二组分合金系统相图的绘制

合集下载

二组分金属固液相图的绘制

二组分金属固液相图的绘制

专业:材料化学学号:080240008实验人:胡文想同实验人:李会勇实验名称:物化实验气压:101.325Kpa 温度:25℃二组分金属固液相图的绘制实验目的1.掌握热分析法(步冷曲线法)测绘Bi-Sn二组分固-液相图的原理和方法。

2.了解简单二组分固-液相图的特点。

3.掌握KWL-07可控升降温电炉及SWKY-Ⅲ数字控温仪的使用方法。

实验原理热分析法则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用的实验方法。

其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔一定时间记录一次温度,绘制温度与时间关系曲线——步冷曲线。

若系统在均匀冷却过程中无相变化,其温度将随时间均匀下降。

若系统在均匀冷却过程中有相变化,由于体系产生的相变热与自然冷却时体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成体系的相变温度。

二组分系统相图有多种类型,其步冷曲线也各不相同,但对于简单二组分凝聚系统,其步冷曲线有三种类型,见图II-7-1。

图II-7-1 生成简单低共熔混合物的二组分系统图II-7-1A为纯物质的步冷曲线。

冷却过程中无相变发生时,系统温度随时间均匀降低,至b点开始有固体析出,建立单组分两相平衡,f=0,温度不变,步冷曲线出现水平段bc,直至液体全部凝固(c点),温度又继续均匀下降。

水平段所对应的温度为纯凝固点。

图II-7-1B 为二组分混合物的步冷曲线。

冷却过程中无相变发生,系统温度随时间均匀降低,至b点开始有一种固体析出,随着该固体析出,液相组成不断变化,凝固点逐渐降低,到c点,两种固体同时析出,固液相组成不变,系统建立三相平衡,此时f=0,温度不随时间变化,步冷曲线出现水平段cd,当液体全部凝固(d点),温度又继续均匀下降。

水平段cd所对应的温度为二组分的低共熔点温度。

图II-7-1c 为二组分低共熔混合物的步冷曲线。

冷却过程中无相变发生,系统温度随时间均匀降低,至b点,两种固体按液相组成同时析出,系统建立三相平衡,f=0,温度不随时间变化,步冷曲线出现水平段bc,当液体全部凝固(c点),温度又继续均匀降低。

实验二 锡-铋二组分合金相图

实验二 锡-铋二组分合金相图

五、数据记录及处理
(1)参考值
(2)配样
(3)试管的最高温度
(4)样品随时间变化的冷却温度记录
(5)根据上表绘制步冷曲线如下
(6)在步冷曲线中找到各曲线的拐点及处理如下
(7)根据上表中液相线,固相线坐标绘制Sn-Bi二组分固液相图如下
表格使用说明:
(一)(4)黄色单元格是原始数据输入区根据自己组实际数据填写,若某组数据大于54个,则需变更函数。

步骤:t列可以按照t1列、t2列、t3列、t4列、t5列的顺序从每列的第一个数据向下填充,有多少就填多少个。

(二)(6)中的黄色单元格所填数据需要观察(5)中步冷曲线的拐点数据,步骤:将鼠标放置在各拐点处所显示的数据如下图所示,填写括号中232,其余各点一样操作
(三)如需打印该文档将黄色单元格改为无色,并且删除“表格使用说明”即红色字体。

物理化学实验报告二组分简单共熔合金相图绘制

物理化学实验报告二组分简单共熔合金相图绘制

一、实验目的1.掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法。

2、了解固液平衡相图的特点,进一步学习和巩固相律等有关知识。

二、主要实验器材和药品1、仪器:KWL-II金属相图(步冷曲线)实验装置、微电脑控制器、不锈钢套管、硬质玻璃样品管、托盘天平、坩埚钳2、试剂:纯锡(AR)、纯铋(AR)、石墨粉、液体石蜡三、实验原理压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度组成图。

较为简单的组分金属相图主要有三种:一种是液相完全互溶,凝固后固相也能完全瓦溶成固体混合物的系统最典型的为Cu- Ni系统;另一种是液相完全互溶,而固相完全不互溶的系统,最典型的是Bi- Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如Pb- Sn或Bi- Sn系统。

研究凝聚系统相平衡,绘制其相图常采用溶解度法和热分析法。

溶解度法是指在确定的温度下,直接测定固液两相平衡时溶液的浓度,然后依据测得的温度和溶解度数据绘制成相图。

此法适用于常温F易测定组成的系统,如水盐系统。

热分析法(步冷曲线法)则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用和最基本的实验方法。

它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。

其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔定时间记录一次温度,物系在冷却过程中温度随时间的变化关系曲线称为步冷曲线(又称为冷却曲线)。

