ppt课件催化作用原理

合集下载

催化作用原理(第一、二章)

催化作用原理(第一、二章)

催化作用原理《催化作用基础》课程名称:《催化作用基础》或《催化作用原理》或《催化剂与催化作用》绪论第一章催化剂与催化作用的基本知识第二章催化剂的吸附、表面积和孔结构第三章金属催化剂及其催化作用第四章半导体催化剂及其催化作用第五章酸碱催化剂及其催化作用第六章配位络合物催化剂及其催化作用第七章催化剂的评价及失活与再生第八章催化剂的设计和制备专题讲座: 1. 择形催化与高选择性催化分子筛材料2. 芳胺N-烷基化反应及其催化剂研究3. 钛硅(TS-1)分子筛的合成及催化应用4. 催化新材料:MCM-41等#现代物理测试手段与催化剂的表征:XRD,SEM,IR,NMR,UV-Vis,UV-Raman,NH3-TPD等——催化剂及其催化作用的基础研究参考书目1.王桂茹主编,王祥生审,《催化剂与催化作用》,2000年8月第1版大连理工大学出版社出版[王桂茹,李书纹编(大连工学院石油化工教研室)(讲义) 1986年] 2.吉林大学化学系《催化作用基础》编写组编,《催化作用基础》 1980年科学出版社出版3.黄开辉,万惠霖编(厦门大学化学系),《催化原理》 1983年科学出版社出版4.顾伯锷,吴震霄编,《工业催化过程导论》 1990年高等教育出版社出版5.王文兴编,《工业催化》 1982年化学工业出版社出版6.闵恩泽著,《工业催化剂的研制与开发——我的实践与探索》,1997年中国石化出版社出版7.陈连璋编著,《沸石分子筛催化》 1990年大连理工大学出版社出版8.徐如人,庞文琴,屠昆岗等著,《沸石分子筛的结构与合成》1987年吉林大学出版社出版9.天津大学编,〈〈多相催化作用原理〉〉10.高滋主编,何鸣元,戴逸云副主编,《沸石催化与分离技术》,中国石化出版社,1999年11月第1版;* 讲述内容;学习方法:学什么?怎么学?绪论一.催化剂与催化作用的重要性1.使用催化剂的工业部门现代化学工业、石油炼制、石油化学工业、食品工业、环境保护等2.没有现代催化科学的发展和催化剂的广泛使用就没有现代化的化学工业。

《电化学催化》课件

《电化学催化》课件

电化学催化的基础知识
1 电化学过程的基本概念
2 催化反应的基本原理
了解电化学过程的基本概念,例如电极 反应、离子迁移和电流密度等。
探究催化反应的基本原理,如催化剂吸 附、活化能降低和反应速率等。
原位研究电化学催化反应Fra bibliotek1原位研究的技术与方法
了解原位研究电化学催化反应的现有技术与方法,如电化学原位红外光谱和原位 电子显微镜等。
2 电化学催化的应用于水分解制氢
了解电化学催化在水分解制氢中的作用,包括催化剂的设计和电解过程的优化等。
结论
电化学催化的发展趋势
展望电化学催化的未来发展方向,包括新 型催化剂的设计和先进研究技术的应用。
电化学催化研究的挑战和未来展 望
探讨电化学催化研究面临的挑战,并展望 未来在可持续能源转换方面的应用。
《电化学催化》PPT课件
欢迎使用《电化学催化》PPT课件! 在此课程中,我们将深入探讨电化学催化 的基本概念,应用领域和研究进展,从而为您打开电化学催化的奇妙世界。
简介
什么是电化学催化
电化学催化研究电化学过程中催化剂的作用机制,以促进反应速率或调控产物选择性的科学 领域。
电化学催化的应用领域
电化学催化广泛应用于能源转换、环境保护、电化学合成和生物电化学等领域。
2
原位研究的应用案例
探索原位研究在电化学催化领域中的应用案例,如催化剂失活机制的研究和催化 反应中的界面现象等。
电化学催化剂的设计和合成
催化剂的种类
了解不同类型的电化学催化剂,如金属催化 剂、有机催化剂和生物催化剂。
催化剂的设计和合成方法
学习电化学催化剂的设计和合成方法,如原 位合成、溶液合成和纳米材料制备等。

