动力总成悬置系统隔振分析及优化
《2024年汽车动力总成悬置系统振动分析及优化设计》范文
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能已成为评价汽车舒适性和稳定性的重要指标。
动力总成悬置系统作为汽车的重要组成部分,其振动问题直接影响着汽车的乘坐舒适性和行驶安全性。
因此,对汽车动力总成悬置系统进行振动分析,并在此基础上进行优化设计,对于提高汽车的整体性能具有重要意义。
本文旨在分析汽车动力总成悬置系统的振动特性,并提出相应的优化设计方案。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统是连接发动机、变速器等动力总成部件与车身的重要装置,其主要作用是减少动力总成传递到车身的振动和噪声,保证汽车行驶的平稳性和舒适性。
该系统通常由发动机悬置、变速器悬置等组成,其性能的优劣直接影响到汽车的乘坐舒适性和行驶安全性。
三、汽车动力总成悬置系统振动分析(一)振动产生原因汽车动力总成悬置系统的振动主要来源于发动机的运转和道路的不平度等因素。
发动机的运转会产生周期性激励力,导致动力总成产生振动;而道路的不平度则会使汽车产生颠簸,进一步加剧动力总成的振动。
这些振动会通过悬置系统传递到车身,影响汽车的乘坐舒适性和行驶安全性。
(二)振动分析方法针对汽车动力总成悬置系统的振动问题,常用的分析方法包括理论分析、仿真分析和实车测试等。
理论分析主要是通过建立数学模型,对系统的振动特性进行预测和分析;仿真分析则是利用计算机软件对系统进行模拟分析,预测系统的振动特性;实车测试则是通过在实际道路上进行测试,获取系统的振动数据,为优化设计提供依据。
四、汽车动力总成悬置系统优化设计(一)设计目标汽车动力总成悬置系统的优化设计旨在提高系统的减振性能和隔噪性能,保证汽车行驶的平稳性和舒适性。
具体目标包括降低动力总成的振动和噪声传递到车身的幅度,提高乘坐舒适性;减少发动机运转对汽车行驶稳定性的影响,提高行驶安全性。
(二)优化设计方案针对汽车动力总成悬置系统的振动问题,可以采取以下优化设计方案:1. 改进悬置结构设计。
动力总成悬置系统优化及稳健性分析
动力总成悬置系统优化及稳健性分析动力总成悬置系统是指汽车中发动机、变速器和驱动轴等汽车动力总成部件的组成系统,它对车辆的性能和安全性具有重要的影响。
因此,优化动力总成悬置系统的设计和提高其稳健性是汽车设计和生产中的一个重要课题。
在动力总成悬置系统设计中,需要考虑多个方面,包括系统整体重量、系统刚度、支撑件材料选用、降低噪音、减少振动等。
为了实现这些要求,通常需要结合数值分析和实验方法进行优化设计。
在系统整体重量的优化方面,设计师可以采用新型材料或优化零部件设计等措施来减轻体重。
例如,使用降低密度但强度较高的铝合金,或采用轻量化的减震器等。
在系统刚度方面,可以通过各种方式提高系统刚度,例如增加材料厚度、设计增加支撑件数量和位置等方案,同时还可以结合实验技术和数值分析方法,优化系统的刚度。
在支撑件材料选用方面,需要考虑动力总成悬置系统所处环境的特殊性质,如温度、湿度、腐蚀等,并且应该考虑到材料成本、加工工艺性、可靠性等因素。
这些要素均需在材料选用过程中进行综合考虑。
在噪音和振动方面的优化,需要采用减震、减振等措施,例如在发动机与车身之间设计隔振器,利用减振器改善驾驶稳定性并降低噪音。
同时,还可以采用模拟试验和理论模拟等方法,以确定系统的不同工况下的振动和噪声水平,并加以适当的改善。
此外,动力总成悬置系统的稳健性分析也是一个非常关键的方面。
系统的稳健性指的是系统能够在各种不确定情况下保持良好的性能和稳定性。
在系统的稳健性分析中,需要考虑到各种可能的负载情况、失效情况和故障情况,并结合设计要求和汽车行驶情况,确定系统的最佳稳健性设计方案。
这一过程需要采用可靠性分析方法,综合评估系统的稳健性。
总之,动力总成悬置系统的优化和稳健性设计是汽车工程设计中的一个重要环节。
通过采用先进的设计方法和技术手段,可以不断提高汽车的性能和安全性,满足消费者不断增长的需求和期望。
此外,为了实现动力总成悬置系统的优化和稳健性设计,需要充分了解系统的工作原理和特性。
基于ADAMS的某客车动力总成悬置隔振性能分析
基于ADAMS的某客车动力总成悬置隔振性能分析悬置隔振系统是客车动力总成中重要的部分,其主要功能是减少发动机和驱动系统产生的振动传递到车身上,提高行车舒适度和乘坐品质。
本文将通过ADAMS软件对客车动力总成悬置隔振性能进行分析。
首先,建立悬置隔振系统的ADAMS模型。
模型包括发动机、传动系统、悬置部件和车身等组成部分。
通过ADAMS中的建模工具,可以将实际客车的悬置隔振系统进行准确的建模和仿真。
在建模完成后,我们需要设定模型的初始参数,包括发动机的转速、传动系统的传动比、悬置部件的刚度和阻尼等。
这些参数的设定将直接影响到悬置隔振系统的性能。
接下来,进行动力总成悬置隔振性能的仿真分析。
首先,我们可以对模型进行静态分析,确定悬置部件的初始位移和应力分布。
然后,通过ADAMS的动力学仿真工具进行动态分析,模拟车辆在不同路况下的行驶情况。
通过仿真分析,我们可以得到悬置隔振系统的关键性能指标,包括悬置部件的位移、速度和加速度等。
这些指标可以直接反映出悬置隔振系统的动力学性能和舒适性。
在分析过程中,还可以通过ADAMS的优化工具进行参数优化。
根据实际需求,我们可以通过调整悬置部件的刚度、阻尼和质量等参数,来优化悬置隔振系统的性能。
通过反复的优化过程,可以得到最佳的悬置隔振系统参数组合,以提高客车动力总成的舒适性和乘坐品质。
最后,根据仿真分析的结果,我们可以对悬置隔振系统进行改进和优化。
例如,增加悬置部件的刚度和阻尼,可以提高系统的抗震性能;调整悬置部件的质量分布,可以平衡车身的重心,提高行驶稳定性。
综上所述,基于ADAMS的客车动力总成悬置隔振性能分析,可以通过建立准确的ADAMS模型,进行静态和动态的仿真分析,优化参数组合,改进和优化悬置隔振系统的性能,以提高客车的行车舒适度和乘坐品质。
汽车动力总成悬置系统的隔振率优化研究
汽车动力总成悬置系统的隔振率优化研究摘要发动机是引起汽车振动的主要激励源之一,因此,研究发动机动力总成悬置系统隔振率优化对于改善汽车乘坐舒适性具有重要意义。
在设计中,当动力总成和车身骨架结构的基本数据已经确定后,可通过调整动力总成悬置系统悬置元件的刚度、安装位置、安装角度以及阻尼等,改善动力总成向车架振动的传递,提高系统的隔振率。
本文以校车为研究对象,首先,论述了动力总成悬置系统相关技术研究进展;其次,对用三线扭摆法测量的发动机动力总成的惯性参数合理性进行了简单评估,建立了动力总成悬置系统等效有限元模型,并对其进行了模态及解耦度分析;再次,研究了发动机激励力;接着,根据企业提供的车身简图建立了车身骨架有限元模型,并对其进行了自由模态分析;最后,建立由发动机动力总成悬置系统、车身骨架和等效车桥简化模型构成的组合模型,施加载荷,进行隔振率计算,并进行了以提高隔振率为目标的悬置系统自动寻优计算,优化后使综合隔振率值(各悬置元件隔振率的平均数)从优化前-0.33dB提高到17.9dB。