根据步冷曲线可以判断体系有无相变的发生。

当体系内没有相变时,步冷曲线是连续变化的;当体系内有相变发生时,步冷曲线上将会出现转折点或水平部分。

这是因为相变时的热效应使温度随时间的变化率发生了变化。

因此,由步冷曲线的斜率变化可以确定体系的相变点温度。

测定不同组分的步冷曲线,找出对应的相变温度,即可绘制相图。

二组分合金相图的绘制(docX页)

二组分合金相图的绘制(docX页)

二组分合金相图的绘制(一)、实验目的1.掌握二组分体系的步冷曲线及相图的绘制方法。

2.用热分析法测绘Sn—Bi二元合金相图。

(二)、实验原理金属的熔点-组成相图,是采用热分析法由一系列组成不同的样品的步冷曲线进一步绘制而成。

所谓步冷曲线(即冷却曲线),是将体系加热熔融成均匀液相后,使之逐渐冷却,在冷却过程中,每隔一定时间记录一次温度,所得一系列温度对时间的数据绘制成表示温度与时间关系曲线,称为步冷曲线。

图11—1所示是三种形状的冷却曲线,如果用记录仪连续记录体系逐步冷却的温度,则冷却曲线的形状如11—2左图所示,由此可绘制出11—2右图,即合金相图。

(a)纯物质(b)混合物(c)低熔混合物时间图11—1典型冷却曲线图11—2 Bi—Cd合金冷却曲线及相图熔融体系在均匀冷却过程中无相变时,温度将连续均匀下降,得到一条连续的冷却曲线;若在冷却过程中发生了相变,则因放出相变热,使热损失有所低偿,温度变化将减缓或维持不变,冷却曲线就出现转折或呈水平线段,转折点所对应的温度即为该体系的相变温度,所以,由体系的冷却曲线可知体系在冷却过程中的热量变化,从而确定有无相变及其相变温度,故此方法叫做热分析法。

用热分析法绘制相图时,被测体系必须时时处于或接近相平衡状态,因此体系的冷却速度必须足够慢才能得到较好的结果。

本实验为Sn—Bi体系,是一种形成部分互溶的固态溶液且具有低共熔点的二组分体系,它不属于简单低共熔类型,当含Sn 85%以上即出现固熔体。

因此用本实验的方法还不能作出完整的相图。

(三)、仪器药品KWL—08可控硅升降温电炉、SWLY数字控温仪、纯锡、纯铋(四)、实验步骤1.配制样品,将合金按质量百分数配备。

Bi% 100 80 58 30 0Sn% 0 20 42 70 100以上五个样品分别装入不锈钢样品管中,插上温度探头套管,连接仪器,接通电源,按下图设定实验温度:1—电源开关 2—定时按钮 3—切换工作、置数工作状态 4、5、6、7—温度设定8、9—指示灯 10、11、12—数字显示窗口图12—3 SWKY数字控温仪2.定时设定:时间间隔设定30s,从0~99s之间按上下键2按钮调节。

二组分金属相图的测绘

二组分金属相图的测绘

1二组分金属相图的测绘实验学时:4 实验类型:(验证)实验要求:(必修)一、目的要求:1. 学会用热分析法测绘Sn -Pb 二组分金属相图。

2. 了解纯物质和混合物步冷曲线的形状有何不同,其相变点的温度应如何确定。

3. 学会JX-3DA 型金属相图测试仪的使用方法。

二、实验原理测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或两种金属混合物熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线称为步冷曲线。

当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一平滑的步冷曲线;当体系内发生相变时,则因体系产生的相变热与自然冷却时体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成体系的相变温度。

利用步冷曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。

二元简单低共熔体系的步冷曲线及相图如图1所示。

用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。

此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使转折点发生起伏,使相变温度的确定产生困难,见图2。

遇此情况,可延长dc 线与ab 线相交,交点e 即为转折点。

图1 根据步冷曲线绘制相图 图2 有过冷现象时的步冷曲线三、仪器与药品JX-3DA 型金属相图测试仪1台;分析天平; Sn(C.P .);Pb(C.P .);石墨粉。

四、实验步骤1. 样品配制把装有配制好的含铅0%、20%、38.1%、60%、80%和100%的铅锡混合物的样品管分别置于对应的坩埚中,注意样品管的放置顺序,插入对应编号的热电偶。

2. 测绘步冷曲线(1)按图3连接好各部件。

打开电源开关,预热10min 。

(2)参数的设置将加热选择开关打到“1”档(“1”档1#、2#、3#、4#样品管同时加热,“2”档5#、6#、7#、8#样品管同时加热,“3”档9#、10#样品管同时加热)。

