高中数学《函数的单调性与导数》公开课优秀课件
合集下载
函数的单调性与导数 课件
【典型例题】
1.若函数f(x)=x3-ax2-x+6在(0,1)内单调递减,则实数a的取
值范围为( )
A.a≥1
B.a=1
C.a≤1
D.0<a<1
2.已知函数f(x)=x3-kx在区间(-3,-1)上不单调,则实数k的
取值范围是______.
3.(2013·天津高二检测)设函数f(x)=ax3+ 3 (2a-1)x2-6x
【解析】1.选A.因为f′(x)=3x2-2ax-1,f(x)在(0,1)内单调 递减,所以f′(0)≤0,f′(1)≤0,所以a≥1. 2.因为f′(x)=3x2-k.当k≤0时,f′(x)≥0,不合题意,舍 去,所以k>0. 令f′(x)=0,则 x k .
3
因为在(-3,-1)上函数不单调,
________,单调递增区间为_______.
3.讨论函数f(x)=x2-aln x(a≥0)的单调性.
【解题探究】1.解含有对数函数的问题,应注意什么?利用 导数求函数的单调区间,其实质是什么? 2.如何求多项式乘积形式函数的导数? 3.当函数的解析式中含有参数时,一般的处理思路是什么?
探究提示: 1.(1)要注意对数函数的定义域,即真数大于零.(2)求函数的单 调区间就是求不等式f′(x)>0(或f′(x)<0)的解集. 2.求多项式乘积式的导数,可以利用积的导数法则求解,也可以 把乘积式展开,利用和与差的导数法则求解. 3.当函数的解析式中含有参数时,一般的处理思路是对参数进 行分类讨论,然后在参数的不同情况下,分别求出结果.
x2
1 a
,
因为f(x)在(-∞,-3)上是增函数,即x<-3时,f′(x)>0恒成
函数的单调性与导数课件人教新课标
练习2:确定下面函数的单调区间:
f(x)=x/2+sinx;
解: (1)函数的定义域是R,
f ( x) 1 cos x.
2
令 1 cos x 0 ,解得 2kp 2p x 2kp 2p (k Z).
2
3
3
令 1 cos x 0
2
,解得 2kp 2p x 2kp 4p (k Z).
小 结:
函数的单调性与其导函数正负的关系
求函数的单调区间的1x0)000即x2(x1x21(1xx1)11x0)
,
0
,
解得x>1.
故f(x)的递增区间是(1,+∞);
由
f
x
(x) 0 1 0
解得-1<x<1,
故f(x)的递减区间是(-1,1).
求函数的单调区间的一般步骤:
(1) 求出函数 f(x)的定义域A;
(2) 求出函f(x)数的导数
在x∈(-∞,0)内
图象是单调降落的.
y
1 x2
0
在x∈( 0,+∞)内
图象是单调降落的.