本论文密切结合实际,具有较好的理论与应用价值。
关键词:动力总成悬置系统;模态分析;瞬态分析;隔振率;优化设计STUDY OPTIMIZATION OF VIBRATION ISOLATION RATE FOR AUTOMOBILE ENGINE POWERTRAIN MOUNTINGSYSTEMABSTRACTEngine is one of the main excitation sources of vehicle vibration, therefore, the research on engine powertrain mounting system vibration isolation rate optimization has great significance to improve the car comfort. In design, when the basic data of powertrain and body frame structure has been determined, by adjusting the mounting element’ stiffness of powertrain mounting system, installation site, installation angle and damping etc., make each order natural mode of vibration of the powertrain mounting system to achieve reasonable allocation, reduce the delivery from powertrain to frame vibration as far as possible and improve the vibration isolation rate of the system.This paper takes school bus as the object of study, first of all, expounding the research progress of powertrain mounting system’s correlation technique; secondly, evaluating the inertial parameters of the engine’s powertrain which measuring by three wire twist method, rationality simply ,establishing the equivalent finite element model of the powertrain mounting system and analysis the modal and decoupling ; again, analysis engine excitation force; then, setting up the finite element model of body frame according to the data provided by enterprise and carrying out the free modal analysis for it; finally, establishing the composite pattern which is made up by engine powertrain mounting system , body frame and simplified model of equivalent axle, applying load , analysis the vibration isolation rate, and carry out the automatic optimization of vibrationisolation rate for system, the value of integrated vibration isolation rate from -0.33dB to 17.9dB after optimization.Combined with practice closely, this paper has good theory and application value.KEY WORDS: Powertrain mounting system; Modal analysis; Transient analysis; Vibration isolation rate; Optimization design目录摘要 (I)ABSTRACT (II)目录 (IV)第一章绪论 (1)1.1 概述 (1)1.2 动力总成悬置系统相关技术研究进展 (2)1.2.1 悬置元件的发展 (2)1.2.2 悬置系统研究进展 (3)1.2.3 隔振设计研究进展 (5)1.3 本文研究目的和研究工作 (6)1.3.1 研究目的 (6)1.3.2 本文的研究工作 (6)1.4 小结 (7)第二章动力总成悬置系统模型的分析与建立 (8)2.1 动力总成悬置系统的构成 (8)2.2 悬置元件简化模型 (8)2.2.1 悬置元件简化模型 (8)2.2.2 悬置元件刚度动静比的确定 (9)2.3 悬置系统的布置形式 (9)2.3.1 悬置点数量 (10)2.3.2 悬置系统的布置形式 (11)2.4 动力总成悬置系统等效模型 (13)2.5 小结 (15)第三章动力总成悬置系统的模态与解耦度分析 (16)3.1 动力总成悬置系统模态分析理论 (16)3.2 动力总成悬置系统振动解耦理论 (17)3.2.1 弹性中心法 (17)3.2.2 主惯性轴坐标系下的解耦 (17)3.2.3 能量解耦法 (17)3.3 质心和转动惯量的测量 (18)3.4 惯性参数合理性分析 (21)3.5 动力总成悬置系统模态匹配原则 (22)3.6 悬置系统模态分析与解耦度计算 (23)3.7 小结 (24)第四章发动机激振力分析 (25)4.1 单缸发动机的曲柄连杆机构受力分析 (25)4.1.1 往复惯性力 (26)4.1.2 旋转惯性力 (27)4.1.3 气体作用力 (27)4.1.4 作用在曲轴上的反作用力 (28)4.2 四缸发动机的曲柄连杆机构受力分析 (28)4.2.1 旋转惯性力合力 (28)4.2.2 一次往复惯性力合力 (29)4.2.3 二次往复惯性力合力 (29)4.2.4 旋转惯性力矩 (29)4.2.5 一次往复惯性力矩 (30)4.2.6 二次往复惯性力矩 (30)4.3 载荷计算 (30)4.4 发动机激振频率分析 (32)4.5 小结 (33)第五章以柔性车身骨架为基础的动力总成悬置系统模态分析 (34)5.1 车身骨架模态分析 (34)5.1.1 车身骨架建模 (34)5.1.2 车身骨架模态分析 (35)5.2 组合模型的建立 (37)5.3 组合模型模态分析 (38)5.4 小结 (41)第六章动力总成悬置系统的隔振率分析与优化 (42)6.1动力总成悬置系统隔振率分析 (42)6.1.1 悬置系统振动传递率和隔振率理论 (42)6.1.2 施加载荷 (45)6.1.3 隔振分析 (46)6.2 悬置系统的隔振率优化 (53)6.2.1 悬置系统隔振率优化数学模型 (53)6.2.2 悬置系统隔振率优化 (55)6.3 小结 (63)第七章总结与展望 (64)7.1 总结 (64)7.2 展望 (64)参考文献 (66)致谢 (71)攻读学位期间发表的学术论文目录 (72)符号说明第一章绪论1.1 概述随着科技的进步,人们在汽车安全性、动力性、操纵性的基础上又提出了舒适性,因此对影响舒适性的振动、噪声与不平顺性等因素的重视程度在不断提高。
