北师大版数学必修二课件-第二章 解析几何初步 10
北师大版必修2高中数学第二章《解析几何初步》ppt章末归纳提升课件
若设 P1(x0,y0),则 P2(-x0,-y0), ∴4-x03+x0y+0+5y60= -06, =0. ② ① ①+②得 x0+6y0=0.
∴点 P1(x0,y0),P2(-x0,-y0)都满足方程 x+6y=0, ∵过两点的直线有且只有一条,且该直线过原点, ∴所求直线 l 的方程即为 x+6y=0.
解题时要根据题目条件灵活选择,注意其适用条件: 点斜式和斜截式不能表示斜率不存在的直线,两点式不能表 示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直和过 原点的直线,一般式虽然可以表示任何直线,但要注意 A2+ B2≠0,必要时要对特殊情况进行讨论.
从点 P(3,-2)发出的光线 l,经过直线 l1:x+y -2=0 反射,若反射光线的反向延长线恰好通过点 Q(5,1), 求 l 的方程.
3y+1=0 上,求圆的方程. 【解】 设圆的标准方程为(x-a)2+(y-b)2=r2,
a2+b2=r2, 由题意列出方程组a-12+b-12=r2,
2a+3b+1=0,
a=4, 解之得b=-3,
r2=25, ∴圆的标准方程是(x-4)2+(y+3)2=25.
直线方程问题
如图所示,曲线是以(0,1)为圆心,r=2 为半径的半圆, 直线表示过定点(2,4)的动直线.由图形中关系可求得 kPC=152.
【答案】 D
点 P(x,y)在以 A(-3,1),B(-1,0),C(-2,0)为顶点的△
ABC 的内部运动(不包含边界),则yx- -21的取值范围是(
)
A.[12,1]
【思路点拨】 (1)可设出圆的标准方程;(2)可设出圆的 一般方程根据条件求出参数.
北师大版数学高一-课堂新坐标14-15数学必修2讲义 第2章 解析几何初步(144页)
第二章解析几何初步§1直线与直线的方程1.1直线的倾斜角和斜率(教师用书独具)●三维目标1.知识与技能(1)理解直线的倾斜角和斜率的概念.(2)掌握过两点的直线斜率的计算公式.2.过程与方法通过一系列直线的不同位置的学习,培养学生的探究精神.3.情感、态度与价值观通过几何问题用代数问题来处理的思维,培养学生的数形结合思想.●重点难点重点:倾斜角、斜率的概念,过两点的直线斜率的计算公式.难点:直线倾斜角与它的斜率之间的关系.直线的倾斜角、斜率都是用来刻画直线倾斜程度的,它们本质上是一致的,倾斜角α与斜率k之间存在k=tan α(α≠90°)的关系,可以通过改变直线倾斜角来进一步认识斜率,从而化解难点.(教师用书独具)●教学建议教学时结合具体图形,学生容易了解确定直线位置的几何要素可以是一个点与直线方向,观察教材上的图2-1,2-2要确定直线条中某一条直线还需要给出一个角,即引出倾斜角,进一步引出斜率,进而探究斜率与倾斜角的关系.●教学流程创设问题情境,提出问题⇒引导学生回答问题,认识直线的斜率和倾斜角⇒通过例1及变式训练,使学生掌握直线倾斜角的求法⇒通过例2及互动探究,使学生掌握直线的斜率的求法⇒通过例3及变式训练,使学生掌握直线的倾斜角和斜率的综合问题⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈校正课标解读 1.理解直线的倾斜角和斜率的概念(重点). 2.掌握过两点的直线斜率的计算公式(重点).直线的倾斜角和斜率【问题导思】1.已知直线上一个点,能确定一条直线吗? 2.当直线的方向确定后,直线的位置确定吗?3.直线l 1,l 2分别是平面直角坐标系中一、三象限角平分线和二、四象限角平分线,它们的倾斜程度一样吗?【提示】 1.不能.2.不确定.3.不一样.1.直线的确定在平面直角坐标系中,确定直线位置的几何条件是:已知直线上的一个点和这条直线的方向.2.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角,通常用α表示.(2)范围:0°≤α<180°. 3.直线的斜率直线倾斜角α的正切值叫作直线的斜率,即k ={ tan α,α≠90°,不存在,α=90°. 4.倾斜角、斜率及直线特点之间的联系倾斜角α 直线特点 斜率k 的变化0° 垂直于y 轴 k =00°<α<90° 由左向右上升 随着倾斜角在0°→90°间逐渐增大,直线的斜率k也逐渐增大,且恒为正值α=90° 垂直于x 轴 k 不存在90°<α<180°由左向右下降随着倾斜角在90°→180°间逐渐增大,直线的斜率k 也逐渐增大,且恒为负值 5.过两点的直线斜率的计算公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.求直线的倾斜角 设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B.α-135°C.135°-αD.当0°≤α<135°时为α+45°,当135°≤α<180°时为α-135°【思路探究】倾斜角的取值范围0°≤α<135°α+45°135°≤α<180°α-135°【自主解答】由倾斜角的范围知只有当0°≤α+45°<180°,即0°≤α<135°时,l1的倾斜角才是α+45°;而0°≤α<180°,所以当135°≤α<180°时,l1的倾斜角为α-135°,如图所示,故选D.【答案】 D1.研究直线的倾斜角,必须明确倾斜角α的范围是0°≤α<180°,否则将造成角度范围的扩大,产生不符合范围的角度.如对α不分类,选项A将出现大于等于180°的角;选项B、C将出现小于0°的角.2.此类问题应紧扣倾斜角的范围和倾斜角概念中的三个关键条件:①直线向上的方向;②x轴的正方向;③逆时针方向旋转.有时利用数形结合的思想方法求解.图2-1-1中α是直线l的倾斜角吗?试用α表示图中各条直线l的倾斜角.图2-1-1【解】设直线l的倾斜角为β,图①中α是直线l的倾斜角,β=α;图②中α不是直线l的倾斜角,β=180°-α;图③中α不是直线l的倾斜角,β=α;图④中α不是直线l的倾斜角,β=90°+α.求直线的斜率(1)直线过两点A(1,3)、B(2,7),求直线的斜率;(2)过原点且斜率为1的直线l绕原点逆时针方向旋转90°到达l′位置,求直线l′的倾斜率.