DC ,且AD =22,求DC . 解:(1)在△ADC 中,根据正弦定理, 有AC sin ∠ADC =DCsin ∠DAC,∵AC =3DC ,所以sin ∠ADC =3sin ∠DAC =32, 又∠ADC =∠B +∠BAD =∠B +60°>60°, ∴∠ADC =120°,∴∠C =180°-120°-30°=30°,∴∠B =60°. (2)设DC =x ,则BD =2x ,BC =3x ,AC =3x ,∴sin B=ACBC =33,cos B=63,AB=6x,在△ABD中,AD2=AB2+BD2-2AB·BD·cos B,即(22)2=6x2+4x2-2×6x×2x×63=2x2,得x=2.故DC=2.应用举例第一课时解三角形的实际应用举例[新知初探]实际测量中的有关名称、术语名称定义图示仰角在同一铅垂平面内,视线在水平线上方时l与水平线的夹角俯角在同一铅垂平面内,视线在水平线l下方时与水平线的夹角方向角从指定方向线到目标方向线的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90°)错误!方位角从正北的方向线按顺时针到目标方向线所转过的水平角[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知三角形的三个角,能够求其三条边()(2)两个不可到达的点之间的距离无法求得()(3)方位角和方向角是一样的()解析:(1)错误,要解三角形,至少知道这个三角形的一条边长.(2)错误,两个不可到达的点之间的距离我们可以借助第三个点和第四个点量出角度、距离求得.(3)错误.方位角是指从正北方向顺时针转到目标方向线的水平角,而方向角是以观测者的位置为中心,将正北或正南方向作起始方向旋转到目标的方向线所成的角(一般指锐角).答案:(1)×(2)×(3)×2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的()A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°解析:选B如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°.∴点A在点B的北偏西15°.故选B.3.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为() A.α>βB.α=βC.α+β=90°D.α+β=180°解析:选B根据题意和仰角、俯角的概念画出草图,如图.知α=β,故应选B.4.已知船A在灯塔C北偏东85°且到C的距离为1 km,船B在灯塔C西偏北25°且到C的距离为 3 km,则A,B两船的距离为________km.解析:由题意得∠ACB=(90°-25°)+85°=150°,又AC=1,BC=3,由余弦定理得AB2=AC2+BC2-2AC·BC cos 150°=7,∴AB=7.答案:7测量高度问题[典例]如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两点C与D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.[解] 在△BCD 中, ∠CBD =π-(α+β).由正弦定理得BC sin ∠BDC =CDsin ∠CBD .∴BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β).在Rt △ABC 中,AB =BC tan ∠ACB =s ·sin βtan θsin (α+β).测量高度问题的解题策略(1)“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所求线段所在的平面,将空间问题转化为平面问题.(2)“解直角三角形”与“解斜三角形”结合,全面分析所有三角形,仔细规划解题思路.[活学活用]1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的A 处测得水柱顶端的仰角为45°,沿A 向北偏东30°方向前进100 m 到达B 处,在B 处测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m 解析:选A 如图,设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2×h ×100×cos 60°,即h 2+50h -5 000=0,解得h =50或h =-100(舍去),故水柱的高度是50 m.2.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000 m 到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为________m.解析:因为∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 所以∠ASB =180°-∠SAB -∠SBA =135°.在△ABS 中,AB =AS ·sin 135°sin 30°=1 000×2212=1 0002,所以BC=AB·sin 45°=1 0002×22=1 000(m).答案:1 000测量角度问题[典例]如图所示,A,B是海面上位于东西方向相距5(3+3) n mile的两个观测点.现位于A点北偏东45°方向、B点北偏西60°方向的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20 3 n mile的C点的救援船立即前往营救,其航行速度为30 n mile/h,则该救援船到达D点需要多长时间?[解]由题意,知AB=5(3+3) n mile,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理得BDsin∠DAB=ABsin∠ADB,即BD=AB sin∠DABsin∠ADB=5(3+3)sin 45°sin 105°=5(3+3)sin 45°sin 45°cos 60°+cos 45°sin 60°=10 3 n mile.又∠DBC=∠DBA+∠ABC=60°,BC=20 3 n mile,∴在△DBC中,由余弦定理,得CD=BD2+BC2-2BD·BC cos∠DBC=300+1 200-2×103×203×1 2=30 n mile,则救援船到达D点需要的时间为3030=1 h.测量角度问题主要是指在海上或空中测量角度的问题,如确定目标的方位,观察某一建筑物的视角等.解决它们的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.[活学活用]在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?解:设缉私船用t h在D处追上走私船,画出示意图,则有CD=103t,BD=10t,在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22,∴∠ABC=45°,BC与正北方向成90°角.∵∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即缉私船沿北偏东60°方向能最快追上走私船.测量距离问题题点一:两点间不可通又不可视1.如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.即AB=a2+b2-2ab cos α.若测得CA=400 m,CB=600 m,∠ACB=60°,试计算AB的长.解:在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC cos∠ACB,∴AB2=4002+6002-2×400×600cos 60°=280 000.∴AB=2007 (m).即A,B两点间的距离为2007 m.题点二:两点间可视但有一点不可到达2.如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m.解析:∠ABC =180°-75°-45°=60°, 所以由正弦定理得,AB sin C =ACsin B,∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m).即A ,B 两点间的距离为20 6 m. 答案:20 6题点三:两点都不可到达3.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA=δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A ,B 两点间的距离.解:∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°, ∴∠DAC =60°, ∴AC =DC =32. 在△BCD 中,∠DBC =45°,由正弦定理,得BC =DCsin ∠DBC ·sin ∠BDC =32sin 45°·sin30°=64. 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos 45° =34+38-2×32×64×22=38. ∴AB =64(km).∴A ,B 两点间的距离为64km.当A ,B 两点之间的距离不能直接测量时,求AB 的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C ,使得A ,B 与C 之间的距离可直接测量,测出AC =b ,BC =a 以及∠ACB =γ,利用余弦定理得:AB =a 2+b 2-2ab cos γ.(2)两点间可视但不可到达(如图②):可选取与B 同侧的点C ,测出BC =a 以及∠ABC 和∠ACB ,先使用内角和定理求出∠BAC ,再利用正弦定理求出AB .(3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C ,D ,测出CD =m ,∠ACB ,∠BCD ,∠ADC ,∠ADB ,再在△BCD 中求出BC ,在△ADC 中求出AC ,最后在△ABC 中,由余弦定理求出AB .层级一 学业水平达标1.学校体育馆的人字屋架为等腰三角形,如图,测得AC 的长度为4 m ,∠A =30°,则其跨度AB 的长为( )A .12 mB .8 mC .3 3 mD .4 3 m解析:选D 由题意知,∠A =∠B =30°, 所以∠C =180°-30°-30°=120°, 由正弦定理得,AB sin C =ACsin B, 即AB =AC ·sin C sin B =4·sin 120°sin 30°=4 3.2.一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( )A.1762 n mile/hB .34 6 n mile/h C.1722n mile/hD .34 2 n mile/h解析:选A 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1762 n mile/h.3.如图,D ,C ,B 三点在地面同一直线上,DC =a ,从C ,D 两点测得A 点仰角分别是β,α(α<β),则A 点离地面的高度AB 等于( )A.a sin α·sin βsin (β-α) B.a sin α·sin βcos (α-β) C.a sin α·cos βsin (β-α) D.a cos α·sin βcos (α-β)解析:选A 设AB =x ,则在Rt △ABC 中,CB =x tan β,所以BD =a +x tan β,又因为在Rt △ABD 中,BD =x tan α,所以BD =a +x tan β=x tan α,从中求得x =a1tan α-1tan β=a tan αtan βtan β-tan α=a sin αsin βsin βcos α-sin αcos β=a sin αsin βsin (β-α),故选A.4.