汽车动力总成悬置系统振动分析及优化设计
上海交通大学硕士学位论文
摘 要
汽车动力总成悬置系统振动分析及优化设计
摘 要
汽车动力总成振动是汽车振动的主要激振源之一,对汽车的舒适性 和 NVH 特性有很大的影响。 设计合理的动力总成悬置系统可以减少振动 传递,提高乘坐舒适性。本文以国产某轿车为研究对象,对动力总成悬 置系统隔振性能进行了分析研究。本文的研究工作包括以下几个方面: 首先,运用拉格朗日方程,建立了动力总成悬置系统动力学方程。 根据试验所获得的模型参数,在 Matlab 和 ADAMS 软件环境中建立了六 自由度仿真模型。 其次,结合实车试验,验证了所建模型准确性,并从系统固有频率 配置及振动解耦角度分析了悬置系统的振动特性;根据实际条件,以提 高系统振动解耦率为目标,应用优化算法对动力总成悬置刚度参数进行 优化设计,通过仿真分析比较了优化前后的固有特性,结果表明优化有 效提高了系统固有频率配置合理性和系统振动解耦率。 最后,建立了动力总成-整车十三自由度动力学模型,其仿真结果表 明优化后悬置刚度参数能改善怠速隔振特性,所建立的模型可以作为悬 置系统优化设计的虚拟样机。 本文的研究结果表明优化设计后的悬置系统其隔振特性有了较大的 改进,所运用的研究方法对悬置系统的优化设计具有一定的指导意义。
k sf k sr csf csr
ϕ
xi yi zi i′ j ′ k ′ PjI q
C
广义坐标方向单位矢量 往复惯性力 ( N ) 二阶往复惯性力 ( N ) 六自由度系统质量矩阵 六自由度系统刚度矩阵 位置转移矩阵 十三自由度系统质量矩阵
T F
第
汽车动力总成悬置系统隔振特性仿真优化
汽车动力总成悬置系统隔振特性仿真优化随着人们生活水平的提高,汽车乘坐舒适性越来越受到人们的重视。
其中汽车NVH性能是评价汽车舒适性的关键指标之一。
动力总成悬置系统对整车的振动有着较大的影响,它的功能主要是隔振,支撑,限位。
其中支撑和限位在悬置系统的设计中较易实现,隔振功能在实车中受影响的因素较多,不易满足隔振要求。
动力总成悬置系统的首要功能是隔离动力总成振动向车身及车厢内部的传递,尤其是控制发动机在怠速工况下的低频抖动,并隔离发动机在高速运转时引起的车厢内高频噪声。
因此动力总成悬置系统对整车隔振起着至关重要的作用。
悬置系统的合理设计,能有效的起到隔振作用。
标签:动力总成;悬置系统;隔振传递率;优化设计引言:动力总成悬置系统隔振性能的优劣影响整车的NVH特性。
设计合理的动力总成悬置系统可有效地降低整车的振动和噪声,改善汽车的乘坐舒适性,还可延长发动机和其他零部件的使用寿命。
一般提高系统的隔振性能主要通过两种方式:其一,改变悬置元件本身的结构,使之具有最佳的隔振性能;其二,通过对悬置系统相关参数进行合理配置,达到最优的隔振效果。
1悬置系统隔振原理1.1自由振动最简单的振动由重块和弹簧组成,自振频率的计算公式:其中K为弹簧刚度,m为重块质量。
实际上阻尼的存在会导致振动振幅逐渐减小,直至振动完全停止,这种现象称为有阻尼的自由振动。
动力总成的悬置系统阻尼很小,假设忽略不计,简化为最基本的模型,动力总成相当于重块,悬置系统相当于弹簧,因此可计算出悬置系统的自振频率。
由公式可知悬置软垫的刚度对悬置系统的自振频率大小起着关键性的作用。
1.2强制振动在有阻尼的自由振动中,同时向重块施加一个周期性的力,即存在强制的外激振动,此时重块有自由振动又有外激的强制振动,两个振动叠加,即为受迫振动。
显然,发动机悬置系统的振动属于受迫振动。
有两类强制的外激振源,一类是内振源,即是发动机本身引起的振动,另一类是外振源,是由道路不平引起的,并通过轮胎悬架车身传递给动力总成,这种道路不平引起的振动,频率较低,大约在1—3HZ。
《汽车动力总成悬置系统振动分析及优化设计》
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的飞速发展,消费者对汽车的性能和舒适性要求日益提高。
汽车动力总成悬置系统作为汽车的重要组成部分,其性能的优劣直接影响到整车的振动噪声水平以及乘坐舒适性。
因此,对汽车动力总成悬置系统的振动进行分析,并进行优化设计,对于提高汽车的整体性能具有重要意义。
本文将针对汽车动力总成悬置系统的振动进行分析,并提出相应的优化设计方案。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统是指将发动机、变速器等动力总成与车身进行连接的装置,其作用是减小动力总成产生的振动和噪声对整车的影响。
该系统主要由橡胶支座、液压支座、金属支座等组成,通过这些支座将动力总成的振动和冲击传递给车身,并起到减振、降噪的作用。
三、汽车动力总成悬置系统振动分析1. 振动产生原因汽车动力总成悬置系统振动的主要原因是发动机工作时产生的激励力,包括往复运动产生的惯性力和旋转运动产生的扭矩。
此外,路面不平、轮胎非线性等因素也会对系统产生一定的振动影响。
2. 振动传递路径动力总成的振动通过悬置系统传递到车身,再传递到车内乘客。
传递路径主要包括橡胶支座、液压支座等部件的弹性变形以及金属支座的刚度传递。
3. 振动分析方法针对汽车动力总成悬置系统的振动分析,可采用实验分析和数值分析两种方法。
实验分析主要通过实车测试和台架试验获取数据;数值分析则通过建立动力学模型,运用有限元等方法进行仿真分析。
四、汽车动力总成悬置系统优化设计1. 设计目标汽车动力总成悬置系统优化设计的目标是在保证动力总成正常工作的前提下,降低整车的振动噪声水平,提高乘坐舒适性。
同时,还需考虑系统的耐久性、可靠性以及制造成本等因素。
2. 优化设计方案(1)材料选择:选用高弹性、高阻尼的材料制作橡胶支座,以提高系统的减振性能。
同时,根据实际需要,可考虑在部分支座中加入液压减振元件,进一步提高减振效果。
(2)结构优化:对悬置系统的结构进行优化设计,如调整支座的布置位置、改变支座的刚度等,以改变振动的传递路径和传递速度,从而达到降低整车振动噪声的目的。
汽车动力总成悬置系统隔振分析与优化设计
汽车动力总成悬置系统隔振分析与优化设计摘要:发动机动力总成悬置系统的支承、限位以及隔振作用,对提高车辆乘坐舒适度具有很好的作用。
本文主要对汽车动力总成悬置系统隔振作用进行分析,并提出优化意见。
关键词:汽车动力;总成悬置;隔振汽车的振源主要有两个方面,即发动机激振和路面激振。
