基本求导积分公式81281
常用的求导积分公式及解法
常用的求导积分公式及解法 1.基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。
特别地:1)(='x ,x x 2)(2=',21)1(x x-=',xx 21)(='。
⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。
⑷ x x 1)(ln =';一般地,)1,0( ln 1)(log ≠>='a a ax x a 。
2.求导法则 ⑴ 四则运算法则设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,)()()()()())()((2≠'-'='x g x g x g x f x g x f x g x f ,特别21()()()()g x g x g x ''=-。
3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 4、 常用的不定积分公式(1) ⎰⎰⎰⎰⎰+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 43,2,),1( 11433221αααα;(2) C x dx x +=⎰||ln 1; C e dx e x x +=⎰; )1,0( ln ≠>+=⎰a a C aa dx a x x; (3)⎰⎰=dx x f k dx x kf )()((k 为常数) 5、定积分()()|()()bb a af x dx F x F b F a ==-⎰⑴⎰⎰⎰+=+bab abadx x g k dx x f k dx x g k x f k )()()]()([2121⑵ 分部积分法设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则⎰⎰-=bab abax du x v x v x u x dv x u )()()()()()(6、线性代数 特殊矩阵的概念(1)、零矩阵 ,000022⎥⎦⎤⎢⎣⎡=⨯O (2)、单位矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 n I 二阶,100122⎥⎦⎤⎢⎣⎡=⨯I (3)、对角矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (4)、对称矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==752531212,A a a ji ij (5)、上三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n a a a a a a A 000022211211 下三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (6)、矩阵转置⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A 212222111211转置后⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n nn n T a a a a a a a a a A 2122212121116、矩阵运算 ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+h d g c f b e a h g f ed c b a B A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=dh cf dg ce bh af bg ae h gf ed c b a AB 7、MATLAB 软件计算题例6 试写出用MATLAB 软件求函数)e ln(2x x x y ++=的二阶导数y ''的命令语句。
积分与求导公式最全
积分与求导公式最全一、求导公式求导是对函数进行微分运算,求函数的导数。
导数有一些基本的运算规则,下面是一些常用的求导公式。
1.常数函数的导数为0:如果f(x)=c,其中c为常数,则f'(x)=0。
2. 幂函数的导数:如果f(x)=x^n,其中n为常数,则f'(x)=nx^(n-1)。
3. 指数函数的导数:如果f(x)=a^x,其中a为常数且a>0,则f'(x)=ln(a) * a^x。
4. 对数函数的导数:如果f(x)=ln(x),其中x>0,则f'(x)=1/x。
5. 三角函数的导数:如果f(x)=sin(x),则f'(x)=cos(x);如果f(x)=cos(x),则f'(x)=-sin(x);如果f(x)=tan(x),则f'(x)=sec^2(x)。
6. 反三角函数的导数:如果f(x)=arcsin(x),则f'(x)=1/√(1-x^2);如果f(x)=arccos(x),则f'(x)=-1/√(1-x^2);如果f(x)=arctan(x),则f'(x)=1/(1+x^2)。
7. 对数导数:如果f(x)=log_a(x),其中a为常数且a>0,则f'(x)=1/(xln(a))。