中科院研究生课件催化原理李增喜

中科院研究生课件催化原理李增喜

动力学模拟需要使用数值计算方法,如有限差分法、有限元法和谱方法 等,以获得模拟结果并与实验数据进行比较和分析。
05
CATALOGUE
催化应用与实例
石油化工催化
石油化工催化是催化原理的重 要应用领域之一,主要涉及石
油的加工和转化。
在石油化工中,催化剂可以加 速化学反应速率,提高产物的 选择性,降低能耗和减少环境
03
新材料合成催化的应用 领域非常广泛,包括高 分子材料、陶瓷材料、 复合材料等。
04
新材料合成催化技术的 发展对于推动新材料产 业的发展和进步具有重 要意义。
电化学催化
电化学催化是指利用催化剂加速电化学反应的过程,以 提高电化学反应的效率和产物的选择性。
电化学催化的研究涉及到电极反应动力学、催化剂活性 与选择性等方面的内容。
催化的重要性
催化在化学工业、环境保护、新 能源等领域中具有广泛应用,是 实现高效、绿色化学反应的关键 技术之一。
催化反应的类型
均相催化
催化剂与反应物同处于一相态,如硫酸催化酯化反应 。
多相催化
催化剂为固相,反应物为气相或液相,如汽车尾气中 的催化净化。
酶催化
酶作为生物催化剂,具有高度专一性和高效性,在生 物体内实现各种复杂反应。
制。
金属通常作为催化剂的活性中心 ,通过与反应物配位来改变其电 子结构和化学键的性质,从而加
速反应。
金属催化的反应通常需要在特定 的温度和压力条件下进行,以保
持催化剂的活性和选择性。
酶催化机制
1
酶催化是利用生物酶的特性和结构来加速化学反 应的机制。
2
酶是由生物体产生的具有高度选择性和催化活性 的蛋白质。
通过沉淀反应将活性组分与载体结合,常用沉淀剂如氨水、氢氧 化物等。

金属催化作用理论ppt课件.ppt

金属催化作用理论ppt课件.ppt
一、能带理论与催化 1、 能带理论 • 能带的形成
以Ni为例: Ni原子:1s22s22p63s23p64s23d84p
电子轨道没有任何相互作用
达到范德华(V.D.W)半径时,电 子轨道将要发生相互作用
RNi-Ni<R2×VDW时,Ni原子之间将 要发生电子轨道相互作用,出现 电子轨道重叠,形成金属键。
1. 暴露表面以低表面能的晶面为主 surfaces of low surface free energy will
be more stable. The most stable surfaces are those with : • a high surface atom density • surface atoms of high coordination number
• 具体内容有:
Ⅰ、与d电子轨道有关的电子因素,即能 量因素如何影响催化剂的吸附选择性、吸附力 的强弱、催化性能等,即催化的电子论
Ⅱ、晶体结构因素(也称;几何因素), 即(晶胞大小、晶面取向、晶粒大小、晶体表 面结构)与(吸附、催化)之间的关系,即催 化的几何论
§1、金属催化的电子论
能带理论、价键理论
1、晶胞 • 晶胞是晶体的最小重复单位,采用晶胞参数
来确定。
立方晶胞: a=b=c α=β=γ=900
四方晶胞:a=b≠c α=β=γ=900
三斜晶胞:a≠b≠c α≠β≠γ
2、晶面 晶面:是晶体在各个方向上的截面。相同
方向的截面,不仅具有相同的二维空间结构, 而且是相互平行的,晶面间距也相等,称晶面 距。
④、 金属间化合物催化剂,如Cu3Au、 CuAu3、 Ni29Al10、 Ni15Al
• 过渡金属催化剂有二大特点: Ⅰ、在反应气氛如H2、O2气下,过渡金