动力总成通过悬置系统将发动机产生的振动传递给车身,引起车身振动,同时还会引起车厢壁板振动,从而产生辐射噪声。
因此,为达到汽车减振降噪的目的,应从发动机出发,减小其产生的振动。
此外,动力总成对汽车隔振也有着巨大的影响。
1.发动机隔振理论概述汽车的振动系统很复杂,发动机作为汽车的主要振源,若不能很好地控制其产生的振动,容易导致身板筋件与车架连接的其他零件产生振动与噪声,并且还会造成汽车失稳、不平顺,令车内人员感到难受和疲惫,甚至会致使汽车零部件损坏,缩短了汽车的使用年限。
2.发动机隔振原理分析图1是来自发动机的激振力;图2 是来自路面的激振力。
设发动机竖向激振力,因阻抗方式比较方便,用表示。
其中弹簧无质量,则系统运动微分方程为,由此可证,在Feq作用下,发动机竖向位移幅值X为,传递到基础上的力是弹簧力kx与阻尼力cx的合力,传递力FT为,其幅值为,由此可得到传递力幅值与激振力幅值之比的传递率。
k指弹簧刚度,单位N/m;指激振频率,单位rad/s;指系统固有频率,单位rad/s;M集中质量,单位kg;指阻尼比,=c/Cc;c指粘性阻尼系数,单位为N s/m;Cc临界粘性阻尼系数,;指频率比,。
不同的阻尼比与频率比代入式,得到不同阻尼比下的传递率,如图。
图 3 不同阻尼比情况下的传递率如图2,设地面激振力使车架产生的位移为正弦波x1(t),对应的发动机总成位移x2(t),弹簧力为k(x2-x1),阻尼力为c(x2-x1),根据牛顿第二定律可得,移项得出,应用阻抗法,给出,相当于发动机激振力。
图3为不同阻尼比的传递率,图中的所有曲线在= ,由此得出结论:=1为共振点,又称系统的危险点。
《汽车动力总成悬置系统振动分析及优化设计》范文
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言汽车动力总成悬置系统作为车辆动力传递与振动控制的关键部分,其性能的优劣直接关系到整车的驾驶舒适性和行驶稳定性。
因此,对汽车动力总成悬置系统的振动进行分析,并进行相应的优化设计,是汽车工程领域研究的重要课题。
本文将深入探讨汽车动力总成悬置系统的振动问题,分析其成因,并针对现有问题提出优化设计方案。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、变速器、离合器等组成,通过悬置装置与车架相连。
其作用是支撑和固定动力总成,同时减少振动和噪声的传递,保证驾驶的舒适性和行驶的稳定性。
三、汽车动力总成悬置系统振动分析1. 振动产生原因汽车动力总成悬置系统振动的主要原因是发动机运转时产生的激励力,包括燃烧力、惯性力和摩擦力等。
此外,道路不平、车辆行驶中的颠簸等也会对悬置系统产生振动。
2. 振动影响分析振动不仅会影响驾驶的舒适性,还会对车辆的行驶稳定性、零部件的寿命和车辆的噪音产生影响。
长期受到振动的零部件容易出现松动、磨损等问题,影响车辆的正常运行。
四、汽车动力总成悬置系统优化设计针对汽车动力总成悬置系统的振动问题,本文提出以下优化设计方案:1. 材料选择优化选用高强度、轻量化的材料,如铝合金、高强度塑料等,以降低系统质量,提高其刚度和减振性能。
同时,采用阻尼材料,如橡胶等,以吸收振动能量,减少振动传递。
2. 结构优化设计对悬置系统的结构进行优化设计,如增加支撑点、改变支撑方式等,以提高系统的稳定性和减振性能。
同时,采用多级减振设计,使系统在不同频率下的减振效果更加明显。
3. 控制系统优化通过引入先进的控制系统,如液压控制系统、电子控制系统等,对悬置系统的振动进行实时监测和控制。
通过调整控制参数,使系统在不同工况下都能保持良好的减振性能。
五、结论通过对汽车动力总成悬置系统的振动分析,我们发现其产生的主要原因包括发动机运转产生的激励力和道路、行驶中的颠簸等外部因素。
发动机悬置系统隔振问题及解决办法
危险品运输企业管理系统1引言目的本软件是根据运输公司的日常工作流程制定的一套车辆、人事、费用、仓储管理与一身的管理系统,系统对运输公司的人力、物力、路线、以及在运油过程中产生的费用进行统计、核算,最终实现工资和公司费用的核算。
背景软件名称:危险品运输企业管理系统项目提出者:海钜公司项目开发者:李琳娜、刘彬用户:需要车辆管理和GPS定位的企业用户计算机网络:GSM(或GPRS或CDMA)网络+车辆管理中心相连系统:该系统可以与GPS监控中心系统相连定义ECMC: Enterprise Car Manager Center,企业车辆管理中心。
GWC: GPS监控中心系统,此处泛指,GPS监控中心,可以根据客户的需要使用不同的监控中心,但需要修改接口。
参考资料略2任务概述目标开发企业车辆管理软件的目的在于,系统的管理企业内的车辆,使车辆的使用方便、快捷、使用情况清晰,同时可以控制企业车辆的使用情况。
应用此软件,可以记录车辆和人员信息,对车辆的使用情况进行管理,同时可以控制车辆的使用费用。
此软件主要针对某些企业中管理人员对车辆的使用情况无法控制,车辆的运输情况无法查看,管理人员对车辆的使用情况统计困难等问题提出的。
本系统的车辆管理和车辆监控等模块都可以作为独立的系统使用。
用户可以根据自身的情况决定装载的模块,可以使用定位限制功能,如果没有定位设备的支持,也可以只装载基本的车辆管理模块,实现企业车辆的管理。
同时,本系统也可以与其他车辆监控系统相连,只需修改接口即可。
用户的特点本软件的用户是企业的管理人员。
企业的管理人员一般不是专业的计算机人员,而是企业的行政人员。
所以软件在作为信息统计和任务分配会非常实用,软件的使用频率也非常的高。
假定和约束本软件可以根据运输公司的实际的工作流程进行调整,实际的功能可以根据具体情况变动。
3功能规定对功能的规定系统的登陆:车辆信息管理功能●基础维护信息:车牌号码、车辆类型、驾驶员、购置日期、购买价格、发送机号、车架号、厂牌型号、载重、座位、使用单位(部门)、车辆所在部门、年检审、保险情况、车辆照片、登记日期、行驶里程等。
汽车动力总成悬置系统隔振性能研究
汽车动力总成悬置系统隔振性能研究摘要:汽车动力总成是汽车振动的主要激振源之一,对汽车的乘坐舒适性有很大的影响,合理设计汽车动力总成悬置系统可以明显的降低汽车的振动和噪声,改善汽车的乘坐舒适性。
关键词:汽车动力总成悬置系统隔振性能设计具有良好隔振性能的动力总成悬置系统是提高汽车乘坐舒适性和操纵稳定性及提高产品的市场竞争力的重要环节。
国内生产厂商多采用仿制的方法,致使国产车的隔振性能普遍较差,车内振动噪声特性不良,乘坐舒适性较差,这已经成为国产汽车普遍存在的品质问题之一。
1.动力总成悬置系统的作用设计发动机总成悬置系统的目的是控制发动机动力总成振动向车身/车架的传递,悬置系统起到隔离振动的作用。
动力总成悬置系统是用来连接动力总成和车身的弹性连接系统。
在车辆设计开发中,合理地设计动力总成悬置系统,可以有效的降低动力总成产生的激励向车架和车身的传递。
悬置系统主要是支承、限位和隔振作用。
2.常用悬置元件的结构特点及性能2. 1橡胶悬置橡胶悬置的结构和工作原理较为简单,它一般由金属骨架以及硫化到属骨架上的橡胶组成,金属骨架的作用主要是防止橡胶悬置发生过大的变形和作为悬置的连接部分,橡胶可以提供内摩擦阻尼来衰减振动。
