高考数学总复习教案第五章数列第6课时数列的综合应用

合集下载

第五节 数列的综合应用-高考状元之路

第五节 数列的综合应用-高考状元之路

第五节 数列的综合应用预习设计 基础备考知识梳理1.等差、等比交汇,考查数列的综合问题2.以递推关系为背景,考查数列的通项与前n 项和3.数列与函数、不等式交汇,考查数列的综合应用4.以实际问题为背景,考查数列的应用(1)解答数列应用题的步骤:①审题——仔细阅读材料,认真理解题意.②建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么.③求解——求出该问题的数学解,④还原——将所求结果还原到原实际问题中.(2)数列应用题常见模型:①等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.②等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比数列,这个固定的数就是公比.(3)与银行利率相关的几类模型:①银行储蓄单利公式:利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和=y ,属于等差模型,②银行储蓄复利公式:按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,存期为x ,则本利和=y ,属于等比模型.③产值模型:原来产值的基础数为N ,平均增长率为p ,对于时间x 的总产值=y(4)递推数列模型:如果题目中给出的前后两项之间的关系不固定,是随项的变化而变化时,应考虑是 n a 与1+πa 的递推关系,还是前n 项和n s 与1+n s 之间的递推关系.(5)分期付款模型;设贷款总额为a ,年利率为r ,等额还款数为b ,分n 期还完,则=b典题热身1.已知等差数列}{n a 的公差,0=/d 它的第1,第5,第17项顺次成等比数列,则这个等比数列的公比是( )4.A 3.B 2.c 21.D 答案:B2.已知a ,b ,c ,d 成等比数列,且曲线322+-=x x y 的顶点是(b ,c),则ad 等于( ) 3.A 2.B 1.c 2.-D答案:B3.数列}{n a 的通项公式是关于x 的不等式)(2⋅∈<-N n nx x x 的解集中的整数个数,则数列}{,l a 的前n 项和=n s ( )2.n A )1(.+n n B 2)1(.+n n c )2)(1.(++n n D 答案:C4.某种产品三次调价,单价由原来的每克512元降到216元,则这种产品平均每次降价的百分率为 答案:25%5.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使最大的三份之和的71是较少的两份之和,最小的一份的量为 答案:35课堂设计 方法备考题型一 等差、等比数列的综合应用【例1】已知各项均为正数的数列}{n a 前n 项和为,n s 首项为,1a 且n n S a ,,2成等差数列.(1)求数列}{n a 的通项公式;(2)若,,log 2nn n n n a bc a b ==求数列}{n c 的前n 项和⋅n T 题型二 数列与函数的综合应用【例2】已知,0(log )(>=a x x f u 且),1=/a 设),(),(21a f a f ))((,*∈⋅⋅N n a f n 是首项为4,公差为2的等差数列.(1)若a 为常数,求证:}{n a 是等比数列;(2)若}{),(n n n n b a f a b =的前n 项和是,n s 当2=a 时,求⋅n s题型三 数列在实际问题中的应用【例3】某市2008年共有1万辆燃油型公交车,有关部划于2009年投入128辆电力型公交车,随后电力型公交年的投入比上一年增加50%,试问:(1)该市在2015年应该投入多少辆电力型公交车?(2)到哪一年底,电力型公交车的数量开始超过该市公交量的?31)48.0~3lg ,30.0~2lg ,82.2~657(lg 题型四 数列与函数、不等式的综合问题【例4】已知点)31,1(是函数)1,0()(=/>=a a a x f x 且的图像上一点,等比数列}{n a 的前n 项和为 ,)(c n f -数列}{n b )0(>n b 的首项为c ,且前n 项和n s 满足+=--n n n s s s 1).2(|1≥-n s n(1)求数列}{n a 和}{n b 的通项公式;(2)若数列}1{1+n n b b 的前n 项和为,n T 问:满足20091000>n T 的最小正整数n 是多少? 技法巧点(1)深刻理解等差(比)数列的性质,熟悉它们的推导过程是解题的关键,两类数列性质既有相似之处,又有区别,要在应用中加强记忆,同时,用好性质也会降低解题的运算量,从而减少差错.(2)在等差数列与等比数列中,经常要根据条件列方程(组)求解.在解方程(组)时,仔细体会两种情形中解方程(组)的方法的不同之处.(3)数列的渗透力很强,它和函数、方程、三角函数、不等式等知识相互联系,优化组合,无形中加大了综合的力度,解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解 题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.(4)在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利息的计算、分期付款问题等,都可以利用数列来解决,因此要会在实际问题中抽象出数学模型,并用它解决实际问题.失误防范1.等比数列的前n 项和公式要分两种情况:公比等于1和公比不等于1.最容易忽视公比等于1的情况,要注意这方面的练习,2.解决数列的应用问题必须准确计算项数,例如与“年数”有关的问题,必须确定起算的年份,而且应准确定义n a 是表示“第n 年”还是“n 年后”,随堂反馈1.等差数列}{n a 的前n 项和为,52,18,139-=-=s s s n 等比数列}{n b 中,,,7755a b a b ==则15b 的值为( )64.A 64.-B 128.c 128.-D2.某工厂总产值月平均增长率为p ,则年平均增长率为( )P A . P B 12. 12)1.(P c + 1)1.(12-+P D答案:D3.(2011.兰州模拟)根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量n s (万件)近似地满足关系式),12,,2,1)(5ln 2(902 =--=n n n s n 按此预测,在本年度内,需求量超过1.5万件的月份是 ( )A .5、6月B .6、7月C .7、8月D .8、9月、答案:C4.(2011.济南模拟)已知数列}{n a 是首项为41=a 的等比数列,且3512,,4a a a -成等差数列,则其公比q 等于( )1.A 1.-B 11.-或C2.D答案:C5.设x ,y 为正数,且y a a x ,,,21成等差数列,y b b x ,,,21成等比数列,则21221)(b b a a +的最小值是 答案:4高效作业 技能备考一、选择题1.各项都是正数的等比数列}{n a 中,132,21,a a a 成等差数列,则4354a a a a ++的值为( ) 215.-A 215.+B 251.-c 215215.+-或D 答案:B2.(2011.黄冈模拟)据科学计算,运载“神舟”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2 km ,以后每秒钟通过的路程增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间是 ( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟答案:C3.数列}{,l a 中,*),.(73N n n a n ∈-=数列}{n b 满足,311=b ,2271≥=-n b b n n (且*),N n ∈若n k n b a log +为常数,则满足条件的k 值( )A .唯一存在,且为31 B .唯一存在,且为3 C .存在,且不唯一 D .不一定存在 答案:B4.(2011.抚顺模拟)已知数列}{n a 满足.11=+-+n n a a ,.2≥n 点0是平面上不在L 上的任意一点,L 上有不重合的三点A 、B 、C ,又知,20092a a =+则=2010s ( ) 1004.A 2010.B 2009.c 1005.D答案:D5.抛物线1)12()(22++-+=x n x n n y 与x 轴交点分别为*),(,N n B A n n ∈以||n n B A 表示该两点的距离,则+||11B A ||||2010201022B A B A ++ 的值是( ) 20102009.A 20112010.B 20122011.c 20132012.D 答案:B6.(2011.舟山一模)已知数列}{},{n n b a 满足,11=a 且1,+n n a a 是函数n n x b x x f 2)(2+-=的两个零点,则10b 等于 ( )24.A 32.B 48.c 64.D答案:D二、填空题7.已知等比数列}{n a 中,,132=>a a 则使不等式+-)1(11a a +-)1(22a a +-)1(33a a 0)1(≥-+nn a a 成立的最大自然数n 是 答案:58.已知函数,tan sin )(x x x f +=项数为27的等差数列}{n a 满足),2,2(ππ-∈n a 且公差,0=/d 若 +++...)()(21a f a f ,0)(27=a f 则当=k 时,.0)(=k a f答案:149.(2011.银川模拟)在各项均为正数的数列}{n a 中,n s 为前n 项和,1221)1(++++=n n n n a a a n na 且,3π=a 则=4tan S 答案:3三、解答题10.(2011.湖南高考)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少,从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75℅(1)求第n 年初M 的价值n 。

《数列的综合应用》教案

《数列的综合应用》教案

个 性 化 教 案授课时间 备课时间 年级高三学生姓名 教师姓名课题数列的进一步认识教学目标 (1)熟练掌握等差数列、等比数列的前n 项和公式,以及非等差数列、等比数列求和的几种常见方法。

(2)理解与掌握“等价转化”、“变量代换”思想(3)能在具体的问题情境中识别数列的相应关系,并能用相关知识解决相应的问题教学重点 1、数列求和的几种常见方法2、识别数列的相关关系,并能利用“等价转化”、“变量代换”思想解决相关数列问题教学设计教学内容 一、检查并点评学生的作业。

检查过程中,要特别注意反映在学生作业中的知识漏洞,并当场给学生再次讲解该知识点,也可出题让学生做,检查效果。

二、检查学生上节课或在校一周内的知识点掌握情况,帮助学生再次梳理知识。

三、讲授新内容 数列求和数列求和的常用方法 1、公式法(1)直接利用等差数列、等比数列的前n 项公式求和; (2)一些常见的数列的前n 项和:2)1(1+=∑=n n k nk )12)(1(6112++=∑=n n n k nk 2213)1(41+=∑=n n k nk 2、倒序相加法如果一个数列{}n a ,首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法。

等差数列的前n 项和即是用此法推导的。

3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的;例:n S =1*2+2*4+3*8+……+n*n 2①2n S =1*4+2*8+3*16+……+(n-1)*n 2+n*12+n ② ①-②得 -n S =2-(4+8+16+……+n 2)-n*12+n 即:n S =(n-1)12+n -64、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n 项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。

高考数学必修5总复习《数列的综合应用》

高考数学必修5总复习《数列的综合应用》

留多少?
(2)该同学若长期服用该药会不会产生副作用?
解析:(1)设该同学第n次服药后,药在他体内的残留量为an毫克,a1=220,a2 =220+a1×(1-60%)=220×1.4.
a3=220+a2×(1-60%)=220+220×1.4×0.4=343.2. 第二天早间是他第三次服药,故服药后,药在他体内的残留量为343.2毫克.
(2)等比模型:如果后一个量与前一个量的比是一个固定的数,该
模型是等比模型,这个固定的数就是公比.其一般形式是:
an+1 an
=q(常
数).
(3)混合模型:在一个问题中同时涉及到等比数列和等差数列的模
型.
(4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或
减少),同时又以一个固定的具体量增加(或减少),称该模型为生长模
∴{an}是以23为公差的等差数列. 又a1=1,∴an=23n+31.
(2)Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1 =a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1) =-43(a2+a4+…+a2n)=-43·n53+423n+31=-49(2n2+3n). (3)当 n≥2 时,
变式1-1 假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房 ,在以后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每 年新建住房中,中低价房的面积均比上一年增加50万平方米,那么到哪一年年 底, (1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不低 于4 750万平方米? (2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? (1.085≈1.47)

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。

通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。

1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。

通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。

第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。

通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。

2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。

通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。

第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。

通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。

3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。

通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。

第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。

通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。

4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。

通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。

第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。

通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。

5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。

通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。

第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。

高考数学《数列求和及综合应用》复习

高考数学《数列求和及综合应用》复习
1010
C. 2019
2020
√D. 2020 2021

a1
1 2
,an1
1 2 an
,得 a2
1 2 a1
2 3
,a3
3 4
,归纳可得
an
n
n
1
.当
n
1
时,a1
1 2
满足
an
n.
n 1
假设当 n k 时满足,即 ak
k
k 1
,当
n
k
1 时,
ak 1
1 2 ak
1 2 k
k 1 ,满足该式,故
an
SS1n,
n
1 Sn1, n
2, n N
只有 a1 S1 ,满足 n 2 的情形,通项公式才可以统一写成 an Sn . Sn1
1.已知数列an
满足
a1
1 2

an1
2
1 an
n N*
,则 a1
a2 22
a3 32
a2020 的值是(
20202
)
A. 2018
2019
B. 1009
3.以等差(比)数列为命题背景,考查等差(比)的前n项和公式、 分组求和 4.以递推数列、等差(比)数列为命题背景, 考查错位相减、裂项相消、倒序相加等求和方法
考点解读
5.等差(比)数列的求和、分组求和、错位相减求和及裂项相消求和 6.常与不等式、函数、解析几何相结合考查数列求和函数、 不等式的性质等
2.已知等比数列an 的前 n 项和为 Sn ,且 Sn 2n1 2 ,
则数列
log
2
an
1 log2
an1