设甲、乙两幢楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两幢楼的高分别是( )A .20 3 m ,4033m B .10 3 m,20 3 m C .10(3-2)m,20 3 mD.1532 m ,2033m解析:选A 由题意,知h 甲=20tan 60°=203(m), h 乙=20tan 60°-20tan 30°=4033(m). 5.甲船在岛B 的正南A 处,AB =10 km ,甲船以4 km/h 的速度向正北航行,同时乙船自岛B 出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们的航行时间是( )A.1507 min B.157 hC .21.5 minD .2.15 h解析:选A 由题意可作出如图所示的示意图,设两船航行t 小时后,甲船位于C 点,乙船位于D 点,如图.则BC =10-4t ,BD =6t ,∠CBD =120°,此时两船间的距离最近,根据余弦定理得CD 2=BC 2+BD 2-2BC ·BD cos ∠CBD =(10-4t )2+36t 2+6t (10-4t )=28t 2-20t +100,所以当t =514时,CD 2取得最小值,即两船间的距离最近,所以它们的航行时间是1507min ,故选A.6.某人从A 处出发,沿北偏东60°行走3 3 km 到B 处,再沿正东方向行走2 km 到C 处,则A ,C 两地的距离为________km.解析:如图所示,由题意可知AB =33,BC =2,∠ABC =150°. 由余弦定理,得AC 2=27+4-2×33×2×cos 150°=49,AC =7. 则A ,C 两地的距离为7 km. 答案:77.坡度为45°的斜坡长为100 m ,现在要把坡度改为30°,则坡底要伸长________m. 解析:如图,BD =100,∠BDA =45°,∠BCA =30°, 设CD =x ,所以(x +DA )·tan 30°=DA ·tan 45°, 又DA =BD ·cos 45°=100×22=502, 所以x =DA ·tan 45°tan 30°-DA =502×133-50 2=50(6-2)m. 答案:50(6-2)8.一蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,那么x =________cm.解析:如图所示,设蜘蛛原来在O 点,先爬行到A 点,再爬行到B 点,易知在△AOB 中,AB =10 cm ,∠OAB =75°,∠ABO =45°,则∠AOB =60°,由正弦定理知: x =AB ·sin ∠ABO sin ∠AOB =10×sin 45°sin 60°=1063(cm).答案:10639.如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,求乙船航行的速度.解:如图,连接A 1B 2,在△A 1A 2B 2中,易知∠A 1A 2B 2=60°,又易求得A 1A 2=302×13=102=A 2B 2,∴△A 1A 2B 2为正三角形, ∴A 1B 2=10 2.在△A 1B 1B 2中,易知∠B 1A 1B 2=45°, ∴(B 1B 2)2=400+200-2×20×102×22=200, ∴B 1B 2=102,∴乙船每小时航行302海里.10.如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC =120°,∠ADC =150°,BD =1 千米,AC =3 千米.假设小王和小李徒步攀登的速度为每小时1.2 千米,请问:两位登山爱好者能否在2个小时内徒步登上山峰(即从B 点出发到达C 点).解:由∠ADC =150°知∠ADB =30°,由正弦定理得1sin 30°=AD sin 120°,所以AD = 3. 在△ADC 中,由余弦定理得:AC 2=AD 2+DC 2-2AD ·DC ·cos 150°,即32=(3)2+DC 2-2·3·DC cos 150°,即DC 2+3·DC -6=0,解得DC =-3+332≈1.372 (千米),∴BC ≈2.372 (千米),由于2.372<2.4,所以两位登山爱好者能够在2个小时内徒步登上山峰.层级二 应试能力达标1.如图,从气球A 上测得其正前下方的河流两岸B ,C 的俯角分别为75°,30°,此时气球的高度AD 是60 m ,则河流的宽度BC 是( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m解析:选C 由题意知,在Rt △ADC 中,∠C =30°,AD =60 m ,∴AC =120 m .在△ABC 中,∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,由正弦定。
高中数学竞赛教材讲义 第七章 解三角形讲义
第七章 解三角形一、基础知识在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2cb a p ++=为半周长。
1.正弦定理:CcB b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。
推论1:△ABC 的面积为S △ABC =.sin 21sin 21sin 21B ca A bc C ab ==推论2:在△ABC 中,有bcoCccoB=a 推论3:在△ABC 中,AB=θ,解a 满足)sin(sin a ba a -=θ,则a=A 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC 边上的高为binC ,所以S △ABC =C ab sin 21;再证推论2,因为BC=π-A ,所以inBC=inA ,即inBcoCcoBinC=inA ,两边同乘以2R 得bcoCccoB=a ;再证推论3,由正弦定理B b A a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即inain θ-A=in θ-ainA ,等价于21-[co θ-Aa-co θ-A-a]= 21-[co θ-aA-co θ-a-A],等价于co θ-Aa=co θ-aA ,因为0θθπθθbc a c b A 2cos 222-+=⇔.22pq qp qc p b -++ADB ∠.ADB ∠ADC ∠∠∠π∠∠.22pq qp qc p b -++.222222a c b AD -+=412=∆ABC S 2c 2A412c 2A412c1614)(1222222=⎥⎦⎤⎢⎣⎡-+-c b a c b 2.2cb a p ++=).)()((c p b p a p p ---βα=∠=∠QOR POQ ,π.)sin(sin sin wv u βααβ+=+O RQO PQ O PR ΔPQ R S S S S ∆∆∆+=⇔=⇔0sin 21uv ⇔2121vu w αββαsin sin )sin(+=+⇔∠∠∠∠∠∠⊥⊥⊥∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠⊥1G ⊥⊥.21AEAFAO A O MD GM ==βπαπsin )2sin(,sin )1sin(AE PA AF AP =∠-=∠-.sin sin 2sin 1sin αβ⋅∠∠=AF AE 2sin sin ,1sin sin ∠=∠=PM MD PM GM βαβαsin sin 1sin 2sin ⋅∠∠=MD GM AEAF MD GM=1G ⊥zx yz xy ⋅⋅≥8131212222+++-+=c b a P =b ac c a -+131031031sin 32≤⎪⎭⎫ ⎝⎛--γ2π3142,2,22==c b .310.21⎪⎭⎫ ⎝⎛∈2,0π21|a-b|, 从而⎪⎭⎫ ⎝⎛∈4,0πβ,所以in 2β>|co 2α·co 2β| 因为1=abc 2=a 2b 2c 22abbcca,所以a 2b 2c 24abc=1-2abbcca-2abc 又abbcca-2abc=cabab1-2c=in 2βco 2βin 2αco 2α·co 4β·co2β=41[1-co 22β1-co 22αco 4βco2β]=4141co2βco 4β-co 22αco 4β-co2β >4141co2βco 4β-in 4β-co 2β=41 所以a 2b 2c 24abc .21432-C ∠33=C ∠b ”是“inA>inB ”的__________条件 6.在△ABC 中,inAcoA>0, tanA-inA53135312tan 2=⋅C A 1,则△ABC 为__________角三角形11.三角形有一个角是600,夹这个角的两边之比是8:5,内切圆的面积是12π,求这个三角形的面积。
高中数学专题讲义:利用正(余)弦定理破解解三角形问题
第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.
第三步:求结果.
类型二、利用正(余)弦定理判断三角形形状
【例 3】在 中,
,
.
(1)求证:
是直角三角形;
(2)若点 在 边上,且
,求 .
【答案】(1)见解析;(2)
(2)设
,则
所以 在
中,
,
,
,
, ,
,
由正弦定理得,
,
所以 【点睛】 本题主要考查的知识点是运用正弦定理和余弦定理解三角形,注意角之间的表示,本题需要一 定的计算 【例 4】【浙江省“七彩阳光”联盟高三期初联考】在 中,角 所对的边分别为 ,已 知且 (1)判断 的形状;
A 为锐角
A 为钝角或直角
图形
bsinA<a
关系式 a<bsinA a=bsinA
a≥b
a>b
a≤b
<b
解的 个数
无解
一解
两解
一解
一解
无解
4.三角形常用的面积公式 (1)S=12a·ha(ha 表示 a 边上的高).(2)S=12absinC=12acsinB=21bcsinA=a4bRc. (3)S=12r(a+b+c)(r 为内切圆半径).
高中数学专题讲义:利用正(余)弦定理破解解三角形问题
考纲要求:
1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
2.会利用三角形的面积公式解决几何计算问题 S 1 absin C . 2
基础知识回顾:
1.sina A=sinb B=sinc C=2R,其中 R 是三角形外接圆的半径.
由正弦定理可以变形:(1) a∶b∶c=sin A∶sin B∶sin C;(2) a=2Rsin A,b=2Rsin B,
高中数学精编讲义解三角形
16. ABC的内角A, B, C的对边分别为a, b, c,满足∠ABC = 120◦,∠ABC的平分线交AC于点D,且BD = 1,则4a +
c的最小值是
.
选填题答题卡:
1
2
3
4
5
6
7
8
9
10
11
12
13.
. 14.
. 15.
. 16.
.
1.3 解答题
17. 在锐角
ABC中,内角A, B, C的对边分别为a, b, c,且cos2A +
安徽高考交流群:78232057
√
√
21. (2017全国3理17)在 ABC中,内角A, B, C的对边分别为a, b, c,且sinA + 3cosA = 0, a = 2 7, b = 2.
(1) 求c; (2) 设D为BC边上一点,且AD ⊥ AC,求 ABD的面积.
22. 在 ABC中,内角A, B, C的对边分别为a, b, c,且2ccosB = 2a − b. (1) 求c; (2) 当c = 3时,求a + b的取值范围.
玩转高中数学
高哥
1
安徽高考交流群:78232057
1 解三角形复习
1.1 选择题
1.