【思路探究】(1)利用过两点的直线的斜率公式求得.(2)利用斜率的定义求.【自主解答】(1)因为两点的横坐标不相等,所以直线的斜率存在,根据直线斜率公式得k =7-32-1=4.(2)因为直线l 的斜率k =1,所以直线l 的倾斜角为45°,所以直线l ′的倾斜角为45°+90°=135°,所以直线l ′的斜率k ′=tan 135°=-1.1.熟记斜率公式是解答本题的关键.2.求直线的斜率有两种思路一是公式,二是定义.当两点的横坐标相等时,过这两个点的直线与x 轴垂直,其斜率不存在,不能用斜率公式求解,因此,用斜率公式求斜率时,要先判断斜率是否存在.将本题中的两点改为(1,1),(-1,-2)其余不变. 【解】 k =-2-1-1-1=32.直线的倾斜角、斜率的综合应用 已知点A (2,-3),B (-3,-2),直线l 过点P (3,1),且与线段AB 相交,求直线l 的斜率的取值范围.【思路探究】 欲使直线l 与线段AB 相交,则直线l 的斜率与直线PA ,PB 的斜率有必然的关系,通过画图可知.【自主解答】 设直线l 的斜率为k ,当l 与线段AB 相交时,k PB ≤k ≤k PA , 又∵k PA =1+33-2=4,k PB =1+23+3=12,∴12≤k ≤4, 即直线l 的斜率的取值范围为12,433,3-12,3).1.2直线的方程第1课时直线方程的点斜式(教师用书独具)●三维目标1.知识与技能(1)掌握直线方程的点斜式.(2)了解斜截式与一次函数的关系.2.过程与方法通过直线点斜式方程的学习,培养学生的探索精神.3.情感、态度与价值观培养学生用代数思维解决几何问题,提高数学的学习兴趣.●重点难点重点:直线方程的点斜式.难点:直线方程的应用.给定点P(x0,y0)和斜率k后,直线就唯一确定了,直线的方程,就是直线上任意一点的坐标(x,y)满足的关系式.(教师用书独具)●教学建议本节是在学习了直线的倾斜角和斜率之后,进行直线方程的学习,因此本节课宜采用探究式课堂模式,即在教学过程中,在教师的启发引导下,以学生独立自主为前提,两点斜率公式为基本探究问题,引出直线方程的点斜式,让学生在“活动”中学习,在“主动”中发展、提高.●教学流程创设问题情境,提出问题⇒通过引导学生回答问题,认识掌握直线方程的点斜式⇒通过例1及互动探究,使学生掌握利用点斜式求直线方程⇒通过例2及变式训练,使学生掌握利用斜截式求直线方程⇒通过例3及变式训练,使学生点斜式、斜截式的综合应用⇒归纳整理,进行课堂小结整体认识所学知识⇒完成当堂双基达标巩固所学知识并进行反馈、矫正课标解读1.掌握直线方程的点斜式(重点).2.了解直线在y轴截距的概念(易混点).3.了解斜截式与一次函数的关系(难点).直线方程的点斜式【问题导思】若直线经过点P(x0,y0),且斜率为k,则直线上任意一点的坐标满足什么关系?【提示】y-y0=k(x-x0).1.直线的方程如果一个方程满足以下两点,就把这个方程称为直线l的方程:(1)直线l上任一点的坐标(x,y)都满足这个方程;(2)满足该方程的每一个数对(x,y)所对应的点都在直线l上.2.直线方程的点斜式和斜截式利用点斜式求直线方程根据条件写出下列直线的方程,并画出图形.(1)经过点A(-1,4),斜率k=-3;(2)经过坐标原点,倾斜角为45°;(3)经过点B(3,-5),倾斜角为90°;(4)经过点C(2,8),D(-3,-2).【思路探究】解答本题可先分析每条直线的斜率是否存在,然后选择相应形式求解.【自主解答】(1)y-4=-3,即y=-3x+1,图形如图(1)所示.(2)k=tan 45°=1,∴y-0=x-0,即y=x.图形如图(2)所示.(3)斜率k不存在,∴直线方程为x=3.图形如图(3)所示.(4)k =8-(-2)2-(-3)=2,∴y -8=2(x -2),即y =2x +4.图形如图(4)所示.1.求直线的斜率是解题的关键,利用“两点确定一条直线”作图.2.利用点斜式求直线方程的步骤:①在直线上找一点,并确定其坐标(x 0,y 0);②判断斜率是否存在,若存在求出斜率;③利用点斜式写出方程(斜率不存在时,方程为x =x 0).本例第(4)问中“C (2,8)”改为“C (m,8)”,试写出满足条件的直线方程. 【解】 当m =-3时,斜率不存在,直线方程为x =-3; 当m ≠-3时,k =8-(-2)m -(-3)=10m +3,∴y -(-2)=10m +3,即y =10m +3x +24-2m m +3.利用斜截式求直线方程 (1)写出斜率为2,在y 轴上截距是3的直线方程的斜截式.(2)已知直线l 的方程是2x +y -1=0,求直线的斜率k ,在y 轴上的截距b ,以及与y 轴交点P 的坐标.【思路探究】 利用斜截式写直线的方程须先确定斜率和截距,再利用斜截式写出直线方程.【自主解答】 (1)∵直线的斜率为2,在y 轴上截距是3, ∴直线方程的斜截式为y =2x +3.(2)把直线l 的方程2x +y -1=0,化为斜截式为y =-2x +1, ∴k =-2,b =1,点P 的坐标为(0,1).1.已知直线斜率或直线与y 轴有交点坐标时,常用斜截式写出直线方程.2.利用斜截式求直线方程时,要先判断直线斜率是否存在.当直线斜率不存在时,直线无法用斜截式方程表示,在y 轴上也没有截距.写出斜率为2,在y 轴上截距为m 的直线方程,并求m 为何值时,直线过点(1,1)? 【解】 由题意知,直线方程为y =2x +m .把点(1,1)代入得1=2×1+m , ∴m =-1.点斜式、斜截式方程的综合应用 已知直线l :5ax -5y -a +3=0,求证:不论a 取何值,直线l 总经过第一象限. 【思路探究】 可以把直线l 的方程变形为点斜式或斜截式,根据其特点证明.【自主解答】 法一 将直线方程变形为y -35=a (x -15),它表示经过点A (15,35),斜率为a 的直线.∵点A (15,35)在第一象限.∴直线l 必过第一象限.法二 将直线方程变形为y =ax +3-a5,当a >0时,不论a 取何值,直线一定经过第一象限;当a =0时,y =35,直线显然过第一象限;当a <0时,3-a5>0,直线一定经过第一象限.综上,直线5ax -5y -a +3=0一定过第一象限.1.法一是变形为点斜式,法二是变形为斜截式.2.解决此类问题关键是将方程转化为点斜式或斜截式来处理.