高考北师大版数学总复习课件:6.5数列的综合应用

高考北师大版数学总复习课件:6.5数列的综合应用
1 1×1-24
= a+ a×
ቤተ መጻሕፍቲ ባይዱ1 1- 2
1 23 = 3 a- a= a. 8 8
7.(2012· 苏州联考)已知数列{f(n)}的前 n 项和为 Sn,且 Sn =n2+2n. (1)求数列{f(n)}的通项公式; (2)若 a1=f(1),an+1=f(an)(n∈N+),求证:数列{an+1}是等 比数列,并求数列{an}的前 n 项和 Tn.
[解析] 设至少需要 n 秒钟,则 1+21+22+„+2n 1≥100,

1- 2n ∴ ≥100,∴n≥7.故选 B. 1-2
5.(2012· 安徽合肥模拟)秋末冬初,流感盛行,某医院近 30 天每天入院治疗流感的人数依次构成数列 {an},已知 a1=1,a2 =2,且 an+2-an=1+(-1)n(n∈N+),则该医院 30 天入院治疗流 感的人数共有________.
2.设函数 f(x)=xm+ax 的导函数 f ′(x)=2x+1,则数列 1 { }(n∈N+)的前 n 项和是( fn n A. n+ 1 n C. n- 1
[答案] A
)
n+ 2 B. n+ 1 n+ 1 D. n
[解析] f ′(x)=mxm 1+a=2x+1,∴a=1,m=2,

1 1 1 1 ∴f(x)=x(x+1), = = - , fn nn+1 n n+1
知识梳理 1.数列在实际生活中着广泛的应用,其解题的基本步骤, 可用图表示如下:
2.数列应用题常见模型: (1)等差模型:如果增加(或减少)的量是一个固定量时,该模 型是等差模型,增加(或减少)的量就是公差. (2)等比模型: 如果后一个量与前一个量的比是一个固定的数 时,该模型是等比模型,这个固定的数就是公比.

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标1. 理解数列的概念及其性质2. 掌握数列的通项公式和求和公式3. 能够运用数列解决实际问题二、教学内容1. 数列的概念及其性质2. 数列的通项公式和求和公式3. 数列在实际问题中的应用三、教学重点与难点1. 教学重点:数列的概念、性质、通项公式和求和公式2. 教学难点:数列在实际问题中的应用四、教学方法1. 采用讲解法,引导学生理解数列的概念和性质2. 采用示例法,教授数列的通项公式和求和公式3. 采用案例分析法,让学生学会运用数列解决实际问题五、教学过程1. 引入:通过生活中的实例,如等差数列“每月工资”、“每分钟心跳次数”等,引导学生认识数列的概念和性质。

2. 讲解:讲解数列的概念、性质、通项公式和求和公式,通过示例让学生理解并掌握这些知识点。

3. 练习:布置一些练习题,让学生运用所学的数列知识解决问题,巩固所学内容。

4. 案例分析:选取一些实际问题,如“等差数列投资”、“数列在数据处理中的应用”等,让学生学会运用数列知识解决实际问题。

5. 总结:对本节课的内容进行总结,强调数列在实际中的应用价值。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,评估学生对数列概念和性质的理解程度。

2. 练习题评价:通过学生完成的练习题,检查学生对数列通项公式和求和公式的掌握情况。

3. 案例分析评价:评估学生在案例分析中的表现,判断其能否将数列知识应用于实际问题中。

七、教学拓展1. 数列在数学其他领域的应用:介绍数列在代数、几何、概率等领域中的应用,激发学生的学习兴趣。

2. 数列与其他学科的交叉:探讨数列在其他学科如物理、化学、生物等方面的应用,拓宽学生的知识视野。

八、教学反思在课后,教师应反思本节课的教学效果,包括学生的学习兴趣、教学方法的适用性、学生对数列知识的掌握程度等,以便对后续教学进行调整和改进。

九、课后作业布置一些有关数列的练习题,包括填空题、选择题和解答题,让学生巩固所学知识,提高解题能力。

数列的综合应用经典教案【强烈推荐】

数列的综合应用经典教案【强烈推荐】

第5讲数列的综合应用一、考点、热点回顾1.考查数列的函数性及与方程、不等式、解析几何相结合的数列综合题。

2.考查运用数列知识解决数列综合题及实际应用题的能力。

【复习指导】1.熟练把握等差数列与等比数列的基本运算。

2.掌握隐藏在数列概念和解题方法中的数学思想,如“函数与方程”、“数形结合”、“分类讨论”、“等价转化”等。

3.注意总结相关的数列模型以及建立模型的方法。

基础梳理1.等比数列与等差数列比较表不同点相同点等差数列(1)强调从第二项起每一项与前项的差;(2)a1和d可以为零;(3)等差中项唯一(1)都强调从第二项起每一项与前项的关系;(2)结果都必须是同一个常数;(3)数列都可由a1,d或a1,q确定等比数列(1)强调从第二项起每一项与前项的比;(2)a1与q均不为零;(3)等比中项有两个值2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意。

(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么。

(3)求解——求出该问题的数学解。

(4)还原——将所求结果还原到原实际问题中。

3.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差。

(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比。

(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n +1的递推关系,还是S n与S n+1之间的递推关系。

一条主线数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解。

两个提醒(1)对等差、等比数列的概念、性质要有深刻的理解,有些数列题目条件已指明是等差(或等比)数列,但有的数列并没有指明,可以通过分析,转化为等差数列或等比数列,然后应用等差、等比数列的相关知识解决问题.(2)数列是一种特殊的函数,故数列有着许多函数的性质.等差数列和等比数列是两种最基本、最常见的数列,它们是研究数列性质的基础,它们与函数、方程、不等式、三角等内容有着广泛的联系,等差数列和等比数列在实际生活中也有着广泛的应用,随着高考对能力要求的进一步增加,这一部分内容也将受到越来越多的关注.三种思想(1)数列与函数方程相结合时主要考查函数的思想及函数的性质(多为单调性).(2)数列与不等式结合时需注意放缩.(3)数列与解析几何结合时要注意递推思想.双基自测1.(人教A 版教材习题改编)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2的值为( ). A .-4 B .-6 C .-8 D .-10解析 由题意知:a 23=a 1a 4.则(a 2+2)2=(a 2-2)(a 2+4),解得:a 2=-6. 答案 B 2.(·运城模拟)等比数列{a n }的前n 项和为S n ,若a 1=1,且4a 1,2a 2,a 3成等差数列,则S 4=( ). A .7 B .8 C .15 D .16解析 设数列{a n }的公比为q ,则4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2,即q 2-4q +4=0,∴q =2.∴S 4=1-241-2=15. 答案 C3.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有( ). A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定 解析 记等比数列{a n }的公比为q (q >0),由数列{b n }为等差数列可知b 4+b 10=2b 7,又数列{a n }是各项均为正数的等比数列,∴a 3+a 9=a 3(1+q 6)=a 6⎝⎛⎭⎫1+q 6q 3=b 7⎝⎛⎭⎫1+q 6q 3,又1+q 6q 3=1q 3+q 3≥2(当且仅当q =1时,等号成立),∴a 3+a 9≥2b 7,即a 3+a 9≥b 4+b 10. 答案 B4.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a +3b +c =10,则a =( ). A .4 B .2 C .-2 D .-4解析 由c ,a ,b 成等比数列可将公比记为q ,三个实数a ,b ,c ,待定为cq ,cq 2,c .由实数a 、b 、c 成等差数列得2b =a +c ,即2cq 2=cq +c ,又等比数列中c ≠0,所以2q 2-q -1=0,解一元二次方程得q =1(舍去,否则三个实数相等)或q =-12,又a +3b +c =a +3aq +a q =-52a =10,所以a =-4.答案 D 5.(·苏州质检)已知等差数列的公差d <0,前n 项和记为S n ,满足S 20>0,S 21<0,则当n =________时,S n 达到最大值.解析 ∵S 20=10(a 1+a 20)=10(a 10+a 11)>0, S 21=21a 11<0,∴a 10>0,a 11<0, ∴n =10时,S n 最大. 答案 10考向一 等差数列与等比数列的综合应用【例1】►在等差数列{a n }中,a 10=30,a 20=50. (1)求数列{a n }的通项a n ;(2)令b n =2a n -10,证明:数列{b n }为等比数列.[审题视点] 第(1)问列首项a 1与公差d 的方程组求a n ;第(2)问利用定义证明. (1)解 由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2.∴a n =12+(n -1)·2=2n +10.(2)证明 由(1),得b n =2a n -10=22n+10-10=22n =4n ,∴b n +1b n =4n +14n =4.∴{b n }是首项是4,公比q =4的等比数列.对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系.往往用到转化与化归的思想方法.【训练1】 数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1). (1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且T 3=15, 又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n .解 (1)由a n +1=2S n +1,可得a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,则a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1.故{a n }是首项为1,公比为3的等比数列,∴a n =3n -1. (2)设{b n }的公差为d ,由T 3=15,b 1+b 2+b 3=15,可得b 2=5,故可设b 1=5-d ,b 3=5+d ,又a 1=1,a 2=3,a 3=9, 由题意可得(5-d +1)(5+d +9)=(5+3)2, 解得d 1=2,d 2=-10.∵等差数列{b n }的各项为正,∴d >0,∴d =2,b 1=3,∴T n =3n +n (n -1)2×2=n 2+2n .考向二 数列与函数的综合应用【例2】►等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上. (1)求r 的值;(2)当b =2时,记b n =n +14a n(n ∈N *),求数列{b n }的前n 项和T n .[审题视点] 第(1)问将点(n ,S n )代入函数解析式,利用a n =S n -S n -1(n ≥2),得到a n ,再利用a 1=S 1可求r . 第(2)问错位相减求和.解 (1)由题意,S n =b n +r ,当n ≥2时,S n -1=b n -1+r ,所以a n =S n -S n -1=b n -1·(b -1),由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列,又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1.(2)由(1)知,n ∈N *,a n =(b -1)b n -1=2n -1,所以b n =n +14×2n -1=n +12n +1.T n =222+323+424+…+n +12n +1,12T n =223+324+…+n2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=34-12n +1-n +12n +2, ∴T n =32-12n -n +12n +1=32-n +32n +1.此类问题常常以函数的解析式为载体,转化为数列问题,常用的数学思想方法有“函数与方程”“等价转化”等.【训练2】 (·福建)已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求函数f (x )的解析式.解 (1)由q =3,S 3=133得a 1(1-33)1-3=133,解得a 1=13.所以a n =13×3n -1=3n -2.(2)由(1)可知a n =3n -2,所以a 3=3.因为函数f (x )的最大值为3,所以A =3;因为当x =π6时f (x )取得最大值,所以sin ⎝⎛⎭⎫2×π6+φ=1. 又0<φ<π,故φ=π6.所以函数f (x )的解析式为f (x )=3sin ⎝⎛⎭⎫2x +π6. 考向三 数列与不等式的综合应用【例3】►(·惠州模拟)在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2.(1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和S n ;(3)是否存在k ∈N *,使得S 11+S 22+…+S nn<k 对任意n ∈N *恒成立,若存在,求出k 的最小值,若不存在,请说明理由.[审题视点] 第(1)问由等比数列的性质转化为a 3+a 5与a 3a 5的关系求a 3与a 5;进而求a n ;第(2)问先判断数列{b n },再由求和公式求S n ;第(3)问由S n n 确定正负项,进而求S 11+S 22+…+S nn的最大值,从而确定k 的最小值.解 (1)∵a 1a 5+2a 3a 5+a 2a 8=25,∴a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,又a n >0,∴a 3+a 5=5,又a 3与a 5的等比中项为2, ∴a 3a 5=4,而q ∈(0,1),∴a 3>a 5,∴a 3=4,a 5=1,∴q =12,a 1=16,∴a n =16×⎝⎛⎭⎫12n -1=25-n. (2)∵b n =log 2a n =5-n , ∴b n +1-b n =-1,b 1=log 2a 1=log 216=log 224=4,∴{b n }是以b 1=4为首项,-1为公差的等差数列,∴S n =n (9-n )2.(3)由(2)知S n =n (9-n )2,∴S n n =9-n2.当n ≤8时,S n n >0;当n =9时,S nn =0;当n >9时,S nn<0.∴当n =8或9时,S 11+S 22+S 33+…+S nn =18最大.故存在k ∈N *,使得S 11+S 22+…+S nn<k 对任意n ∈N *恒成立,k 的最小值为19.解决此类问题要抓住一个中心——函数,两个密切联系:一是数列和函数之间的密切联系,数列的通项公式是数列问题的核心,函数的解析式是研究函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行灵活的处理. 【训练3】 (·岳阳模拟)已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.(1)解 设等比数列{a n }的首项为a 1,公比为q .依题意,有2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28, 可得a 3=8,∴a 2+a 4=20,所以⎩⎪⎨⎪⎧ a 1q 2=8,a 1q +a 1q 3=20,解之得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32. 又∵数列{a n }单调递增,所以q =2,a 1=2, ∴数列{a n }的通项公式为a n =2n .(2)因为b n =2n log 122n =-n ·2n ,所以S n =-(1×2+2×22+…+n ·2n ),2S n =-[1×22+2×23+…+(n -1)·2n +n ·2n +1], 两式相减,得S n =2+22+23+…+2n -n ·2n +1=2n +1-2-n ·2n +1.要使S n +n ·2n +1>50,即2n +1-2>50,即2n +1≥52.易知:当n ≤4时,2n +1≤25=32<50;当n ≥5时,2n +1≥26=64>50.故使S n +n ·2n +1>50成立的正整数n 的最小值为5.难点突破14——数列与解析几何、三角的交汇问题从近几年新课标高考试题可以看出,不同省市的高考对该内容要求的不尽相同,考生复习时注意把握.数列与解析几何交汇问题主要是解析几何中的点列问题,关键是充分利用解析几何的有关性质、公式,建立数列的递推关系式,然后借助数列的知识加以解决. 一、数列与解析几何交汇 【示例】► (·陕西)如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n .记P k 点的坐标为(x k,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(2≤k ≤n ); (2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.二、数列与三角交汇【示例】►(·安徽)在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n,再令a n=lg T n,n≥1.(1)求数列{a n}的通项公式;(2)设b n=tan a n·tan a n+1,求数列{b n}的前n项和S n.。