8.基本四则运算法则:求导公式也满足基本的四则运算法则,例如:如果f(x)=u(x)+v(x),则f'(x)=u'(x)+v'(x)。
二、积分公式积分是对函数进行求和运算,求解函数的原函数。
积分有一些基本的规则和公式,下面是一些常用的积分公式。
1. 常数函数的积分:∫(c)dx = cx + C,其中c为常数,C为积分常数。
2. 幂函数的积分:∫(x^n)dx = (x^(n+1))/(n+1) + C,其中n不等于-1,C为积分常数。
3. 指数函数的积分:∫(e^x)dx = e^x + C,其中C为积分常数。
最新基本求导积分公式81281
基本求导积分公式812811.基本求导公式⑴«Skip Record If...»(C为常数)⑵«Skip Record If...»;一般地,«Skip Record If...»。
特别地:«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»。
⑶«Skip Record If...»;一般地,«Skip Record If...»。
⑷«Skip Record If...»;一般地,«Skip Record If...»。
2.求导法则⑴四则运算法则设f(x),g(x)均在点x可导,则有:(Ⅰ)«Skip Record If...»;(Ⅱ)«Skip Record If...»,特别«Skip Record If...»(C为常数);(Ⅲ)«Skip Record If...»,特别«Skip Record If...»。
3.微分函数«Skip Record If...»在点x处的微分:«Skip Record If...»4、常用的不定积分公式(1)«Skip Record If...»;(2)«Skip Record If...»;«Skip Record If...»;«Skip Record If...»;(3)«Skip Record If...»(k为常数)5、定积分«Skip Record If...»⑴«Skip Record If...»⑵分部积分法设u(x),v(x)在[a,b]上具有连续导数«Skip Record If...»,则«Skip Record If...»6、线性代数特殊矩阵的概念(1)、零矩阵«Skip Record If...»(2)、单位矩阵«Skip Record If...»二阶«Skip Record If...»(3)、对角矩阵«Skip Record If...»(4)、对称矩阵«Skip Record If...»(5)、上三角形矩阵«Skip Record If...»下三角形矩阵«Skip Record If...»(6)、矩阵转置«Skip Record If...»转置后«Skip Record If...»6、矩阵运算«Skip Record If...»«Skip Record If...»7、MATLAB软件计算题例6试写出用MATLAB软件求函数«Skip Record If...»的二阶导数«Skip Record If...»的命令语句。
基本求导积分公式
f'(c) = 0f'(x^n) = nx^(x-1)f'(1/x) = -1/x^2f'(√x) = 1/2√xf'(㏑x) = 1/xf'(㏒ax) = 1/x㏑a (a为底)f'(a^x) = a^x * ㏑af'(e^x) = e^xf'(sinx) = cosxf'(cosx) = -sinxf'(tanx) = (sec^2)x = 1/(cos^2)xf'(cotx) = -(csc^2)x = -1/(sin^2)xf'(secx) = cesx * tanxf'(cscx) = -cscx * cotxf'(arcsinx) = 1/√(1-x^2)f'(arccosx) = -1/√(1-x^2)f'(arctanx) = 1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。
在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。
基本的导数和积分公式
基本的导数和积分公式基本的导数和积分公式是微积分的基础,它们是在求解导数和积分时经常使用的公式集合。
这些公式涉及到各种函数的导数和积分,如常数函数、幂函数、指数函数、对数函数、三角函数等。
下面我将介绍一些常见的基本导数和积分公式。
1.常数函数:f(x)=C,其导数为f'(x)=0,其中C为常数;积分:∫f(x)dx= Cx + K,其中K为积分常数。
1.幂函数:f(x)=x^n,其中n为常数;导数:f'(x) = nx^(n-1);积分(n ≠ -1):∫x^n dx = (1/(n+1))x^(n+1) + K;积分(n = -1):∫x^(-1) dx = ln,x, + K。
1.指数函数:f(x)=a^x,其中a为常数且a>0;导数:f'(x) = a^x * ln(a);积分:∫a^xdx = (1/ln(a)) * a^x + K。
1. 自然对数函数:ln(x),其中x>0;导数:(ln(x))' = 1/x;积分:∫(1/x) dx = ln,x, + K。