ABC的内角A, B, C的对边分别为a, b, c,满足 a
b +
c
+
c a+b
≥
1,则∠A的取值范围是
(A)
0,
π 3
(B)
0,
π 6
(C)
π 3
,
π
(D)
π 6
,
π
高一数学讲义一(解三角形)
解三角形一、知识结构要点:→→↓常用方法: (1)A+B+C=180° 可进行角的代换(2)R Cc B b A a 2sin sin sin === 可进行边角互换 (3)abc b a C 2cos 222-+= 可进行角转化为边 (4)A ab S sin 21=∆ 面积与边角联系。
二、例题例1、在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322=+-x x 的两个根,且()1cos 2=+B A 。
求:(1)角C 的度数; (2)AB 的长度。
例2、ABC c b a B A b a ABC ∆-=-+∆则中若sin )()sin()(2222是( )A 、等腰三角形B 、直角三角形C 、等腰直角三角形D 、等腰或直角三角形。
例3、在△ABC 中 A=45°,B :C = 4:5最大边长为10,求角B 、C 外接圆半径及面积S例4、在△ABC 中以知A=30°a 、b 分别为角A 、B 对边,且a=4=33b ,解此三角形例5、已知△ABC 的三个内角成等差数列并且 tanA ·tanC=2+3⑴求A 、B 、C的变数,⑵若AB 边上的高CD=34 求三边a 、b 、c 的长。
三、基础练习:1、△ABC 中,∠A 、∠B 的对边分别为a 、b ,5,4a b ==,且∠A=60°,那么满足条件的△ABC ( )A .有一个解B .有两个解C .无解D .不能确定2、在△ABC 中,有sinB=2cosCsinA ,则此三角形是( )(A )等边三角形 (B )等腰三角形 (C )等腰直角三角形 (D )直角三角形3、△ABC 中,已知sin 2C -sin 2A -sin 2B =sinAsinB ,则角C 等于4、△ABC 中,若tanAtanB>1,则△ABC 是5、△ABC 中,若sinC =BA B A cos cos sin sin ++,则△ABC 为 . 6、在直角三角形、ABC 中,,,c r S 分别表示它的斜边、内切圆半径和面积,则cr S的最小值是 . 7、在△ABC 中,三边a, b, c 成等差数列,求证:B ≤6︒08、已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.9、已知△ABC 的三个内角A,B,C 满足A +C =2B,2C A 求cos ,cosB 2cosC 1cosA 1--=+的值.10、在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102(cos =θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时? OPθ45°东西北东。
2024高中数学解三角形ppt课件
目录•三角形基本概念与性质•正弦定理及其应用•余弦定理及其应用•三角形面积公式及其应用•解三角形综合应用举例三角形基本概念与性质三角形的分类按边可分为不等边三角形、等腰三角形;按角可分为锐角三角形、直角三角形、钝角三角形。
三角形的定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。
三角形的定义与分类三角形内角和定理01三角形内角和定理三角形的三个内角之和等于180°。
02证明方法通过平行线的性质或者撕拼法等方法进行证明。
三角形外角性质三角形外角的定义三角形的一个外角等于与它不相邻的两个内角的和。
三角形外角的性质三角形的外角大于任何一个与它不相邻的内角。
三角形边与角关系01正弦定理在任意三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。
02余弦定理在任意三角形中,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
03三角形的面积公式S=1/2absinC,其中a、b为两边长,C为两边夹角。
正弦定理及其应用正弦定理的推导与证明推导过程通过三角形的外接圆和正弦函数的定义,推导出正弦定理的表达式。
证明方法利用三角形的面积公式和正弦函数的性质,证明正弦定理的正确性。
利用正弦定理求解三角形已知两边及夹角求第三边通过正弦定理计算出已知两边夹角对应的第三边的长度。
已知两角及夹边求其他元素利用正弦定理和三角形内角和定理,求出三角形的其他元素。
解决三角形中的角度问题通过正弦定理计算出三角形中的未知角度。
解决三角形中的边长问题利用正弦定理求出三角形中的未知边长。
解决力学问题在力学中,正弦定理可用于解决涉及三角形的问题,如力的合成与分解等。
解决光学问题在光学中,正弦定理可用于解决涉及光的反射和折射等问题。
余弦定理及其应用余弦定理的推导与证明向量法推导余弦定理通过向量的数量积和模长关系,推导余弦定理的表达式。
几何法证明余弦定理利用三角形的面积公式和正弦定理,结合相似三角形的性质,证明余弦定理。
解三角形完整讲义
正余弦定理知识要点:1、正弦定理:或变形:2、余弦定理:或3、解斜三角形的常规思维方法是:(1 )已知两角和一边(如A、B C),由A+B+C = n求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = n求另一角;(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = n求C, 再由正弦定理或余弦定理求c边,要注意解可能有多种情况;(4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = n求角C。
4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式•5、解三角形问题可能出现一解、两解或无解的情况,这时应结合三角形中大边对大角定理及几何作图来帮助理解”。
6、已知三角形两边a,b,这两边夹角C,则S = 1/2 * absinC7、三角学中的射影定理:在△ ABC中,,… &两内角与其正弦值:在△ ABC中,,…【例题】在锐角三角形ABC中,有(B )A. cosA>sinB 且cosB>sinAB. cosA<sinB且cosB<sinAC. cosA>sinB 且cosB<sinAD. cosA<sinB且cosB>sinA9、三角形内切圆的半径:,特别地,正弦定理专题:公式的直接应用1、已知中,,,,那么角等于()A. B. C. D.2、在厶AB(中, a=, b =, B= 45°贝U A 等于(C )A. 30 °B. 60 °C. 60 或120 ° D 30 或1503、的内角的对边分别为,若,则等于()A. B. 2 C. D.4、已知△ AB(中,,,则a等于(B )A. B. C. D.5、在△ AB(中, = 10 , B=60° ,C=4则等于(B )A. B. C. D.6、已知的内角,,所对的边分别为,,,若,,则等于.()7、△ AB(中,,,,则最短边的边长等于(A )A . B. C . D .& △ AB(中,,的平分线把三角形面积分成两部分,则( C )A .B .C .D .9、在△ AB(中,证明:。
(完整word)高中数学竞赛讲义(7)解三角形
高中数学竞赛讲义(七)──解三角形一、基础知识在本章中约定用A,B,C分别表示△ABC的三个内角,a, b, c分别表示它们所对的各边长,为半周长。
1.正弦定理:=2R(R为△ABC外接圆半径)。
推论1:△ABC的面积为S△ABC=推论2:在△ABC中,有bcosC+ccosB=a.推论3:在△ABC中,A+B=,解a满足,则a=A.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC=;再证推论2,因为B+C=-A,所以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边同乘以2R得bcosC+ccosB=a;再证推论3,由正弦定理,所以,即sinasin(-A)=sin(-a)sinA,等价于[cos(-A+a)-cos(-A-a)]= [cos(-a+A)-cos(-a-A)],等价于cos(-A+a)=cos(-a+A),因为0<-A+a,-a+A<. 所以只有-A+a=-a+A,所以a=A,得证。
2.余弦定理:a2=b2+c2-2bccosA,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则AD2=(1)【证明】因为c2=AB2=AD2+BD2-2AD·BDcos,所以c2=AD2+p2-2AD·pcos①同理b2=AD2+q2-2AD·qcos,②因为ADB+ADC=,所以cos ADB+cos ADC=0,所以q×①+p×②得qc2+pb2=(p+q)AD2+pq(p+q),即AD2=注:在(1)式中,若p=q,则为中线长公式(2)海伦公式:因为b2c2sin2A=b2c2(1-cos2A)= b2c2[(b+c)-a2][a2-(b-c) 2]=p(p-a)(p-b)(p-c).这里所以S△ABC=二、方法与例题1.面积法。
解三角形讲义
[探索研究] 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系.如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有a sin A c =,sin b B c =,又sin 1c C c==, 则a b c c sin A sinB sinC === ,从而在直角三角形ABC 中,sin sin sin a b c A B C== 思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =, 则sin sin abA B =, 同理可得sin sin cbC B =, 从而sin sin a bA B =sin cC =思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题.(证法二):过点A 作j AC ⊥, 由向量的加法可得 AB AC CB =+则 ()j AB j AC CB ⋅=⋅+ ∴j AB j AC j CB ⋅=⋅+⋅ ()()00cos 900cos 90-=+-j AB A j CB C ∴sin sin =c A a C ,即sin sin =a c A C 同理,过点C 作⊥j BC ,可得 sin sin =b c B C ,从而 a b c sin A sinB sinC== 类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a b c sin A sinB sinC== [理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =;(2)a b c sin A sinB sinC ==等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形.(1)定理的表示形式: sin sin a b A B =sin c C==()0sin sin sin a b c k k A B C ++=>++;或sin a k A =,sin b k B =,sin c k C =(0)k > c b a C B A (图1.1-2) c b a C B A (图1.1-3) c ba C BAj(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;②已知两边和其中一边对角,求另一边的对角.联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c .由于涉及边长问题,从而可以考虑用向量来研究这个问题.如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 ()()c c c a b a b a a b b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅22222从而 2222cos c a b ab C =+-同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即2222cos a b c bc A =+-,2222cos b a c ac B =+-,2222cos c a b ab C =+-思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc ,222cos 2+-=a c b B ac ,222cos 2+-=b a c C ba [理解定理]从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若∆ABC 中,C=090,则cos 0=C ,这时222=+c a b由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.[例题分析]例1.在∆ABC 中,已知23=a ,62=+c ,060=B ,求b 及A⑴解:∵2222cos =+-b a c ac B=22(23)(62)223(62)++-⋅⋅+cos 045=212(62)43(31)++-+=8∴2 2.=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 222222(22)(62)(23)1,22222(62)+-++-===⨯⨯+b c a A bc ∴060.=Ac ba C B A (图1.1-5)解法二:∵sin 023sin sin45,22==⋅a A B b 又∵62+>2.4 1.4 3.8,+= 23<21.8 3.6,⨯=∴a <c ,即00<A <090, ∴060.=A评述:解法二应注意确定A 的取值范围.例2.在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形(见课本第8页例4,可由学生通过阅读进行理解)解:由余弦定理的推论得: cos 2222+-=b c a A bc 22287.8161.7134.6287.8161.7+-=⨯⨯0.5543,≈05620'≈A ; cos 2222+-=c a b B ca 222134.6161.787.82134.6161.7+-=⨯⨯ 0.8398,≈03253'≈B ;0000180()180(56203253)''=-+≈-+C A B 课题: §1.1.3解三角形的进一步讨论例1.