《有机催化》课件

《有机催化》课件

有机催化可以提高反应速率和产率,节省能源和原料。
环境友好
有机催化反应通常使用折射性较小的溶剂和催化剂,减少了对环境的污染。
应用范围广泛
有机催化可应用于合成有机分子、药物、材料等领域。
有机催化的基本原理
有机催化的基本原理是催化剂通过与底物发生相互作用来降低反应活化能, 促进反应的进行。
有机催化机理的研究方法
有机小分子催化剂的设计和合成
1
设计原则
考虑催化剂的活性、稳定性和选择性。
2
合成方法
通过有机合成和无机合成方法来制备有机小分子催化剂。
3
应用案例
实例说明不同合成方法对催化性能的影响。
生物催化:生物体内催化功能的进化 与机理
生物催化是指生物体内催化剂对生物反应的促进作用。催化剂的进化和机理涉及突变、选择压力 等因素。
• 光谱学方法 • 动力学研究 • 理论计算方法
有机催化的分类及例子
酸碱催化
例如:质子酸催化剂和碱 催化剂。
金属有机催化
例如:钯催化的Suzuki偶联 反应。
自ห้องสมุดไป่ตู้基催化
例如:单质根自由基催化 的单电子转移反应。
金属有机催化的特点和机理
金属有机催化是指利用金属催化剂来促进有机反应。其特点包括活性高、催 化剂可回收利用等。其机理涉及中间体的形成和金属催化剂的活化。
《有机催化》PPT课件
有机催化是一门关于有机反应的重要领域,涉及各种催化剂和反应机理。本 课件将深入探讨有机催化的基本原理和应用,并展望其未来的前景。
什么是有机催化
有机催化是指利用有机分子作为催化剂来促进有机反应的过程。它具有高效性、环境友好以及广 泛的应用范围等优点。
有机催化的优点及应用范围
高效性

工业催化原理ppt课件

工业催化原理ppt课件
CFSE对催化作用的影响
➢ 对六配位的八面体按SN-1机理进行反应时将形成 五配位中间过渡态构型。按SN-2机理进行时将形 成七配位的中间过渡态构型。
按配位场理论进行的过渡金属氧化物
催化过程
如果我们把吸附物当作配位体,多相催化过程可 以看作是均相配位(络合)催化过程的一个特例。
这样多相反应过程的吸附过程可以引起(稳定化 能)CFSE的变化。如在岩盐型结构氧化物(100) 表面金属离子的配位构型 退过吸附会从正方锥体 五配位变成八面体(六配位)。按SN-1机理吸附 作用对弱场中电子构型为d3和d8离子CFSE是有 利的。相反对反应物脱附来说则弱场中的d4和d9 离子和对强场中的d2,d7,d9离子有利。
B)对于施电子气体吸附(以H2为例)
➢ 对于H2来说,不论在n型还是p型氧化物上以正离 子(H+)吸附于表面,在表面形成正电荷,起施主 作用。
吸附气 半导体类 吸附物种 吸附剂 吸附位
EF


受电子 气体 (O2)
N型 V2O5)
O2→O2O-,O22-,O2-
P型 Cu2O
O2→O2O-,O22-,O2-
晶体场稳定化能(CFSE)
晶体场稳定化能(CFSE)
➢ d电子处于未分裂的d轨道的总能量和它们进入分 裂的d轨道的总能之差。即d电子从未分裂的d轨 道进入分裂后的d轨道后产生的总能量下降值。
➢ 这种由于中心离子(或原子)d轨道的分离,给予 氧化物(络合物)额外的稳定能,称这种能量为 稳定化能(CFSE)
半导体催化剂化学吸附与催化作用
1、化学吸附 A)受电子气体吸附(以O2为例) (1)在n型半导体上吸附
O2电负性大,容易夺导带电子,随氧压增大而使 导带中自由电子减少,导电率下降。另一方面在 表面形成的负电层不利于电子进一步转移,结果 是氧在表面吸附是有限的。