2. 一般对数函数:log_a(x),其中x>0且a>0且a≠1;导数:(log_a(x))' = (1/(xln(a)));积分:∫(1/(xln(a))) dx = log_a,x, + K。
1. 正弦函数:sin(x);导数:(sin(x))' = cos(x);积分:∫cos(x) dx = sin(x) + K。
2. 余弦函数:cos(x);导数:(cos(x))' = -sin(x);积分:∫sin(x) dx = -cos(x) + K。
3. 正切函数:tan(x);导数:(tan(x))' = sec^2(x);积分:∫sec^2(x) dx = tan(x) + K。
4. 余切函数:cot(x);导数:(cot(x))' = -csc^2(x);积分:∫csc^2(x) dx = -cot(x) + K。
常用求导与定积分公式
常用求导与定积分公式常用的求导公式有:1. 常数规则:对于常数C,有d/dx(C) = 0。
2. 幂函数规则:对于任意实数n,有d/dx(x^n) = nx^(n-1)。
特别地,d/dx(x^1) = 13. 指数函数规则:对于任意实数a,有d/dx(a^x) = ln(a) * a^x。
4. 对数函数规则:对于任意正实数a,有d/dx(log_a(x)) = 1 / (x * ln(a))。
5. 三角函数规则:对于三角函数sin(x)和cos(x),有d/dx(sin(x)) = cos(x)和d/dx(cos(x)) = -sin(x)。
6. 乘法规则:对于两个可导函数f(x)和g(x),有d/dx(f(x) *g(x)) = f'(x) * g(x) + f(x) * g'(x)。
7. 商法则:对于两个可导函数f(x)和g(x),有d/dx(f(x) / g(x)) = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^28. 复合函数规则:对于两个可导函数f(x)和g(x),有d/dx(f(g(x))) = f'(g(x)) * g'(x)。
常用的定积分公式有:1. 常数积分规则:对于常数C和可导函数f(x),有∫f(x) dx =F(x) + C,其中F'(x) = f(x)。
2. 幂函数积分规则:对于实数n不等于-1和可导函数f(x),有∫x^n dx = (x^(n+1)) / (n+1) + C。
3. 指数函数的积分规则:对于底数为a的指数函数和可导函数f(x),有∫a^x dx = (a^x) / ln(a) + C。
4. 对数函数的积分规则:对于底数为a的对数函数和可导函数f(x),有∫(1 / x) dx = ln,x, + C。
5. 三角函数的积分规则:对于三角函数sin(x)和cos(x)以及可导函数f(x),有∫sin(x) dx = -cos(x) + C和∫cos(x) dx = sin(x) + C。
微积分公式大全(高数)
公式,所有一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
积分求导公式运算法则上下项
积分求导公式运算法则上下项积分求导是微积分中的重要概念之一、它是求导和积分两个运算的逆运算,也就是说,如果我们对一个函数进行求导操作,然后再对它进行积分操作,我们将恢复到原来的函数。
积分求导的公式运算法则有很多,下面将介绍其中一些常用的法则。
1. 常数法则:如果f(x)是一个常数函数,那么它的导数为0。
即d/dx(c) = 0。
2. 线性法则:如果f(x)和g(x)是可导函数,而a和b是常数,那么d/dx(a*f(x) + b*g(x)) = a*d/dx(f(x)) + b*d/dx(g(x))。
3. 幂法则:对于幂函数f(x) = x^n,其中n是任意实数,那么它的导数为d/dx(x^n) = n*x^(n-1)。
例如,d/dx(x^3) = 3*x^24. 和差法则:如果f(x)和g(x)是可导函数,那么d/dx(f(x) +g(x)) = d/dx(f(x)) + d/dx(g(x))。
类似地,d/dx(f(x) - g(x)) =d/dx(f(x)) - d/dx(g(x))。
这条法则说明了求导运算在函数的和与差上是可分配的。
5. 乘积法则:如果f(x)和g(x)是可导函数,那么d/dx(f(x)*g(x)) = f(x)*d/dx(g(x)) + g(x)*d/dx(f(x))。
这条法则告诉我们对于一个函数的乘积,可以首先对其中一个函数求导,然后再乘以另一个函数,并将相乘的结果相加。
6. 商法则:如果f(x)和g(x)是可导函数,那么d/dx(f(x)/g(x)) = (g(x)*d/dx(f(x)) - f(x)*d/dx(g(x)))/[g(x)]^2、这条法则指导我们在求导一个函数的商时如何进行运算。
7. 反函数法则:如果y = f(x)是一个可导函数,而x = g(y)是它的反函数,那么d/dx(g(y)) = 1/[d/dy(f(x))],(x = g(y))。
这条法则说明了如何对一个函数的反函数求导。
基本求导积分公式