由于橡胶悬置结构简单,制造方便,价格低廉,并且具有相当的隔振减振性能,目前在NVH性能要求较低的车辆上仍有较为广泛的应用。
2.2液压悬置元件由于发动机的工作频带很宽,大约在10~500Hz范围内,因此要求悬置元件工作在低频大振幅时(如:发动机怠速状态)提供较大的阻尼和较大的刚度特性。
在高频低振幅振动激励下提供低的动刚度和较小的阻尼特性,以衰减高频噪声。
普通的橡胶悬置已无法满足上述要求。
因此液压悬置是为了上述要求而开发出来。
3. 动力总成悬置系统隔振原理因此由上式可知,只有当隔振系数<1时,才有隔振效果。
而且,当频率比值越大,放大因子就越小,隔振效果越好,也就是只有时,才有隔振效果。
这就需要计算发动机总成悬置系统的固有频率,使得固有频率小于激励频率。
动力总成悬置系统隔振性能分析与优化设计
动力总成悬置系统隔振性能分析与优化设计作者:李占钊王正亮马洪磊来源:《科学导报·学术》2018年第22期摘要:汽车动力总成通过悬置系统与车身相连接,如果其振动不能被有效隔离就会传递到车身,一方面会引起车内座椅、方向盘等位置的振动,另一方面也会引起车身壁板的振动,从而向车内辐射噪声,进而影响乘员的听力和舒适性。
另外,汽车行驶时受到路面冲击,若悬置系统设计不当,会使动力总成产生较大的振动幅值,与附近零部件产生干涉。
因此,合理匹配悬置系统的各項动力学参数,有效隔离发动机振动向车身的传递,对于控制整车的振动与噪声,提高车辆的 NVH性能是至关重要的。
关键词:悬置系统;固有频率;解耦率;隔振性能;ADAMS引言:以某皮卡车辆动力总成悬置系统为研究对象,针对车内振动噪声大的问题,对悬置系统进行优化设计。
在多体动力学软件ADAMS中建立了系统的简化模型,计算其固有特性包括固有频率、解耦率及振型。
结果表明,以动反力最小为优化目标时,悬置系统总受力降低了7.8%,并且主要方向的解耦率大于90%,满足目标要求。
1汽车动力总成悬置系统模型的建立汽车的动力总成包括发动机与变速箱,悬置元件总成通过车身与发动机变速箱相连,其主要功能是用来支撑,隔振与限位。
汽车舱内合理的布置动力总成悬置系统是提升汽车舒适性的关键途径之一。
动力总成的振动及路面的激励通过悬置传递给车身,所以建立合理的动力总成悬置系统模型,并对其模态及解耦率优化分析,是提高动力总成悬置系统隔振性能的主要方法。
悬置系统进行模态分析与优化的目的是提高悬置系统的解耦率,并使各向的模态频率尽可能接近期望值,避开发动机怠速自振频率及道路激振频率。
2 动力总成悬置系统在动力总成悬置系统的优化及设计时,动力总成可以简化为一个具有3个平动和3个转动的刚体模型,如图1所示。
2.1 橡胶悬置元件的动力学模型作为悬置系统的主要隔振材料,橡胶悬置元件的力学模型的分析对动力总成悬置系统的研究极为重要。
汽车动力总成悬置系统隔振分析及优化设计
Vibration Isolation Analysis and Optimization Design of Automobile Power-train Suspension System
Liu Zhicong,Yue Fengli,Wang Kaiyan
Key words:power-train mounting system, modal analysis, vibration isolation analysis, optimization
1 引言
汽车 的 振 动 对 汽 车 NVH 性 能 影 响 很 大,汽车在路面正常行驶时有内部因素和 外部因素两种因素对汽车振动造成影响。 外部因素主要是因为道路不平而引起汽车 行驶时产生颠簸 [1]。内部因素主要是曲柄 连杆机构往复惯性力引起的。汽车动力总 成悬置系统主要是由发动机变速器及各个 悬置原件组成 [2]。所以合理的布置悬置系 统的各项参数对于提升整车的 NVH 性能 尤为重要 [3]。由于悬置系统结构复杂,现 将各个悬置系统进行简化,分析单自由度 系统振动模型隔振理论 [4]。
AUTOMOBILE DESIGN | 汽车设计
汽车动力总成悬置系统隔振分析及优化设计
刘智聪 岳峰丽 王楷焱 沈阳理工大学 汽车与交通学院 辽宁省沈阳市 110159
摘 要:随 着汽车技术的发展及车辆设计水平的不断进步,汽车的性能也不断完善,在汽车的整体布置中悬置 系统的合理化设计对汽车噪声及汽车振动的影响显得十分重要。利用多体动力学仿真软件对动力总成 悬置系统进行仿真分析和优化设计,利用 Adams/View 模块进行动力总成悬置系统简化及建模,并进 行静态分析得出悬置系统模态解耦率及系统固有频率。对悬置系统布置位置和刚度进行调整,对系统 解耦率及悬置传递力的大小进行优化,对优化前后数据进行分析对比,最终优化后悬置系统的隔振性 能有了大幅提升。
《汽车动力总成悬置系统振动分析及优化设计》
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能已成为决定汽车乘坐舒适性和驾驶稳定性的关键因素之一。
然而,由于动力总成系统在运行过程中产生的振动和噪音,严重影响了汽车的性能和使用寿命。
因此,对汽车动力总成悬置系统的振动进行分析,并进行优化设计,具有重要的理论价值和实践意义。
本文将重点对汽车动力总成悬置系统的振动进行分析,并探讨其优化设计的方法和措施。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、变速器、离合器等组成,是汽车的核心部件之一。
其作用是支撑和固定动力总成,减少振动和噪音的传递,保证汽车行驶的平稳性和舒适性。
然而,由于动力总成系统的复杂性和运行环境的多样性,使得其振动问题较为突出。
三、汽车动力总成悬置系统振动分析(一)振动产生的原因汽车动力总成悬置系统振动产生的原因主要包括发动机的燃烧过程、变速器的齿轮啮合、离合器的接合与分离等。
此外,道路不平度、车辆行驶速度等因素也会对系统振动产生影响。
(二)振动分析的方法目前,常用的汽车动力总成悬置系统振动分析方法包括实验分析和仿真分析。
实验分析主要通过在真实环境下对系统进行测试,获取其振动数据;仿真分析则通过建立系统的数学模型,利用计算机软件进行模拟分析。
(三)振动的影响汽车动力总成悬置系统的振动会直接影响汽车的乘坐舒适性和驾驶稳定性。
同时,长时间的振动还会导致系统零部件的磨损和损坏,影响汽车的使用寿命。
四、汽车动力总成悬置系统优化设计(一)优化设计的目标汽车动力总成悬置系统优化设计的目标主要包括提高汽车的乘坐舒适性和驾驶稳定性,延长汽车的使用寿命,降低噪音和振动等。
(二)优化设计的措施1. 改进材料:采用高强度、轻量化的材料,提高系统的刚度和减振性能。
2. 优化结构:通过改变系统的结构形式和参数,如增加橡胶减振器、调整悬置点的位置等,提高系统的减振效果。
3. 智能控制:利用现代控制技术,如主动悬挂系统、半主动悬挂系统等,实现对系统振动的主动控制。
《某乘用车动力总成悬置系统隔振分析与优化设计》
《某乘用车动力总成悬置系统隔振分析与优化设计》一、引言随着汽车工业的快速发展,乘用车的动力性能和舒适性成为了消费者关注的重点。