《催化作用原理》课件

《催化作用原理》课件

要点二
详细描述
智能催化与人工酶是未来催化科学与技术的重要发展方向 。通过结合智能技术和生物酶的催化机制,设计具有优异 性能的智能催化剂和人工酶。这将有助于解决一些传统催 化方法难以解决的问题,提高催化反应的效率和选择性。
感谢您的观看
THANKS
详细描述
通过建立动力学模型,可以定量描述反应速 率与反应物浓度、温度等参数之间的关系。 这有助于优化反应条件,提高催化效率。
总结词
反应机理研究方法是探索催化反应如何 发生的重要手段,对于催化剂设计和性
能改进具有指导意义。
详细描述
常用的反应机理研究方法包括同位素示踪法、中间体捕获和红外光谱等。这些方法有助于揭示反应过程中的关键 步骤和中间产物,为催化剂的优化提供理论支持。
催化剂的选择性
总结词
催化剂的选择性是指催化剂对反应物转化为目标产物的选择性,即目标产物在所有产物 中的比例。
详细描述
催化剂的选择性对工业催化过程至关重要,可以提高目标产物的产率和纯度,降低副产 物的生成。影响催化剂选择性的因素包括催化剂的组成、结构、表面性质以及反应条件
等。
催化剂失活与再生
总结词
化工生产中的催化过程
乙烯的合成
通过催化剂的作用,将乙醇转化 为乙烯,是化工生产中重要的原
料。
丙烯腈的合成
通过催化剂的作用,将丙烯和氨转 化为丙烯腈,是重要的合成材料。
苯酚的合成
通过催化剂的作用,将苯和甲醛转 化为苯酚,是重要的化工原料。
环境治理中的催化过程
汽车尾气的催化转化
通过催化剂的作用,将汽车尾气中的有害物质转化为无害物质, 降低空气污染。
03
催化剂的活性与选择性
催化剂的活性

催化作用原理课件

催化作用原理课件

• 1960年Sohio开发成功磷钼铋氧系催化剂, 由丙烯氨氧化生产丙烯腈时,原有的三种 丙烯腈生产方法(环氧乙烷法、乙醛法、 乙炔法)都变得不再有生命力了,并且随 着磷钼铋氧系丙烯氨氧化生产丙烯腈催化 剂的不断改进及非磷系丙烯氨氧化生产丙 烯腈催化剂的成功开发,使该法日益成熟。
• •
2. 能源化工和环境化工的兴起,为工业催 化提出了新课题和新和活动领域。 能源化工:目前能转化成燃料的碳源有以 下三类:原油及相关物质;煤炭;生物质。 它们的充分开发和利用有赖于催化剂。自 然界还存在有大量油砂和油页岩物质,因 其粘度高、挥发物含量低,硫、氮和各种 重金属含量高,用现有的加工工艺无法廉 价地提取。预计催化技术在将这类碳源转 化为液体燃料方面,必能发挥巨大作用。
• • • • •
五、基本要求 认真听讲 认真、独立完成作业 及时复习 多提意见
• 3. 生物体内广泛存在的酶,是生物赖以生 存的一切化学反应的催化剂。酶的催化作 用至今还难在生物体外实现:效率高,选 择性好,反应条件温和。弄清楚这个自然 界的催化过程,不仅有利于了解自然奥秘, 而且将大大提高人类利用自然、改造自然 的本领。若能将固氮酶或别的模拟酶取代 现在的合成氨催化剂,将不知道使现合成 氨工艺简单多少。故今天对酶本身及对酶 化学模拟的研究已成为催化研究中一个非 常有吸引力的领域。
• 总之,催化理论的发展还落后于它的工业 实践,尚没有普遍性的催化理论。要找到 一种能在工业上应用的新的催化剂,主要 靠实践经验和局部理论规律。催化这门科 学,无论实践上,还是理论上,都有很丰 富的研究内容且正处于不断发展之中。
• 四、催化作用原理的主要内容 • 有人认为:催化作用这门科学是物理化学 中化学动力学的一个分支。 • 均匀催化:酸、碱催化作用;络合催化作 用。 • 非均匀催化:固体酸、碱;分子筛;金属 及金属簇、合金、负载金属;金属氧化物 (包括复合金属氧化物);金属硫化物。 • 光催化 • 生物酶催化