2-第二节简单双组份凝聚体系相图

2-第二节简单双组份凝聚体系相图

这样就得到了Bi-Cd的T-x图。
Cd-Bi二元相图的绘制
Cd-Bi二元相图的分析 图上有4个相区:
* f 1. AEH线之上,熔液(l)单相区, 2 * f 1 2. ABE之内,Bi(s)+ l 两相区,
3. HEM之内,Cd(s)+ l 两相区, 4. BEM线以下, Bi(s)+Cd(s)两相区,
部分互溶的双液系
部分互溶的双液系
(2)具有最低会溶温度 水-三乙基胺的溶 解度图如图所示。 在 TB 温度(约为291.2K) 以下,两者可以任意比 例互溶,升高温度,互 溶度下降,出现分层。
TB 以下是单一液相
区,以上是两相区。
部分互溶的双液系
部分互溶的双液系
(3)同时具有最高、最低会溶温度 如图所示是水和烟碱的 溶解度图。 在最低会溶温度 TC'(约 334 K)以下和在最高会溶温 度 Tc (约481K)以上,两液体 可完全互溶,而在这两个温 度之间只能部分互溶。 形成一个完全封闭的溶度曲 线,曲线之内是两液相区。
简单的低共熔混合物
图中有两个特殊点:
L点 冰的熔点。盐 的熔点极高,受溶解度 和水的沸点限制,在图 上无法标出。
A点 冰+ (NH4 ) 2 SO4 (s) + 溶液三相共存点。溶液组 成在A点以左者冷却,先 析出冰;在A点以右者冷 却,先析出(NH4 ) 2 SO4 (s)。
水-盐冷冻液
在化工生产和科学研究中常要用到低温浴,配 制合适的水-盐体系,可以得到不同的低温冷冻液。 例如: 低共熔温度 水盐体系
1 2
基本原理:二组分体系 C 2 ,指定压力不变,
f * 2 f * 1 f * 0
3

【清华】实验6 二组分合金相图_314109813

【清华】实验6    二组分合金相图_314109813

实验6 二组分合金相图实验目的1.用热分析法(步冷曲线法)测绘Bi-Sn二组分金属相图。

2.掌握热电偶测量温度的基本原理和校正方法。

3.学会使用自动平衡记录仪。

实验原理人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。

以体系所含物质组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。

二组分相图已得到广泛的研究和应用。

固-液相图多用于冶金、化工等部门。

较为简单的二组分金属相图主要有三种;一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu-Ni系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;还有一种是液相完全互溶,而固相部分也互溶的系统,如Pb-Sn系统。

本实验研究的Bi-Sn系统就是这一种。

在低共熔温度下,Bi在固相Sn中最大溶解度为21%(质量百分数)。

热分析法(步冷曲线法)是绘制凝聚体系相图时常用的方法。

它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。

由热分析法制相图,先做步冷曲线,然后根据步冷曲线作图。

通常的做法是先将金属或合金全部熔化。

然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。

以合金样品为例,当熔融的体系均匀冷却时(如图2-6-1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,步冷曲线上出现转折(如图中b点)。

当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。

在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。

物化实验——二组分合金相图

物化实验——二组分合金相图

图1 实验装置图计算机样品和松香 石蜡 热电阻电炉二组分合金相图1. 引言(实验目的/原理)1) 学习温度的测量方法——用PT100热电阻测量温度 2) 用布冷曲线法测绘Bi-Sn 二组分合金相图 3) 用电脑软件记录数据和处理数据2. 实验操作2.1 实验药品:铋、锡、松香、石蜡仪器型号:调压器 TT-1 热电阻 PT-100 测试装置示意图(如图1)2.2 实验条件室温:24 ℃样品温度:样品先加热至240-300 ℃,之后渐渐降温 2.3 实验操作2.3.1步骤:1) 加热样品至样品熔融 2) 搅拌使样品均匀3) 冷却,由热电阻测量温度,由电脑软件记录步冷曲线 4) 用软件处理步冷曲线,找出相变点,记录相变温度 2.3.2方法要点1) 加热硬质试管和样品时应缓慢调节,因为合金样品和玻璃的膨胀系数不同,骤冷骤热,玻璃管易破裂。

加热时可以同时记录升温曲线,可以预测步冷曲线的平台位置2) 移动硬质试管时注意用钳子,戴手套,防止烫伤3) 记录布冷曲线的过程中不能移动硬质试管上的胶塞以及热电阻3. 结果与讨论3.1 原始实验数据由实测数据,用origin 作图,其中图2-6为样品布冷曲线,图7为水的升温曲线。