不论m 为何值,直线mx -y +2m +1=0恒过定点( )A .(1,12) B .(-2,1)C .(2,-1)D .(-1,-12)【解析】 ∵直线方程可化为y -1=m , ∴直线恒过定点(-2,1).【答案】B忽视对字母的分类讨论致误求过两点(m,2),(3,4)的直线方程. 【错解】 ∵k =4-23-m =23-m,∴直线方程为y-4=23-m(x-3).【错因分析】未考虑m与3的关系导致错误的出现.【防范措施】当m=3时斜率不存在,故应该讨论m与3的关系.【正解】当m=3时,直线斜率不存在,∴直线方程为x=3,当m≠3时,k=23-m,∴直线方程为y-4=23-m(x-3).1.对于利用点斜式求直线方程,首先应先求出直线的斜率,再代入公式求解.2.对于利用斜截式求直线方程,不仅求斜率,还要求截距.1.过点P(-2,0),斜率为3的直线方程是()A.y=3x-2B.y=3x+2C.y=3(x-2) D.y=3(x+2)【解析】由点斜式可得y-0=3(x+2),即y=3(x+2).【答案】 D2.直线y=2x-3的斜率和在y轴上的截距分别等于()A.2,2 B.-3,-3C.-3,2 D.2,-3【解析】由斜截式方程形式可知,k=2,b=-3.【答案】 D3.倾斜角为150°,在y轴上截距为6的直线方程是________.【解析】∵倾斜角为150°,∴斜率k=tan 150°=-33,又知直线在y轴上截距为6,∴y=-33x+6.【答案】y=-33x+64.已知直线的斜率为2,与x轴交点横坐标为-1,求直线方程.【解】∵直线过(-1,0),k=2,由点斜式得y=2 ∴y=2x+2.一、选择题1.过点(4,-2),倾斜角为150°的直线方程为( )A .y -2=-33(x +4)B .y -(-2)=-33(x -4)C .y -(-2)=33(x -4)D .y -2=33(x +4)【解析】 k =tan 150°=-33,∴y -(-2)=-33(x -4).【答案】 B2.方程y =kx +1k表示的直线可能是( )【解析】 斜率为k ,且k ≠0,在y 轴上的截距为1k.当k >0时,1k >0;当k <0时,1k<0,从而选B.【答案】 B3.直线l 过点(-1,-1),(2,5)两点,点(1 005,b )在l 上,则b 的值为( ) A .2 009 B .2 010 C .2 011 D .2 012【解析】 ∵直线斜率k =5-(-1)2-(-1)=2,∴直线点斜式方程为y -5=2(x -2), ∴y =2x +1,令x =1 005,∴b =2 011. 【答案】 C4.方程y =k (x +4)表示( ) A .过点(-4,0)的所有直线 B .过点(4,0)的一切直线C .过点(-4,0)且不垂直于x 轴的一切直线D .过点(-4,0)且除去x 轴的一切直线【解析】 显然y =k (x +4)中斜率存在,因此不包含过点(-4,0)且斜率不存在即垂直于x 轴的直线.【答案】 C 5.(2013·佛山高一检测)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1【解析】 当a =0时,不满足条件,当a ≠0时,令x =0,y =a +2, 令y =0,x =2+aa .由已知得a +2=2+aa .∴(a +2)(1-1a )=0.∴a =-2或a =1.【答案】 D 二、填空题 6.(2013·平江高一检测)直线-x +3y -6=0的倾斜角是________,在y 轴上的截距是________.【解析】 y =33x +23,∴tan α=33,∴α=π6,在y 轴上的截轴为2 3.【答案】 π6,2 37.直线y =x +m 过点(m ,-1),则其在y 轴上的截距是________.【解析】 y =x +m 过点(m ,-1),∴-1=m +m ,即m =-12,从而在y 轴上的截距为-12. 【答案】 -128.直线l 的倾斜角为45°,且过点(4,-1),则这条直线被坐标轴所截得的线段长是________.【解析】 由已知得直线方程 y +1=tan 45°(x -4), 即y =x -5.当x =0,y =-5,当y =0,x =5. ∴被坐标轴所截得的线段长|AB |=52+52=5 2.【答案】 5 2 三、解答题9.写出下列直线的方程.(1)斜率是3,在y 轴上的截轴是-2. (2)倾斜角是30°,过点(2,1).【解】 (1)根据斜截式得直线方程为y =3x -2. (2)k =tan 30°=33. ∴直线方程为y -1=33(x -2),∴y =33x -233+1. 10.直线x -y +1=0上一点P (3,m ),把已知直线绕点P 逆时针方向旋转15°后得直线l ,求直线l 的方程.【解】 把点P (3,m )的坐标代入方程x -y +1=0可得3-m +1=0,∴m=4,即P(3,4).又∵已知直线方程可化为y=x+1,∴k=1=tan 45°,即倾斜角为45°.如图,易知已知直线绕点P 逆时针方向旋转15°, 所得直线的倾斜角为60°, ∴k =tan 60°=3,∴所求直线方程为y -4=3(x -3).11.经过点A (-2,2)并且和两个坐标轴围成的三角形的面积是1的直线方程. 【解】 设直线为y -2=k (x +2),交x 轴于点(-2k-2,0),交y 轴于点(0,2k +2),S =12×|2k +2|×|2k +2|=1,|4+2k +2k |=1, 得2k 2+3k +2=0或2k 2+5k +2=0,解得k =-12或k =-2,∴x +2y -2=0或2x +y +2=0为所求.(教师用书独具)如图所示,已知△ABC 中,A (1,1),B (5,1),∠A =60°,点C 在直线AB 上方. 求:(1)线段AB 的方程;(2)AC 所在直线的方程及在y 轴上的截距.【思路探究】 结合倾斜角和斜率的关系或斜率公式,得所求直线的斜率,从而求解. 【自主解答】 (1)由A (1,1),B (5,1),得AB ∥x 轴, ∴k AB =0,∴线段AB 的方程为y =1(1≤x ≤5). (2)k AC =tan 60°=3,∴直线AC 的方程为y -1=3(x -1),整理得y =3x +1-3,令x =0得y =1-3, ∴在y 轴上的截距为1- 3.1.