动力总成悬置系统作为连接发动机与车身的重要部分,其隔振性能的优劣直接影响到整车的驾驶平稳性和乘坐舒适性。
因此,对某乘用车动力总成悬置系统的隔振分析与优化设计显得尤为重要。
本文旨在通过对该系统进行深入的分析,提出相应的优化设计方案,以提升乘用车的驾驶性能和乘坐舒适性。
二、动力总成悬置系统概述动力总成悬置系统主要由发动机悬置、传动系统悬置等组成,其作用是支撑和固定发动机,同时通过减震元件减少发动机振动对车身的影响。
该系统的性能直接影响到整车的NVH(噪声、振动和刺激性)性能。
三、隔振分析3.1 振动产生及传递途径发动机在工作过程中产生的振动主要通过发动机悬置传递到车身,进而影响到整车的NVH性能。
因此,了解振动产生及传递途径是进行隔振分析的基础。
3.2 现有隔振措施及效果目前,常见的隔振措施包括使用橡胶悬置、液压悬置等。
这些措施在一定程度上能够减少发动机振动对车身的影响,但仍有改进空间。
四、优化设计4.1 设计目标优化设计的目标是在保证动力总成悬置系统支撑和固定发动机功能的前提下,进一步提高隔振性能,减少发动机振动对车身的影响,提升整车的驾驶性能和乘坐舒适性。
4.2 优化方案针对现有隔振措施的不足,提出以下优化方案:(1)采用高性能橡胶材料:选用具有高弹性和高阻尼性能的橡胶材料,提高悬置系统的减震效果。
(2)优化悬置结构:通过有限元分析和模态分析等手段,对悬置结构进行优化设计,使其更加符合隔振要求。
(3)增加主动控制技术:采用现代控制技术,如主动悬挂系统等,实现对发动机振动的主动控制。
(4)改进安装方式:通过改进发动机与车身的连接方式,减少振动传递路径,进一步提高隔振效果。
五、实施与验证5.1 实施步骤根据优化设计方案,制定实施步骤,包括材料选型、结构设计、加工制造、安装调试等。
《2024年汽车动力总成悬置系统振动分析及优化设计》范文
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能对于整车舒适性和稳定性越来越重要。
汽车动力总成悬置系统作为连接发动机和车身的重要部件,其振动特性直接影响到汽车的乘坐体验和行驶安全。
因此,对汽车动力总成悬置系统的振动进行分析,以及进行优化设计,已经成为汽车研发过程中的重要课题。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、悬置支架、橡胶支座等组成。
其主要功能是减少发动机振动对车身的影响,同时通过合理的布局和设计,提高整车的乘坐舒适性和行驶稳定性。
在汽车行驶过程中,由于发动机的工作特性和路面条件等因素的影响,动力总成悬置系统容易产生振动和噪声。
因此,如何对这种振动进行分析并对其进行优化设计是本研究的重点。
三、汽车动力总成悬置系统振动分析1. 动力学模型建立为了更好地了解动力总成悬置系统的振动特性,需要建立其动力学模型。
该模型应包括发动机的振动特性、悬置支架的结构特性以及橡胶支座的动态特性等。
通过建立模型,可以模拟出汽车在不同路况下的振动情况,为后续的振动分析和优化设计提供依据。
2. 振动特性分析通过动力学模型的分析,可以得出动力总成悬置系统的振动特性。
主要包括系统的固有频率、振型和阻尼比等参数。
这些参数对于理解系统的振动特性和进行优化设计具有重要意义。
四、汽车动力总成悬置系统优化设计1. 设计目标与约束条件在进行优化设计时,需要明确设计目标。
一般来说,优化设计的目标包括提高乘坐舒适性、降低噪声和减少振动等。
同时,还需要考虑一些约束条件,如发动机的安装空间、悬置支架的结构强度等。
2. 优化方法与步骤针对上述设计目标和约束条件,可以采用多种优化方法进行设计。
如多目标优化算法、有限元分析等。
在优化过程中,需要逐步调整系统的参数,如橡胶支座的刚度、阻尼等,以达到最优的振动性能。
五、实例分析以某款汽车的动力总成悬置系统为例,通过建立其动力学模型,对其振动特性进行分析。
动力总成悬置系统振动灵敏度分析与优化设计
上海内燃机研究所硕士研究生学位论文动力总成悬置系统振动灵敏度分析与优化设计作者姓名:夏永文指导老师:袁卫平叶怀汉专业:动力机械及工程选题时间:2011年4月上海内燃机研究所研究生学位论文原创性声明本人郑重声明:本论文是在导师的指导下独立进行的研究工作所取得的成果。
除文中已注明的引用的内容外,不包括任何未加注明的个人或集体已经公开发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律责任由本人承担。
学位论文作者签名:日期:上海内燃机研究所学位论文版权使用授权书本人完全了解上海内燃机研究所关于收集、保存、使用学位论文的规定,同意按照要求提交学位论文的印刷本和电子版,研究所有权保存学位论文印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存论文;研究所有权提供目录检索以及提供本学位论文全文或者部分的借阅服务;研究所有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版。
保密□,在年解密后适时用于授权书。
本学位论文属于不保密□。
(请在以上方框内打“√”)学位论文作者签名:指导教师签名:日期:日期:摘要随着汽车技术的发展,发动机引起的振动问题日益突出,人们对悬置的设计与优化越来越重视。
悬置设计的优劣将直接影响到动力总成系统的振动特性,影响相关零部件的使用寿命。
通过悬置设计优化提高隔振性能及稳健性已越来越受重视。
本文通过阅读大量的文献,介绍了国内外悬置系统的研究概况,分析了悬置元件与悬置系统设计的一些基本设计要求和设计准则。
建立动力总成悬置系统的六自由度动力学模型,运用MATLAB对某客车悬置系统进行模态计算分析。
并运用直接求导法与正交试验法计算悬置系统解耦率对刚度及位置的灵敏度,分析各悬置的刚度误差对系统的实际解耦率的影响,指出现有系统解耦率较低的原因并为优化指明方向。
在解耦率对刚度的灵敏度分析的基础上,选择合适的变量,以悬置系统的解耦率为目标函数,运用罚函数对目标函数关于刚度的灵敏度进行约束,综合考虑频率的合理分布,通过遗传算法对动力总成系统悬置刚度进行优化计算。
《汽车动力总成悬置系统振动分析及优化设计》范文
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能逐渐成为影响汽车舒适性和稳定性的关键因素。
汽车动力总成悬置系统负责支撑和固定发动机、变速器等重要部件,同时通过减震和隔振措施,减少振动对整车的影响。
然而,由于系统内部复杂的力学作用和外部环境的干扰,动力总成悬置系统常常面临振动问题。
本文旨在分析汽车动力总成悬置系统的振动问题,并提出相应的优化设计方案。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、变速器、悬置元件、减震元件等组成。
其中,悬置元件负责支撑和固定动力总成,减震元件则通过吸收振动能量,减少振动对整车的影响。
该系统的性能直接影响到汽车的舒适性、稳定性和耐久性。