由电脑软件对布冷曲线进行线性拟合,并且根据水的沸点进行温度校正,得到如表1所示数据表1Bi-Sn 合金或纯金属的相变点温度及水的沸点*第三、四列数据由电脑软件线性拟合得到3.2 数据处理结果由表1所示数据和已知部分数据[1],由Execl 软件绘制得到Bi-Sn T-X 相图(如图8)相图中共有6个部分,每个区域、曲线和最低共熔物的相数(Φ)和条件自由度数(f’)如下:1.液相Φ=1 f’=2(温度和浓度)2.液相+固溶体1 Φ=2 f’=1(温度或浓度)3.液相+固溶体2 Φ=2 f’=1(温度或浓度)4. 固溶体1 Φ=1 f’=2(温度和浓度)5.固溶体1+固溶体2 Φ=2 f’=1(温度或浓度)6.固溶体2 Φ=1 f’=2(温度和浓度)AB 液体到液体加固溶体1的过渡态AD 液体到液体加固溶体2的过渡态BC液体加固溶体1到固溶体1的过渡态DE液体加固溶体2到固溶体2的过渡态CF固溶体1到固溶体1加固溶体2的过渡态EG固溶体2到固溶体1加固溶体2的过渡态CAE 固溶体1、固溶体2加液体三相共存Φ=3 f’=0由水、Bi、Sn的转折点读书和文献熔点或沸点值做出热电阻工作曲线(如图9)。

实验七 Bi~Cd金属相图的绘制

实验七 Bi~Cd金属相图的绘制

实验七 Cd~Bi 二组分金属相图的测定一、实验目的1. 应用步冷曲线的方法绘制Cd~Bi 二组分体系的相图。

2 掌握热电偶温度计和毫伏电位计的基本原理和会用。

二、实验原理1mol 物质完全氧化时的反应热称为燃烧热。

所谓完全氧化是指C →CO 2(气),H 2→H 2O (液),S →SO 2(气),而N 、卤素、银等元素变为游离状态。

如在25℃苯甲酸的燃烧热为-3226.8kJ/mol :燃烧热可在恒容或恒压情况下测定。

由热力学第一定律可知:在不做非膨胀功情况下,恒容燃烧热Q v =△U ,恒压燃烧热Q p =△H 。

在氧弹热量计中测得燃烧热为Q v ,而一般热化学计算用Q p ,两者的关系为:Q p =Q v +△nRT (5.1)式中△n 为反应前后生成物和反应物中气体的摩尔数之差;R 为摩尔气体常数;T 为反应温度(K)。

氧弹热量计的基本原理是能量守恒定律。

样品完全燃烧后所释放的能量使得氧弹本身及其周围的介质和热量计附件的温度升高,则测量介质在燃烧前后体系温度的变化值,就可求算该样品的恒容燃烧热。

其关系式如下:(5.2) 式中m 样和M 样分别为样品的质量和摩尔质量;Q v 为样品的恒容燃烧热;m 铁和Q 铁是引燃铁丝的质量和单位质量燃烧热;m 水和C 水是以水作为测量介质时,水的质量和比热容;C 计称为热量计的水当量,即除水之外,热量计升高1℃所需的热量;△T 为样品燃烧前后水温的变化值。

三、仪器 试剂氧弹热量计 1套 万用表 1个 数字式精密温差测量仪 1台 台秤 1台 氧气钢瓶 1只 温度计(0~50℃) 1支T W T C C m Q m Q M m 计水水铁铁v 样样∆=∆+=--')(氧气减压阀1只小台钟1只压片机1台烧杯(1000mL) 1只电炉(500W) 1个电子天平1台塑料桶1个引燃铁丝直尺1把苯甲酸(分析纯)剪刀1把萘(分析纯)四、实验步骤1. 将热量计及其全部附件加以整理并洗净。

二组分合金相图的绘制实验报告

二组分合金相图的绘制实验报告

二组分合金相图的绘制一、实验目的:1.通过实验,用热分析法测绘锡-铋二元合金相图。

2.了解热分析法的测量技术与有关测量温度的方法。

二、实验原理:绘制相图常用的基本方法,其原理是根据系统在均匀冷却过程中,温度随时间变化情况来判断系统中是否发生了相变化。

将金属溶解后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线称为步冷曲线。

若熔融体系在均匀冷却的过程中无相变,得到的是平滑的冷却线,若在冷却的过程中有相变发生,那么因相变热的释放与散失的热量有所抵偿,步冷曲线将出现转折点或水平线段,转折点所对应的温度即为相变温度。

时间(a)纯物质(b)混合物(c)低共熔混合物图1 典型步冷曲线对于简单的低共熔二元合金体系,具有图1所示的三种形状的步冷曲线。

由这些步冷曲线即可绘出合金相图。

如果用记录仪连续记录体系逐步冷却温度,则记录纸上所得的曲线就是步冷曲线。

用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此体系的冷却速度必须足够慢才能得到较好的结果。

Sn—Bi合金相图还不属简单低共熔类型,当含Sn 81%以上即出现固熔体。

三、实验仪器和药品:仪器和材料:金属相图实验炉(图2),微电脑温度控制仪,铂电阻,玻璃试管,坩埚,台天平。

药品:纯锡(CR)、纯铋(CR),石墨。

四、实验步骤:1.配制样品用感量为0.1g的托盘天平分别配制含铋量为30%、58%、80%的锡铋混合物各100g,另外称纯铋100g、纯锡100g,分别放入五个样品试管中。