斜截式方程的应用前提是直线的斜率存在,当k=0时,y=b表示与x轴平行的直线,当b=0时,y=kx表示过原点的直线.2.截距不同于日常生活中的距离,截矩是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.已知直线y=-33x+5的倾斜角是直线l的倾斜角的5倍,求分别满足下列条件的直线l的方程.(1)过点P(3,-4);(2)在y轴上截距为3.【解】由直线y=-33x+5,得k=-33,即tan α=-33,∴α=150°,故所求直线l的倾斜角为30°,斜率k′=33.(1)∵l过点P(3,-4),则由点斜式方程得:y+4=33(x-3),即y=33x-3-4. (2)∵l在y轴上截距为3,则由斜截式方程得:y=33x+3.第2课时直线方程的两点式和一般式(教师用书独具)●三维目标1.知识与技能(1)掌握直线方程的几种形式及它们之间的相互转化.(2)了解直线与二元一次方程的对应关系.2.过程与方法让学生在应用旧知识的探究过程中获得新的结论,并通过新的知识的比较、分析、应用获得新知识的特点.3.情感、态度与价值观(1)认识事物之间的普遍联系与相互转化.(2)培养学生用联系的观点看问题.●重点难点重点:直线方程的两点式和一般式.难点:利用直线方程的各种形式求直线方程.两点式其实就是点斜式的变形,值得注意的是两点式方程y-y1y2-y1=x-x1x2-x1中的条件x1≠x2,y1≠y2,使得它既不能表示与x轴垂直的直线,也不能表示与y轴垂直的直线.(教师用书独具)●教学建议本节课的教学内容为直线方程的两点式和一般式,在此之前,学生已掌握了直线方程的点斜式、斜截式,在本节教学时,通过师生探讨,得出直线的两点式和一般式方程,通过直线的两点式方程向截距式方程的过渡训练,让学生体会由一般到特殊的处理方法,让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.●教学流程创设问题情境,提出问题⇒引导学生回答问题,理解直线方程的两点式、一般式⇒通过例1及互动探究使学生掌握灵活运用题目条件求直线方程⇒通过例2及变式训练使学生掌握一般式方程与其他方程的互化⇒通过例3及变式训练使学生掌握一般式方程的应用⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正课标解读1.掌握直线方程的几种形式及它们之间的相互转化(重点).2.了解在直角坐标系中平面上的直线与关于x,y的二元一次方程的对应关系(难点).直线方程的两点式【问题导思】已知A(x1,y1),B(x2,y2),如何求AB的直线方程?【提示】k AB=y2-y1x2-x1由点斜式方程得y-y1=y2-y1x2-x1(x-x1).1.两点式:设A(x1,y1),B(x2,y2)(其中x1≠x2,y1≠y2)是直线l上的两点,则l的两点式为y-y1y2-y1=x-x1 x2-x1.2.截距式:若直线l过A(a,0),B(0,b),(ab≠0),则直线l的两点式方程可化为xa+yb=1的形式,这种形式的方程叫作直线方程的截距式.其中a为直线在x轴上的截距,b为直线在y轴上的截距.直线方程的一般式【问题导思】以上所学的直线方程的几种形式能整理成关于x、y的二元一次方程的整式形式吗?【提示】能.直线方程的一般式关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)表示的是一条直线,我们把它叫作直线方程的一般式.直线方程的两点式和截距式 求满足下列条件的直线方程: (1)过点A (-2,3),B (4,-1);(2)在x 轴、y 轴上的截距分别为4,-5; (3)过点P (2,3),且在两坐标轴上的截距相等.【思路探究】 (1)要根据不同的要求选择适当的方程形式;(2)“截距”相等要注意分过原点和不过原点这两种情况.【自主解答】 (1)由两点式得y -3-1-3=x +24+2化简得2x +3y -5=0.(2)由截距式,得x 4+y-5=1化简为5x -4y -20=0.(3)当直线过原点时,所求直线方程为3x -2y =0.当直线不过原点时,设直线方程为x a +ya =1,∵直线过P (2,3) , ∴2+3a =1,∴a =5, 直线方程为x +y -5=0,所以所求直线方程为3x -2y =0或x +y -5=0.1.本题(3)中易漏掉截距都为0情况.2.直线方程有多种形式,在求解时应根据题目的条件选择合适的形式,但要注意方程各种形式的适用范围.将本例(1)中的A 改(-2,m ),求直线方程. 【解】 当m =-1时直线方程为y =-1, 当m ≠-1时,由两点式得y -m -1-m =x -4-2-4,∴y =m +16x +m -13.直线方程的一般式 设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6,根据下列条件分别确定m 的值;(1)l 在x 轴上的截距是-3;(2)l 的斜率是-1.【思路探究】 可根据所求的结论把一般式转化为其他形式. 【自主解答】 (1)由题意可得⎩⎨⎧m 2-2m -3≠0, ①2m -6m 2-2m -3=-3, ② 由①得:m ≠-1且m ≠3, 由②得:m =3或m =-53.∴m =-53.(2)由题意得⎩⎨⎧2m 2+m -1≠0, ③-m 2-2m -32m 2+m -1=-1. ④ 由③得:m ≠-1且m ≠12,由④得:m =-1或m =-2.∴m =-2.1.本题的易错点是(1)中漏掉m 2-2m -3≠0,(2)中漏掉2m 2+m -1≠0.2.把直线方程的一般式Ax +By +C =0(A 、B 不同时为0)化成其他形式时,要注意式子成立的条件,特别是当B =0时,直线的斜率不存在,这时方程不能化成点斜式或斜截式的形式.根据下列条件分别写出直线的方程,并化为一般式方程: (1)斜率为2,且经过点A (1,-1).(2)斜率为12,在y 轴上的截距为1.【解】 (1)y -(-1)=2(x -1),即2x -y -3=0.(2)y =12x +1,即x -2y +2=0.直线方程的应用 已知直线l :5ax -5y -a +3=0.(1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线l 不经过第二象限,求a 的取值范围.