第5章第6课时数列的综合应用

第5章第6课时数列的综合应用

第6课时 数列的综合应用1. 在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }的前n 项和,若S n 取得最大值,则n =________. 答案:9解析:设公差d ,由题设知3(a 1+3d)=7(a 1+6d),所以d =-433a 1<0.解不等式a n >0,即a 1+(n -1)⎝⎛⎭⎫-433a 1>0,所以n<374,则n ≤9,当n ≤9时,a n >0,同理可得n ≥10,a n <0.故当n =9时,S n 取得最大值.2. 已知数列{a n }满足a 1=43,2-a n +1=12a n +6(n ∈N *),则i =1n 1a i =________.答案:2·3n -n -24解析:条件化为1a n +1=3a n +12,即1a n +1+14=3⎝⎛⎭⎫1a n +14,所以1a n =3n -1-14,故∑i =1n 1a i =1-3n 1-3-n 4=2×3n -2-n 4.3. 已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=________.答案:3+22解析:∵ a 1,12a 3,2a 2成等差数列,∴ 2×12a 3=a 1+2a 2,即a 3=a 1+2a 2,设等比数列{a n }的公比为q 且q >0,则a 3=a 1q 2,a 2=a 1q ,∴ a 1q 2=a 1+2a 1q ,∴ q 2=1+2q ,解得q =1+2或1-2(舍),a 9+a 10a 7+a 8=a 9(1+q )a 7(1+q )=q 2=(2+1)2=3+2 2.4. 已知各项均不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________. 答案:16 解析:因为{a n }为等差数列,所以a 3+a 11=2a 7,所以已知等式可化为4a 7-a 27=0,解得a 7=4或a 7=0(舍去),又{b n }为等比数列,所以b 6b 8=b 27=a 27=16.5. 现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm ,最下面的三节长度之和为114 cm ,第6节的长度是首节与末节长度的等比中项,则n =__________.答案:16解析:设每节竹竿的长度对应的数列为{a n },公差为d ,(d >0).由题意知a 1=10,a n +a n -1+a n -2=114,a 26=a 1a n .由a n +a n -1+a n -2=114,得3a n -1=114,解得a n -1=38,所以(a 1+5d)2=a 1(a n -1+d),即(10+5d)2=10(38+d),解得d =2,所以a n -1=a 1+(n -2)d =38,即10+2(n -2)=38,解得n =16.6. (2014·扬州期末)设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,则S n +10a n的最小值是__________.答案:21解析:由题设知S n =⎝⎛⎭⎫a 1-d 2n +d 2n 2,又S n 为等差数列,从而a 1=d 2,从而a n =a 1+(n -1)d =d ⎝⎛⎭⎫n -12,S n =d2n 2,∴ S n +10a n =d 2(n +10)2d ⎝⎛⎭⎫n -12=(n +10)22⎝⎛⎭⎫n -12=(n +10)22n -1.令2n -1=t(t ≥1),原式=⎝⎛⎭⎫t +12+102t =14·⎝⎛⎭⎫t +212t +42,从而当t =21时,即n =11时,原式取到最小值21.7. (2014·南京学情调研)已知{a n }是等差数列,其前n 项的和为S n, {b n }是等比数列,且a 1=b 1=2,a 4+b 4=21,S 4+b 4=30.(1) 求数列{a n }和{b n }的通项公式;(2) 记c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1) 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d.由条件a 4+b 4=21,S 4+b 4=30,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=21,8+6d +2q 3=30, 解得⎩⎪⎨⎪⎧d =1,q =2.所以a n =n +1,b n =2n ,n ∈N *.(2) 由题意知,c n =(n +1)×2n .记T n =c 1+c 2+c 3+…+c n .则T n =2×2+3×22+4×23+…+n ×2n -1 +(n +1)×2n ,2 T n =2×22+3×23+…+(n -1)×2n -1+n ×2n +(n +1)2n +1,所以-T n =2×2+(22+23+…+2n )-(n +1)×2n +1, 即T n =n·2n +1,n ∈N *. 8. 已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1) 求{a n }的通项公式;(2) 记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值. 解:(1) 设数列{a n }的公差为d ,由题意知 ⎩⎪⎨⎪⎧2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n.(2) 由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n(n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2.从而(2k)2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去),因此k =6.9. 设数列{a n }是首项为4,公差为1的等差数列,S n 为数列{b n }的前n 项和,且S n =n 2+2n. (1) 求{a n }及{b n }的通项公式a n 和b n ;(2) 若f(n)=⎩⎪⎨⎪⎧a n ,n 为正奇数,b n ,n 为正偶数,是否存在k ∈N *使f(k +27)=4f(k)成立?若存在,求出k 的值;若不存在,说明理由.解:(1) a n =a 1+(n -1)d =4+n -1=n +3. 当n =1时,b 1=S 1=3.当n ≥2时,b n =S n -S n -1=n 2+2n -(n -1)2-2(n -1)=2n +1. 当n =1时上式也成立,∴ b n =2n +1(n ∈N *). ∴ a n =n +3,b n =2n +1.(2) 假设符合条件的k(k ∈N *)存在,由于f(n)=⎩⎪⎨⎪⎧n +3,n 为正奇数,2n +1,n 为正偶数,∴ 当k 为正奇数时,k +27为正偶数.由f(k +27)=4f(k),得2(k +27)+1=4(k +3).∴ 2k =43,k =432.(舍)当k 为正偶数时,k +27为正奇数,由f(k +27)=4f(k),得(k +27)+3=4(2k +1).∴ 7k =26,∴ k =267.(舍)因此,符合条件的正整数k 不存在.10. 已知数列{a n }为等比数列,S n 是其前n 项的和,若S k +1,S k +3,S k +2(k ∈N *)成等差数列. (1) 求证:a k +1,a k +3,a k +2也成等差数列;(2) 试比较S 2k +1+S 2k +2与2S 2k +3的大小.(1) 证明:∵ S k +1,S k +3,S k +2(n ∈N *)成等差数列, ∴ S k +1+S k +2=2S k +3,∴ (S k +3-S k +2)+(S k +3-S k +1)=0,即a k +3+(a k +3+a k +2)=0,2a k +3+a k +2=0,∴ q =-12.∴ 2a k +3-(a k +1+a k +2)=a k +1(2q 2-q -1)=0, ∴ a k +1,a k +3,a k +2成等差数列.(2) 解:(解法1)∵ S 2k +1+S 2k +2≥(S k +1+S k +2)22=(2S k +3)22=2S 2k +3, 又S k +2-S k +1=a k +2≠0,S k +2≠S k +1,∴ S 2k +1+S 2k +2>2S 2k +3.(解法2)S 2k +1+S 2k +2-2S 2k +3=a 21(1-q k +1)2(1-q )2+a 21(1-q k +2)2(1-q )2-2a 21(1-q k +3)2(1-q )2=a 21(1-q )2[(1-2q k +1+q 2k +2)+(1-2q k +2+q 2k +4)-2(1-2q k +3+q 2k +6)] =a 21(1-q )2[2q k +1(2q 2-q -1)+q 2k +2(1+q 2-2q 4)] =a 21(1-q )2q 2k +2(1+q 2-2q 4),(*)∵ q =-12,∴ 1+q 2-2q 4=1+⎝⎛⎭⎫-122-2×⎝⎛⎭⎫-124=98>0, ∴ 由(*)可知,S 2k +1+S 2k +2>2S 2k +3.11. 已知常数λ≥0,设各项均为正数的数列{a n }的前n 项和为S n ,满足a 1=1,S n +1=a n +1a nS n +(λ·3n +1)a n +1(n ∈N *).(1) 若λ=0,求数列{a n }的通项公式;(2) 若a n +1<12a n 对一切n ∈N *恒成立,求实数λ的取值范围.解:(1) λ=0时,S n +1=a n +1a n S n +a n +1.又a n +1=S n +1-S n ,∴ S n =a n +1a n S n.∵ a n >0,∴ S n >0.∴ a n +1=a n . ∵ a 1=1,∴ a n =1.(2) ∵ S n +1=a n +1a n S n +(λ·3n +1)a n +1,a n >0,∴ S n +1a n +1-S na n=λ·3n +1.则S 2a 2-S 1a 1=λ·3+1,S 3a 3-S 2a 2=λ·32+1,…,S n a n -S n -1a n -1=λ·3n -1+1(n ≥2). 相加,得S n a n-1=λ·(3+32+…+3n -1)+n -1.则S n =⎝⎛⎭⎫λ·3n -32+n ·a n (n ≥2). 上式对n =1也成立,∴ S n =⎝⎛⎭⎫λ·3n -32+n ·a n (n ∈N *). ① ∴ S n +1=⎝⎛⎭⎫λ·3n +1-32+n +1·a n +1(n ∈N *). ②②-①,得a n +1=(λ·3n +1-32+n +1)·a n +1-(λ·3n -32+n)·a n ,即(λ·3n +1-32+n)·a n +1=(λ·3n -32+n)·a n .∵ λ≥0,∴ λ·3n -32+n >0,λ·3n +1-32+n >0.∵ a n +1<12a n 对一切n ∈N *恒成立,∴ λ·3n -32+n <12(λ·3n +1-32+n)对一切n ∈N *恒成立.即λ>2n3n +3对一切n ∈N *恒成立.记b n =2n 3n +3,则b n -b n +1=2n3n +3-2n +23n +1+3=(4n -2)3n -6(3n +3)(3n +1+3). 当n =1时,b n -b n +1=0; 当n ≥2时,b n -b n +1>0;∴ b 1=b 2=13是一切b n 中的最大项.综上所述,λ的取值范围是λ>13.。