y
1 x2
0
函数的单调性与其导函数正负的关系: 当函数y=f (x)在某个区间内可导时,
如果 f (x) 0 , 则f (x)为增函数;
如果 f (x) 0 , 则f (x)为减函数。
f (x)
例1、 f (x) 0 f (x) 0 f (x) 0
解: f (x)=3x2+3=3(x2+1)>0
从而函数f(x)=x3+3x 在x∈R上单调递增, 见右图。
o
x
f (x) x3 3x
(2) f(x)=x2-2x-3 ;
2024版《函数的单调性》全市一等奖完整版PPT课件
利用单调性证明不等式
1 2
构造函数 根据不等式的特点,构造一个与不等式相关的函 数。
判断函数单调性 通过求导或差分等方法判断所构造函数的单调性。
3
利用单调性证明不等式 根据函数的单调性,结合不等式的性质,证明不 等式成立。
2024/1/29
18
利用单调性解决实际应用问题
要点一
建立数学模型
要点二
判断函数单调性
2024/1/29
21
导数与微分在函数单调性研究中的应用
导数大于零的区间内函数单调 增加,导数小于零的区间内函 数单调减少。
2024/1/29
导数等于零的点为函数的驻点, 需要进一步判断其左右两侧导 数的符号来确定该点的单调性。
微分的概念可以应用于函数单 调性的研究,通过微分可以分 析函数的局部变化率,进而判 断函数的单调性。
14
指数函数与对数函数
对数函数 $y = log_a x$($a > 0, a neq 1$)的单调 性
当 $0 < a < 1$ 时,函数在 $(0, +infty)$ 上单调递减。
当 $a > 1$ 时,函数在 $(0, +infty)$ 上单调递增。
指数函数与对数函数的图像关于直线 $y = x$ 对称,即 互为反函数。
2024/1/29
19
05
函数单调性与其他知识点关联
2024/1/29
20
函数奇偶性与周期性对单调性影响
奇函数在对称区间上的单调性相 同,偶函数在对称区间上的单调
性相反。
周期函数在一个周期内的单调性 与整体单调性一致,可以通过研 究一个周期内的单调性推断整体
的单调性。
高二数学-函数的单调性与导数公开课优秀课件(经典、值得收藏)
二、题型探究
3.利用导数求参数的取值范围
例.若函数f(x)=2x2+ln x-ax在定义域上单调递增,求实数a的取值范围.
解 ∵f(x)=2x2+ln x-ax的定义域为(0,+∞), 且在(0,+∞)上单调递增,
∴f′(x)=4x+1x-a≥0 在(0,+∞)上恒成立. ∴a≤4x+1x在(0,+∞)上恒成立.
单调性 割线斜率的符号 切线斜率的符号 导数
一、知识讲解:
函数单调性与导函数正负的关系
单调性 割线斜率的符号 切线斜率的符号 导数
观察下面函数的图象,探讨单调性与其导函数正负的关系:
yx
y y x3
y y 1
y
y
x
ya
x o
x o
x o
x o
导数值 >0 <0
切线的斜率 >0 <0
倾斜角 锐角 钝角
曲线的变化趋势 函数的单调性
上升
递增
下降
递减
一般地,设函数y f (x),在区间(a,b)上,思考: 若f x(x) (a0,,b)则, ff(( xx)) 在0该区函间数上f递( x增)在;区间(fa(,xb))为 0增是函f(数x)为增函数 若函f (数x)f(0x,)在则区 f(间x)(a在, b该)为区增间函上递数减。f ( x)的什0恒么成条立件(不?恒等于0)
二、题型探究
2.函数图象与导数图象的关系 (2)如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是
解析: 由原函数的单调性可以得到导函数的正负情况依次是正→负→正→负,故选A.
二、题型探究
2.函数图象与导数图象的关系
(1)函数的单调性与其导函数的正负的关系:在某个区间(a,b)内,若f′(x)>0,则y=f(x) 在(a,b)上单调递增;如果f′(x)<0,则y=f(x)在这个区间上单调递减;若恒有f′(x)=0, 则y=f(x)是常数函数,不具有单调性. (2)函数图象变化得越快,f′(x)的绝对值越大,不是f′(x)的值越大.
课件人教高中数学选修函数的单调性与导数PPT课件_优秀版
如f(x)=x3,x∈(-1,1)
画出函数
图象的大致形状
函数单调性与导数正负的关系
已知 ,函数
在区间
如果在某个区间内恒有
,则 为?
如果函数具有相同单调性的单调区间不止一个,如何表示单调区间?
画出函数
图象的大致形状
yx3 3x?
定义法
你是如何去判断函数 y x 2 的单调性? 图象法
如图:
函数在 ( , 0)上为_减___函数,
2
o1
x o 12
x
(C)
(D)
类型二 利用导数求函数的单调区间
2
求函数 y3x2 3x 的单调区间.
解: y'6x3
令 y'0 得 x1, 令 y'0 得 x1
2
2
y3x23x的单调递增区间为 ( 1 , )
2
单调递减区间为 ( , 1 )
2
变1:求函数 y3x33x2 的单调区间.