【思路探究】 解答本题可先把一般式方程化为点斜式方程,然后再由直线过定点(15,35),说明直线l 恒过第一象限.对于求a 的取值范围可借助图形,利用“数形结合思想”求得.【自主解答】 (1)将直线l 的方程整理为y -35=a (x -15),∴l 的斜率为a ,且过定点A (15,35),而点A (15,35)在第一象限, 故l 过第一象限.(2)如图,直线OA的斜率k=35-015-0=3,∵l不经过第二象限,∴a≥3.1.直线过定点(15,35)是解决本题的关键. 2.针对这个类型的题目,灵活地把一般式Ax +By +C =0(A ,B 不同时为0)进行变形是解决这类问题的关键.在求参量取值范围时,巧妙地利用数形结合思想,会使问题简单明了.若直线(m -1)x -y -2m +1=0不经过第一象限,则实数m 的取值范围是________.【解析】 {m -1<0,1-2m <0,∴12<m <1. 【答案】 (12,1)分类讨论思想在直线方程问题中的应用(12分)设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ).(1)若l 在两坐标轴上的截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.【思路点拨】 对截距相等一定要考虑都为0,都不为0,若不为0求出截距让其相等.【规范解答】 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,当然相等.2分∴当a =2时满足条件,此时方程为3x +y =0.当a =-1时,直线为平行于x 轴的直线,在x 轴上无截距,不合题意.4分当a ≠-1且a ≠2时,由a -2a +1=a -2, 即a +1=1.∴当a =0时,直线在x 轴、y 轴上的截距都为-2,此时方程为x +y +2=0.7分综上所述,当a =2时,l 在两坐标轴上的截距相等,方程为3x +y =0;当a =0时,l 在两坐标轴上的截距相等,方程为x +y +2=0.8分(2)将l 的方程转化为y =-(a +1)x +a -2,∴{ -(a +1)>0,a -2≤0,或{-(a +1)=0,a -2≤0.10分∴a ≤-1.∴a 的取值范围为(-∞,-1x -(-35)-2,2-1,1-12,120,2 C .-3,3-33,33-33,33(x -1)2+y 2-1 B .(13,34 D .512,+∞)【思路点拨】 根据图形的特点求解.【解析】 先作出已知曲线y =1+4-x 2的图形,再根据直线y =k (x -2)+4过定点(2,4). 如图所示,曲线是以(0,1)为圆心,r =2为半径的半圆,直线表示过定点(2,4)的动直线.由图形中关系可求得k PC =512. 【答案】 D点P (x ,y )在以A (-3,1),B (-1,0),C (-2,0)为顶点的△ABC 的内部运动(不包含边界),则y -2x -1的取值范围是( ) A .12,114,1 D .(14,1)【解析】 令k =y -2x -1,则k 可以看成过点D (1,2)和(x ,y )的直线斜率,显然k AD 是最小值,k BD 是最大值.由于不包含边界,所以k ∈(14,1). 【答案】 D。
2016-2017学年高中数学 第二章 解析几何初步章末整合课件 北师大版必修2
专题一
专题二
专题三
专题四
专题一 用待定系数法求直线或圆的方程 求直线的方程、圆的方程是本章的一个重要内容,其方法主要有两 种:直接法和待定系数法,其中待定系数法应用最广泛,它是指首先 设出所求直线的方程或圆的方程,然后根据题目条件确定其中的参 数值,最后代入方程即得所要求的直线方程或圆的方程. 选择合适的直线方程、圆的方程的形式是很重要的.一般情况下, 与截距有关的,可设直线的斜截式方程或截距式方程;与斜率有关 的,可设直线的斜截式或点斜式方程等.与圆心和半径相关时,常设 圆的标准方程,其他情况下设圆的一般方程.
为半径的
圆; 当 a=1 时,P 点的轨迹为直线 x=0,即 y 轴.
专题一
专题二
专题三
专四题四
专题三 数形结合思想的应用 数形结合思想,其实质是将抽象的数学语言与直观的图形结合起来, 即把代数中的“数”与几何中的“形”结合起来认识问题、理解问题 并解决问题的思维方法.数形结合一般包括两个方面,即以“形”助 “数”,以“数”解“形”. 本章直线的方程和直线与圆的位置关系中有些问题,如距离、倾斜 角、斜率、直线与圆相切等都很容易转化成“形”,因此这些问题若 利用直观的几何图形处理会得到很好的效果.
要求的点.故|PN|-|PM|的最大值为
5 2
−
1=2.故选
2
D.
答案:D
考点一
考点二
考点一:直线与直线的方程
1.
(2015
福建高考,文
5)若直线������������
+
������ ������
=1(a>0,b>0)过点(1,1),则
a+b
的最小值等于( )
高一数学2015北师大版高中数学必修二第二章 解析几何初步复习课件
BS · 数学
必修2
已知点 P(x, y)满足关系式: x2+y2-6x-4y+12 =0,求: y (1) 的最大值和最小值; x (2)x2+y2 的看作是圆(x,y)与原点连线的斜 x 率,(2)x2+y2 可看作是(x,y)与原点距离的平方.
BS · 数学
BS · 数学
必修2
(2)设圆的一般方程为 x2+y2+Dx+Ey+F=0, 1+144+D+12E+F=0, 则49+100+7D+10E+F=0, 81+4-9D+2E+F=0, 解得 D=-2,E=-4,F=-95. ∴所求圆的方程为 x2+y2-2x-4y-95=0.
BS · 数学
必修2
从点 P(3,-2)发出的光线 l,经过直线 l1:x+y -2=0 反射,若反射光线的反向延长线恰好通过点 Q(5,1), 求 l 的方程.
【思路点拨】 求直线 l 的方程,已知点 P 在 l 上,只需 在 l 上再求出一个点即可.
BS · 数学
必修2
【思路点拨】 设点 P(3,-2)关于 l1:x+y-2=0 对称 的点 P1 的坐标为(x,y),则直线 l1 为线段 PP1 的垂直平分线, 可得方程组 y+2 =1, x-3 x+3 y-2 + 2 -2=0, 2 1).