2014高考数学一轮复习课件5.5数列的综合应用

2014高考数学一轮复习课件5.5数列的综合应用
n
从社会效益和经济效益出发,某旅游县区计划投入 资金进行生态环境建设,并以此发展旅游产业,根据规划, 1 2012 年投入 800 万元,以后每年投入将比上年减少 ,本年 5 度当地旅游业收入估计为 400 万元,由于该项建设对旅游业 1 的促进作用,预计今后的旅游业收入每年会比上年增加 . 4 (1)设 n 年内(2012 年为第一年)总投入为 an 万元, 旅游业 总收入为 bn 万元,写出 an,bn 的表达式; (2)至少经过几年,旅游业的总收入才能超过总投入?
又 am=4000, 3 m-1 ∴( ) (3000-3d)+2d=4000, 2 3 m [( ) -2]×1 000 1 000(3m-2m+1) 2 解得 d= = . m m 3 m 3 -2 ( ) -1 2 1 000(3m-2m+1) 故该企业每年上缴资金 d 的值为 时, m m 3 -2 经过 m(m≥3)年企业的剩余资金为 4 000 万元.
【解】
(1)由题意 a1=2000(1+50%)-d=3000-d, 3 5 a2=a1(1+50%)-d= a1-d=4 500- d. 2 2 3 an+1=an(1+50%)-d= an-d. 2 3 3 (2)由 an+1= an-d,得 an+1-2d= (an-2d), 2 2 3 ∴{an-2d}是公比为 的等比数列, 2 3 n- 1 则 an-2d=(3000-3d)· ) , ( 2 3 n- 1 ∴an=(3000-3d)· ) +2d, ( 2
1 ∴q= ,a1=16, 2 1 n-1 - ∴an=16×( ) =25 n. 2 (2)∵bn=log2an=5-n, ∴bn+1-bn=-1, b1=log2a1=log216=log224=4, ∴{bn}是以b1=4为首项,-1为公差的等差数列, n(9-n) ∴Sn= . 2

高考数学专题复习 数列的综合应用教案 文 教案

高考数学专题复习 数列的综合应用教案 文 教案

福建省漳浦县道周中学2014年高考数学专题复习数列的综合应用教案文1.数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等,需熟练应用不等式知识解决数列中的相关问题.2.数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、分期付款、合理定价等.3.解答数列应用题的基本步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的结构和特征.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.4.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)分期付款模型:设贷款总额为a,年利率为r,等额还款数为b,分n期还完,则b =r1+r n 1+r n-1a.[难点正本疑点清源]1.用函数的观点理解等差数列、等比数列(1)对于等差数列,由a n=a1+(n-1)d=dn+(a1-d),当d≠0时,a n是关于n的一次函数,对应的点(n,a n)是位于直线上的若干个离散的点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减数列. 若等差数列的前n项和为S n,则S n=pn2+qn (p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列:a n=a1q n-1.可用指数函数的性质来理解.①当a1>0,q>1或a1<0,0<q<1时,等比数列是递增数列;②当a1>0,0<q<1或a1<0,q>1时,等比数列{a n}是递减数列.③当q=1时,是一个常数列.④当q<0时,无法判断数列的单调性,它是一个摆动数列.2.解答数列综合问题的注意事项(1)要重视审题、精心联想、沟通联系;(2)将等差、等比数列与函数、不等式、方程、应用性问题等联系起来.题型一等差数列与等比数列的综合应用例1在等比数列{a n} (n∈N*)中,a1>1,公比q>0,设b n=log2a n,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{b n}是等差数列;(2)求{b n}的前n项和S n及{a n}的通项a n ;(3)试比较a n与S n的大小.探究提高在解决等差数列和等比数列综合题时,恰当地运用等差数列和等比数列的性质可以减少运算量,提高解题速度和准确度,如本例中就合理地应用了等差中项.已知数列{a n}中,a1=1,a2=2,且a n+1=(1+q)a n-qa n-1 (n≥2,q≠0).(1)设b n=a n+1-a n (n∈N*),证明:{b n}是等比数列;(2)求数列{a n}的通项公式;(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,a n是a n+3与a n+6的等差中项. 题型二数列与函数的综合应用例2已知函数f(x)=log2x-log x2(0<x<1),数列{a n}满足f(2a n)=2n (n∈N*).(1)求数列{a n}的通项公式;(2)判断数列{a n}的单调性.探究提高本题融数列、方程、函数单调性等知识为一体,结构巧妙、形式新颖,着重考查学生的逻辑分析能力.已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x -1)的图象被f(x)的图象截得的弦长为417,数列{a n}满足a1=2,(a n+1-a n)g(a n)+f(a n)=0 (n∈N*).(1)求函数f(x)的解析式;(2)求数列{a n}的通项公式;(3)设b n=3f(a n)-g(a n+1),求数列{b n}的最值及相应的n.题型三 数列与不等式的综合应用例3 已知数列{a n },{b n }满足a 1=14,a n +b n =1,b n +1=b n1-a 2n .(1)求b 1,b 2,b 3,b 4; (2)求数列{b n }的通项公式;(3)设S n =a 1a 2+a 2a 3+…+a n a n +1,求实数a 为何值时,4aS n <b n .探究提高 由a n +b n =1得到a n 的表达式,然后利用裂项相消法求得S n ,将4aS n <b n 转化为(a -1)n2+(3a -6)n -8<0对任意n ∈N *恒成立.利用二次函数的性质进行分析,设f (x )=(a -1)x 2+3(a -2)x -8,对x 2的系数分a =1,a >1及a <1三种情况进行分类讨论,从而求得使不等式成立的a 的取值范围.已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f ⎝ ⎛⎭⎪⎫1a n ,n ∈N *,(1)求数列{a n }的通项公式;(2)令T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1,求T n ; (3)令b n =1a n -1a n(n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0032对一切n ∈N *成立,求最小正整数m .题型四 数列的实际应用例4 某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米? (2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)探究提高 解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题,这恰好是数学实际应用的具体体现.从社会效益和经济效益出发,某旅游县区计划投入资金进行生态环境建设,并以此发展旅游产业,根据规划,2010年投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业有促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(2010年为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入? (参考数据:lg 2=0.301 0)15.用构造新数列的思想解题试题:(12分)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1 (n ≥2).(1)求数列{a n }的通项公式a n ; (2)求证:S 21+S 22+…+S 2n ≤12-14n.审题视角 (1)从求证内容来看,首先要求出S n .(2)从S n 与S n -1的递推关系看,可考虑构造新数列⎩⎨⎧⎭⎬⎫1S n .(3)可考虑用放缩法证明. 规范解答(1)解 ∵a n =-2S n ·S n -1 (n ≥2),∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2 (n ≥2),[2分]∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列,[3分]∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n ,∴S n =12n.[5分]将S n =12n 代入a n =-2S n ·S n -1,得a n=⎩⎪⎨⎪⎧12n =1,12n -2n 2n ≥2.[6分](2)证明 ∵S 2n =14n 2<14n n -1=14⎝ ⎛⎭⎪⎫1n -1-1n (n ≥2),S 21=14, ∴当n ≥2时,S 21+S 22+…+S 2n =14+14×2×2+…+14·n ·n<14+14⎝ ⎛⎭⎪⎫1-12+…+14⎝ ⎛⎭⎪⎫1n -1-1n=12-14n;[10分]当n =1时,S 21=14=12-14×1.综上,S 21+S 22+…+S 2n ≤12-14n.[12分]批阅笔记 (1)在数列的解题过程中,常常要构造新数列,使新数列成为等差或等比数列.构造新数列可以使题目变得简单,而构造新数列要抓住题目信息,不能乱变形.(2)本题首先要构造新数列⎩⎨⎧⎭⎬⎫1S n ,其次应用放缩法,并且发现只有应用放缩法才能用裂项相消法求和,从而把问题解决.事实上:14n 2<14n n -1,也可以看成一个新构造:b n =14n n -1. (3)易错分析:构造不出新数列⎩⎨⎧⎭⎬⎫1S n ,从而使思维受阻.不会作不等式的放缩.方法与技巧1.深刻理解等差(比)数列的性质,熟悉它们的推导过程是解题的关键.两类数列性质既有相似之处,又有区别,要在应用中加强记忆.同时,用好性质也会降低解题的运算量,从而减少差错.2.在等差数列与等比数列中,经常要根据条件列方程(组)求解,在解方程组时,仔细体会两种情形中解方程组的方法的不同之处.3.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.4.在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利息的计算、分期付款问题等,都可以利用数列来解决,因此要会在实际问题中抽象出数学模型,并用它解决实际问题. 失误与防范1.等比数列的前n 项和公式要分两种情况:公比等于1和公比不等于1.最容易忽视公比等于1的情况,要注意这方面的练习.2.数列的应用还包括实际问题,要学会建模,对应哪一类数列,进而求解.专题四 数列的综合应用(时间:60分钟) A 组 专项基础训练题组 一、选择题1.(2011·安徽)若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10等于( ) A.15B.12C.-12D.-152.(2010·福建)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A.6B.7C.8D.93.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f n(n ∈N *)的前n 项和是( ) A.n n +1B.n +2n +1C.nn -1D.n +1n二、填空题4.(2011·江苏)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.5.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为_____________.6.在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =________. 三、解答题7.已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的最小正整数n 的值.8.某人有人民币1万元,若存入银行,年利率为6%;若购买某种股票,年分红利为24%,每年储蓄的利息和买股票所分的红利都存入银行.(1)问买股票多少年后,所得红利才能和原来的投资款相等?(2)经过多少年,买股票所得的红利与储蓄所拥有的人民币相等?(精确到整年) (参考数据:lg 2≈0.301 0,lg 3≈0.477 1,lg 1.06≈0.025 3)B 组 专项能力提升题组 一、选择题1.{a n }是等差数列,a 2=8,S 10=185,从{a n }中依次取出第3项,第9项,第27项,…,第3n项,按原来的顺序排成一个新数列{b n },则b n 等于 ( )A.3n +1+2 B.3n +1-2C.3n+2D.3n-22.已知数列{a n }的通项公式为a n =log 2n +1n +2 (n ∈N *),设其前n 项和为S n ,则使S n <-5成立的自然数n( )A.有最小值63B.有最大值63C.有最小值31D.有最大值313.已知数列{a n }满足3a n +1+a n =4 (n ∈N *)且a 1=9,其前n 项和为S n ,则满足不等式|S n -n -6|<1125的最小正整数n 是 ( )A.5B.6C.7D.8二、填空题4.(2011·陕西)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________米.5.将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 10 ………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为__________.6.对正整数n ,若曲线y =x n(1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为____________. 三、解答题7.已知数列{a n }满足a 1=2,a n +1=a n -1n n +1.(1)求数列{a n }的通项公式;(2)设b n =na n ·2n,求数列{b n }的前n 项和S n .8.已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式; (2)设b n =1na n +3 (n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数t ,使得对任意的n 均有S n >t 36总成立?若存在,求出t ;若不存在,请说明理由. 答案题型分类·深度剖析例1 (1)证明 ∵b n =log 2a n ,∴b n +1-b n =log 2a n +1a n=log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q . (2)S n =9n -n 22 a n =25-n (n ∈N *)(3)解 显然a n =25-n>0, 当n ≥9时,S n =n 9-n2≤0,∴n ≥9时,a n >S n .∵a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=12,a 7=14,a 8=18,S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7,S 8=4,∴当n =3,4,5,6,7,8时,a n <S n ; 当n =1,2或n ≥9时,a n >S n .变式训练1 (1)证明 由题设a n +1=(1+q )a n -qa n -1 (n ≥2), 得a n +1-a n =q (a n -a n -1),即b n =qb n -1,n ≥2.由b 1=a 2-a 1=1,q ≠0, 所以{b n }是首项为1,公比为q 的等比数列.(2)a n =⎩⎪⎨⎪⎧1+1-q n -11-q , q ≠1n , q =1(3)解 由(2),当q =1时,显然a 3不是a 6与a 9的等差中项,故q ≠1. 由a 3-a 6=a 9-a 3可得q 5-q 2=q 2-q 8, 由q ≠0得q 3-1=1-q 6,①整理得(q 3)2+q 3-2=0,解得q 3=-2或q 3=1(舍去).于是q =-32. 另一方面,a n -a n +3=q n +2-q n -11-q =q n -11-q (q 3-1),a n +6-a n =q n -1-q n +51-q =q n -11-q(1-q 6).由①可得a n -a n +3=a n +6-a n , 即2a n =a n +3+a n +6,n ∈N *.所以对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.例2 解 (1)由已知得log 22a n -1log 22a n =2n ,∴a n -1a n =2n ,即a 2n -2na n -1=0.∴a n =n ±n 2+1.∵0<x <1,∴0<2a n <1,∴a n <0.∴a n =n -n 2+1.(2)∵a n +1a n =n +1-n +12+1n -n 2+1=n +n 2+1n +1+n +12+1<1, 又∵a n <0,∴a n +1>a n , ∴{a n }是递增数列.变式训练2 (1)f (x )=(x -1)2(2)a n =⎝ ⎛⎭⎪⎫34n -1+1(3)解 b n =3(a n -1)2-4(a n +1-1),令b n =y ,u =⎝ ⎛⎭⎪⎫34n -1,则y =3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫u -122-14=3⎝ ⎛⎭⎪⎫u -122-34. ∵n ∈N *,∴u 的值分别为1,34,916,2764,…,经比较916距12最近,∴当n =3时,b n 有最小值是-189256,当n =1时,b n 有最大值是0. 例3 (1)b 1=34,b 2=45,b 3=56,b 4=67(2)b n =n +2n +3(3)解 a n =1-b n =1n +3,∴S n =a 1a 2+a 2a 3+…+a n a n +1=14×5+15×6+…+1n +3n +4=⎝ ⎛⎭⎪⎫14-15+⎝ ⎛⎭⎪⎫15-16+…+⎝ ⎛⎭⎪⎫1n +3-1n +4=14-1n +4=n 4n +4. ∴4aS n -b n =an n +4-n +2n +3=a -1n 2+3a -6n -8n +3n +4.由条件可知(a -1)n 2+(3a -6)n -8<0在[1,+∞)上恒成立即可满足条件. 设f (x )=(a -1)x 2+3(a -2)x -8, 则a =1时,f (x )=-3x -8<0,恒成立;a >1时,由二次函数的性质知不可能成立; a <1时,对称轴x =-32·a -2a -1=-32⎝ ⎛⎭⎪⎫1-1a -1<0.f (x )在[1,+∞)上为单调递减函数. f (1)=(a -1)+(3a -6)-8=4a -15<0.∴a <154,∴a <1时,4aS n <b n 恒成立.综上知,a ≤1时,4aS n <b n 恒成立.变式训练3 (1)a n =23n +13(2)-49(2n 2+3n ) (3)2 012例4 解 (1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50, 则S n =250n +n n -12×50=25n 2+225n ,令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2017年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q =1.08,则b n =400×(1.08)n -1.由题意可知a n >0.85b n , 有250+(n -1)×50>400×(1.08)n -1×0.85.当n =5时,a 5<0.85b 5,当n =6时,a 6>0.85b 6,∴满足上述不等式的最小正整数n 为6.∴到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 变式训练4 (1)a n =4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,b n =1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1(2)解 设经过n 年,旅游业的总收入超过总投入,由此b n -a n >0,即1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1-4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n >0,令x =⎝ ⎛⎭⎪⎫45n ,代入上式得5x 2-7x +2>0,解此不等式,得x <25,或x >1(舍去),即⎝ ⎛⎭⎪⎫45n <25,由此得n ≥5. 答 至少经过5年,旅游业的总收入才能超过总投入. 课时规范训练 A 组1.A2.A3.A4.33 5.-10 6.97.解 (1)设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,…,其中a 1≠0,q ≠0.由题意知:a 1q +a 1q 2+a 1q 3=28,① a 1q +a 1q 3=2(a 1q 2+2).②②×7-①得6a 1q 3-15a 1q 2+6a 1q =0, 即2q 2-5q +2=0,解得q =2或q =12.∵等比数列{a n }单调递增,∴a 1=2,q =2, ∴a n =2n.(2)由(1)得b n =-n ·2n,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n). 设T n =1×2+2×22+…+n ·2n, ③ 则2T n =1×22+2×23+…+n ·2n +1.④由③-④,得-T n =1×2+1×22+…+1·2n-n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2,∴-T n =-(n -1)·2n +1-2.∴S n =-(n -1)·2n +1-2.要使S n +n ·2n +1>50成立, 即-(n -1)·2n +1-2+n ·2n +1>50,即2n>26.∵24=16<26,25=32>26,且y =2x是单调递增函数,∴满足条件的n 的最小值为5. 8.解 设该人将1万元购买股票,x 年后所得的总红利为y 万元,则y =24%+24%(1+6%)+24%(1+6%)2+…+24%(1+6%)x -1=24%(1+1.06+1.062+…+1.06x -1)=4(1.06x-1).(1)由题意,得4(1.06x-1)=1, ∴1.06x=54.两边取常用对数,得x lg 1.06=lg 54=lg 5-lg 4=1-3lg 2.∴x =1-3lg 2lg 1.06≈1-3×0.301 00.025 3≈4.(2)由题意,得4(1.06x-1)=(1+6%)x,∴1.06x=43.解得x ≈5.答 (1)买股票4年后所得的红利才能和原来的投资款相等; (2)经过大约5年,买股票所得的红利与储蓄所拥有的人民币相等. B 组1.A2.A3.C4.2 0005.n 2-n +626.2n +1-27.(1)a n =n +1n,n ∈N * (2)S n =n ·2n +18.解 (1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2. ∵a 1=1,解得d =2,d =0(舍). ∴a n =2n -1 (n ∈N *). (2)b n =1na n +3=12n n +1=12⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =b 1+b 2+…+b n=12[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫1n -1n +1] =12⎝ ⎛⎭⎪⎫1-1n +1=n2n +1. 假设存在整数t 满足S n >t36总成立,又S n +1-S n =n +12n +2-n2n +1 =12n +2n +1>0,∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t <9.又∵t ∈Z ,∴适合条件的t 的最大值为8.。