三元催化器基础知识介绍优质PPT课件

三元催化器基础知识介绍优质PPT课件
三元催化器一般主要由以下几个部分组成:载体、涂层、催化剂、衬垫、壳 体、隔热罩以及同排气系统其它部件连接的法兰。
载体 涂层 催化剂
连接法兰
衬垫、壳体 隔热罩
3.1 壳体
1.壳体大小和厚度根据布置空间和零件强度要求来定。 2.壳体材料一般为SUH409, SUH409有很强的防腐性,可以满足使用要求。
2.3、紧耦合+底盘下置式
优点:预三元催化器总成体积较小且离发动机排气歧管较近便于布置且较底盘下 置式三元催化器总成有较好的起燃性。
缺点:若要满足更为严格的排放法规,则三元催化器的前后总体积较大,且前级 催化器要求的贵金属含量较高。 使用条件:发动机舱布置空间狭小且需要满足法规较高的车型。
三、三元催化器总成的结构
3.4 涂层
主要为氧化铝、氧化锶等化合物。粗糙多孔的表面可以使载体壁面的实际催 化反应面积大大增加,在涂层表面分散着作为催化剂的贵金属,以及作为助 催化剂的铈、钡、镧等稀土材料和普通金属材料。助催化剂的主要作用在于 提高催化剂的活性和高温稳定性。
四、三元催化器的工作原理
当高温的汽车尾气通过净化装置时,三元催化器中的净化剂将增强CO、HC 和NOx三种气体的活性,促使其进行一定的氧化-还原化学反应,其中CO在 高温下氧化成为无色、无毒的二氧化碳气体;HC化合物在高温下氧化成水 (H20)和二氧化碳;NOx还原成氮气和氧气。三种有害气体变成无害气体, 使汽车尾气得以净化。
2.2、紧耦合式
优点:距离发动机排气歧管出口较近,起燃快,三元催化器在很短的时间里能达 到很高的转化效率,从而降低有害气体的排放值。
缺点:要较小,不利于一些 车型特别是紧凑型车型的发动机仓布置。 选择条件:排放法规要求较高、发动机舱三元催化器总成布置空间较为充裕的 车型。

1-工业催化原理ppt课件

1-工业催化原理ppt课件

H2在金属催化剂表面均裂为化 学吸附的活泼的氢原子
42
Hale Waihona Puke 酸碱催化指通过催化剂和反应物的自由电子对或 在反应过程中由反应物分子的键非均裂 形成的自由电子对.使反应物与催化剂 形成非均裂键。
例如,催化异构化反应中,反应物烯烃 与催化剂的酸性中心作用、生成活泼的 正碳离子中间化合物
43
烯烃与催化剂酸性中心作用、 生成活泼正碳离子中间化合物
催化剂作为一种化学物质,它能够与反
应物相互作用,但是在反应的终结它仍 保持不变。
4
催化剂加速化学反应的实例
SO2+O2 SO3 ( V2O5),无催化剂时, 即使加热也几乎不生成 SO3。
N2+H2 NH3 (Fe催化剂),若没有铁催 化剂,在反应温度为400℃时,其反应速 度极慢,竞不能觉察出来,而当有铁催 化剂的存在时,就实现工业生产合成氨。
39
按催化反应分类
催化反应同非催化反应一样,也可根 据反应中反应分子之间电子传递的情况 来分类,可分为:
氧化还原反应
酸碱反应。
40
氧化还原
催化剂使反应物分子中的键均裂而出现 不成对电子,并在催化剂的电子参与下 与催化剂形成均裂键。
这类反应的重要步骤是催化剂与反应物 之间的单电子交换。
41
19
催化剂对反应具有选择性
根据热力学计算,某一反应可能生成不 只一种产物时,应用催化剂可加速某一 目的产物的反应,即称为催化剂对该反 应的选择性。
工业上就是利用催化剂具有选择性,使 原料转化为所需要的产品。
例如,以合成气(CO+H2)为原料,使用 不同的催化剂则沿不同的途径进行反应。
20
催化剂对反应具有选择性
46
双功能催化剂的实例

催化反应动力学.ppt

催化反应动力学.ppt

k1 M k-1
P+C
• 由稳态法:
dM dt
k1[ A][C] k1[M ] k2[M ] 0
[M ] k1[ A][C] k[ A][C] k1 k2
rc

k2[M ]
k1k2 k1 k2
[ A][C]

kc[ A][C]
• 无催化剂存在时的反应速率为:
用稳态近似法处理
S

E
k1
ES
k2

E

P
k-1
d[P] dt k2[ES]
d[ES] dt

k1[S][E]-k1[ES]-k2[ES]

