.d类功率放大器

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D类功率放大器

一.原理

D类功放也称为数字功放,与模拟功放的主要差别在于功放管的工作状态.

传统模拟放大器有甲类、乙类、甲乙类和丙类等.一般的小信号放大都是甲类功放,即A类,放大器件需要偏置,放大输出的幅度不能超出偏置范围,所以,

能量转换效率很低,理论效率最高才25%.乙类放大,也称B类放大不需要偏置,靠信号本身来导通放大管,理想效卒高达78 5%.但因为这样的放大,小信号时失

真严重实际电路都要略加一点偏置,形成甲乙类功放,这么一来效率也就随之下降.虽然高频发射电路中还有一种丙类,即C类放大,效率可以更高,但电路复杂、音质更差,音频放大中一般都不采用.这几种模拟放大电路的共同特点是晶

体管都工作在线性放大区域中,它按照输入音频信号的大小控制输出的大小,就

像串在电源与输出间的一只可变电阻,控制输出,但同时自身也在消耗电能.

D类功放采用脉宽调制(PWM)原理设计,其功放管工作在开关状态.在理想情况下,功放管导通时内阻为零,两端没有电压,因此没有功率损耗;而截止时,内阻无穷大,电流又为零,也没有功率损耗.它在实际的工作中的功率消耗主要由两部分构成:转换损耗和I2R损耗.转换损耗如图1-1所示:

图1-1 转换损耗的产生

当开关式放大器输出在接通和断开之间切换,或断开和接通之间切换时通过线性区域而消耗功率.在D类功放中开关管如

果采用的是金属氧化物半导体场效应晶体管(MOSFET管),它的开关导通电阻较

小一般远远小于1Ω,所以I2R损耗相对来说还是很小的.当达到最大额定功率时,D类放大器的效率在80%到90%的范围内.在典型的听音条件下,效率也可

达到65%到80%左右,约为AB类放大器的两倍以上.

D类放大器可分为数字D类放大器与模拟D类放大器两类,数字D类放大

器一般用于数字音响领域,如CD信号的功率放大.模拟D类放大器一般可分为

前置放大级、PWM调制、功率放大与低通滤波四个部分.其中PWM调制和功率

放大是D类放大器的核心,PWM调制的一般方案有:

(1)采用PWM调制芯片产生PWM信号,此类芯片可方便的产生PWM信号,但一般对电源有要求,不利于整机单5v供电,并且很多情况下产生的PWM

型号为方波.

(2)自己搭建PWM调制器,采用运放进行比较积分产生PWM信号.

1.PWM调制分析

(1)从能量的角度来看,在每个t 时间内,正弦波与所对应的脉宽波所包

含的能量等,这样调制后得到的脉宽调制波作用在一个惯性系统(RLC )后,其效果与响应的正弦波相同.

(2)从频域角度分析,三角波经过调制得到典型的正弦脉宽调制波形:

这种周期信号的频谱对应离散谱,对于信号频率为0f ,载频频率为1f 的调制信号,其频谱主要分布在01,f nf ((1,)n ∈∞)谱线上.当01f f >时,调制信号通过低通滤波器后,载频衰减极大,容易分离出语音信号.

2 D 类功放的交越失真

理论上D 类功放在信号处理上不存在失真,因为通过PWM 技术已将音频信号的幅度变化转变成等幅脉冲的脉冲宽度变化,音频信号的所有信息都包含在脉宽变化上,即使波形有所畸变也可通过波形校正电路进行校正,以保证还原后音频信号不失真.但事实并非如此,从音频信号的脉宽调制到功率音频信号的输出,每一个环节都可能产生失真,其中危害最大的当数交越失真.

(1)PWM 调制与交越失真

在音频信号的脉宽调制电路中,由于语音、音乐信号波形的不规则性、不对称性,常需要将时间轴上方的波形和时间轴下方的波形分别进行脉宽调制,虽然不需要考虑AB 类功放的偏置电压,但需考虑推挽管在交替导通时必须有一定的时间间隔,否则会出现两只功率管的直通现象,所以这种电路本身也需要死区.既然存在死区,就不可避免地会产生交越失真.

(2)SPWM 调制与交越失真

将一个正弦信号直接与一个三角载波比较,可得到SPWM 信号,该信号通过驱动电路去驱动全桥或半桥电路,在正负半周的交界处有较为明显的空档,说明PWM 信号的有些脉冲在经开关的死区时间时丢失了.一般来说,功率管的额定功率越大,最高开关频率就越低.音频信号幅度很小时,调制后对应的脉冲很窄,功率管没有足够高的开关频率,则无法将其分辨出来.信号幅度越低,PWM 脉冲就越窄,交越失真越严重.

3.原理方框图

一般的脉宽调制D 类功放的原理框图如图1-2所示.图1-3为其各点工作波形示意图,其中(a )为输入信号;(b )为锯齿波与输入信号进行比较的波形;

(c )为调制器输出的脉冲(脉宽波形);(d )为功率放大器放大后的脉宽脉冲;(e )为低通滤波后的放大信号.

图1-2 D 类功放原理方框图

图1-3 各点波形

二. 具体电路

根据图1-2采用模拟PWM 调制的类功放原理方框图,所设计的具体电路如下(根据第五届全国大学生电子线路设计大赛的D 题要求):

1.三角波产生电路:

三角波是对输入音频信号进行抽样的载波,因为音频信号频率是从20Hz 到20kHz ,为了达到较好的还原效果,三角波频率应该远大于音频.综合考虑保真度及整机复杂度,在这里三角波的频率选取150k ,利用双运放NE5532来完成三角波产生电路.前一级运放构成施密特触发器,输出为高电平为VCC 低电平为零的方波.后一级运放与C 构成积分器,当前一级产生的方波占空比为50%时,输出为上升下降时间相等的三角波.因为PWM 调制时,要求三角波与输入信号的直流电平一致,所以这里用电位器来调节其直流电平.电路图如图2-1所示. 三角波的幅值为:

V V V cc out 45.022020=⨯=

三角波的频率为:

kHz C

R R R f 1594312==

图2-1 三角波产生电路

2.前置放大电路:

因为输入的音频信号幅度比较小,所以要先前置放大再与三角波进行比较.通过调节反馈电阻的大小就可以实现增益0到20倍可调.因为整个功率放大电路都使用5v 供电,而输入信号有正有负,所以在输入端要对信号加上2.5v 的直流偏置.电路图如图2-2所示.

图2-2 前置放大电路

3.PWM 调制电路:

利用高精度的比较器LM311对输入信号和三角波进行比较,通过调节同相端的电位器可以调节输入信号的直流电平,必须保证输入信号与三角波的直流电平相等,才能使最终经滤波后得到的波形不失真.因为LM311的输出端是集电极

相关文档
最新文档