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。

高考高三数学总复习教案:数列的简单应用

高考高三数学总复习教案:数列的简单应用

第五章数列第5课时数列的简单应用(对应学生用书(文)、(理)79~81页)考情分析考点新知灵活运用等差数列、等比数列公式与性质解决一些综合性问题.运用等差数列、等比数列公式与性质解决一些综合性问题.1.(必修5P14例4改编)某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,这个剧场共有________个座位.答案:8202.从1月2日起,每年1月2日到银行存入一万元定期储蓄,若年利率为p,且保持不变,并约定每年到期存款均自动转为新一年的定期存款,到1月1日将所有存款和利息全部取回,则可取回的钱的总数为________万元.答案:错误![(1+p)7—(1+p)]3.某种细胞开始时有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按照此规律,6小时后,细胞的存活数是________.答案:654.办公大楼共有14层,现每一层派一人集中到第k层开会,当这14位参加会议的人员上下楼梯所走路程的总和最小时,k=________.答案:7或8数列应用题常见模型(1)银行储蓄单利公式利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和y=a(1+rx).(2)银行储蓄复利公式按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x(x∈N 且x>1).(3)产值模型原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p)x(x∈N且x>1).(4)分期付款模型设某商品一次性付款的金额为a元,以分期付款的形式等额地分成n次付清,每期期末所付款是x元,每期利率为r,则x=错误!(n∈N且n>1).[备课札记]题型1以等差数列为模型的实际问题例1某化工企业底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.(1)求该企业使用该设备x年的年平均污水处理费用y(万元);(2)为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?解:(1)y=错误!,即y=x+错误!+1.5(x>0).(2)由均值不等式得y=x+错误!+1.5≥2错误!+1.5=21.5,当且仅当x=错误!,即x=10时取到等号,故该企业后需要重新更换新设备.错误!(2013·江西文)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数n(n∈N*)为________.答案:6解析:S n=错误!=2n+1—2≥100,n≥6.题型2以等比数列为模型的实际问题例2水土流失是我国西部大开发中最突出的问题,全国9 100万亩坡度为25°以上的坡耕地需退耕还林,其中西部占70%,2002年国家确定在西部地区退耕还林面积为515万亩,以后每年退耕土地面积递增12%.(1)试问,从20起到哪一年西部地区基本上解决退耕还林问题?(2)为支持退耕还林工作,国家财政补助农民每亩300斤粮食,每斤粮食按0.7元计算,并且每亩退耕地每年补助20元,试问到西部地区基本解决退耕还林问题时,国家财政共需支付约多少亿元?解:(1)设20起经x年西部地区基本上解决退耕还林问题.依题意,得515+515×(1+12%)+515×(1+12%)2+…+515×(1+12%)x—1=9 100×70%,即515×[1+1.12+1.122+…+1.12x—1]=6 370,错误!=错误!=错误!错误!=错误!,整理得1.12x≈2.4843x≈log1.122.4843=错误!≈错误!≈8.03.又x∈N,故从20起到年底西部地区基本解决退耕还林问题.(2)设到西部地区基本解决退耕还林问题时国家共需支付y亿元.首批退耕地国家应支付:515×104×(300×0.7+20)×8,第二批退耕地国家应支付:515×104×(1+20%)×(300×0.7+20)×7,第三批退耕地国家应支付:515×104×(1+20%)×(300×0.7+20)×6,…最后一批退耕地国家应支付:515×104×(1+20%)7×(300×0.7+20)×1.y=错误!,令S=8+7×1.12+6×1.122+…+1×1.127,11.12S=8×1.12+7×1.122+6×1.123+…+1×1.128,22—1,得0.12S=—8×(1.12+1.122+1.123+…+1.127)+1×1.128,即0.12S=—8+错误!=—8+错误!≈—8+错误!,解得S≈48.1,故y≈(515×104×230×48.1)÷108≈569.7亿元.故到西部地区基本解决退耕还林问题国家共需支付约570亿元.错误!设C1、C2、…、C n、…是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线y=错误! x相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知{r n}为递增数列.(1)证明:{r n}为等比数列;(2)设r1=1,求数列错误!的前n项和.(1)证明:将直线y=错误!x的倾斜角记为θ,则有tanθ=错误!,sinθ=错误!.设C n的圆心为(λn,0),则由题意得错误!=错误!,得λn=2r n;同理λn+1=2r n+1,从而λn+1=λn+r n+r n+1=2r n+1,将λn=2r n代入,解得r n+1=3r n,故{r n}为公比q=3的等比数列.(2)解:由于r n=1,q=3,故r n=3n—1,从而错误!=n×31—n,记S n=错误!+错误!+…+错误!,则有S n=1+2×3—1+3×3—2+…+n×31—n,1错误!=1×3—1+2×3—2+…+(n—1)×31—n+n×3—n,21—2,得错误!=1+3—1+3—2+…+31—n—n×3—n=错误!—n×3—n=错误!—错误!×3—n,∴S n=错误!—错误!错误!×31—n=错误!.题型3数列中的综合问题例3已知各项均为正数的等比数列{a n}的公比为q,且0<q<错误!.(1)在数列{a n}中是否存在三项,使其成等差数列?说明理由;(2)若a1=1,且对任意正整数k,a k—(a k+1+a k+2)仍是该数列中的某一项.(ⅰ)求公比q;(ⅱ)若b n=—loga n+1(错误!+1),S n=b1+b2+…+b n,T r=S1+S2+…+S n,试用S201表示T2011.1解:(1)由条件知a n=a1q n—1,0<q<错误!,a1>0,所以数列{a n}是递减数列.若有a k,a m,a n(k<m<n)成等差数列,则中项不可能是a k(最大),也不可能是a n(最小),若2a m=a k+a n2q m—k=1+q n—k,(*)由2q m—k≤2q<1,1+q h—k>1,知(*)式不成立,故a k,a m,a n不可能成等差数列.(2)(ⅰ)(解法1)a k—a k+1—a k+2=a1q k—1(1—q—q2)=a1q k—1错误!,由—错误!错误!+错误!∈错误!,知a k—a k+1—a k+2<a k<a k—1<…,且a k—a k+1—a k+2>a k+2>a k+3>…,所以a k—a k+1—a k+2=a k+1,即q2+2q—1=0,所以q=错误!—1.(解法2)设a k—a k+1—a k+2=a m,则1—q—q2=q m—k,由1—q—q2∈错误!知m—k=1,即m=k+1,以下同解法1.(ⅱ)b n=错误!,(解法1)S n=1+错误!+错误!+…+错误!,T n=1+错误!+错误!+…+(1+错误!+错误!+…+错误!)=n+错误!+错误!+…+错误!=n(1+错误!+错误!+…+错误!)—(错误!+错误!+错误!+…+错误!)=nS n—[(1—错误!)+(1—错误!)+(1—错误!)+…+(1—错误!)]=nS n—错误!=nS n—错误!=nS n—n+S n=(n+1)S n—n,所以T2011=2012S2011—2011.(解法2)S n+1=1+错误!+错误!+…+错误!+错误!=S n+错误!,所以(n+1)S n+1—(n+1)S n=1,所以(n+1)S n+1—nS n=S n+1,2S2—S1=S1+1,3S3—2S2=S2+1,……(n+1)S n+1—nS n=S n+1,累加得(n+1)S n+1—S1=T n+n,所以T n=(n+1)S n+1—1—n=(n+1)S n—n=(n+1)(S n+b n)—1—n=(n+1)错误!—1—n=(n+1)S n—n,所以T2011=2012S2011—2011.错误!已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b n}的前三项.(1)分别求数列{a n}、{b n}的通项公式;(2)设T n=错误!+错误!+…+错误!(n∈N*),若T n+错误!—错误!<c(c∈Z)恒成立,求c的最小值.解:(1)设d、q分别为等差数列{a n}、等比数列{b n}的公差与公比,且d>0.由a1=1,a2=1+d,a3=1+2d,分别加上1,1,3有b1=2,b2=2+d,b3=4+2D.(2+d)2=2(4+2d),d2=4.∵d>0,∴d=2,q=错误!=错误!=2,∴a n=1+(n—1)×2=2n—1,b n=2×2n—1=2n.(2)T n=错误!+错误!+…+错误!=错误!+错误!+错误!+…+错误!,1错误!T n=错误!+错误!+错误!+…+错误!.21—2,得错误!T n=错误!+错误!—错误!,∴T n=1+错误!—错误!=3—错误!—错误!=3—错误!.∴T n+错误!—错误!=3—错误!<3.∵3—错误!在N*上是单调递增的,∴3—错误!∈[2,3).∴满足条件T n+错误!—错误!<c(c∈Z)恒成立的最小整数值为c=3.【示例】(本题模拟高考评分标准,满分16分)已知数列{a n}是首项为1,公差为d的等差数列,数列{b n}是首项为1,公比为q(q>1)的等比数列.(1)若a5=b5,q=3,求数列{a n·b n}的前n项和;(2)若存在正整数k(k≥2),使得a k=b k.试比较a n与b n的大小,并说明理由.审题引导:1等差数列与等比数列对应项的积错位相减求和;2作差比较.规范解答:解:(1)依题意,a5=b5=b1q5—1=1×34=81,故d=错误!=错误!=20,所以a n=1+20(n—1)=20n—19.(3分)令S n=1×1+21×3+41×32+…+(20n—19)·3n—1,1则3S n=1×3+21×32+…+(20n—39)·3n—1+(20n—19)·3n,21—2,得—2S n=1+20×(3+32+…+3n—1)—(20n—19)·3n=1+20×错误!—(20n—19)·3n=(29—20n)·3n—29,所以S n=错误!.(7分)(2)因为a k=b k,所以1+(k—1)d=q k—1,即d=错误!,故a n=1+(n—1)错误!.又b n=q n—1,(9分)所以b n—a n=q n—1—错误!=错误![(k—1)(q n—1—1)—(n—1)(q k—1—1)]=错误![(k—1)(q n—2+q n—3+…+q+1)—(n—1)(q k—2+q k—3+…+q+1)].(11分)(ⅰ)当1<n<k时,由q>1知b n—a n=错误![(k—n)(q n—2+q n—3+…+q+1)—(n—1)(q k—2+q k—3+…+q n—1)]<错误![(k—n)(n—1)q n—2—(n—1)(k—n)q n—1]=—错误!<0;(13分)(ⅱ)当n>k时,由q>1知b n—a n=错误![(k—1)(q n—2+q n—3+…+q k—1)—(n—k)(q k—2+q k—3+…+q+1)]>错误![(k—1)(n—k)q k—1—(n—k)(k—1)q k—2]=(q—1)2q k—2(n—k)>0,(15分)综上所述,当1<n<k时,a n<b n;当n>k时,a n>b n;当n=1,k时,a n=b n.(16分)(注:仅给出“1<n<k时,a n<b n;n>k时,a n>b n”得2分)错因分析:错位相减时项数容易搞错,作差比较后学生不能灵活倒用等比数列求和公式1—q n=(1—q)(1+q+q2+…+q n—1).1.已知公差不为0的等差数列{a n}满足a1,a3,a9成等比数列,S n为数列{a n}的前n项和,则错误!=________.答案:3解析:设公差为d,则(a1+2d)2=a1(a1+8d),∴a1d=d2,又d≠0,∴a1=d,则错误!=错误!=3.2.(2013·福建)已知等差数列{a n}的公差d=1,前n项和为S n.(1)若1,a1,a3成等比数列,求a1;(2)若S5>a1a9,求a1的取值范围.解:(1)因为数列错误!的公差d=1,且1,a1,a3成等比数列,所以a错误!=1×(a1+2),即a错误!—a1—2=0,解得a1=—1或a1=2.(2)因为数列错误!的公差d=1,且S5>a1a9,所以5a1+10>a错误!+8a1;即a错误!+3a1—10<0,解得—5<a1<2.3.设{a n}是公比不为1的等比数列,其前n项和为S n,且a5,a3,a4成等差数列.(1)求数列{a n}的公比;(2)证明:对任意k∈N+,S k+2,S k,S k+1成等差数列.(1)解:设公比为q,则2a3=a5+a4,得2a1q2=a1q4+a1q3.又q≠0,a1≠0,q≠1,∴q =—2.(2)证明:S k+2+S k+1—2S k=(S k+2—S k)+(S k+1—S k)=a k+1+a k+2+a k+1=2a k+1+a k+1·(—2)=0,∴S k+2,S k,S k+1成等差数列.4.已知数列{a n}前n项和为S n,且a2a n=S2+S n对一切正整数都成立.(1)求a1,a2的值;(2)设a1>0,数列错误!前n项和为T n,当n为何值时,T n最大?并求出最大值.解:(1)取n=1时,a2a1=S2+S1=2a1+a2,1取n=2时,a错误!=2a1+2a2. 2由2—1得,a2(a2—a1)=a2. 3若a2=0,由1知a1=0;若a2≠0,由3知a2—a1=1.4由14解得a1=错误!+1,a2=2+错误!或a1=1—错误!,a2=2—错误!.综上所述,a1=0,a2=0或a1=错误!+1,a2=错误!+2或a1=1—错误!,a2=2—错误!.(2)当a1>0时,a1=错误!+1,a2=错误!+2.n≥2时,有(2+错误!)a n=S2+S n,(2+错误!)a n—1=S2+S n—1,∴(1+错误!)a n=(2+错误!)a n—1,即a n=错误!a n—1(n≥2),∴a n=a1(错误!)n—1=(错误!+1)(错误!)n—1.令b n=lg错误!=1—错误!lg2,故{b n}是递减的等差数列,从而b1>b2>…>b7=lg错误!>lg1=0,n≥8时,b n≤b8=错误!lg错误!<错误!lg1=0,故n=7时,T n取得最大值,T7=7—错误!lg2.1.某科研单位欲拿出一定的经费奖励科研人员,第1名得全部资金的一半多一万元,第2名得剩下的一半多一万元,以名次类推都得到剩下的一半多一万元,到第10名恰好资金分完,则此科研单位共拿出________万元资金进行奖励.答案:2046解析:设第10名到第1名得到的奖金数分别是a1,a2,…,a10,则a n=错误!S n+1,则a1=2,a n—a n—1=错误!—错误!=错误!(S n—S n—1)=错误!a n,即a n=2a n—1,因此每人得的奖金额组成以2为首项,以2为公比的等比数列,所以S10=错误!=2046.2.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b+c=________.答案:1解析:由已知a=错误!,第1行的各个数依次是:1,错误!,2,错误!,3;第2行的各个数依次是:错误!,错误!,1,错误!,错误!.∴b=错误!×错误!错误!=错误!,c=3×错误!错误!=错误!,∴a+b +c=错误!+错误!+错误!=1.3.我国是一个人口大国,随着时间推移,老龄化现象越来越严重,为缓解社会和家庭压力,决定采用养老储备金制度.公民在就业的第一年交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…,a n是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n—1,第二年所交纳的储备金就变为a2(1+r)n—2,…,以T n表示到第n年所累计的储备金总额.(1)写出T n与T n—1(n≥2)的递推关系式;(2)求证:T n=A n+B n,其中{A n}是一个等比数列,{B n}是一个等差数列.(1)解:由题意可得:T n=T n—1(1+r)+a n(n≥2).(2)证明:T1—a1,对n≥2反复使用上述关系式,得T n=T n—1(1+r)+a n=T n—2(1+r)2+a n—1(1+r)+a n=…=a1(1+r)n—1+a2(1+r)n—2+…+a n—1(1+r)+a n,1在1式两端同乘1+r,得(1+r)T n=a1(1+r)n+a2(1+r)n—1+…+a n—1(1+r)2+a n(1+r),22—1,得rT n=a1(1+r)n+d[(1+r)n—1+(1+r)n—2+…+(1+r)]—a n=错误![(1+r)n—1—r]+a1(1+r)n—a n.即T n=错误!(1+r)n—错误!n—错误!.如果记A n=错误!(1+r)n,B n=—错误!—错误!n,则T n=A n+B n.其中{A n}是以错误!(1+r)为首项,以1+r(r>0)为公比的等比数列;{B n}是以—错误!—错误!为首项,以—错误!为公差的等差数列.4.甲、乙两大超市同时开业,第一年的全年销售额均为a万元,由于经营方式不同,甲超市前n 年的总销售额为错误!(n2—n+2)万元,乙超市第n年的销售额比前一年销售额多错误!错误!a万元.(1)设甲、乙两超市第n年的销售额分别为a n、b n, 求a n、b n的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?解:(1)假设甲超市前n年总销售额为S n,则S n=错误!(n2—n+2)(n≥2),因为n=1时,a1=a,则n≥2时,a n=S n—S n—1=错误!(n2—n+2)—错误![(n—1)2—(n—1)+2]=a(n—1),故a n=错误!又b1=a,n≥2时,b n—b n—1=错误!错误!a,故b n=b1+(b2—b1)+(b3—b)+…+(b n—b n—1)=a+错误!a+错误!错误!a+…+错误!错误!a=错误!a=错误!a=错误!a,2显然n=1也适合,故b n=错误!a(n∈N*).(2)当n=2时,a2=a,b2=错误!a,有a2>错误!b2;n=3时,a3=2a,b3=错误!a,有a3>错误!b3;当n≥4时,a n≥3a,而b n<3a,故乙超市有可能被甲超市收购.当n≥4时,令错误!a n>b n,则错误!(n—1)a>错误!an—1>6—4·错误!错误!.即n>7—4·错误!错误!.又当n≥7时,0<4·错误!错误!<1,故当n∈N*且n≥7时,必有n>7—4·错误!错误!.即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.1.深刻理解等差(比)数列的性质,熟悉他们的推导过程是解题的关键,两类数列性质既有类似的的部分,又有区别,要在应用中加强记忆.同时用好性质也会降低解题的运算量,从而减少差错.2.等比数列的前n项和公式要分q=1,q≠1两种情况讨论,容易忽视.3.在等差数列与等比数列中,经常要根据条件列方程(组),在解方程组时,仔细体会两种情形下解方程组的方法的不同之处.请使用课时训练(A)第5课时(见活页).[备课札记]。