(1)
|3 k-2|
BS · 数学
必修2
(2)设 u= x2+y2,则 u 为圆 C 上的点到原点的距离,如 图(2)所示.连接 OC 并延长交圆于 A、B 两点,圆心 C(3,2) 与原点 O 的距离是 |OC|= 13. ∴|OA |= 13-1,|OB |= 13+1.
2 2 ∴u2 = | OB | = ( 13 + 1) =14+2 13, max 2 2 u2 min=|OA | =( 13-1) =14-2 13.
北师大数学必修二课件:第二章 解析几何初步 1.1
[学习目标] 1.理解直线的倾斜角和斜率的概念. 2.理解直线倾斜角的 唯一性及直线斜率的存在性. 3.了解斜率公式的推导过程,会应用斜率公 式求直线的斜率.
课前自主 学习
课前自主学习
课堂合作研究
随堂基础巩固
课后课时精练
【主干自填】
1.直线的确定 在平面直角坐标系中,确定直线位置的几何条件是:已知直线上的一个
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
答案
类题通法 直线斜率的求法
求直线的斜率有两种思路:一是公式;二是定义.当两点的横坐标相等 时,过这两个点的直线与 x 轴垂直,其斜率不存在,不能用斜率公式求解, 因此,用斜率公式求斜率时,要先判断斜率是否存在.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
k= □14 xy22--yx11 .
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
【即时小测】 1.思考下列问题 (1)已知直线上一个点,能确定一条直线吗?
提示:不能.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
提示
(2)所有直线都有倾斜角吗?所有直线都有斜率吗?
提示:所有直线都有倾斜角,但不是所有直线都有斜率.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
提示
2.下图中标注的 α 表示直线 l 的倾斜角②④ 提示:A 根据倾斜角定义判断.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
提示
3.已知直线 l 的倾斜角为 30°,则直线 l 的斜率为( )
高中高中数学北师大版必修二课件第二章 解析几何初步§1 1-4精选ppt课件
【答案】 2x+y-4=0
5.已知直线 l1:x-2y+4=0,l2:x+y-2=0,设其交点为 P. (1)求交点 P 的坐标; (2)设直线 l3:3x-4y+5=0,分别求过点 P 且与直线 l3 平行及垂直的直线 方程.
【解】 (1)∵直线 l1:x-2y+4=0 与直线 l2:x+y-2=0 的交点为 P, 由xx+-y2-y+2=4=0,0, 得yx==20,, ∴P(0,2). (2)∵l3:3x-4y+5=0, 设与 l3 平行的直线方程为 3x-4y+C=0(C≠5), 将 P(0,2)代入得 C=8, ∴过点 P(0,2)且与 l3 平行的直线方程是 3x-4y+8=0.
解答本题充分利用了直线相交与联立直线方程所得方程组之间的关系,以 及直线上的点的坐标与直线的方程之间的关系,掌握并理解这些关系是解此类 问题的基础.
[再练一题]
1.两条直线 2x+3y-k=0 和 x-ky+12=0 的交点在直线 y=-x 上,那么
k 的值是( )
A.-4
B.3
C.3 或-4
D.±4
【提示】 点 P,Q 所在直线的方程为 y=0,由yy==0-2x+b, 得交点b2,0, 由-1≤b2≤1,得-2≤b≤2.
探究 2 尝试用两种方法证明:不论 m 取什么实数,直线(2m-1)x+(m+3)y -(m-11)=0 都经过一个定点,并求出这个定点的坐标.
【提示】 法一:对于方程(2m-1)x+(m+3)y-(m-11)=0,令 m=0,得 x-3y-11=0;
令 m=1,得 x+4y+10=0, 解方程组xx- +34yy- +1110==00,, 得两直线的交点为(2,-3). 将点(2,-3)代入已知直线方程左边, 得(2m-1)×2+(m+3)×(-3)-(m-11)=4m-2-3m-9-m+11=0. 这表明不论 m 为什么实数,所给直线均经过定点(2,-3).
最新北师大版高一数学必修2电子课本课件【全册】
0002页 0061页 0085页 0094页 0140页 0170页 0213页 0227页 0262页 0264页 0317页 0367页 0369页 0394页 0452页 0454页 0524页
第一章 立体几何初步 1.1简单旋转体 习题1—1 习题1—2 3.1简单组合体的三视图 习题1—3 4.1空间图形基本关系的认识 习题1—4 5.1平行关系的判定 习题1-5 6.1垂直关系的判定 习题1—6 7.1简单几何体的侧面积 7.3球的表面积和体积 阅读材料 蜜蜂是对的 本章小结 第二章 解析几何初步
Hale Waihona Puke 第一章 立体几何初步最新北师大版高一数学必修2电子 课本课件【全册】
1.简单几何体
最新北师大版高一数学必修2电子 课本课件【全册】
1.1简单旋转体
最新北师大版高一数学必修2电子 课本课件【全册】
2020年高中数学第二章解析几何初步11.1直线的倾斜角和斜率课件北师大版必修2
【解析】 当 0°≤α<135°时,l1 的倾斜角为 α+45°;当 135°≤α<180°时,如图.此时 l1 的倾斜角为 β,则
β=α+45°-180°=α-135°. 【答案】 当 0°≤α<135°时,倾斜角为 α+45°,当 135°≤α <180°时,为 α-135°
【规律总结】 求倾斜角时,主要根据定义,画出图形,找 准倾斜角.有时需分类讨论,把角分为四类:①0°角;②锐角; ③直角;④90°<α<180°.
【错因分析】 (2)中求斜率 k 的取值范围时,未结合图形分 析 k 的变化趋势.
【正解】 (1)kPM=-23--11=-4,kPN=- -23- -11=34.
(2)如图所示,l′是经过点 P 且与 x 轴垂直 的直线,当直线 l 由 PN 位置绕点 P 向 l′位置 旋转时,直线的倾斜角在锐角范围内逐渐增 大,斜率也逐渐增大,此时 k≥kPN=34;当直 线 l 由 l′位置绕点 P 向直线 PM 位置旋转时,直线的倾斜角在钝角 范围内逐渐变大,斜率也逐渐增大,此时,k≤kPM=-4.
5.已知 a>0,若平面上三点 A(1,-a),B(2,a2),C(3,a3) 共线,求 a 的值.
解:∵kAB=a2-2--1 a=a2+a 存在, 又 A,B,C 三点共线,∴kAC=a3-3--1 a=a3+2 a也存在,且 kAB=kAC,即 a2+a=a3+2 a,整理得 a(a2-2a-1)=0. 解得 a=0 或 a=1± 2.又∵a>0,∴a=1+ 2.