f'(c) = 0f'(x^n) = nx^(x-1)f'(1/x) = -1/x^2f'(√x) = 1/2√xf'(㏑x) = 1/xf'(㏒ax) = 1/x㏑a (a为底)f'(a^x) = a^x * ㏑af'(e^x) = e^xf'(sinx) = cosxf'(cosx) = -sinxf'(tanx) = (sec^2)x = 1/(cos^2)xf'(cotx) = -(csc^2)x = -1/(sin^2)xf'(secx) = cesx * tanxf'(cscx) = -cscx * cotxf'(arcsinx) = 1/√(1-x^2)f'(arccosx) = -1/√(1-x^2)f'(arctanx) = 1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。
在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。
导数积分公式范文
导数积分公式范文导数和积分是微积分中两个重要的概念,它们是互为逆运算的。
导数描述了函数在其中一点附近的变化率,而积分则描述了函数在其中一区间上的累积效果。
导数和积分之间存在一系列的公式,下面将详细介绍其中的一些常用公式。
一、导数的求导法则1.基本导数公式:常数函数的导数为0:(c)'=0,其中c为常数。
幂函数的导数公式:(x^n)'=nx^(n-1),其中n为任意实数,x为自变量。
指数函数的导数公式:(e^x)'=e^x。
对数函数的导数公式:(ln,x,)'=1/x,其中x为任意正数。
2.通用求导法则:和差求导法则:[f(x)±g(x)]'=f'(x)±g'(x)。
常数乘以函数求导法则:[c×f(x)]'=c×f'(x),其中c为常数。
乘积求导法则:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)。
商法则:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2,其中g(x)不等于0。
3.链式法则:若y=f(u),u=g(x),则复合函数 y=f(g(x)) 对x的导数为:dy/dx= (dy/du)(du/dx)。
4.反函数求导法则:若y=f(x),x=f^(-1)(y),即y是x的函数,x是y的函数,且f在x处可导,则dy/dy = 1 / (dx/dy) = 1 / f'(x)。
5.高阶导数公式:若f(x)的n阶导数存在,则f(x)的n阶导数为:[f^(n)(x)]'=f^(n+1)(x),其中n为非负整数。
二、积分的求积法则1.不定积分:幂函数的积分公式:∫x^n dx = x^(n+1) / (n+1) + C,其中n不等于-1指数函数的积分公式:∫e^x dx = e^x + C。
高等数学积分导数公式
高等数学积分导数公式高等数学中的积分和导数是两个重要的概念,它们在微积分中起着至关重要的作用。
积分和导数的公式是我们研究和解决各种数学问题的基础工具。
本文将介绍一些高等数学中常用的积分和导数公式,帮助读者更好地理解和掌握微积分的核心概念和方法。
一、基本积分公式1.常数函数积分公式:∫kdx=kx+C,其中k为常数,C为常数项。
2.幂函数积分公式:∫x^ndx=1/(n+1)x^(n+1)+C,其中n不等于-13.指数函数积分公式:∫e^xdx=e^x+C。
4.三角函数积分公式:(1)∫sinxdx=-cosx+C。
(2)∫cosxdx=sinx+C。
(3)∫sec^2xdx=tanx+C。
(4)∫csc^2xdx=-cotx+C。
(5)∫secxdxtanxdx=secx+C。
二、基本导数公式1.常数函数导数公式:d/dx(k)=0,其中k为常数。
2.幂函数导数公式:d/dx(x^n)=nx^(n-1),其中n是任意实数。
3.指数函数导数公式:d/dx(e^x)=e^x。
4.对数函数导数公式:d/dx(lnx)=1/x。
5.三角函数导数公式:(1)d/dx(sinx)=cosx。
(2)d/dx(cosx)=-sinx。
(3)d/dx(tanx)=sec^2x。
(4)d/dx(cotx)=-csc^2x。
(5)d/dx(secx)=secxtanx。
(6)d/dx(cscx)=-cscxcotx。
三、基本积分和导数公式的应用1.利用基本积分公式计算确定积分的值。
例如,∫(2x+3)dx=x^2+3x+C。
2.利用基本导数公式计算函数在特定点的导数。
例如,求函数f(x)=3x^2-8x+5在x=2的导数,可使用f'(2)=6(2)-8=43.应用积分和导数来求解各种数学问题。
例如,利用导数和积分来计算曲线的切线和曲线下面积,求解极值点等。
四、基本积分和导数公式的拓展1.利用线性公式,可以把求和的情况化为求一个个积分,例如∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx。
(整理)基本求导积分公式