在∆ABC 中,已知,,a b A ,讨论三角形解的情况 分析:先由sin sin b A B a =可进一步求出B ;则0180()C A B =-+ 从而sin a C c A= 1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解. 2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;(3)若sin a b A <,则无解.(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且 sin b A a b <<时,有两解;其它情况时则只有一解或无解.[随堂练习1](1)在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况.(2)在∆ABC 中,若1a =,12c =,040C ∠=,则符合题意的b 的值有_____个. (3)在∆ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值范围.(答案:(1)有两解;(2)0;(3)222x <<)例2.在∆ABC 中,已知7a =,5b =,3c =,判断∆ABC 的类型.分析:由余弦定理可知222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) 解:222753>+,即222a b c >+,∴ABC 是钝角三角形∆.[随堂练习2](1)在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,判断∆ABC 的类型.(2)已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型.(答案:(1)ABC 是钝角三角形∆;(2)∆ABC 是等腰或直角三角形)例3.在∆ABC 中,060A =,1b =,面积为32,求sin sin sin a b c A B C++++的值 分析:可利用三角形面积定理111sin sin sin 222S ab C ac B bc A ===以及正弦定理 sin sin abA B =sin cC ==sin sin sin a b c A B C++++ 解:由13sin 22S bc A ==得2c =, 则2222cos a b c bc A =+-=3,即3a =,从而sin sin sin a b c A B C ++++2sin a A == Ⅲ.课堂练习(1)在∆ABC 中,若55a =,16b =,且此三角形的面积2203S =,求角C(2)在∆ABC 中,其三边分别为a 、b 、c ,且三角形的面积2224a b c S +-=,求角C(答案:(1)060或0120;(2)045)Ⅳ.课时小结(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;(2)三角形各种类型的判定方法;(3)三角形面积定理的应用.Ⅴ.课后作业(1)在∆ABC 中,已知4b =,10c =,030B =,试判断此三角形的解的情况.(2)设x 、x+1、x+2是钝角三角形的三边长,求实数x 的取值范围.(3)在∆ABC 中,060A =,1a =,2b c +=,判断∆ABC 的形状.(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程25760x x --=的根, 求这个三角形的面积.●板书设计●授后记课题: §1.2.1解三角形应用举例(1)●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫.其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题.对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正 情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力●重点:实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●难点:根据题意建立数学模型,画出示意图●教学过程Ⅰ.课题导入1、[复习旧知]复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、[设置情境]请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施.如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性.于是上面介绍的问题是用以前的方法所不能解决的.今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离.Ⅱ.讲授新课解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解[例题讲解]例1.如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75.求A 、B 两点的距离(精确到0.1m) 启发提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?请学生回答.分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边.解:根据正弦定理,得ACB AB ∠sin = ABCAC ∠sin AB =ABC ACB AC ∠∠sin sin =ABCACB ∠∠sin sin 55 = )7551180sin(75sin 55︒-︒-︒︒ = ︒︒54sin 75sin 55 ≈ 65.7(m) 答:A 、B 两点间的距离为65.7米变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少? 老师指导学生画图,建立数学模型.解略:2a km例2.如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法. 分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题.首先需要构造三角形,所以需要确定C 、D 两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离.解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,∠ ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC中,应用正弦定理得AC =)](180sin[)sin(δγβδγ++-︒+a =)sin()sin(δγβδγ+++aBC =)](180sin[sin γβαγ++-︒a =)sin(sin γβαγ++a计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离 AB = αcos 222BC AC BC AC ⨯-+分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析.变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60︒,∠ACD=30︒,∠CDB=45︒,∠BDA =60︒(略解:将题中各已知量代入例2推出的公式,得AB=206)评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式.学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子.Ⅲ.课堂练习 课本第14页练习第1、2题Ⅳ.课时小结解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解Ⅴ.课后作业 课本第22页第1、2、3题●板书设计●授后记课题: §1.2.2解三角形应用举例(2)●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题过程与方法:本节课是解三角形应用举例的延伸.采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架.通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法.教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯.作业设计思考题,提供学生更广阔的思考空间情感态度与价值观:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力●教学重点:结合实际测量工具,解决生活中的测量高度问题●教学难点:能观察较复杂的图形,从中找到解决问题的关键条件●教学过程Ⅰ.课题导入提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题Ⅱ.讲授新课[范例讲解]例1、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.分析:求AB 长的关键是先求AE ,在∆ACE 中,如能求出C 点到建筑物顶部A 的距离CA ,再测出由C 点观察A 的仰角,就可以计算出AE 的长.解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上.由在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD = a ,测角仪器的高是h ,那么,在∆ACD 中,根据正弦定理可得AC =)sin(sin βαβ-aAB = AE + h = AC αsin + h =)sin(sin sin βαβα-a + h例2、如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5404'︒,在塔底C 处测得A 处的俯角β=501'︒.已知铁塔BC 部分的高为27.3 m,求出山高CD(精确到1 m)师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在∆ABD 中求CD ,则关键需要求出哪条边呢?生:需求出BD 边.师:那如何求BD 边呢?生:可首先求出AB 边,再根据∠BAD=α求得.解:在∆ABC 中, ∠BCA=90︒+β,∠ABC =90︒-α,∠BAC=α- β,∠BAD=α.根据正弦定理, )sin(βα-BC = )90sin(β+︒AB ,所以 AB =)sin()90sin(βαβ-+︒BC =)sin(cos βαβ-BC 解Rt ∆ABD 中,得 BD =ABsin ∠BAD=)sin(sin cos βααβ-BC 将测量数据代入上式,得BD = )1500454sin(0454sin 150cos 3.27'-'''︒︒︒︒ =934sin 0454sin 150cos 3.27'''︒︒︒ ≈177 (m) CD =BD -BC ≈177-27.3=150(m)答:山的高度约为150米.师:有没有别的解法呢?生:若在∆ACD 中求CD ,可先求出AC .师:分析得很好,请大家接着思考如何求出AC ?生:同理,在∆ABC 中,根据正弦定理求得.(解题过程略)例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.师:欲求出CD ,大家思考在哪个三角形中研究比较适合呢?生:在∆BCD 中师:在∆BCD 中,已知BD 或BC 都可求出CD,根据条件,易计算出哪条边的长?生:BC 边解:在∆ABC 中, ∠A=15︒,∠C= 25︒-15︒=10︒,根据正弦定理,A BC sin = CAB sin , BC =C A AB sin sin =︒︒10sin 15sin 5 ≈ 7.4524(km) CD=BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m)答:山的高度约为1047米Ⅲ.课堂练习:课本第17页练习第1、2、3题Ⅳ.课时小结:利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.Ⅴ.课后作业1、 课本第23页练习第6、7、8题2、 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45︒,则塔AB 的高度为多少m ?答案:20+3320(m) ●板书设计●授后记课题: §1.2.3解三角形应用举例(3)●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题 过程与方法:本节课是在学习了相关内容后的第三节课,学生已经对解法有了基本的了解,这节课应通过综合训练强化学生的相应能力.除了安排课本上的例1,还针对性地选择了既具典型性有具启发性的2道例题,强调知识的传授更重能力的渗透.课堂中要充分体现学生的主体地位,重过程,重讨论,教师通过导疑、导思让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三.情感态度与价值观:培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神.●教学重点:能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系●教学难点:灵活运用正弦定理和余弦定理解关于角度的问题●教学过程Ⅰ.课题导入[创设情境]提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题.然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题.Ⅱ.讲授新课[范例讲解]例1.如图,一艘海轮从A 出发,沿北偏东75︒的方向航行67.5 n mile 后到达海岛B,然后从B 出发,沿北偏东32︒的方向航行54.0 n mile 后达到海岛C.如果下次航行直接从A 出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)学生看图思考并讲述解题思路,教师根据学生的回答归纳分析:首先根据三角形的内角和定理求出AC 边所对的角∠ABC ,即可用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角∠CAB .