高考数学一轮复习 6.5 数列的应用精品教学案(教师版) 新人教版

高考数学一轮复习 6.5 数列的应用精品教学案(教师版) 新人教版

【考纲解读】能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题 【考点预测】高考对此部分内容考查的热点与命题趋势为: 1.数列是历年来高考重点内容之一, 在选择题、填空题与解答题中均有可能出现,一般考查一个大题一个小题,难度中低高都有,在解答题中,经常与不等式、函数等知识相结合,在考查数列知识的同时,又考查转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查数列与其他知识的结合,或在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】1.数列是一种特殊的函数,解数列题注意运用方程与函数的思想和方法.2.等价转化思想是解数列有关问题的基本思想方法,复杂的数列求和问题经常转化为等差或等比或常见特殊数列的求和问题.3.分类讨论问题在数列解答题中常常遇到,如等比数列中,经常要对公比进行讨论;已知n S 求n a 时,要对1n =与n ≥进行分类讨论.4.解答数列的实际应用题时,要建立数列模型,应明确是等差数列模型还是等比数列模型,还是递推数列模型? 【例题精析】考点一 等差数列与等比数列的综合应用 例1. (2010年高考湖北卷文科7)已知等比数列{m a }中,各项都是正数,且1a ,321,22a a 成等差数列,则91078a a a a +=+( )A.12+B. 12-C. 322+D 322-【名师点睛】本小题主要考查等差等比数列的通项公式,熟练基本公式是解决好本类问题的关键. 【变式训练】1. (山东省济南一中2012届高三上学期期末)等比数列{}n a 的前n 项和为n S ,11a =, 若1234,2,a a a 成等差数列,则4S = ( )A . 7B . 8C . 16D .15考点二 数列与三角函数、不等式等知识的结合例2.(2011年高考福建卷理科16)已知等比数列{a n }的公比q=3,前3项和S 3=133. (I )求数列{a n }的通项公式;(II )若函数()sin(2)(0,0)f x A x A p ϕϕπ=+><<<在6x π=处取得最大值,且最大值为a 3,求函数f (x )的解析式。

赢在高考2014届高考数学第一轮复习配套课件:65数列的综合应用

赢在高考2014届高考数学第一轮复习配套课件:65数列的综合应用

目录
退出
2.数列应用题常见模型 ( 1) 等差模型: 如果增加( 或减少) 的量是一个固定量时, 该模型是 等差模型, 增加( 或减少) 的量就是公差. ( 2) 等比模型: 如果后一个量与前一个量的比是一个固定的数时, 该模型是等比模型, 这个固定的数就是公比. ( 3) 分期付款模型: 设贷款总额为 a, 年利率为 r, 等额还款数为 b, 分 n 期还完, 则
������-1
法.
目录 退出
1.一套共 7 册的书计划每两年出一册, 若出完全部各册书, 公元年代 之和为 13 958, 则出齐这套书的年份是( ) A.1994 B.1996 C.1998 D.2000 【答案】 D 【解析】 设出齐这套书的年份是 x, 则( x-12) +( x-10) +( x-8) +…+x=13 958, 因此 7x(12+0)×7 =13 2
������+49 元( n∈N*) , 可以得出观测仪 10 ������+49 天的维修保养费为 元( n∈N*) , 使用 10
它直至报废最合算( 所谓报废最合算是指使用的这台仪器的平均耗 )
【解析】 由第 n 天的维修保养费为
的整个耗资费用, 由平均费用最少而求得最小值成立时相应 n 的值. 设一共使用了 n 天, 则使用 n 天的平均耗资为
5+������+49 n 10 3.2×104 + 2
������
=
3.2×104 ������
������ 3.2×104 + 20+4.95, 当且仅当 ������
= 20时, 取
目录 退出
������
得最小值, 此时 n=800.故应选 B.