f'(c) = 0f'(x^n) = nx^(x-1)f'(1/x) = -1/x^2f'(√x) = 1/2√xf'(㏑x) = 1/xf'(㏒ax) = 1/x㏑a (a为底)f'(a^x) = a^x * ㏑af'(e^x) = e^xf'(sinx) = cosxf'(cosx) = -sinxf'(tanx) = (sec^2)x = 1/(cos^2)xf'(cotx) = -(csc^2)x = -1/(sin^2)xf'(secx) = cesx * tanxf'(cscx) = -cscx * cotxf'(arcsinx) = 1/√(1-x^2)f'(arccosx) = -1/√(1-x^2)f'(arctanx) = 1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。
在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n nnxx ;一般地,1)(-='αααxx 。
特别地:1)(='x ,x x 2)(2=',21)1(x x-=',xx 21)(='。
⑶ xx e e =')(;一般地,)1,0( ln )(≠>='a a a a a xx 。
⑷ x x 1)(ln =';一般地,)1,0( ln 1)(log ≠>='a a ax x a 。
2.求导法则 ⑴ 四则运算法则设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,)()()()()())()((2≠'-'='x g x g x g x f x g x f x g x f ,特别21()()()()g x g x g x ''=-。
3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 4、 常用的不定积分公式(1) ⎰⎰⎰⎰⎰+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 43,2,),1( 11433221αααα; (2) C x dx x+=⎰||ln 1; C e dx e xx +=⎰; )1,0( ln ≠>+=⎰a a C a a dx a x x ; (3)⎰⎰=dx x f k dx x kf )()((k 为常数) 5、定积分()()|()()bb a af x dx F x F b F a ==-⎰⑴ ⎰⎰⎰+=+bababadx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则⎰⎰-=bab abax du x v x v x u x dv x u )()()()()()(6、线性代数特殊矩阵的概念(1)、零矩阵 ,000022⎥⎦⎤⎢⎣⎡=⨯O (2)、单位矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 n I 二阶,100122⎥⎦⎤⎢⎣⎡=⨯I (3)、对角矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (4)、对称矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==752531212,A a a ji ij (5)、上三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n a a a a a a A 000022211211下三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (6)、矩阵转置⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A 212222111211转置后⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n T a a a a a a a a a A 2122212121116、矩阵运算 ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+h d g c f b e a h g f ed c b a B A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=dh cf dg ce bh af bg ae h gf ed c b a AB 7、MATLAB 软件计算题例6 试写出用MATLAB 软件求函数)e ln(2x x x y ++=的二阶导数y ''的命令语句。
解:>>clear;>>syms x y;>>y=log(sqrt(x+x^2)+exp(x)); >>dy=diff(y,2)例:试写出用MATLAB 软件求函数)e ln(xx y +=的一阶导数y '的命令语句。
>>clear;>>syms x y;>>y=log(sqrt(x)+exp(x)); >>dy=diff(y)例11 试写出用MATLAB 软件计算定积分⎰21d e 13x xx 的命令语句。
解:>>clear;>>syms x y;>>y=(1/x)*exp(x^3);>>int(y,1,2)例 试写出用MATLAB 软件计算定积分x xx d e 13的命令语句。
解:>>clear;>>syms x y;>>y=(1/x)*exp(x^3); >>int(y)MATLAB 软件的函数命令运算符号典型例题例1 设某物资要从产地A 1,A 2,A 3调往销地B 1,B 2,B 3,B 4,运输平衡表(单位:吨)和运价表(单位:百元/吨)如下表所示:运输平衡表与运价表(1)用最小元素法编制的初始调运方案,(2)检验上述初始调运方案是否最优,若非最优,求最优调运方案,并计算最低运输总费用。