2.通电前准备①首先接好炉体电源线、控制器电源、铂电阻插头、信号线插头、接地线。

图2 金属相图实验炉接线图②将装好药品的样品管插入铂电阻,然后放入炉体。

③设置控制器拨码开关:由于炉丝在断电后热惯性作用,将会使炉温上冲100℃—160℃(冬天低夏天高)。

因此设置拨码开关数值应考虑到这一点。

例如:要求样品升温为350℃,夏天设置值为170℃。

当炉温加热至170℃时加热灯灭,炉丝断电,由于热惯性使温度上冲至350℃后,实验炉自动开始降温。

二组分合金系统相图的绘制

二组分合金系统相图的绘制

综合测试实验、目的要求1.用热分析步冷曲线法绘制铋-镉二组分金属相图2.掌握热分析法的测量技术二、基本原理较为简单的二组分金属相图主要有三种:一种是液相完全互溶,固相也完全互溶成固溶体的系统,最典型的为Cu-Ni 系统;一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd 系统;还有一种是液相完全互溶,固相是部分互溶的系统,如Pb-S n系统,本实验研究的是Bi-Cd系统。

热分析中的步冷曲线法是绘制相图的基本方法之一。

它是利用金属及合金在加热和冷却过程中发生相变时,热量的释放或吸收及热容的突变,得到金属或合金中相转变温度的方法。

本实验是先将金属或合金全部熔化,然后让其在一定的环境中冷却,并在电脑上自动画出温度随时间变化的关系曲线—步冷曲线(见图1)。

当熔融的系统均匀冷却时,如果系统不发生相变,则系统的温度随时间的变化是均匀的,冷却速率较快(如图1中ab线段);若在冷却过程中发生了析出固体的相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统的冷却速率减慢,步冷曲线上出现转折(如图 1 中b 点)。

当熔液继续冷却到某一点时(如图1 中c 点),系统以低共熔混合物固体析出,在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线上出现水平线段(如图1中cd线段);当熔液完全凝固后,温度才迅速下降(如图1 中的线段)。

图1 步冷曲线图2 步冷曲线与相图由此可知,对组成一定的二组分低共熔混合物体系,可以根据它的步冷曲线得出有固体析出的温度和低共熔点温度。

根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。

不同组成熔液的步冷曲线对应的相图如图2 所示。

用步冷曲线法绘制相图时,被测系统必须时时处于接近相平衡状态,因此冷却速率要足够慢才能得到较好的结果。

三、仪器和试剂1.仪器:ZR-HX金属相图试验装置一套;电脑一台(四套公用)2.试剂:铋(分析纯、熔点为544.5 K)、镉(分析纯、熔点为594.1 K)四、实验步骤1.配制试样:配制含铋质量分数分别为20% 40% 60%、80%的Bi-Cd合金150g,再称纯Bi、纯Cd 各150 g,分别放入6个不锈钢试管中,上面滴入约1 mL的硅油。

二组分金属相图的绘制

二组分金属相图的绘制

二组分金属相图的绘制
1 实验要求
(1) 测定Sn-Bi合金的步冷曲线,绘制其相图并确定低共熔点及相应的组成。

(2) 了解热分析法测量原理,掌握热电偶的使用和校正。

(3) 回答本次实验需要讨论的5个问题。

2 注意事项
(1)按程序降低加热电压,否则热惯性太大,温度会过高。

如温度过高,取
出样品管对炉口扇风降低温度。

(2) 试样溶解后一定要搅拌均匀,这样数据才准确。

如搅拌后温度过低,
可用50V电压再加热。

搅拌时动作要轻,防止烫伤。

3 问题讨论
(1) 在实验中,样品管内中为何加入石墨?
(2) 在实验中,为什么要选择适当的样品量和适当的升温速率?
(3) 二组分金属相图各相区的相律是多少?
(4) 何谓步冷曲线法?用步冷曲线法测绘相图时,应注意哪些问题?
(5) 分析各步冷曲线上出现平台的原因。

4 参考文献
(1)复旦大学.物理化学实验[M].北京:高等教育出版社, 1993
(2) 罗澄源.物理化学实验[M].北京:高等教育出版社,2003
(3) 刘青,王永宁等.微机金属相图绘制的实验程序设计[J].青海师范大学学
报(自然科学版),2007,(2)
(4) 于庆水,潘春晖.金属相图实验的改进[J].沧州师范专科学校学
报,2004,(1)
(5) 蔡定建,杨忠等.二元合金相图的绘制与应用实验装置的改进[J].南方冶
金学院学报,2001,(1)。