第5课时数列的综合应用

第5课时数列的综合应用

名师预测
1.已知数列{an}的前n项和Sn =2n2 -3n,数
列{bn}是各项为正的等比数列,满足a1=-b1,
a2+a4=34 a2+a4=34 ⇒ A4=60 a1+a3=26
∴①-②可得:2d=8, ∴d=4,a1=9, * ∴an=4n+5(n∈N ).
B4=120 由题意知:对数列{bn}, , b2+b4=90
b1+b3=30 ∴ b2+b4=90
③ , ④
④÷ ③可得:q=3,则 b1=3, ∴bn=3×3n-1=3n(n∈N*). (2)由 cn=an·n=(4n+5)·n, b 3 ∴Sn=9· 3+13·2+17·3+„+(4n+5)·n.① 3 3 3 两边同乘以 3 得: 3Sn=9·2+13·3 +17·4+„+(4n+1)·n+(4n 3 3 3 3 +5)· 3
数列的实际应用问题 解数列应用题,要充分运用观察、归纳、猜想
等手段,建立等差数列、等比数列、递推数列
等模型(比较典型的问题是存款的利息计算问题,
通常的储蓄问题与等差数列有关,而复利计算
则与等比数列有关).
例2
从社会效益和经济效益出发, 某地投入资
金进行生态环境建设, 并以此发展旅游产业, 根 据规划, 本年度投入 800 万元, 以后每年投入将 1 比上年减少 ,本年度当地旅游业收入估计为 5 400 万元,由于该项建设对旅游业的促进作用, 1 预计今后的旅游业收入每年会比上年增加 . 4
的推导过程是解题的关键.两类数列性质既
有相似之处,又有区别,要在应用中加强记 忆.同时,用好性质也会降低解题的运算量, 从而减少差错.
2.在等差数列与等比数列中,经常要根据条
件列方程(组)求解,在解方程组时,仔细体会
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章数列第6课时数列的综合应用(对应学生用书(文)、(理)82~83页)1. 根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量S n(万件)近似地满足关系式S n=n90(21n-n2-5)(n=1,2,…,12),按此预测,在本年度内,需求量超过1.5万件的月份是________.答案:7、8解析:由S n 解出a n =130(-n 2+15n -9), 再解不等式130(-n 2+15n -9)>1.5,得6<n<9.2. 已知等差数列{a n }的前n 项和为S n ,若OB →=a 100·OA →+a 101OC →,且A 、B 、C 三点共线(该直线不过点O),则S 200=________.答案:100解析:∵ OB →=a 100OA →+a 101OC →且A 、B 、C 三点共线(该直线不过点O),∴ a 100+a 101=1,∴ S 200=200×(a 1+a 200)2=100×(a 1+a 200)=100×1=100.3. 设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________. 答案:33解析:设a 2=t ,则1≤t ≤q ≤t +1≤q 2≤t +2≤q 3,由于t ≥1,所以q ≥max{t ,t +1,3t +2},故q 的最小值是33.4. 已知数列{a n },{b n }满足a 1=1,且a n 、a n +1是函数f(x)=x 2-b n x +2n 的两个零点,则b 10=________.答案:64解析:依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…也成等比数列,而a 1=1,a 2=2,所以a 10=2×24=32,a 11=1×25=32,又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64.1. 形如a n+1=λa n+μ的线性递推关系,可用待定系数法;2. 形如a n+1=a n+f(n)的递推关系,可用叠加法;3. 形如a n+1=a n·f(n)的递推关系,可用叠乘法;4. 递推数列的求解方法还有倒数法、等价转化法、利用周期性等.[备课札记]题型1 子数列问题例1 (2013·南通模拟)设无穷数列{a n }满足:n ∈Ν,a n <a n +1,a n ∈N.记b n =aa n ,c n =aa n +1(n ∈N *).(1) 若b n =3n(n ∈N *),求证:a 1=2,并求c 1的值;(2) 若{c n }是公差为1的等差数列,问{a n }是否为等差数列,证明你的结论.解:(1) 因为a n ∈N ,所以若a 1=1,则b 1=aa 1=a 1=3矛盾,若a 1≥3=aa 1,可得1≥a 1≥3矛盾,所以a 1=2.于是a 2=aa 1=3,从而c 1=aa 1+1=a 3=aa 2=6.(2) {a n }是公差为1的等差数列,证明如下:a n +1>a nn ≥2时,a n >a n -1,所以a n ≥a n -1+1a n ≥a m +(n -m),(m<n)aa n +1+1≥aa n +1+a n +1+1-(a n +1),即c n +1-c n ≥a n +1-a n ,由题设,1≥a n +1-a n ,又a n +1-a n ≥1,所以a n +1-a n =1,即{a n }是等差数列. 变式训练(2013·泰州模拟)已知数列a n =n -16,b n =(-1)n |n -15|,其中n ∈N *. (1) 求满足a n +1=|b n |的所有正整数n 的集合; (2) 若n ≠16,求数列b na n的最大值和最小值;(3) 记数列{a n b n }的前n 项和为S n ,求所有满足S 2m =S 2n (m <n)的有序整数对(m ,n). 解:(1) a n +1=|b n |,n -15=|n -15|.当n ≥15时,a n +1=|b n |恒成立;当n<15时,n -15=-(n -15),n =15(舍去). ∴ n 的集合为{n|n ≥15,n ∈N *}.(2) b n a n=(-1)n|n -15|n -16.(ⅰ) 当n>16时,n 取偶数时,b n a n =n -15n -16=1+1n -16,当n =18时,⎝⎛⎭⎫b n a nmax=32,无最小值; n 取奇数时,b n a n=-1-1n -16,n =17时,⎝⎛⎭⎫b n a n min=-2,无最大值.(ⅱ) 当n<16时,b n a n=(-1)n(n -15)n -16.当n 为偶数时,b n a n=-(n -15)n -16=-1-1n -16.n =14时,⎝⎛⎭⎫b n a nmax=-12,⎝⎛⎭⎫b n a n min =-1314;当n 为奇数时,b n a n =n -15n -16=1+1n -16,n =1时,⎝⎛⎭⎫b n a nmax=1-115=1415,n =15时,⎝⎛⎭⎫b n a n min=0.综上,b n a n 最大值为32(n =18),最小值-2(n =17).(3) 当n ≤15时,b n =(-1)n -1(n -15),a 2k -1b 2k -1+a 2k b 2k =2(16-2k)≥0,当n>15时,b n =(-1)n (n -15),a 2k -1b 2k -1+a 2k b 2k =2(2k -16)>0,其中a 15b 15+a 16b 16=0,∴ S 16=S 14,m =7,n =8.题型2 递推数列问题例2 (2013·广东)设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1) 求a 2的值;(2) 求数列{a n }的通项公式;(3) 证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.(1) 解:∵2S n n =a n +1-13n 2-n -23,n ∈N .∴ 当n =1时,2a 1=2S 1=a 2-13-1-23=a 2-2.又a 1=1,∴ a 2=4. (2) 解:∵2S n n =a n +1-13n 2-n -23,n ∈N .∴ 2S n =na n +1-13n 3-n 2-23n=na n +1-n (n +1)(n +2)3,①∴ 当n ≥2时,2S n -1=(n -1)a n -(n -1)n (n +1)3,②由①-②,得2S n -2S n -1=na n +1-(n -1)a n -n(n +1), ∵ 2a n =2S n -2S n -1,∴ 2a n =na n +1-(n -1)a n -n(n +1),∴a n +1n +1-a nn =1, ∴ 数列⎩⎨⎧⎭⎬⎫a n n 是以首项为a 11=1,公差为1的等差数列.∴a nn=1+1×(n -1)=n ,∴ a n =n 2(n ≥2), 当n =1时,上式显然成立. ∴ a n =n 2,n ∈N *. (3) 证明:由(2)知,a n =n 2,n ∈N *,① 当n =1时,1a 1=1<74,∴ 原不等式成立.② 当n =2时,1a 1+1a 2=1+14<74,∴ 原不等式成立.③ 当n ≥3时,∵ n 2>(n -1)·(n +1), ∴1n 2<1(n -1)·(n +1), ∴1a 1+1a 2+...+1a n =112+122+ (1)2 <1+11×3+12×4+…+1(n -2)·n +1(n -1)·(n +1)=1+12⎝⎛⎭⎫11-13+12⎝⎛⎭⎫12-14+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫1n -2-1n +12⎝ ⎛⎭⎪⎫1n -1-1n +1 =1+12(11-13+12-14+13-15+…+1n -2-1n +1n -1-1n +1)=1+12⎝ ⎛⎭⎪⎫11+12-1n -1n +1=74+12⎝ ⎛⎭⎪⎫-1n -1n +1<74, ∴ 当n ≥3时,∴ 原不等式亦成立. 综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.备选变式(教师专享)(2013·无锡模拟)已知数列{a n }中,a 1=2,n ∈N *,a n >0,数列{a n }的前n 项和为S n ,且满足a n +1=2S n +1+S n -2.(1) 求{S n }的通项公式;(2) 设{b k }是{S n }中的按从小到大顺序组成的整数数列. ① 求b 3;② 存在N(N ∈N *),当n ≤N 时,使得在{S n }中,数列{b k }有且只有20项,求N 的范围. 解:(1) a n +1=S n +1-S n , ∴ (S n +1-S n )(S n +1+S n -2)=2; 即(S n +1)2-(S n )2-2(S n +1-S n )=2, ∴ (S n +1-1)2-(S n -1)2=2,且(S 1-1)2=1,∴ {(S n -1)2}是首项为1,公差为2的等差数列, ∴ S n =1+2n -1.(2) ① n =1时,S 1=1+1=2=b 1,n =5时,S 5=1+3=4=b 2,n =13时,S 13=1+5=6=b 3.② ∵ 2n -1是奇数,S n =1+2n -1为有理数,则2n -1=2k -1,∴ n =2k 2-2k +1,当k =20时,n =761;当k =21时,n =841;∴ 存在N ∈[761,840],当n ≤N 时,使得在{S n }中,数列{b k }有且只有20项. 