0
[ES] k1[S][E] [S][E]
k1 k2
KM
KM

k1 k2 k1
KM

[S][E] [ES]
KM称为米氏常数 KM相当于 [ES] 的不稳定常数
减速者又称为阻化剂。
催化反应:
气相 均相催化: 液相 多相催化: 气、固
液、固
常见的几种重要催化反应:
硫酸工业: SO2 + 1/2O2 V2O5 SO3 氮肥工业: N2 + 3H2 Fe 2NH3
CO + H2O 硝酸工业: NH3 + O2 Pt
CO2 + H2 H2O + NO2
光合作用: 啤酒发酵、等等
2.当[S]<<KM时,r =k2[E]0[S]/KM 对[S]呈一级。
3.当[S]→∞时,r = rm=k2[E]0。
米氏常数 KM
r rm[S] KM [S]
当反应速率达到最大值rm的一半时, KM=[S]。

工业催化ppt课件

工业催化ppt课件

新能源开发
用于生产太阳能电池、燃料电 池等新能源材料。
制药行业
用于合成药物、生物催化剂等 生物医药产品的生产。
02
工业催化原理与技术
催化反应原理
催化反应定义
在催化剂的作用下,反应物之间 发生化学反应并生成产物的过程

催化反应特点
反应速率快、选择性高、能耗低、 副产物少。
催化反应机理
了解催化反应过程中,反应物如何 通过催化剂表面的吸附、活化、反 应和脱附等步骤转化为产物。
对设计的催化反应流程进行技术经济评估 ,确保其在工业生产中的可行性和经济效 益。
工业催化设备及其选型
确定设备参数
根据工艺要求和设备类型,确定设备的主 体尺寸、材质、压力、温度等参数,以确
保设备的性能和安全性。
A 确定设备类型
根据催化反应的类型和规模,选择 适合的工业催化设备,如固定床反 应器、流化床反应器、搅拌釜等。
工业催化实验方法与操作规程
实验方法选择
根据实验目的和要求,选择合适 的实验方法和操作规程,确保实 验结果的准确性和可靠性。
实验操作流程
按照实验步骤和要求进行操作, 注意实验细节和注意事项,避免 实验误差和安全事故。
数据处理与分析
对实验数据进行处理、分析和解 释,得出实验结论,为实际工业 生产提供指导和参考。
提高工业催化效率的途径与方法
优化催化剂设计
通过改进催化剂的组成和结构,提高其活性和选 择性,从而提高催化效率。
强化反应条件
优化反应温度、压力、浓度等条件,以降低能耗 和提高产物收率。
过程集成与优化
通过集成和优化催化反应过程,实现能源的高效 利用和废物的减量化。
THANKS
感谢观看
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CO吸附速率:Pt(110)> AgPt Interface >> Ag
Brightness
PCO=5.010-7 mbar
240 a: CO + O(a) reaction
200
PCO=2.0*10-6mbar Ag
160
PCO=5.0*10-7mbar
120
AgPt interface
80 40
道的示意图:碳端孤对 电子与金属空d轨道形成 键,金属的占据d轨道 电子反馈到CO空的2* 轨道形成键。
5.4 烃的吸附:主要有线式和桥式的缔合吸附,高温下解离吸 附
1、烷烃在过渡金属及其氧化物上的化学吸附总是发生解离 吸附,在较高温度下,甚至逐渐脱氢发生完全的解离吸附。
CH4 + 2M
CH3 H M+M
Qa:形成吸附物种S-A所释放的能量。 ra: 平衡距离。
一个分子靠近表面时的能量变化情况
D:解离能 Ea:吸附活化能 Qa:化学吸附热 Ed:脱附活化能
Y:物理吸附态/前驱态 X:化学吸附过渡态 Z:化学吸附态
分子A2-表面S吸附体系的位能曲线
AYX线:表示一个分子在表面的物理吸附过程。 BXZ线:表示活性原子在表面的化学吸附过程。 AYXZ线:表示一个分子在表面的解离化学吸附过程。
化学吸附
活化吸附:需要活化能而发生的化学吸附
非活化吸附:不需要活化能的化学吸附,如 氢在金属表面的解离。