三、汽车动力总成悬置系统振动分析(一)振动来源及传递途径汽车动力总成悬置系统的振动主要来源于发动机的燃烧过程、活塞往复运动、变速器齿轮的啮合等。
这些振动通过悬置元件传递到整车,对汽车的舒适性和稳定性产生影响。
此外,道路不平、风阻等因素也会对系统产生一定的振动影响。
(二)振动问题及影响汽车动力总成悬置系统的振动问题主要表现为:一是振动过大导致汽车舒适性降低;二是长期振动可能导致悬置元件和减震元件的损坏,影响系统的稳定性和耐久性。
此外,过大的振动还可能对汽车的动力性能和操控性能产生不良影响。
四、优化设计方案(一)优化材料选择为提高悬置元件和减震元件的刚度和耐久性,可选用高强度材料,如合金钢、高强度塑料等。
同时,为提高减震元件的吸震性能,可选用粘弹性材料或橡胶材料。
(二)改进结构设计针对系统内部的复杂力学作用,可对结构进行优化设计。
例如,采用多级减震设计,使系统在不同频率下的减震效果更加均匀;优化悬置元件的布局,使系统在承受振动时更加稳定;采用柔性连接设计,减少振动对整车的影响。
(三)引入智能控制技术为进一步提高系统的减震效果,可引入智能控制技术。
例如,通过传感器实时监测系统的振动情况,并根据实际情况调整减震元件的参数,使系统始终保持最佳的工作状态。
《某乘用车动力总成悬置系统隔振分析与优化设计》
《某乘用车动力总成悬置系统隔振分析与优化设计》一、引言随着汽车工业的快速发展,乘用车的动力性能和舒适性越来越受到消费者的关注。
动力总成悬置系统作为连接发动机与车身的重要部分,其隔振性能的优劣直接影响到整车的驾驶平稳性和乘坐舒适性。
因此,对某乘用车动力总成悬置系统的隔振分析与优化设计显得尤为重要。
本文将针对某乘用车动力总成悬置系统进行隔振分析,并提出相应的优化设计方案。
二、动力总成悬置系统概述动力总成悬置系统主要由发动机、悬置元件、支架等组成,其作用是减小发动机振动对车身的影响,提高整车的驾驶平稳性和乘坐舒适性。
该系统通过合理的结构设计,将发动机的振动能量有效地传递到车身,同时减小振动对其他部件的影响。
三、隔振分析1. 振动源分析:发动机在工作过程中产生的振动是主要的振动源。
这些振动通过悬置系统传递到车身,影响整车的驾驶性能和乘坐舒适性。
2. 传递路径分析:发动机的振动通过悬置元件、支架等传递到车身。
在这个过程中,各部件的刚度、阻尼等特性对振动的传递有重要影响。
3. 隔振性能评估:通过对动力总成悬置系统的振动特性进行分析,可以评估其隔振性能。
在实际应用中,可采用实验测试和仿真分析相结合的方法,对隔振性能进行评估。
四、问题与挑战在动力总成悬置系统的隔振设计与应用过程中,面临以下问题与挑战:1. 悬置元件的刚度与阻尼特性难以同时满足低频和高频的隔振需求。
2. 支架结构的优化设计难度较大,需考虑结构强度、刚度、质量等多方面因素。
3. 整车布局的限制对动力总成悬置系统的设计提出更高的要求。
五、优化设计方案针对上述问题与挑战,提出以下优化设计方案:1. 优化悬置元件的设计:通过调整材料的弹性模量、密度等参数,使悬置元件在低频和高频范围内均具有较好的隔振性能。
同时,可考虑采用橡胶等具有非线性特性的材料,以提高悬置元件的隔振效果。
2. 支架结构优化:采用有限元分析等方法,对支架结构进行优化设计。
在满足结构强度和刚度要求的前提下,减轻支架的质量,从而提高整车的燃油经济性和驾驶性能。
混合动力总成悬置系统隔振性能分析与优化
混合动力总成悬置系统隔振性能分析与优化
吕辉停
【期刊名称】《机械工程与自动化》
【年(卷),期】2024()2
【摘要】针对实际运行中某混合动力客车存在的振动偏大问题,对原悬置系统进行振动加速度测试和隔振性能分析。
基于隔振理论,以悬置隔振率和车内振动加速度为评价指标,以悬置软垫刚度和安装角度为变量,采用对称式和非对称式两种悬置系统布置方案对隔振性能最差的发动机端悬置进行优化设计,并采集两种悬置状态下的振动数据与原状态进行比较分析。
结果表明,非对称式布置的悬置方案更适合于单侧受拉的混合动力总成悬置系统的布置。
【总页数】3页(P18-19)
【作者】吕辉停
【作者单位】厦门海洋职业技术学院海洋机电学院;厦门市智慧渔业重点实验室【正文语种】中文
【中图分类】U467.492
【相关文献】
1.液压挖掘机动力总成悬置系统隔振性能分析与优化
2.动力总成悬置系统隔振性能分析与优化设计
3.某商用车动力总成悬置系统隔振性能优化
4.轿车动力总成液压悬置及副车架悬置系统动力学建模和隔振性能分析
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 3 动力总成质心加速度幅频特性曲线
图 1 动力总成 ADAMS 仿真分析模型
2. 2 悬置系统的仿真分析 本文主要对怠速 ( n = 750r / min) 工况进行仿真,
自激振源激励在质心处使用周期性的正弦载荷作用。 经过时域仿真计算[6],得到三个悬置支撑处响应合力 随时间变化曲线,如图 2 所示。可求出,悬置支撑处响
固有频率 f 在以下的范围内: 3. 5 /0. 75 < f < 25 /槡2,即 4. 670Hz < f < 17. 680Hz,才能达到很好的隔振效果。
2 动力总成悬置系统的仿真分析
2. 1 动力总成悬置系统模型的建立 将动力总 成 视 为 刚 体,有 关 悬 置 系 统 的 参 数 为:
重心距离机体前端面为 515mm,重心竖直分量在曲轴 中心线之下 16mm,重心水平分量在曲轴中心线之右 7mm,质量 m = 184. 82kg,惯 性 矩 IX = 13. 05kg / m2 、 IY = 5. 51kg / m2 、IZ = 12. 02kg / m2 、IXY = 1. 31kg / m2 、 IYZ = 0. 25kg / m2 、IXZ = 2. 33kg / m2 。该悬置系统为三点 支撑,前悬置采用斜置式,左右对称,后悬置采用平置 式,悬置刚度参数如表 1 所示。
Guangzhou 510640,China)
Abstract: Aiming at some problems that one pickup’s violent vibration and the greater noise etc. To build the multi-body dynamic model of powertrain mount system. The mounting’s stiffnesses are optimized by modal analysis,powertrain centre of mass acceleration and mounting response force simulations. Its vibration resistance performance is improved markedly. It is not only improve the comfortability,but also prolong the durability of engine and other components. Key words: powertrain; mounting system; vibration isolation; optimal design