题型3 有关数列的证明题例3 (2013·江苏)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项和.记b n =nS nn 2+c,n ∈N *,其中c 为实数.(1) 若c =0,且b 1,b 2,b 4成等比数列,证明:S n k =n 2S k (k ,n ∈N *); (2) 若{b n }是等差数列,证明:c =0.证明:∵ {a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项和, ∴ S n =na +n (n -1)2d.(1) ∵ c =0,∴ b n =S nn =a +n -12 d.∵ b 1,b 2,b 4成等比数列,∴ b 22=b 1b 4, ∴ ⎝⎛⎭⎫a +12d 2=a ⎝⎛⎭⎫a +32d , ∴ 12ad -14d 2=0,∴ 12d ⎝⎛⎭⎫a -12d =0. ∵ d ≠0,∴ a =12d ,∴ d =2a ,∴ S n =na +n (n -1)2d =na +n (n -1)22a =n 2a ,∴ 左边=S nk =(nk)2a =n 2k 2a ,右边=n 2S k =n 2k 2a , ∴ 左边=右边,∴ 原式成立. (2) ∵ {b n }是等差数列, ∴ 设公差为d 1, ∴ b n =b 1+(n -1)d 1代入b n =nS n n 2+c ,得b 1+(n -1)d 1=nS nn 2+c,∴ ⎝⎛⎭⎫d 1-12d n 3+⎝⎛⎭⎫b 1-d 1-a +12d n 2+cd 1n =c(d 1-b 1)对n ∈N *恒成立, ∴ ⎩⎪⎨⎪⎧d 1-12d =0,b 1-d 1-a +12d =0,cd 1=0,c (d 1-b 1)=0,∴ d 1=12d.∵ d ≠0,∴ d 1≠0.备选变式(教师专享)(2013·江西理)正项数列{a n }的前项和满足:S 2n -(n 2+n -1)S n -(n 2+n)=0.(1) 求数列{a n }的通项公式a n ;(2) 令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n<564. (1) 解:由S 2n -(n 2+n -1)S n -(n 2+n)=0,得[S n -(n 2+n)](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n.于是a 1=S 1=2,n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n. 综上,数列{a n }的通项a n =2n.(2) 证明:由于a n =2n ,b n =n +1(n +2)2a 2n,则b n =n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. T n =116[1-132+122-142+132-152+…+1(n -1)2-1(n +1)2+1n 2-1(n +2)2] =116⎣⎢⎡⎦⎥⎤1+122-1(n +1)2-1(n +2)2<116(1+122)=564. 故对于任意的n ∈N *,都有T n <564.1. (2013·重庆)已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和.若a 1,a 2,a 5成等比数列,则S 8=________. 答案:64解析:a 22=a 1a 5,即(1+d)2=1×(1+4d),所以d =2,故S 8=8+8×72×2=64. 2. (2013·上海)若等差数列的前6项和为23,前9项和为57,则数列的前n 项和S n =________.答案:56n 2-76n解析:由条件得⎩⎨⎧S 6=6a 1+6×52d =23,S 9=9a 1+9×82d =57,即⎩⎨⎧a 1=-13,d =53,故a n=56n 2-76n. 3. (2013·新课标)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.答案:-49解析:由条件得⎩⎪⎨⎪⎧a 1=-3,d =23,nS n =n 33-10n 23,对f(x)=x 3-10x 23求导可得f(x)在⎝⎛⎭⎫0,203上递减,在⎝⎛⎭⎫203,+∞上递增,分别计算n =6和n =7可得,当n =7时nS n =n 33-10n23最小为-49.4. (2013·江苏)在正项等比数列{a n }中,a 5=12,a 6+a 7=3,则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.答案:12解析:根据条件求得a n =2n -6,则不等式化为2n -1>2n 2-11n +102(*),n>n 2-11n +102,解得13-1292<n<13+1292,即1≤n ≤12,将n =13代入(*)式检验,经检验不成立,故最大正整数n 的值为12.1. (2013·徐州模拟)在数列{a n }中,已知a 1=2,a 2=3,当n ≥2时,a n +1是a n ·a n -1的个位数,则a 2 010=________. 答案:4解析:由题意得,a 3=a 1·a 2=6,定义f(x)=x 的个位数,则a 4=f(a 3·a 2)=8,依此类推,a 5=8,a 6=4,a 7=2,a 8=8,a 9=6,a 10=8,到此为止,看出一个周期,a 9=a 3,a 10=a 4,周期为6,因为前2项不符合周期,所以2 010-2=2 008,2 008=6×334+4,所以a 2 010=a 6=4.2. (2013·扬州模拟)已知数列{a n }满足a 1+a 2+…+a n =n 2(n ∈N *). (1) 求数列{a n }的通项公式;(2) 对任意给定的k ∈N *,是否存在p ,r ∈N *(k<p<r)使1a k ,1a p ,1a r成等差数列?若存在,用k 分别表示p 和r(只要写出一组);若不存在,请说明理由.解:(1) 当n =1时,a 1=1;当n ≥2,n ∈N *时,a 1+a 2+…+a n -1=(n -1)2,所以a n =n 2-(n -1)2=2n -1;综上所述,a n =2n -1(n ∈N *).(2) 当k =1时,若存在p ,r 使1a k ,1a p ,1a r 成等差数列,则1a r =2a p -1a k =3-2p2p -1.因为p ≥2,所以a r <0与数列{a n }为正数相矛盾,因此,当k =1时不存在;当k ≥2时,设a k =x ,a p =y ,a r =z ,则1x +1z =2y ,所以z =xy2x -y .令y =2x -1,得z =xy =x(2x -1),此时a k =x =2k -1,a p =y =2x -1=2(2k -1)-1,所以p =2k -1,a r =z =(2k -1)(4k -3)=2(4k 2-5k +2)-1,所以r =4k 2-5k +2.综上所述,当k =1时,不存在p ,r ;当k ≥2时,存在p =2k -1,r =4k 2-5k +2满足题设.3. 设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n 所表示的平面区域为D n ,记D n 内的整点个数为a n (n ∈N *)(整点即横坐标和纵坐标均为整数的点).(1) 求数列{a n }的通项公式;(2) 记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1.若对于一切的正整数n ,总有T n ≤m ,求实数m 的取值范围.解:(1) 由x >0,y >0,3n -nx >0,得0<x <3. ∴ x =1,或x =2.∴ D n 内的整点在直线x =1和x =2上.记直线y =-nx +3n 为l ,l 与直线x =1、x =2的交点的纵坐标分别为y 1,y 2.则y 1=-n +3n =2n ,y 2=-2n +3n =n.∴ a n =3n(n ∈N *). (2) ∵ S n =3(1+2+3+…+n)=3n (n +1)2,∴ T n =n (n +1)2n,∴ T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴ 当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32.于是T 2,T 3是数列{T n }中的最大项,故m ≥32.4. (2013·徐州模拟)已知数列{a n },其前n 项和为S n .(1) 若对任意的n ∈N ,a 2n -1,a 2n +1,a 2n 组成公差为4的等差数列,且a 1=1,S 2n 2n =2 013,求n 的值;(2) 若数列⎩⎨⎧⎭⎬⎫S n a n+a 是公比为q(q ≠-1)的等比数列,a 为常数,求证:数列{a n }为等比数列的充要条件为q =1+1a.(1) 解:因为a 2n -1,a 2n +1,a 2n 组成公差为4的等差数列, 所以a 2n +1-a 2n -1=4,a 2n =a 2n -1+8(n ∈N *),所以a 1,a 3,a 5,…,a 2n -1,a 2n +1是公差为4的等差数列,且a 2+a 4+a 6+…+a 2n =a 1+a 3+…+a 2n -1+8n.又因为a 1=1,所以S 2n =2(a 1+a 3+…+a 2n -1)+8n =2⎣⎢⎡⎦⎥⎤n +n (n -1)2×4+8n =4n 2+6n=2n(2n +3),所以S 2n2n=2n +3=2 013,所以n =1 005.(2) 证明:因为S na n +a =(a +1)q n -1,所以S n =(a +1)q n -1a n -aa n ,①所以S n +1=(a +1)q n a n +1-aa n +1,②②-①,得(a +1)(1-q n )a n +1=[a -(a +1)q n -1]a n .③(ⅰ) 充分性:因为q =1+1a ,所以a ≠0,q ≠1,a +1≠aq ,代入③式,得q(1-q n )a n +1=(1-q n )a n .因为q ≠-1,q ≠1, 所以a n +1a n =1q ,n ∈N *,所以{a n }为等比数列,(ⅱ) 必要性:设{a n }的公比为q 0,则由③得 (a +1)(1-q n )q 0=a -(a +1)q n -1, 整理得(a +1)q 0-a =(a +1)⎝⎛⎭⎫q 0-1q q n , 此式为关于n 的恒等式,若q =1,则左边=0,右边=-1,矛盾;若q ≠±1,当且仅当⎩⎪⎨⎪⎧(a +1)q 0=a ,(a +1)q 0=(a +1)1q时成立,所以q =1+1a. 由(ⅰ)、(ⅱ)可知,数列{a n }为等比数列的充要条件为q =1+1a.1. 数列的渗透力很强,它和函数、方程、三角、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目需对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟他在解题中的重大作用,常用的数学思想方法有:函数与方程、数形结合、分类讨论、等价转化等.2. 在现实生活中,人口的增长,产量的增加、成本的降低、存贷款利息的计算、分期付款问题等,都可以用数列解决,由此要会在实际问题中抽象出数学模型,并用数列知识解决问题.请使用课时训练(B)第6课时(见活页).[备课札记]。

相关文档
最新文档