解:在∆ABC 中,∠ABC=180︒- 75︒+ 32︒=137︒,根据余弦定理, AC=ABC BC AB BC AB ∠⨯⨯-+cos 222 =︒⨯⨯⨯-+137cos 0.545.6720.545.6722 ≈113.15根据正弦定理, sin ∠CAB = AC ABC BC ∠sin = 15.113137sin 0.54︒≈0.3255, 所以 ∠CAB =19.0︒, 75︒- ∠CAB =56.0︒答:此船应该沿北偏东56.1︒的方向航行,需要航行113.15n mile例2.在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2θ,再继续前进103m 至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高.师:请大家根据题意画出方位图.生:上台板演方位图(上图)教师先引导和鼓励学生积极思考解题方法,让学生动手练习,请三位同学用三种不同方法板演,然后教师补充讲评.解法一:(用正弦定理求解)由已知可得在∆ACD 中,AC=BC=30, AD=DC=103, ∠ADC =180︒-4θ,∴θ2sin 310=)4180sin(30θ-︒ . 因为 sin4θ=2sin2θcos2θ ∴ c os2θ=23,得 2θ=30︒∴ θ=15︒, ∴在Rt ∆ADE 中,AE=ADsin60︒=15答:所求角θ为15︒,建筑物高度为15m解法二:(设方程来求解)设DE= x ,AE=h在 Rt ∆ACE 中,(103+ x)2 + h 2=302在 Rt ∆ADE 中,x 2+h 2=(103)2两式相减,得x=53,h=15∴在 Rt ∆ACE 中,tan2θ=x h+310=33∴2θ=30︒,θ=15︒ 答:所求角θ为15︒,建筑物高度为15m解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得∠BAC=θ, ∠CAD=2θ, AC = BC =30m , AD = CD =103m在Rt ∆ACE 中,sin2θ=30x --------- ① 在Rt ∆ADE 中,sin4θ=3104, --------- ②②÷① 得 cos2θ=23,2θ=30︒,θ=15︒,AE=ADsin60︒=15 答:所求角θ为15︒,建筑物高度为15m例3.某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?师:你能根据题意画出方位图?教师启发学生做图建立数学模型分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量.解:如图,设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB=10x, AB=14x,AC=9,∠ACB=︒75+︒45=︒120∴(14x) 2= 92+ (10x) 2 -2⨯9⨯10xcos ︒120∴化简得32x 2-30x-27=0,即x=23,或x=-169(舍去)所以BC = 10x =15,AB =14x =21, 又因为sin ∠BAC =AB BC ︒120sin =2115⨯23=1435 ∴∠BAC =3831'︒,或∠BAC =14174'︒(钝角不合题意,舍去),∴3831'︒+︒45=8331'︒答:巡逻艇应该沿北偏东8331'︒方向去追,经过1.4小时才追赶上该走私船.评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解Ⅲ.课堂练习 课本第18页练习Ⅳ.课时小结 解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解. Ⅴ.课后作业1、课本第23页练习第9、10、11题2、我舰在敌岛A 南偏西︒50相距12海里的B 处,发现敌舰正由岛沿北偏西︒10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?(角度用反三角函数表示)●板书设计●授后记课题: §1.2.3解三角形应用举例(4)●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型.另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解.只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点.情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验●教学重点:推导三角形的面积公式并解决简单的相关题目●教学难点:利用正弦定理、余弦定理来求证简单的证明题●教学过程Ⅰ.课题导入[创设情境]师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式.在 ∆ABC 中,边BC 、CA 、AB 上的高分别记为h a 、h b 、h c ,那么它们如何用已知边和角表示? 生:h a =bsinC=csinB,h b =csinA=asinC,h c =asinB=bsinaA师:根据以前学过的三角形面积公式S=21ah,应用以上求出的高的公式如h a =bsinC 代入,可以推导出下面的三角形面积公式,S=21absinC ,大家能推出其它的几个公式吗? 生:同理可得,S=21bcsinA, S=21acsinB 师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?生:如能知道三角形的任意两边以及它们夹角的正弦即可求解Ⅱ.讲授新课[范例讲解] 例1.在∆ABC 中,根据下列条件,求三角形的面积S (精确到0.1cm 2)(1)已知a=14.8cm,c=23.5cm,B=148.5︒;(2)已知B=62.7︒,C=65.8︒,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积.解:(1)应用S=21acsinB ,得 S=21⨯14.8⨯23.5⨯sin148.5︒≈90.9(cm 2) (2)根据正弦定理,B b sin =C c sin c = B C b sin sin S = 21bcsinA = 21b 2BA C sin sin sinA = 180︒-(B + C)= 180︒-(62.7︒+ 65.8︒)=51.5︒ S = 21⨯3.162⨯︒︒︒7.62sin 5.51sin 8.65sin ≈4.0(cm 2) (3)根据余弦定理的推论,得cosB =ca b a c 2222-+=4.417.3823.274.417.38222⨯⨯-+ ≈0.7697 sinB = B 2cos 1-≈27697.01-≈0.6384应用S=21acsinB ,得S ≈21⨯41.4⨯38.7⨯0.6384≈511.4(cm 2) 例 2.如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm 2)?师:你能把这一实际问题化归为一道数学题目吗?生:本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解.由学生解答,老师巡视并对学生解答进行讲评小结.解:设a=68m,b=88m,c=127m,根据余弦定理的推论, cosB=ca b a c 2222-+ =6812728868127222⨯⨯-+≈0.7532 sinB=≈-27532.010.6578应用S=21acsinB S ≈21⨯68⨯127⨯0.6578≈2840.38(m 2) 答:这个区域的面积是2840.38m 2.例3.在∆ABC 中,求证:(1);sin sin sin 222222CB A c b a +=+(2)2a +2b +2c =2(bccosA+cacosB+abcosC ) 分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,联想到用正弦定理来证明证明:(1)根据正弦定理,可设 A a sin = B b sin = Cc sin = k 显然 k ≠0,所以左边=C k B k A k c b a 222222222sin sin sin +=+ =CB A 222sin sin sin +=右边(2)根据余弦定理的推论,右边=2(bc bc a c b 2222-++ca ca b a c 2222-++ab abc b a 2222-+) =(b 2+c 2- a 2)+(c 2+a 2-b 2)+(a 2+b 2-c 2)=a 2+b 2+c 2=左边变式练习1:已知在∆ABC 中,∠B=30︒,b=6,c=63,求a 及∆ABC 的面积S提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数.答案:a=6,S=93;a=12,S=183变式练习2:判断满足下列条件的三角形形状,(1)acosA = bcosB, (2)sinC =BA B A cos cos sin sin ++ 提示:利用正弦定理或余弦定理,“化边为角”或“化角为边”师:大家尝试分别用两个定理进行证明. 生1:(余弦定理)得a ⨯bc a c b 2222-+=b ⨯cab ac 2222-+ ∴c 44222)(b a b a -=-=))((2222b a b a -+,∴22222b a c b a +==或∴根据边的关系易得是等腰三角形或直角三角形生2:(正弦定理)得sinAcosA=sinBcosB,∴sin2A=sin2B, ∴2A=2B, ∴A=B∴根据边的关系易得是等腰三角形师:根据该同学的做法,得到的只有一种情况,而第一位同学的做法有两种,请大家思考,谁的正确呢?生:第一位同学的正确.第二位同学遗漏了另一种情况,因为sin2A=sin2B,有可能推出2A 与2B 两个角互补,即2A+2B=180︒,A+B=90︒(2)(解略)直角三角形Ⅲ.课堂练习 课本第21页练习第1、2题Ⅳ.课时小结 利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状.特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用.Ⅴ.课后作业 课本第23页练习第12、14、15题●板书设计●授后记。
高考数学二轮复习 专题2第7讲 正弦、余弦定理与解三角形精品课件 大纲人教
第7讲 │ 要点热点探究
变式题(1)在△ABC 中,已知角 A、B、C 所对的边分别为 a、b、c,且 a=3,c=8,B=60°,则 sinA 的值是( )
3
3
33
33
A.16
B.14
C. 16
D. 14
(2)在△ABC 中,a、b、c 是角 A、B、C 的对边,若 a、b、c 成等比
数列,A=60°,则bsicnB=( )
第7讲│ 要点热点探究
【点评】 解三角形的实际应用问题其基本的解题思想是 把要求解的量(角和长度)纳入到可解三角形中,然后使用正弦 定理、余弦定理解这个三角形.在分析实际应用问题时,要善 于根据题目给出的已知条件寻找这样的可解三角形.如本题中 △ABD 是第一个基本的可解三角形,我们已知这个三角形的 两条边长 AD,BD,和其中一个边的对角∠BAD=60°,这个 三角形中的所有元素都能求出,这样就为解另外的三角形提供 了新的已知条件.本题也可以在△ABD 中求出 AB,然后在 △ABC 中使用余弦定理求 BC.
第7讲 正弦、余弦定理与解三角形
第7讲 正弦、余弦定理 与解三角形
第7讲 │ 主干知识整合
主干知识整合
1.正、余弦定理主要应用 ①求值问题;②证明问题;③比较大小问题;④判断三角形形状问题;⑤求范 围问题. 2.正弦定理和余弦定理在解斜三角形时,应注意以下几个方面 (1)要注意正、余弦定理的变式应用及公式逆用.如正弦定理中,a=2Rsin A,b =2Rsin B,c=2Rsin C,可以把边转换成角,比如题设中出现 b2=ac 这样的条件, 我们可以把它化为 sin2B=sinAsinC. (2)防止漏解,特别是在用正弦定理得到 sin A=a(a∈(0,1))时,A 可以有两个解, 要结合题设条件对它进行讨论,并取舍. (3)要注意三角形中的隐含条件,如 A+B+C=π,两边之和大于第三边等. 3. 解三角形应用问题时,通常会遇到的两种情形 (1)已知量与未知量全部集中在一个三角形中,利用正弦定理或余弦定理解之; (2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优 先研究,再逐步在其余的三角形中求出问题的解.
解三角形讲义(经典)
中小学1对1课外辅导专家武汉龙文教育学科辅导讲义授课对象 胡婧怡 授课教师 徐江鸣 授课时间 星期三 授课题目 解三角形 课 型 复习课使用教具讲义、纸、笔教学目标 解三角形的巩固与提高教学重点和难点重点:正弦、余弦定理的运用难点:结合实际应用问题考察正弦定理、余弦定理及应用 参考教材 人教版高一教材 高考考纲 历年高考真题教学流程及授课详案【知识讲解】1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径) 变形: a=2R b=2R2、余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹 角的余弦的积的两倍变形:3、三角形的面积公式:(1)△=21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)△=21ab sin C =21bc sin A =21ac sin B ;注:1、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式。
2、解题中利用ΔABC 中,A+B+C=∏,以及由此推得的一些基本关系式进行三角变换的运算。
时 间 分 配 及 备 注【题海拾贝】 一.正弦定理例1 在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c .思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.二.余弦定理例2 在∆ABC 中,已知23=a ,62=+c ,060=B ,求b 及A三.求三角形面积例3 在∆A B C 中,s i n c o s A A +=22,A C =2,A B =3,求A tan 的值和∆A B C 的面积。