已知三点 A(a,2),B(5,1),C(-4,2a)在同一
直线上,求 a 的值. 解:∵kBC=-2a4--15=-2a- 9 1存在, 又 A,B,C 三点共线, ∴kAB 也存在,且 kAB=kBC. 即-2a- 9 1=15- -2a(a≠5), ∴2a2-11a+14=0, 解得 a=72或 a=2.
北师大版高中数学必修2第二章解析几何初步第二节《圆与圆的方程》ppt课件
O
X
1)写出过圆x2+y2=13上一点M(2,3)的
切线的方程。
2)已知圆x2+y2=3,求过点(-3,0)的圆的切 线方程。
小结
1)圆心为C(a,b),半径为r的圆的标准方程是 ;当圆心在原点时,a=0,b=0,那么圆的 方程就是x2+y2=r2。
x a2 y b2 r 2
试一试 : 1)已知一个圆的圆心在原点, 并且与直线4x+3y-70=0相切,求圆的方程。
例2 1) :已知圆心在Y轴上,且过点(10,0) 和(0,4)的圆的方程. 解
练习: 过点C(-1,1)和D(1,3),圆
心在X轴上,求圆的方程。解
某圆拱桥的一孔圆拱,其跨度为20m,高度为4m,在 建造时每隔4m需用一个支柱支撑,求支柱的长度。
2 -1-a 2 +12=r 2 2 1-a +3 2=r
解得
a=2,r2=10
2 2 +y= x- 10 2
所以这个圆的方程是
例2; 2) 如图是某圆拱桥的一孔圆拱的示意图,该圆拱的 跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱 支撑,求支柱A2P2的长度(精确到0.01m) y P2 P
A
A1 A2
O
A3 A4 Y
M
B
x
例3:已知圆的方程是x2+y2=r2,求 经过圆上一点M(xo,yo)的切线 的方程.
(x+3)2+(y+4)2=1
2)方程(x-1)2+(y+4)2 = 25 表示 的圆的圆心和半 径是?
圆心:(1,-4),半径:5
2 2 3) 圆x a y b r 的圆心和半径分别是什么?
高中高中数学北师大版必修2课件第二章解析几何初步 2.1.5.1精选ppt课件
|P1P2|= (������2-������1)2=|y2-y1|(P1P2⊥x 轴).
原点 O(0,0)与任一点 P(x,y)的距离为|OP|= ������2 + ������2. (2)两点间的距离公式的特征:两点间距离的平方等于两点横坐 标之差与纵坐标之差的平方和.公式可简记为“纵差方,横差方,加起 来,开平方”.
(2)直线 2x+my+2=0 与 x 轴的交点为(-1,0),与 y 轴的交点为 0,-
2 ������
,
所以两交点之间的距离为
(-1-0)2 +
0
+
2 ������
2
=
1
+
4 ������2
(m≠0).
答案:(1)( 34,0)
(2)
1
+
4 ������2
(m≠0)
题型一 题型二 题型三
M Z 目标导航 UBIAODAOHANG
12345
4.已知点A(a-1,2)与点B(3,a)的距离为2,则a=
.
解析:由已知得|AB|= [3-(������-1)]2 + (������-2)2=2,
即(a-4)2+(a-2)2=4, 整理得a2-6a+8=0, 解得a=2或a=4. 答案:2或4
M Z 目标导航 UBIAODAOHANG
|PA|= (������ + 1)2 + (0-2)2 = ������2 + 2������ + 5,
|PB|= (������-2)2 + (0- 7)2 = ������2 -4������ + 11. ∵|PA|=|PB|,
2020秋新版高中数学北师大版必修2课件:第二章解析几何初步 2.1.2.1 .pptx
-11-
M Z 第1课时 直线方程的点斜式和斜截式
目标导航
UBIAODAOHANG
知识梳理
HISHI SHULI
D典例透析 IANLI TOUXI
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三
题型二 利用斜截式求直线方程
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三
反思求直线的点斜式方程的步骤:
特别地,当斜率不存在时,过点P(x0,y0)的直线与x轴垂直,直线上所 有点的横坐标相等,都为x0,故直线方程为x=x0.
-10-
M Z 第1课时 直线方程的点斜式和斜截式
目标导航
UBIAODAOHANG
知识梳理
-4-
M Z 第1课时 直线方程的点斜式和斜截式
目标导航
UBIAODAOHANG
知识梳理
HISHI SHULI
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
2.直线的点斜式与斜截式方程
已知条件 方程形式
点斜式 点 P0 和斜率 k y-y0=k(x-x0)
斜截式 斜率 k,直线与 y 轴的交点 y=kx+b
1.2 直线的方程
-1-
第1课时 直线方程的点斜式和斜截式
-2-
M Z 第1课时 直线方程的点斜式和斜截式
目标导航
UBIAODAOHANG
知识梳理
HISHI SHULI
ห้องสมุดไป่ตู้
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
北师大数学必修二课件:第二章 解析几何初步 1.3
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
提示
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
[变式训练1] 下列说法中,正确的有( )
①若两直线斜率相等,则两直线平行;
②若 l1∥l2,则 k1=k2; ③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两
直线相交;
④若两直线斜率都不存在,则两直线平行.
A.1 个 B.2 个 C.3 个 D.4 个
4.与直线 3x-2y+1=0 垂直,且过点(1,2)的直线 l 的方程是________.
提示:2x+3y-8=0 设与 3x-2y+1=0 垂直的直线方程为 2x+3y+b =0,将(1,2)代入方程,得 b=-8,
∴直线 l 的方程为 2x+3y-8=0.
课前自主学习
课堂互动探究
随堂巩固训练
答案 A
解析 当 k1=k2 时,l1 与 l2 平行或重合,①不正确,②中斜率不存在时,
不正确;④同①也不正确.只有③正确.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
答案 解析
例 2 已知直线 l1:(m+2)x+(m2-3m)y+4=0,l2:2x+4(m-3)y-1 =0,如果 l1∥l2,求 m 的值.
A.l1⊥l2 B.l1 与 l2 重合 C.l1∥l2 D.非以上答案 提示:C 由斜率公式 kAB=-6-2-32=-34,kCD=130--66=-34. ∵kAB=kCD,由已知可知,直线 AB 与 CD 不重合. ∴l1∥l2.