实验二 锡-铋二组分合金相图的绘制

实验二 锡-铋二组分合金相图的绘制

五、数据记录及处理
(1)参考值
(2)配样
(3)试管的最高温度
(4)样品随时间变化的冷却温度记录
(5)根据上表绘制步冷曲线如下
(6)在步冷曲线中找到各曲线的拐点及处理如下
(7)根据上表中液相线,固相线坐标绘制Sn-Bi二组分固液相图如下
表格使用说明:
(一)(4)黄色单元格是原始数据输入区根据自己组实际数据填写,若某组数据大于54个,则需变更函数。

步骤:t列可以按照t1列、t2列、t3列、t4列、t5列的顺序从每列的第一个数据向下填充,有多少就填多少个。

(二)(6)中的黄色单元格所填数据需要观察(5)中步冷曲线的拐点数据,步骤:将鼠标放置在各拐点处所显示的数据如下图所示,填写括号中232,其余各点一样操作
(三)如需打印该文档将黄色单元格改为无色,并且删除“表格使用说明”即红色字体。

二组分金属相图的绘制思考题汇总

二组分金属相图的绘制思考题汇总
6、为什么要控制冷却速度,不能使其迅速冷却?
答:
使温度变化均匀,接近平衡态,必须缓慢降低温度,一般每分钟降低5度。
7、如何防止样品发生氧化变质?
答:
温度不可过高,空气不能过多和样品接触。
8、用相律分析在各条步冷曲线上出现平台的原因。
答:
因为金属熔融系统冷却时,由于金属凝固放热对体系散热发生一个补偿,因而造成冷却曲线上
答:
(1)混合物中含Sn越多,其步冷曲线水平段长度越长,反之,亦然。
(2)因为Pb和Sn的熔化热分别为23.0和59.4jg-1,熔化热越大放热越多,随时间增长温度降低的越迟缓,故熔化热越大,样品的步冷曲线水平段长度越长。
3.有一失去标签的Pb-Sn合金样品,用什么方法可以确定其组成?
4.总质量相同但组成不同的Pb-Sn混合物的步冷曲线,其水平段的长度有什么不同?为什么?
999为什么在不同组成融熔液的步冷曲线上最低共熔点的水平线段长度不为什么在不同组成融熔液的步冷曲线上最低共熔点的水平线段长度不为什么在不同组成融熔液的步冷曲线上最低共熔点的水平线段长度不不同组成各组成的熔点差值不同凝固放热对体系散热的补偿时间也不不同组成各组成的熔点差值不同凝固放热对体系散热的补偿时间也不不同组成各组成的熔点差值不同凝固放热对体系散热的补偿时间也不1010
的斜率发生改变,出现折点。当温度达到了两种金属的最低共熔点,会出现平台。
9、为什么在不同组成融熔液的步冷曲线上,最低共熔点的水平线段长度不同?答:
不同组成,各组成的熔点差值不同,凝固放热对体系散热的补偿时间也不同。
10.样品融熔后为什么要保温一段时间再冷却?
答:
使混合液充分混融,减小测定误差。
11.对于不同成分混合物的步冷曲线,其水平段有什么不同?

二组分金属相图的绘制(共7张PPT)

二组分金属相图的绘制(共7张PPT)
石蜡油覆盖。 起来,就可绘出相图。
利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接 起来,就可绘出相图。 测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与
3.绘制步冷曲线 时间关系的曲线叫步冷曲线。
续均匀下降得到一光滑的冷却曲线;当体系内发生相变时, 时间关系的曲线叫步冷曲线。
了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。
则因体系产生之相变热与自然冷却时体系放出的热量相 二元简单低共熔体系的冷却曲线具有所示的形状
测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与 时间关系的曲线叫步冷曲线。
数据处理
1.查出纯Bi、纯Sn的熔点
2.找出各步冷曲线中拐点和平台对应的温度值。 3. 以温度为纵坐标,以组成为横坐标,绘出Sn— Bi合金相图。
时间关系的曲线叫步冷曲线。 利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接
合物各40g,混合均匀,装入样品管,加入少量 起来,就可绘出相图。
利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接
测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与
当熔融体系在均匀冷却过程中无相变化时,其温度将连 时间关系的曲线叫步冷曲线。
测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与

二组分合金相图

二组分合金相图

二组分合金相图1 引言二组分合金相图是表示体系存在状态与组成、温度的关系,由于合金的沸点很高,所以合金相图一般是固-液相图。

本实验研究的Bi-Sn合金相图是一种较为简单的合金相图,Bi和Sn这两种组分的液相完全互溶,固相部分互溶,故该体系的相图如图1所示图1 Bi-Sn二组分合金相图示例(来源:SGTE alloy database)本实验用步冷曲线法绘制Bi-Sn合金相图。