四.真题再现例4 ABC ∆中,D 为边BC 上的一点,33BD =,5sin 13B =,3cos 5ADC ∠=,求AD .例5 设ABC ∆是锐角三角形,,,a b c 分别是内角,,A B C 所对边长,并且22sin sin() sin() sin 33A B B B ππ=+-+(Ⅰ)求角A 的值;(Ⅱ)若12,27AB AC a ==,求,b c (其中b c <)。
高中数学竞赛第七章 解三角形【讲义】
第七章 解三角形一、基础知识在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2cb a p ++=为半周长。
1.正弦定理:CcB b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。
推论1:△ABC 的面积为S △ABC =.sin 21sin 21sin 21B ca A bc C ab ==推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足)sin(sin a ba a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 21;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理BbA a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]=21-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。
2.余弦定理:a 2=b 2+c 2-2bccosA bca cb A 2cos 222-+=⇔,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq qp qc p b -++ (1)【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π,所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq qp qc p b -++ 注:在(1)式中,若p=q ,则为中线长公式.222222a c b AD -+=(2)海伦公式:因为412=∆ ABC S b 2c 2sin 2A=41b 2c 2(1-cos 2A)=41b 2c 21614)(1222222=⎥⎦⎤⎢⎣⎡-+-c b a c b [(b+c)2-a 2][a 2-(b-c) 2]=p(p-a)(p-b)(p-c). 这里.2cb a p ++=所以S △ABC =).)()((c p b p a p p ---二、方法与例题1.面积法。
最全面的解三角形讲义
解三角形【高考会这样考】1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法.4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b解的 个数无解 一解 两解 一解 一解 无解5.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 6.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)). (2)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)). (3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等. (4)坡度:坡面与水平面所成的二面角的度数.考向探究题型一 正弦余弦定理运用【例题1】在△ABC 中,已知a=3,b=2,B=45°,求A 、C 和c. 【例题2】 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b+2.(1)求角B 的大小;(2)若b=13,a+c=4,求△ABC 的面积.【例题3】 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (1)求角A 的大小;(2)若a=3,求bc 的最大值; (3)求cb C a --︒)30sin(的值.【变式】1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .2.(1)△ABC 中,a=8,B=60°,C=75°,求b; (2)△ABC 中,B=30°,b=4,c=8,求C 、A 、a.3.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的面积为 .4.已知△ABC 中,三个内角A ,B ,C 的对边分别为a,b,c,若△ABC 的面积为S ,且2S=(a+b )2-c 2,求tanC 的值.5. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .6. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则角B 的值为 .7. 在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c.已知c=2,C=3π. (1)若△ABC 的面积等于3,求a 、b 的值; (2)若sinC+sin(B-A)=2sin2A,求△ABC 的面积. 题型二 判断三角形形状【例题】在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A-B )=(a 2-b 2)sin (A+B ),判断三角形的形状.【变式】 已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B-8cosB+5=0,求角B 的大小并判断△ABC 的形状. 题型三 测量距离问题 【例题】如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.【变式】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离. 题型四 测量高度问题【例题】如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .【变式】如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB . 题型五 正、余弦定理在平面几何中的综合应用【例题】如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.【变式】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.巩固训练1.在△ABC 中,若2cosBsinA=sinC,则△ABC 一定是 三角形.2.在△ABC 中,A=120°,AB=5,BC=7,则CB sin sin 的值为 .3.已知△ABC 的三边长分别为a,b,c,且面积S △ABC =41(b 2+c 2-a 2),则A= .4.在△ABC 中,BC=2,B=3,若△ABC 的面积为23,则tanC 为 .5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= .8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 . 9.下列判断中不正确的结论的序号是 . ①△ABC 中,a=7,b=14,A=30°,有两解 ②△ABC 中,a=30,b=25,A=150°,有一解 ③△ABC 中,a=6,b=9,A=45°,有两解 ④△ABC 中,b=9,c=10,B=60°,无解10. 在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状. 11. 在△ABC 中,cosB=-135,cosC=54.(1)求sinA 的值;(2)△ABC 的面积S △ABC =233,求BC 的长.12.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x-b=0 (a >c >b)的两根之差的平方等于4,△ABC 的面积S=103,c=7. (1)求角C ; (2)求a ,b 的值.13. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a+b=5,c=7,且4sin 22B A +-cos2C=27.(1)求角C 的大小; (2)求△ABC 的面积.14.(人教A 版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ).A .50 2 mB .50 3 mC .25 2 m D.2522 m15.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=β C .α+β=90° D .α+β=180° 16.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ).A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10° 17.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A .5海里B .53海里C .10海里D .103海里18.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.19.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里? 参考答案 例题答案题型一 正弦、余弦定理【例题1】 解 ∵B=45°<90°且asinB <b <a,∴△ABC 有两解.由正弦定理得sinA=bBa sin =245sin 3︒ =23,则A 为60°或120°. ①当A=60°时,C=180°-(A+B)=75°,c=BC b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+. ②当A=120°时,C=180°-(A+B)=15°,c=BC b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-.故在△ABC 中,A=60°,C=75°,c=226+或A=120°,C=15°,c=226-.【例题2】解(1)由余弦定理知:cosB=acb c a 2222-+,cosC=abc b a2222-+. 将上式代入C B cos cos =-ca b+2得:acb c a 2222-+·2222cb a ab-+=-ca b+2 整理得:a 2+c 2-b 2=-ac ∴cosB=acb c a 2222-+=ac ac2- =-21 ∵B 为三角形的内角,∴B=32π. (2)将b=13,a+c=4,B=32π代入 b 2=a 2+c 2-2accosB,得b 2=(a+c)2-2ac-2accosB∴b 2=16-2ac ⎪⎭⎫⎝⎛-211,∴ac=3.∴S △ABC =21acsinB=433. 【例题3】解(1)∵cosA=bca cb 2222-+=bc bc2-=-21, 又∵A ∈(0°,180°),∴A=120°.(2)由a=3,得b 2+c 2=3-bc,又∵b 2+c 2≥2bc (当且仅当c=b 时取等号),∴3-bc ≥2bc(当且仅当c=b 时取等号). 即当且仅当c=b=1时,bc 取得最大值为1.(3)由正弦定理得:===C cB b A a sin sin sin2R, ∴C R B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒ =CB C A sin sin )30sin(sin --︒ =CC C C sin )60sin()sin 23cos 21(23--︒-C C C C sin 23cos 23)sin 43cos 43--==21【变式】1. 22. 解(1)由正弦定理得B bA a sin sin =. ∵B=60°,C=75°,∴A=45°,∴b=︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sinC=430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C=90°.∴A=180°-(B+C)=60°,a=22b c -=43. 3. 1034. 解 依题意得absinC=a 2+b 2-c 2+2ab, 由余弦定理知,a 2+b 2-c 2=2abcosC. 所以,absinC=2ab(1+cosC), 即sinC=2+2cosC,所以2sin 2C cos 2C=4cos 22C 化简得:tan 2C =2. 从而tanC=2tan 12tan22C C -=-34. 5.33 6.3π或32π7. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab=4.又因为△ABC 的面积等于3, 所以21absinC=3,所以ab=4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a解得⎩⎨⎧==22b a . (2)由题意得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA,当cosA=0时,A=2π,B=6π,a=334,b=332.当cosA ≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a所以△ABC 的面积S=21absinC=332.题型二 判断三角形形状【例题】 解方法一 已知等式可化为a 2[sin (A-B )-sin (A+B )]=b 2[-sin (A+B )-sin(A-B)] ∴2a 2cosAsinB=2b 2cosBsinA 由正弦定理可知上式可化为: sin 2AcosAsinB=sin 2BcosBsinA ∴sinAsinB(sinAcosA-sinBcosB)=0 ∴sin2A=sin2B,由0<2A,2B <2π 得2A=2B 或2A=π-2B, 即A=B 或A=2π-B,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cosAsinB=2b 2sinAcosB 由正、余弦定理,可得 a2b bc a c b 2222-+= b 2a acb c a 2222-+∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2) 即(a 2-b 2)(a 2+b 2-c 2)=0 ∴a=b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.