解:用最小元素法编制的初始调运方案如下表所示:运输平衡表与运价表找空格对应的闭回路,计算检验数:11λ=1,12λ=1,22λ=0,24λ=-2已出现负检验数,方案需要调整,调整量为1 调整后的第二个调运方案如下表:运输平衡表与运价表销地产地B 1 B 2 B 3 B 4 供应量 B 1B 2 B 3 B 4A 1 5 2 7 3 11 3 11 A 2 3 1 4 1 928A 3 6 3 9 7 4 10 5 需求量365620求第二个调运方案的检验数:11λ=-1已出现负检验数,方案需要再调整,调整量为2 调整后的第三个调运方案如下表:运输平衡表与运价表销地产地B 1 B 2 B 3 B 4 供应量 B 1B 2 B 3 B 4A 1 2 5 7 3 11 3 11 A 2 1 3 4 1 928A 3 6 3 9 7 4 10 5 需求量365620求第三个调运方案的检验数:12λ=2,14λ=1,22λ=2,23λ=1,31λ=9,33λ=12所有检验数非负,故第三个调运方案最优,最低运输总费用为:2×3+5×3+1×1+3×8+6×4+3×5=85(百元)例2 某物流公司下属企业经过对近期销售资料分析及市场预测得知,该企业生产的甲、乙、丙三种产品,均为市场紧俏产品,销售量一直持续上升经久不衰。
今已知上述三种产品的单位产品原材料消耗定额分别为4公斤、4公斤和5公斤;三种产品的单位产品所需工时分别为6台时、3台时和6台时。
另外,三种产品的利润分别为400元/件、250元/件和300元/件。
由于生产该三种产品的原材料和工时的供应有一定限制,原材料每天只能供应180公斤,工时每天只有150台时。
1.试建立在上述条件下,如何安排生产计划,使企业生产这三种产品能获得利润最大的线性规划模型。
2. 写出用MATLAB 软件计算该线性规划问题的命令语句。
解:1、设生产甲、乙、丙三种产品分别为x 1件、x 2件和x 3件,显然x 1,x 2,x 3≥0线性规划模型为⎪⎩⎪⎨⎧≥≤++≤++++=0150636180544300250400max 321321321321x x x x x x x x x x x x S ,,2.解上述线性规划问题的语句为: >>clear;>>C=-[400 250 300]; >>A=[4 4 5;6 3 6]; >>B=[180;150]; >>LB=[0;0;0];>>[X,fval,exitflag]=linprog(C,A,B,[],[],LB)例3已知矩阵⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-=2101111412210101C B A ,,,求:T C AB + 解:⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡-=+3612201116012101111412210101C AB 例4 设y =(1+x 2)lnx ,求:y '解:xx x x x x x x y 2221ln 2))(ln 1(ln )1(++='++'+='例5 设xy x+=1e ,求:y '解:22)1(e )1()1(e )1()e (x x x x x y xx x +=+'+-+'='例7 某厂生产某种产品的固定成本为2万元,每多生产1百台产品,总成本增加1万元,销售该产品q 百台的收入为R (q )=4q -0.5q 2(万元)。
当产量为多少时,利润最大?最大利润为多少?解:产量为q 百台的总成本函数为:C (q )=q +2利润函数L (q )=R (q )-C (q )=-0.5q 2+3q -2 令ML (q )=-q +3=0 得唯一驻点 q =3(百台) 故当产量q =3百台时,利润最大,最大利润为 L (3)=-0.5×32+3×3-2=2.5(万元) 例8 某物流企业生产某种商品,其年销售量为1000000件,每批生产需准备费1000元,而每件商品每年库存费为0.05元,如果该商品年销售率是均匀的,试求经济批量。
解:库存总成本函数qq q C 100000000040)(+=令01000000000401)(2=-='qq C 得定义域内的唯一驻点q =200000件。
即经济批量为200000件。
例9 计算定积分:⎰+10d )e 3(x x x解:25e 3)e 321(d )e 3(|10210-=+=+⎰x xx x x例10 计算定积分:⎰+312d )2(x xx解:3ln 2326|)|ln 231(d )2(|313312+=+=+⎰x x x x x教学补充说明1. 对编程问题,要记住函数e x,lnx ,x 在MATLAB 软件中相应的命令函数exp(x),log(x),sqrt(x);2 对积分问题,主要掌握积分性质及下列三个积分公式:c x a x x a a++=+⎰111d (a ≠-1) c x x x +=⎰e d e c x x x +=⎰||ln d 17. 记住两个函数值:e 0=1,ln1=0。