它是利用金属及合金在加热或冷却过程中发生相变时热量的释出或吸收及热容的突变,使得温度-时间关系图上出现突变段(平台或者拐点),从而得到相变温度。

其通常的做法是,先将金属或合金全部熔化,然后让其在一定的环境中自行冷却,通过记录仪记录下步冷曲线。

然后根据步冷曲线得出所有固体析出的温度和低共熔温度。

根据一系列组成不同的二组分系统的步冷曲线的各转折点,即可画出二组分系统的相图(T-x图)。

绘制过程也可由图2来表示。

图2 用步冷曲线法绘制二组分合金相图(来源:贺德华等. 基础物理化学实验. 高等教育出版社,2008,39页)2 实验操作2.1实验药品、仪器及测试装置示意图2.1.1 实验仪器电热偶,电炉(2个),调压器,热电偶套管,沸点仪,硬质玻璃试管,数据自动记录软件2.1.2 实验药品Sn (AR), Bi (AR), 松香,液体石蜡2.1.3 实验装置示意图图3 实验装置示意图(来源:/view/71f133224b35eefdc8d33322.html)2.2 实验条件温度:室温(具体数值未知)气压:未知湿度:未知(在实验等待过程中实验者曾在实验室中寻找温度计等仪器,但由于疏忽并未找到,直到实验后看到被批改的第一次报告才得知,温度/湿度仪在称量台旁边,故本次实验中温度、湿度和气压仍未知)2.3实验操作步骤及方法要点a.由于事先已有配好Bi质量分数30%,56.9822%,80%的Bi-Sn合金以及纯Bi和纯Sn金属,故可直接将样品放入电炉加热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合测试实验
一、目的要求
1.用热分析步冷曲线法绘制铋-镉二组分金属相图
2.掌握热分析法的测量技术
二、基本原理
较为简单的二组分金属相图主要有三种:
一种是液相完全互溶,固相也完全互溶成固溶体的系统,最典型的为Cu-Ni 系统;一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;还有一种是液相完全互溶,固相是部分互溶的系统,如Pb-Sn系统,本实验研究的是Bi-Cd系统。

热分析中的步冷曲线法是绘制相图的基本方法之一。

它是利用金属及合金在加热和冷却过程中发生相变时,热量的释放或吸收及热容的突变,得到金属或合金中相转变温度的方法。

本实验是先将金属或合金全部熔化,然后让其在一定的环境中冷却,并在电脑上自动画出温度随时间变化的关系曲线—步冷曲线(见图1)。

当熔融的系统均匀冷却时,如果系统不发生相变,则系统的温度随时间的变化是均匀的,冷却速率较快(如图1中ab线段);若在冷却过程中发生了析出固体的相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统的冷却速率减慢,步冷曲线上出现转折(如图1中b 点)。

当熔液继续冷却到某一点时(如图1中c点),系统以低共熔混合物固体析出,在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线上出现水平线段(如图1中cd线段);当熔液完全凝固后,温度才迅速下降(如图1中的线段)。

图1步冷曲线图2步冷曲线与相图
由此可知,对组成一定的二组分低共熔混合物体系,可以根据它的步冷曲线得出有固体析出的温度和低共熔点温度。

根据一系列组成不同系统的步冷曲
线的各转折点,即可画出二组分系统的相图(温度-组成图)。

不同组成熔液的步冷曲线对应的相图如图2所示。

用步冷曲线法绘制相图时,被测系统必须时时处于接近相平衡状态,因此冷却速率要足够慢才能得到较好的结果。

三、仪器和试剂
1.仪器:
ZR-HX金属相图试验装置一套;电脑一台(四套公用)
2.试剂:
铋(分析纯、熔点为544.5 K)、镉(分析纯、熔点为594.1 K)
四、实验步骤
1.配制试样:
配制含铋质量分数分别为20%、40%、60%、80%的Bi-Cd合金150g,再称纯Bi、纯Cd各150 g,分别放入6个不锈钢试管中,上面滴入约1 mL的硅油。

在放入感温元件的细筒中也要滴入几滴硅油。

2.准备工作
(1)根据控制器所接位置,分别选择“A”或“B”加热器(可以根据情况只接一个加热器)
(2)检查主机、从机和中继器的电源线连接是否可靠
(3)检查各从机温度传感器与仪器连接是否可靠
(4)用通讯电缆将中继器“主机”接口与主机串行通口连接
(5)用通讯电缆将中继器“从机”接口分别与从机连接
(6)检查各线、缆连接无误后先后接通从机、中继器和主机电源
(7)待从机启动滚屏完成后,设置从机参数
a.目标温度(加热终止温度)应高于被加热样品的熔点温度
b.加热功率(%)根据不同的升温速率,设置不同的加热功率(%)(满功率为500 W)
c.保温功率(%)根据不同的降温速率,设置不同的保温功率(%)(小于或等于10%)
d.本机编号对应于中继器“从机”接口所标的通道编号
3.开始实验
当所有准备工作完成后,即可开始进行实验。