【变式】 解 方法一 ∵2cos2B-8cosB+5=0,∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去).∴cosB=21. ∵0<B <π,∴B=3π. ∵a ,b ,c 成等差数列,∴a+c=2b. ∴cosB=ac bc a2222-+=acc a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac=0,解得a=c.又∵B=3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B-8cosB+5=0, ∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去). ∴cosB=21,∵0<B <π,∴B=3π, ∵a,b,c 成等差数列,∴a+c=2b.由正弦定理得sinA+sinC=2sinB=2sin 3π=3.∴sinA+sin ⎪⎭⎫⎝⎛-A 32π=3,∴sinA+sin A cos 32π-cos A sin 32π=3.化简得23sinA+23cosA=3,∴sin ⎪⎭⎫⎝⎛+6πA =1.∴A+6π=2π,∴A=3π, ∴C=3π,∴△ABC 为等边三角形. 题型三 测量距离问题【例题】解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45° 在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a . 在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . 【变式】解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620 km.题型四 测量高度问题【例题】解 如图,设CD =x m , 则AE =x -20 m , tan 60°=CD BD, ∴BD =CDtan 60°=x 3=33x (m).在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m. 【变式】解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin?α+β?在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin?α+β?.题型五 正、余弦定理在平面几何中的综合应用 【例题】解 在△ABC 中,AB =5,AC =9,∠BCA =30°. 由正弦定理,得AB sin ∠ACB =ACsin ∠ABC ,sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.【变式】解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6巩固训练1. 等腰;2. 53;3. 45°;4.33;5. 60°;6. 45°或135°;7.65π;8. 3或23;9. ①③④10.(1)证明 因为a 2=b(b+c),即a 2=b 2+bc, 所以在△ABC 中,由余弦定理可得, cosB=acb c a 2222-+=ac bc c22+=a c b 2+=aba 22=b a 2=BAsin 2sin , 所以sinA=sin2B,故A=2B.(2)解 因为a=3b,所以b a=3,由a 2=b(b+c)可得c=2b, cosB=acb c a 2222-+=22223443b b b b-+=23,所以B=30°,A=2B=60°,C=90°. 所以△ABC 为直角三角形.11. 解 (1)由cosB=-135,得sinB=1312, 由cosC=54,得sinC=53.所以sinA=sin(B+C)=sinBcosC+cosBsinC=6533.(2)由S △ABC =233,得21×AB×AC×sinA=233. 由(1)知sinA=6533,故AB×AC=65. 又AC=CB ABsin sin ⨯=1320AB, 故1320AB 2=65,AB=213. 所以BC=CA ABsin sin ⨯=211. 12. 解 (1)设x 1、x 2为方程ax 2-222b c -x-b=0的两根, 则x 1+x 2=a b c 222-,x 1·x 2=-a b . ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+a b 4=4. ∴a 2+b 2-c 2=ab.又cosC=ab c b a 2222-+=ab ab 2=21, 又∵C ∈(0°,180°),∴C=60°. (2)S=21absinC=103,∴ab =40 ……① 由余弦定理c 2=a 2+b 2-2abcosC,即c 2=(a+b)2-2ab(1+cos60°).∴72=(a+b)2-2×40×⎪⎭⎫ ⎝⎛+211. ∴a+b=13.又∵a >b ……②∴由①②,得a=8,b=5.13. 解 (1)∵A+B+C=180°,由4sin 22B A +-cos2C=27, 得4cos 22C -cos2C=27, ∴4·2cos 1C +-(2cos 2C-1)=27, 整理,得4cos 2C-4cosC+1=0,解得cosC=21, ∵0°<C <180°,∴C=60°.(2)由余弦定理得c 2=a 2+b 2-2abcosC,即7=a 2+b 2-ab,∴7=(a+b)2-3ab ,由条件a+b=5,得7=25-3ab,ab=6,∴S △ABC =21absinC=21×6×23=233.14.解析 由正弦定理得AB sin ∠ACB =ACsin B ,又∵B =30° ∴AB =AC ·sin ∠ACB sin B =50×2212=502(m).答案 A 15.解析 根据仰角与俯角的定义易知α=β.答案 B16.解析 如图.答案 B17.解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时). 答案 C18.解析 由正弦定理,知BC sin 60°=ABsin?180°-60°-75°?.解得BC =56(海里). 答案 5 619.如图,连接A 1B 2由已知A 2B 2=102, A 1A 2=302×2060=102,∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,(8分)在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45° =202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2. 因此,乙船的速度为10220×60=302(海里/时).(12分)。
高三数学-高考复习讲义-解三角形讲义资料(Word版)
高三数学-高考复习讲义-解三角形设ABC ∆中a b c 、、分别是角A B C 、、所对的边,R 为ABC ∆的外接圆半径,r 为ABC ∆内切圆半径,S 为ABC ∆的面积.三角形内角和定理:A B C π++=. 正弦定理:2sin sin sin a b cR A B C===. 余弦定理:Cab b a c B ac c a b Abc c b a cos 2cos 2cos 2222222222⋅-+=⋅-+=⋅-+=.三角形面积公式:1sin 2S ab C =11sin sin 22bc A ac B == 注意:三角形两边之和大于第三边,两边之差小于第三边一、利用正余弦定理求解三角形【例1】在ABC ∆中,角A B C ,,的对边为,,a b c ,若,则角A =( )A .30B .30105或C .60D .60120或【例2】在ABC ∆中,由已知条件解三角形,其中有两解的是( )A. 20,45,80b A C ===B. 30,28,60a c B === C. 14,16,45a b A ===D. 12,15,120a c A ===【例3】在锐角ABC ∆中,边长1,2a b ==,则边长c 的取值范围是_______.【例4】已知下列各三角形的两边及一边的对角,先判断三角形是否有解,若有解,再解该三角形.(1)07,8,105a b A === (2)010,20,80a b A ===(3)010,60a b A ===(4)06,30a b A ===︒===45,2,3B b a【例5】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足b cos A +a cos B =2c cos C ,△ABC 的面积为 . (Ⅰ)求角C 的大小; (Ⅱ)若a =2,求边长c .【例6】在ABC ∆中,c b a 、、为角C B A 、、所对的三边,已知222+c b a bc -=.(1)求角A 的值;(2)若a =cos C =,求c 的长.【巩固训练】1.在ABC ∆中,若1,60,a C c ===则A 的值为( ) A .︒30 B .︒60 C .30150︒︒或 D .60120︒︒或 2在ABC ∆中,若B a b sin 2=,则A 等于( ) A .006030或B .006045或C .0060120或D .0015030或3边长为5,7,8的三角形的最大角与最小角的和是( ) A .090B .0120C .0135D .01504.在△ABC 中,若sin A :sin B :sin C =5:7:8,则∠B 的大小是 .5.在△ABC 中,“A >B ”是“sin A >sin B ”的 条件. 7.在△ABC 中,已知, , ,则a = . 8.在ABC △中,若43tan =A ,︒=120C ,32=BC ,则AB =( ) A.3 B.4C.5D.69.已知ABC ∆的外接圆半径为5,=6,=8,a b 则此三角形 ( )A .有一解B .有两解C .无解D .不能确定10.根据下列条件,判断三角形解的个数: (1)a = 80,b = 100,A =30°___________; (2)a = 50,b = 100,A =30°__________ ; (3)a = 40,b = 100,A =30°___________;二、正、余弦定理判断三角形形状【例8】在ABC ∆中,cos cos sin sin A B A B >,则ABC ∆为( )A .锐角三角形B .直角三角形C .钝角三角形D .无法判定【例9】在ABC ∆中,若2cos sin sin B A C =,则ABC ∆的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形 【例10】ABC ∆的三边分别为,,a b c 且满足c a b ac b +==2,2,则此三角形是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【例11】在ABC ∆中,若,cos cos cos C c B b A a =+则ABC ∆的形状是什么?【巩固训练】1.在ABC ∆中,若,12,10,9===c b a 则ABC ∆的形状是_________。
(完整版)解三角形完整讲义
正余弦定理知识要点:3、解斜三角形的常规思维方法是:(1)已知两角和一边(如 A 、 B 、 C ),由 A+B+C = π求 C ,由正弦定理求 a 、b ; (2)已知两边和夹角(如 a 、b 、c ),应用余弦定理求 c 边;再应用正弦定理先求较短边所 对的角,然后利用 A+B+C = π,求另一角;(3)已知两边和其中一边的对角(如 a 、b 、A ),应用正弦定理求 B ,由 A+B+C = π求 C , 再由正弦定理或余弦定理求 c 边,要注意解可能有多种情况;(4)已知三边 a 、b 、c ,应余弦定理求 A 、B ,再由 A+B+C = π,求角 C 。
4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式5、解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定 理及几何作图来帮助理解” 。