催化剂表面上存在着不同种 类的吸附中心,由于这些中 心与吸附质形成不同的表面 络合物,因而有各自的吸附 位能曲线。
能产生两种化学吸附体系的位能曲线
P=101.3 kPa
H2在铁催化剂上的吸附等压线
催化反应已发现的主要氧物种:O2,ads,O2-,O2-,O-
MgO上O2-(a),O-(b),O3-(c)物种的ESR信号 O-+O2
5.3 CO的吸附:主要有线式和桥式的缔合吸附,高温下解离 吸附
M C O 线式吸附,CO=2000cm-1
M CO
M
桥式吸附,CO=1900cm-1
CO分子及其在过渡金属 上化学吸附的能级和轨
等压线上A和B两个极大值对应于两种化学吸附,它 们发生在两种不同的吸附中心上。
二维等高的位能图来表示分子靠近固体表面时的能量变化情况
H2-金属表面的二维位能图
反应通道(虚线):开始H-H距离是恒定的,随着分子接近表面, 接着出现一个活化势垒,一直越过马鞍点(过渡态),虽然Z变 化较小,但H-H距离增加,最后分子解离成原子。
七、溢流效应 (spillover effect)
溢流:在一个相(给体相)表面上吸附或产生的活性物种向另 一个在同样条件下不能吸附或产生该活性物种的相(受体相) 表面上迁移的过程。 溢流可以发生在金属-氧化物、金属-金属、氧化物-氧化物和氧 化物-金属各体系中。 目前发现的可能产生溢流的物种有H2、CO、O2和NCO。
氢溢流对催化剂稳定性的影响 (1)除表面积碳;(2)暴露 氧化物载体表面的金属中心
光发射电子显微镜直接观察Ag/Pt(110)双金属表面上的溢流过程
0s
4s
8s
16 s
30 s
98 s
198 s 298 s
PEEM images (21 29 m) captured during CO adsorption
单层
多层
可逆或不可逆
可逆
某些气体的液化潜热和最大物理吸附热
气体
H2 O2 N2 CO CO2 CH4 C2H4 C2H2 NH3 H2O Cl2
Q
0.92 6.69 5.61 6.02 25.1 9.12 14.64 24.01 23.26 44.22 18.41
(kJ/mol)
Qmax 8.4 20.9 20.9 25.1 37.7 20.9 33.5 37.7 37.7 58.6 35.6 (kJ/mol)
第二章 吸附作用
一、概述
在气固多相催化反应过程中,都包含吸附步骤,至少有一种反 应物参与吸附过程。多相催化反应的机理与吸附的机理不可分 割。
Langmuir-Hinshelwood Mechanism
Eley-Rideal Mechanism
固体表面(surface)原子与体相(bulk)原子的最大区别: 表面原子配位不饱和,从而表现出高的化学反应活性。
四、化学吸附的分子轨道图 把金属-吸附质体系作为“表面分子”,其分子轨道由金属和 吸附分子轨道组成。 单原子的吸附
(a)强化学吸附键
(b)弱化学吸附键
(c)不能成键, 原子离开表面
原子在d-金属上化学吸附的简化轨道示意图
双原子分子的化学吸附
双原子分子(H2)在d-金属上化学吸附的轨道示意图
1)由HOMO组合新的分子轨道。 2)对LUMO做相同的处理。 3)观察这些轨道相对于金属Fermi能级的位置,并且找出哪 一个轨道被填充及填充的程度
烯丙基
CH CH2 CH2
M
烯丙基
CH
CH2 CH2
M
M
协同式机理
丙烯在催化剂表面的吸附态
六、吸附粒子在表面上的运动
在平衡位置上垂直于表面方向的振动,以及在各吸附中心之 间的移动
均匀表面的位能变化
非均匀表面的位能变化
定位吸附:Eb>>RT,吸附粒子只能在势阱底附近作振动。 非定位吸附: EbRT,吸附粒子可直接在各吸附中心之间转 移。此时的吸附层可成为动态吸附层--更符合实际多相催化反
P =5.0x10 mbar
T =480K
0.8
a
b
c
0.6
0.4
0.2
0.0 0
50 100 150 200 250 300 350
time(s)