双击“多通道金属相图数据采集系统”图标,程序开始运行。

(1)参数设置
串口参数设置:
用以选择不同的串行端口和波特率(系统显示默认的通讯端口和波特率)。

(2)数据采集:
在“任务”菜单中选择“数据采集”,“运行指示”指示灯开始闪烁。

a.通道选择:
在“通道/加热”栏中选择需要采集数据的通道。

既可以选择单个通道,也可以选择多个通道。

当所选的通道被确认后,该通道的指示灯由灰变绿,“加热”复选框被激活,中继器相应的通道指示灯被点亮,开始计时并在“工作参数”栏相应通道的数据显示框内显示该通道采集的数据,同时在与该通道对应的坐标区内描点绘制曲线。

b.加热:
再选择“加热”选择框,该通道指示灯由绿变红。

从机接收到主机发送的指令后,便根据所设置的加热功率开始对样品加热。

c.停止加热:
当温度达到或超过所设置的目标温度后从机会自动转为保温状态,样品温度将根据设置的保温功率以一定的速率下降。

如果不设保温功率,则以自然散热的方式降温,也可以调整风扇旋钮加速降温。

d.只要“通道”选择框被选择,不论是否加热,所有数据都将被记录并描绘曲线。

e.其他通道的操作同上,只是当两个或两个以上的通道被选中时,中继器的通道指示灯将轮流闪烁。

(3)停止采集:
当数据采集完成后,再次点击“加热”选框,取消加热,然后再点击相应的通道选择框,取消通道选择。

当所有的选项都取消后,在“任务”菜单中选择“停止采集”。

系统提示设置样品参数。

将样品的组成和从曲线上读取的相变点温度,填入相应通道的“样品组成”数据栏和“相变点温度”数据栏。

(4)再次开始实验前,须按动从机“设置”键,确认从机所有设置,方可开始新一轮实验的数据采集任务。

4.文件操作
文件操作是对数据文件进行显示、保存、打印或转换成图像文件的操作。

(1)打开:
打开是指打开并读取已有的数据文件,然后在相应的通道坐标中描点绘制
成曲线。

可同时显示四组曲线。

(2)保存文件:
将采集的实验数据保存为文本文件。

(3)另存为:
另存为是将当前屏幕显示的坐标和曲线保存为图像文件。

(4)打印:
将坐标和曲线输出为纸质文件。

(5)刷新和清除:
除去坐标区多余的图、线,保持图线清晰。

(6)数据文件均以文本格式保存,用户可根据自己的喜好使用“记事本”或其他编辑器按照给定的格式对其进行编辑,故不另外定制编辑器。

注意在文件的结尾处必须键入“回车”键。

5.显示模式切换
通过显示模式切换,可将屏幕中某一通道的曲线单独显示,也可以将四个通道的曲线分为四个区域同时显示。

6.读取相变点温度
结合使用显示模式切换,通过移动“十字”光标,在曲线上读取样品的相变点温度,按给定的格式输入到对应通道的“相变点温度”数据栏中。

五、数据处理
1.从步冷曲线上查出各合金的转折温度,以横坐标表示质量百分数,纵坐标表示温度,绘出Bi-Cd二组分合金相图。

2.在作出的相图上,用相律分析低共熔混合物、熔点曲线及各区域内的相数和自由度数。

六、思考题
1.为什么冷却曲线上会出现转折点?纯金属、低共熔金属及合金的曲线形状为何不同?
2.解释步冷曲线上的过冷现象。

3.用加热曲线是否可以作相图?
附录一热电偶温度计
1.原理
将两种金属导线构成一闭合回路,如果两个接点的温度不同,就会产生一个电势差,称为温差电势。

如在回路中串接一个毫伏表,则可粗略显示该温差电势的量值。

这一对金属导线的组合就称为热电偶温度计,简称热电偶。

2.特点
(1)灵敏度高。

如常用的镍铬-镍硅热电偶的热电系数达40 μV/K,镍铬-考铜的热电系数高达70 μV/K。

用精密的电位差计测量,通常均可达到0.01℃的精度。

(2)重现性好。

热电偶制作条件的不同会引起温差电势的差异。

但一支热电偶制作后,经过精密的热处理,其温差电势-温度函数关系的重现性极好。

由固定点标定后,可在较长时间内使用。

(3)量程宽。

热电偶的量程仅受其材料适用范围的限制。

(4)非电量变换。

温度的自动记录、处理和控制在现代科学实验和工业生产中是非常重要的。

这首先要将温度这个非电参量变换为电参量,热电偶就是一种比较理想的温度-电变换器。

相关文档
最新文档