6、已知三角形两边 a,b,这两边夹角 C ,则 S =1/2 * absinC7、三角学中的射影定理:在△ ABC 中, b a cosC c cosA ,⋯8、两内角与其正弦值:在△ ABC 中, A B sin A sinB ,例题】在锐角三角形 ABC 中,有 (A . cosA>sinB 且 cosB>sinAC . cosA>sinB 且 cosB<sinA正弦定理专题:公式的直接应用1、已知 △ ABC 中, a2,b 3, B 60o ,那么角 A 等于( )A . 135oB . 90oC .45oD .30o2、在△ ABC 中, a = 2 3 ,b = 2 2 , B = 45°,则 A 等于( C )A .30°B . 60°C .60°或 120°D . 30°或 150°3、△ABC 的内角 A ,B ,C 的对边分别为 a , b ,c ,若 c 2,b 6,B 120o ,则 a1、 正弦定理a sin Ab sin B 2R 或变形: a:b:c sinCsin A :sin B :sin C .2a b 22c 2bc cos AcosA2、余弦定理:b 22a 2 c 2accosB 或 cosB2cb 2 2 a 2ba cosCcosCb 22c 2 a2bc222a cb 22ac222b 2a c2abB )B . cosA<sinB 且 cosB<sinA D . cosA<sinB 且 cosB>sinA9、三角形内切圆的半径:2S bc,特别地, r 直a b c 斜616、已知 ABC 的内角 A , B ,C 所对的边分别为 a ,b ,c ,若sin A ,b3sinB ,33则 a 等于 . ( 3 )336 12 6,12 6 24)2、已知 △ ABC 的周长为 2 1,且sinA sinB 2sinC .(1)求边 AB 的长;1(2)若 △ ABC 的面积为 sin C ,求角 C 的度数.专题:三角形个数4、已知△ ABC中,A 30o , C 105o , b 8,则 a 等于(B )A . 4B.4 2C.4 3D.4 55、在△ ABC 中,a=10,B=60°,C=45° ,则 c 等于 ( B)A . 10 3B . 10 3 1C . 3 1D . 10 3C . 3D . 2等于( )A . 6B .27、△ ABC 中, B 45o,C60o , c 1,则最短边的边长等于(B.3: 2两部分,则 cosA ( C )1 13 A .B .C .324cos2Acos2B119、在△ ABC 中,证2222ab 2a 2b 2D .0证明:cos2Acos2B 1 2sin 2 Ab 21 2sin2 Bb 21 1 sin2 A sin 2 B 222 2 2a b a b由正弦定理得:sin 2 Aa 22sinb 2cos2A 2a专题:两边之和1、在△ ABC 中,A =60°, B =45°, cos2B b 21b 2ab 12, a =;b = .8、△ ABC 中,A:B1: 2,C 的平分线 CD 把三角形面积分成1、△ ABC中,∠ A=60°, a= 6 , b=4, 那么满足条件的△ ABC ( C ) A.有一个解 B.有两个解C.无解D.不能确定2、Δ ABC中,a=1,b= 3 , ∠ A=30° ,则∠ B等于( B )A.60°B.60°或120° C.30°或150° D.120°3、在△ ABC 中,根据下列条件解三角形,则其中有两个解的是( D )A.b = 10,A = 45°, B = 70°B.a = 60,c = 48,B = 100°C.a = 7,b = 5,A = 80°D.a = 14,b = 16,A = 45°4、符合下列条件的三角形有且只有一个的是( D )A.a=1,b=2 ,c=3 B.a=1,b= 2 ,∠ A=30°专题:等比叠加D. 32专题:变式应用1、在△ ABC中,若∠ A:∠ B:∠C=1:2:3,则a : b : c 1: 3:22、已知△ABC中,a∶b∶c=1∶3 ∶2,则A∶B∶C等于( A )A.1∶2∶3B.2∶3∶1C.1:3:2D.3:1:23、在△ ABC 中,周长为7.5cm ,且sinA :sinB:sinC=4:5:6,下列结论:① a:b:c4:5:6② a:b:c 2: 5 : 6 ③a2cm,b 2.5cm,c 3cm④ A: B:C 4:5:6其中成立的个数是( C )A.0 个B. 1 个C.2个D.3个5、C.a=1,b=2,∠ A=100°C.b=c=1, ∠B=45°在△ ABC中,a=12,b=13,C=60°,此三角形的解的情况是(A.无解B.一解C.二解B)D.不能确定6、满足A=45 ,c= 6 ,a=2 的△ ABC 的个数记为m, 则 a m 的值为( A )7、8、A.4 B.2 C.1 D.不定已知△ ABC 中,a181,b 209,A 121 ,则此三角形解的情况是无解在△ ABC中,已知50 3 ,c 150 ,B 30o,则边长a。
高中数学讲义解三角形
解三角形-----T 能力解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化. 对本讲内容的考察主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题。
今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用。
题型一般为选择题、填空题,也可能是中、难度的解答题 要点精讲1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C cB b A a 2sin sin sin ===。
(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)△=21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)△=21ab sin C =21bc sin A =21ac sin B ;(3)△=)sin(2sin sin 2C B C B a +=)sin(2sin sin 2A C A C b +=)sin(2sin sin 2B A BA c +;(4)△=2R 2sin A sin B sin C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形第七章一、基础知识分别表示它们所对的各边长,的三个内角,a, b, cC分别表示△ABC在本章中约定用A,B,cb?a??p为半周长。
2cab??△ABC外接圆半径)。
1.正弦定理:=2R(R 为C sin B sin A sin111.BA?ca sin ab sin C?bc sin =推论1:△ABC的面积为S ABC△222bcosC+ccosB=a. 中,有2:在△ABC推论ba??a=A. 满足△ABC中,A+B=,则,解a推论3:在?)a sin(a?sin,由正1正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1?Cab sin,所,因为B+C==-A;再证推论2弦函数定义,BC边上的高为bsinC,所以S ABC△2,3得bcosC+ccosB=a;再证推论以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边同乘以2R?ba)?sin a sin(a????由正弦定理-a)sinA,所以,即sinasin(,等价于-A)=sin(?)?A sinsin(A BA sinsin11????????,-a-A)][cos(,等价于-A+a)-cos(cos(-A-a)]= -a+A)[cos(-A+a)=cos(-a+A)-cos(22????? a=A-A+a=因为0<,得证。
-A+a,-a+A-a+A<,所以. 所以只有222a?bc?222?A?cos,下面用余弦定理证明几个常用+c-2bccosA2.余弦定理:a=b bc2的结论。
则DC=q,点,BD=p,是中,DBC 边上任意一(1)斯特瓦特定理:在△ABC22qbcp?2.pq?=)(1 AD q?p2222ADB? =AB,=AD·+BDBDcos-2AD【证明】因为c222.ADB?①所以c =AD+p -2AD·pcos222ADC?②,同理b =AD +q -2AD·qcos???因为ADC=ADB+,?? ADC=0所以cos,ADB+cos×①+p×②得所以q22qcb?p.?pq2222=+pq(p+q),即AD qc+pb=(p+q)AD qp?222a?2c2b??AD.,则为中线长公式p=q1)式中,若注:在(2111 2?S2*******cA)= bA=sinbc为)(2海伦公式:因 (1-cosbc ABC?4442222??1)?(b?ca2??1??2216c4b??cb?a??.p这222]=p(p-a)(p-b)(p-c). ][a-(b-c)-a[(b+c)里2).)(?)(?(ppapbp?c S所以=ABC△.二、方法与例题.面积法。
1足满三条射线所示,从O点发出的例1 (共线关系的张角公式)如图????QOR,?POQ??,β∈)(0, u, w, v,这里α,β,α+,另外OP,OQ,OR的长分别为Q,R的共线的充要条件是则P,????)sinsin(sin?.??wuv SS?S??S?0?共线P【证明】,Q,R ORQ??ΔPQR?OPROPQ111sin uv? +vwsinβα(+β)=uwsinα222????sin?sinsin()???,得证。
vwu 2.正弦定理的应用。
?????? CPA-ACBCBA=例2 如图所示,△ABC内有一点P,使得。
BPC-APB-BAC= AB。
BC=BP求证:AP··CA=CP·???;,E,则P,D,AC,PFCAB,垂足分别为D,E,【证明】过点P作PD,BCPEF???????。
F三组四点共圆,所以BPC-EDF=PCA+PDE+PBA=PDF=BAC,P,E,A,F;PD,B,00??????CPA+ACB=180APB=360CBA+BPC+可得。
BAC+由题设及0?????? BPC-ACB=60BAC=所以APB-CPA-CBA=。
00??是正三角形。
所以,所以EDF=60△,同理DEFDEF=60???ABCABC,DE=EF=DF,由正弦定理,CDsin两边同时乘以ACB=APsin△BAC=BPsin所以BC=BP·AC,得证:的外接圆直径2R,得CP·BA=AP·,求证:与DE交于P ABC的各边分别与两圆⊙O,⊙O相切,直线GF例3 如图所示,△21?BC。
PA于M,【证明】延长PA交GD AOAFGM1.????,所以只需证,ODBC因为OG BC21 AEMDAO2AEPAAPAF??,由正弦定理,????sin??2sin?1))sin(sin(??sin1AE sin?.??所以?sin2AF sin?PMMDPMGM?,?,另一方面,??2sinsin1sin?sin??sin?GM sin2??所以,?sin1MD sin?AFGM? G,,所以所以PA//O1AEMD?即PABC,得证。
a=y+z, ,则到内切圆的切线长分别为记点A,B,Cx, y, zABC.3一个常用的代换:在△中,b=z+x, c=x+y.2223abc. (a+b-c) (c+a-b)+c中,求证:例4 在△ABCa≤(b+c-a)+b a=y+z, b=z+x, c=x+y,则【证明】令abc=(x+y)(y+z)(z+x)?8xy?yz?zx=8xyz=(b+c-a)(a+c-b)(a+b-c)222(a+b-c)-2abc.(c+a-b)+c(b+c-a)+b=a2223abc. (b+c-a)+b(a+b-c) (c+a-b)+c所以a≤4.三角换元。
322+???P,试求例5 设a, b, c∈R的最大值。
,且abc+a+c=b2221?11bc?a?c?a?b, 【解】由题设β,令a=tan α, c=tanγ, b=tan ac?1210101??2??sin??3??γ≤+γ)+3cos,α+γ), P=2sinγsin(2αtan则β=tan(333???22101?,b?2,c. =P,即a=时,当且仅当α+β=,sinγ=max423321222. +c: a+4abc<+b例6 在△ABC中,若a+b+c=1,求证2???22222,?0??. αcos, ββ, b=cos, c=sinβ【证明】设a=sinβαcos2??1,因为a, b, c为三边长,所以c<, c>|a-b|2???222?,?0??|.α·cos,所以sinβ从而β>|cos4??2222+2(ab+bc+ca), +c因为1=(a+b+c)+b=a222+4abc=1-2(ab+bc+ca-2abc). +c+b所以aab+bc+ca-2abc=c(a+b)+ab(1-2c) 又42222β·αcoscos2α·cos=sinββcos+sinβ1422=βcos2β+(1-cosβ2α)cos[1-cos] 2411442) -cos-cos22αcosβ=+cos2β(cosββ44111244. β-cos-sin)=β>+cos2β(cosβ4441222.+b+4abc<a所以+c2三、基础训练题32?__________. cosAcosB的最大值为,在.△ABC中,边AB为最长边,且则sinAsinB=14C?__________.,BC=2,则的取值范围是2.在△ABC中,若AB=13?3tanCtanB,则△ABC.在△ABC中,a=4, b+c=5, tanC+tanB+的面积为__________. 3?C=__________. ,则ABC中,3sinA+4cosB=6,3cosA+4sinB=14.在△5.在△ABC中,“a>b”是“sinA>sinB”的__________条件.6.在△ABC中,sinA+cosA>0, tanA-sinA<0,则角A的取值范围是__________.35,cosB=,则cosC=__________. 7.在△ABC中,sinA=1351CA??tan.__________条件”的成等差数列”是“ABC8.在△中,“三边a, b, ctan3229.在△ABC 中,若sinC=2cosAsinB,则三角形形状是__________.10.在△ABC中,tanA·tanB>1,则△ABC为__________角三角形.0?,求这12,内切圆的面积是5:8,夹这个角的两边之比是60.三角形有一个角是11.个三角形的面积。
两相交于M,NA,B,D三点作圆,分别与AC,BC12.已知锐角△ABC的外心为D,过的外接圆半径等于△ABD的外接圆半径。
点。
求证:△MNC B sin A?sin,试判断其形状。
中,sinC=13.已知△ABC B cos A?cos四、高考水平训练题11__________. ,则最短边长为,且最长边长为中,若tanA=1, tanB=1.在△ABC32.个为三边长的钝角三角形有________∈N,则以3,5,n2.已知n+22+2C., p+q=1,比较大小:R psinB__________pqsinA+qsin3.已知p, q∈. 角三角形为__________△ABC 中,若sin2A+sin2B+sin2C=4sinAsinBsinC,则△ABC 4.在AA?cotcot__________3. 为△ABC 的内角,比较大小:5.若A8__________. ABC的形状为.若△ABC满足acosA=bcosB,则△606. A=60的三角形有,__________a=个, b=47.满足????2222?的取值范围是8.设+sin为三角形最小内角,且acos=a+1-cos,则-asina2222__________.030的西南方向,正西方向,西偏北,B,C是一段笔直公路上的三点,分别在塔D9.A AC段的最近距离。
方向,且AB=BC=1km,求塔与公路xy?x?1xy?1?y的实数解。
.求方程10710.sin20??.求证:11203五、联赛一试水平训练题2____________.的取值范围是,则sinB+cosB△ABC中,b=ac1.在C cos?2sin B cos A?中,若ABC.在ABC 的形状为____________. △2,则△B cossin C cos A?2CBA cot T?cot?cot?的最大值为-(cotA+cotB+cotC),则.对任意的3△ABC,T222____________.ACB sinsinsin____________. ABC4.在△中,的最大值为23,C,|AB|=D为动点,且,D,其中A,B为定点,B5.平面上有四个点A,,C22的取值范围是+T,则S____________.|AD|=|DC|=|BC|=1。