Brightness and normalized brightness profiles of different areas during CO adsorption.
某些气体的化学吸附热(kJ/mol)
气体 Ti Ta Nb W Cr Mo Mn Fe Co Ni Rh Pt
H2
188
188 167 71 134
117
O2
720
494 293
N2
586
CO 640
293 192 176
CO2 682 703 552 456 339 372 222 225 146 184
氢的溢流
WO3+H2
WO3+H2 Pt HxWO3
黄色
蓝色
溢流在多相催化反应中起着十分重要的作用,并可能直接影响 到催化剂的活性、选择性和稳定性。但溢流的机理在很多体系 中还不十分清楚,因为很多溢流的研究需要在多相催化反应过 程中原位进行,缺乏合适的研究技术。
氧的溢流
机械混合的SnO2-Sb3O4混合氧化 物催化异丁烯氧化的协同效应
0
Pt (110)
50 100 150 200 250 300
Reaction time (s)
PCO=2.010-6 mbar
CO吸附和反应速率:Pt>AgPt interface >Ag; 观察到化学波(CO表面扩散与表面反应 的偶合)的形成; Ag表面化学波起源于Ag-Pt界面,且扩散 速率随反应时间而下降。
氢在W不同晶面上的程序升温脱附谱
*解离的氢原子能够溶入金属体相生成体相氢原子甚至氢化物。
2、氢分子在金属氧化物上发生化学吸附时,常常发生H-H键 不均匀断裂,例如,氢在氧化锌上的化学吸附,通常形成两 种表面吸附物种,这种断裂简称为异裂。
HH Zn2+ O
OH=3489 cm-1 Zn-H=1709 cm-1
2、烯烃在过渡金属及其氧化物上的化学吸附可以发生解离 吸附,也可以发生缔合吸附。
解离吸附 C2H4 + 2M
HC CH2 H M +M
CH2 CH3 乙烯在金属上的一种吸附态: 解离吸附态的间接证据
M
缔合吸附:(A)di-键吸附;(B)键吸附
H2C CH2
H2C CH2
MM
M
CH CH2 CH2
M
5.2 氧的吸附:分子形式吸附的缔合吸附(associative adsorption),解离吸附,表面氧化物
氧在金属催化剂上缔合吸附的两种主要结构:
1)金属原子垂直于氧的O-O轴, 氧的占据轨道与金属原子的一个 空d轨道键合(图A)。 2)金属原子靠近一个氧原子(图 B)。氧原子的孤对电子轨道与金 属空d轨道成键,同时金属完全占 据的d轨道又可以将电子填充到O2 的空反键*轨道中去。这样稳定了 M-O键和削弱了O-O键。
应的状况。
t=0.17s
上:STM 图像(恒高模 式):0.09 ML O/Ru(0001)。T=300 K。 下:相应STM图像中氧原 子的位置。右下角示意图 中亮颜色点对应于位置发 生改变的氧原子。
From Wintterlin et al., Surface Science 394 (1997) 159.
NH3
301
188
155
C2H4
577
427
286
243 209
三、吸附位能曲线 物理吸附位能变化:通常用Lennard-Jones曲线来描述
A2分子在固体表面S上的物理吸附位能曲线
QP:物理吸附热
活性原子在固体表面化学吸附位能变化:通常用Morse公式 近似计算
活性原子A在固体表面S上的吸附位能曲线
两个规律: 1、占有的分子轨道和占有的表面轨道之间的相互作用原 则上产生一个排斥作用。因为成键和反键的化学吸附轨道 两者都将使占据的。然而,如果反键轨道落在Fermi能级 轨道之上,这种排斥作用将会部分或者全部的被解除(如 CO在Rh金属上5轨道的相互作用)。 2、产生成键轨道的相互作用,它可能出现在Fermi能级之 上或之下。由于吸附分子所参与的LUMO轨道相对于分子 的原子间的相互作用是反键的,相应轨道的占据将导致分 子的解离。如果是部分的占据,则对分子和表面间的成键 贡献小,同时化学吸附分子内所涉及原子的相互作用减弱 (如CO在大多数VIII族金属上2*轨道的情况)。
相关文档
最新文档