2020_2021学年高中数学第二章解析几何初步2.2.3.2圆与圆的位置关系课件北师大版必修2
半径为 3 的圆与 x 轴相切,且与圆 x2+(y-1)2=1 外切,求 此圆的方程.
解:因为所求圆的半径为 3,且与 x 轴相切, 所以设圆心坐标为(a,-3)或(a,3). 又因为所求圆与圆 x2+(y-1)2=1 外切, 所以 a2+4=4 或 a2+16=4, 即 a=±2 3或 a=0.所以所求圆的方程为(x±2 3)2+(y-3)2 =9 或 x2+(y+3)2=9.
【解】 设所求圆的方程为(x-a)2+(y-b)2=r2(r>0),则
a-12+b2=r+1,
ba+-33= 3,
|a+ 2
3b|=r,
a=4, 解得b=0,
r=2,
a=0, 或b=-4 3,
r=6.
故所求圆的方程为(x-4)2+y2=4 或 x2+(y+4 3)2=36.
规律方法 处理两圆相切问题,首先必须准确把握是内切还 是外切,若只是告诉两圆相切,则必须分两圆内切和两圆外切两 种情况讨论;其次,根据两圆相切,列出两圆的圆心距与两圆半 径之间的关系式.
规律方法 判断两圆的位置关系通常用几何法,这种方法比 较直观,容易理解.设⊙O1 的半径为 r1,⊙O2 的半径为 r2,则 有如下关系:
(1)相交⇔|r1-r2|<|O1O2|<r1+r2;
(2)相切内外切切⇔⇔||OO11OO22||==r|r11+-rr22;|, (3)外离⇔|O1O2|>r1+r2; (4)内含⇔|O1O2|<|r1-r2|.
(1)已知两圆的方程分别为圆 C1:x2+y2=81 和圆 C2:x2+ y2-6x-8y+9=0,这两圆的位置关系是( C )
A.相离
B.相交
C.内切
D.外切
解析:圆 C1 的圆心为 C1(0,0),半径长 r1=9;圆 C2 的方程 化为标准形式为(x-3)2+(y-4)2=42,圆心为 C2(3,4),半径长 r2 =4,故|C1C2|= 3-02+4-02=5.又 r1-r2=5,∴|C1C2|=r1 -r2,∴圆 C1 和圆 C2 内切.故选 C.
北师大版数学必修2 第二章 解析几何初步归纳总结课件(66张)
第二章
本章归纳总结
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·必修2
5.平面直角坐标系中的距离公式 (1)两点间的距离公式 |P1P2|= x1-x22+y1-y22 (2)点到直线的距离 设 P(x0,y0),l:Ax+By+C=0,则点 P 到直线 l 的距离为 |Ax0+By0+C| d= ,特别地 p∈l⇔d=0. 2 2 A +B
第二章 本章归纳总结
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·必修2
8.直线和圆的位置关系 (1)代数法:通过解直线方程与圆的方程所组成的方程组, 根据解的个数来研究.若有两组不同的实数解(即Δ>0),则相 交;若有两组相同实数解(即Δ=0),则相切;若无实数解
(Δ<0),则相离.
第二章
本章归纳总结
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·必修2
(2)设 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0. ①l1 与 l2 相交⇔A1B2≠A2B1, 特别地 A1A2+B1B2=0 时⇔l1⊥l2; ②l1∥l2⇔A1B2=A2B1,且 A1C2≠A2C1; ③l1 与 l2 重合⇔A1B2=A2B1 且 A1C2=A2C1. 4.两条直线的交点 两条直 A1x+B1y+C1=0A1,B1不同时为0 线交点 → 解方程组 A2x+B2y+C2=0A2,B2不同时为0 坐标
第二章
本章归纳总结
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·必修2
①当 p(x0,y0)在 l 上,则 Ax0+By0+C=0; ②当 p 在 l 上方,则 Ax0+By0+C>0(B>0); ③当 p 在 l 下方,则 Ax0+By0+C<0(B>0). (3)两平行直线距离. 设 l1:Ax+By+C=0,l2:Ax+By+C′=0(C≠C′),则 |C-C′| l1 与 l2 间的距离 d= 2 . 2 A +B
高中数学北师大版必修二课件:第二章 解析几何初步§3 3-1 3-2
已知点 M 的坐标(x0,y0,z0),确定它的位置的方法有: (1)先在 x 轴上取横坐标为 x0 的点 M1;再将 M1 在 xOy 平面内沿与 y 轴平行 的方向的负向(y0<0)或正向(y0>0)平移|y0|个单位,得到点 M2;再将点 M2 沿与 z 轴平行的方向的正向(z0>0)或负向(z0<0)平移|z0|个单位,就可得到点 M(x0,y0, z0 ) .
∵长方体的棱长 AD=3,DC=AB=5,DD1=AA1=4, 显然 D(0,0,0),A 在 x 轴上,∴A(3,0,0);C 在 y 轴上, ∴C(0,5,0);D1 在 z 轴上, ∴D1(0,0,4);B 在 xOy 平面内,∴B(3,5,0); A1 在 xOz 平面内,∴A1(3,0,4);C1 在 yOz 平面内, ∴C1(0,5,4).
[探究共研型]
空间中点的对称
探究 1 平面中,两点 P1(x1,y1),P2(x2,y2)的中点坐标是什么?类比平面 中两点的中点坐标, 空间中两点 P1(x1, y1, z1), P2(x2, y2, z2)的中点坐标是什么?
【提示】
平面上两点
x1+x2 y1+y2 P1,P2 的中点坐标为 ;空间中两点 , 2 2
(2)以原点 O 为一个顶点,构造棱长分别为|x0|,|y0|,|z0|的长方体(三条棱的 位置要与 x0,y0,z0 的符号一致),则长方体与 O 相对的顶点即为所求的点 M. (3)先在 x 轴上找到点 M1(x0,0,0),过 M1 作 x 轴的垂直平面 α;再在 y 轴上找 到点 M2(0,y0,0),过 M2 作 y 轴的垂直平面 β;在 z 轴上找到点 M3(0,0,z0),过 M3 作 z 轴的垂直平面 γ,三个平面 α、β、γ 交于一点,此交点即为所求点 M.