1 动力总成悬置的隔振原理
由发动机隔振理论可知,发动机悬置系统有以下 几个作 用: 支 撑 作 用、限 位 作 用 和 隔 振 作 用[5-6]。且 知,来自发动机的激振力和来自路面的激振力经过悬 置所得到的传递率 TR 方程为: 80
TR
=
槡(
1
槡1 + ( cω / k)
- mω2 / k) 2 + (
图 4 动力总成前左悬置响应力幅频特性曲线
图 5 动力总成前右悬置响应力幅频特性曲线
81
201anufacturing Engineering)
图 6 动力总成后悬置响应力幅频特性曲线
3 动力总成悬置系统优化设计
根据振动理论,悬置元件的布置位置、角度及其刚 度阻尼对动力总成振动的传递有很大的影响。本文在 ADAMS 中使用设计变量法,将三个悬置刚度设为设计 变量,通过调整悬置刚度值优化动力总成悬置系统。 3. 1 优化设计模型的建立
汽车制造技术
现代制造工程( Modern Manufacturing Engineering)
2012 年第 2 期
动力总成悬置系统隔振分析及优化
何洋志,陈吉清,兰凤崇 ( 华南理工大学机械与汽车工程学院,广州 510640)
摘要:针对某皮卡车振动剧烈、噪声较大等问题,建立动力总成悬置系统多体动力学模型。通过模态分析、动力总成质 心加速度和悬置支撑处响应力的仿真,优化悬置的主刚度,使其隔振效果得到明显改善,不仅提高了车辆乘坐的舒适 性,而且延长了发动机与其他部件的使用寿命。 关键词:动力总成; 悬置系统; 隔振; 优化设计 中图分类号:U464. 1 文献标志码:A 文章编号:1671—3133(2012)02—0080—04
经过频域仿真计算,得到系统的前 6 阶固有特性 见表 2。 根 据 前 面 的 隔 振 原 理 可 知,第 6 阶 频 率 20. 737Hz > 17. 680Hz,故 悬 置 系 统 不 能 满 足 隔 振 的 要求。
阶数 1 2 3 4 5 6
表 2 系统固有特性
固有频率 / Hz 5. 147 5. 691 7. 979 9. 132 14. 819 20. 737
率,ωn = 槡k / m; λ 为频率比,λ = ω / ωn。 分析可知: λ = 1 为共振点,即系统危险点; 0. 75 <
λ < 槡2为隔离区,在此区域传递率 TR > 1,即经隔振器 传递后的响应幅值反而比激振幅值还大; λ > 槡2 为工 作区,无论阻尼大小,随着频率比增加,传递率逐渐趋 于零,即要求隔振系统的固有频率低于激励力频率的
0 引言
汽车的振源主要来自于两个方面: 发动机和路 面。发动机悬置的性能直接影响汽车发动机的振动 乃至整车的舒适性和使用寿命,好的动力总成悬置系 统可以较好地控制发动机本身的振动向车体部分传 递以及路面的 不 平 对 发 动 机 工 作 的 影 响[1]。 合 理 地 选取悬置系统的参数是提高整车抗噪声、振动和不舒 适( Noise Vibration and Harshness,NVH) 性能的关键。 本文 针 对 某 皮 卡 车 振 动 剧 烈、噪 声 较 大 等 问 题,根 据 动力总成 悬 置 系 统 隔 振 设 计 的 基 本 理 论 和 方 法[2-4], 建立多体动力学模型,通过优化悬置参数来满足频率 合理分布、模态 振 型 解 耦 和 动 力 总 成 位 移 等 设 计 要 求,达到悬置系统优化设计的目的。
表 1 悬置刚度阻尼测量数据
悬置
kX /
kY /
kZ /
( N·mm - 1) ( N·mm - 1) ( N·mm - 1)
前悬置( 左、右)
80
110
300
后悬置
80
110
200
安装角 阻尼
度/( °) 0. 23 45 0. 23 0
应合力达到稳定时的波动幅度为 213N。
图 2 怠速工况时悬置支撑处响应合力随时间变化曲线
kfr Y 110. 0
97. 0 - 11. 8
kfr Z 300. 0 280. 0 - 6. 7
表 3 系统优化前后悬置刚度对比
刚度 / ( N·mm - 1 )
kfl X
kfl Y
kfl Z
80. 0
110. 0
300. 0
kr X 80. 0
71. 0
95. 0
278. 1
85. 2
- 11. 2
f1 = Nn / ( 30Z) = 4 × 750 / ( 30 × 4) = 25Hz ( 2) 式中: N 为汽缸数; n 为曲轴转速; Z 为冲程数。
为了使动力总成悬置系统固有振动不会与发动 机本身的激励力产生共振; 并使动力总成悬置系统固 有振动不会与路面激励力产生共振,且路面的激励频 率一般小于 3. 5Hz,因此,需要使动力总成悬置系统的
- 13. 6
- 7. 3
+ 6. 6
kr Y 110. 0
92. 0 - 16. 4
kr Z 200. 0 230. 5 + 15. 2
响应力标准差 /N
79. 8 44. 6 - 44. 1
图 7 所示为优化后动力总成在怠速工况( n = 750r / min) 时的悬置支撑处响应合力曲线图。
图 7 优化后怠速工况时悬置支撑处响应合力曲线
1 /槡2倍; λ < 0. 75 为前工作区,对于来自路面的激励要 保证其频率和系统固有频率之比小于 0. 75。
对于本文研究的四缸汽油发动机来说,点火脉冲
何洋志,等: 动力总成悬置系统隔振分析及优化
2012 年第 2 期
引起的激振力在发动机怠速时表现更为明显,怠速时 曲轴转速 n = 750r / min,故怠速时的激振频率 f1 为:
Analysis and optimization of power assembly mounting vibration isolation
He Yangzhi,Chen Jiqing,Lan Fengchong ( School of Mechanical and Automotive Engineering,South China University of Technology,
与图 2 对比可以看出,优化前悬置支撑处响应合
力振动达到稳定时,响应力波动幅度为 213N,优化后
悬置支撑处响应合力振动稳定时,波动幅度为 106N,
优化后支撑处响应合力的波动比优化前小得多。
优化前后固有频率比较如表 4 所示。从表 4 中可
以看出,优化后的第 1 阶频率大于4. 670Hz,能够避开
1) 设计变量[8]: 以前悬置和后悬置 3 个方向刚度 作为设计变量,分别为 kfrX 、kfrY 、kfrZ ( 前左) 、kflX 、kflY 、kflZ ( 前右) 、krX 、krY、krZ ( 后) ,其变化范围设为 + 30% 。
2) 约束条件: 设定总成侧向位移不超过 2mm,垂 向 位移不超过3mm; 优化后各阶固有频率在4. 670 ~
经过优化仿真计算,系统优化前后悬置刚度对比 如表 3 所示。从表 3 中的数据可以看出,通过对前、后 悬置刚度的优化,悬置支撑处响应力的标准差值下降 44. 1% ,说明对悬置的刚度参数进行合理地匹配能够 很好地提高动力总成悬置系统的隔振性能。