解: y' 9 x 2 6 x 3 x (3 x 2 )
y
y x2
在 (0, 上) 为__增__函数.
o
x
函数及图象
单调性
导数的正负
y
f (x) x 在(,)上
o
x
递增
y
f (x)x 在(,)上
o
x
递减
f '(x) 10 f '(x)10
y
f (x) x2
在 (,0)上 递 减f '(x)2x0
o
x
在 (0,)上 递 增f '(x)2x0
在 某 个 区 间 (a,b)内 ,
(1)→B (2)→A (3)→D (4)→C
函数的单调性与导数--公开课省名师优质课赛课获奖课件市赛课一等奖课件
假如函数y=f(x)在区间D上是增函数或减函数,那么就说函数 y=f(x)在这一区间具有单调性。区间D叫做函数旳单调区间。
2.怎样用定义判断函数旳单调性?
(1)取值(2)作差(3)变形(4)定号(5)结论
二、讲授新课------导入新课
下图(1)表达高台跳水运动员旳高度 h 随时间 t 变化旳函 数h(t)= -4.9 t 2+6.5t+10 旳图象, 图(2)表达高台跳水运动 员旳速度 v 随时间 t 变化旳函数 v(t)= -9.8t+6.5 旳图象. 运动员从起跳到最高点, 以及从最高点到入水这两段时 间旳运动状态有什么区别?
二、讲授新课-----问题探究
观察下面某些函数旳图象, 探讨函数旳单调性与其导函数正负
旳关系.
y
(1)
y y=x (2)
y=x2o (3ຫໍສະໝຸດ yxoy=x3
y
(4)
x
y1 x
ox
o
x
二、讲授新课-----问题探究
y
一般地,函数旳单调性与其导
函数旳正负有如下关系:
(x1,f(x1))
y=f(x)
在某个区间(a,b)内,
解:(1)f '(x)=x3+3x= 3(x2+1)>0
所以函数f(x)=x3+3x在R上单调递增。 所以函数f(x)=x3+3x旳单调增区间为R。
二、讲授新课-----典例精讲
例 3. 判断下列函数旳单调性, 并求出单调区间:
(1) f(x)=x2-2x-3,
(2) f(x)=x2-2lnx
解 (2) 函数f(x)=x2-2lnx定义域为0,
h
(1)
2.怎样用定义判断函数旳单调性?
(1)取值(2)作差(3)变形(4)定号(5)结论
二、讲授新课------导入新课
下图(1)表达高台跳水运动员旳高度 h 随时间 t 变化旳函 数h(t)= -4.9 t 2+6.5t+10 旳图象, 图(2)表达高台跳水运动 员旳速度 v 随时间 t 变化旳函数 v(t)= -9.8t+6.5 旳图象. 运动员从起跳到最高点, 以及从最高点到入水这两段时 间旳运动状态有什么区别?
二、讲授新课-----问题探究
观察下面某些函数旳图象, 探讨函数旳单调性与其导函数正负
旳关系.
y
(1)
y y=x (2)
y=x2o (3ຫໍສະໝຸດ yxoy=x3
y
(4)
x
y1 x
ox
o
x
二、讲授新课-----问题探究
y
一般地,函数旳单调性与其导
函数旳正负有如下关系:
(x1,f(x1))
y=f(x)
在某个区间(a,b)内,
解:(1)f '(x)=x3+3x= 3(x2+1)>0
所以函数f(x)=x3+3x在R上单调递增。 所以函数f(x)=x3+3x旳单调增区间为R。
二、讲授新课-----典例精讲
例 3. 判断下列函数旳单调性, 并求出单调区间:
(1) f(x)=x2-2x-3,
(2) f(x)=x2-2lnx
解 (2) 函数f(x)=x2-2lnx定义域为0,
h
(1)
函数的单调性与导数-图课件
单调减函数的性质
03
04
05
函数图像从左至右下降 。
若$f(x)$在区间$I$上单 调递减,且$a, b in I$, 且$a < b$,则有$f(a) geq f(b)$。
若函数$f(x)$在区间$I$ 上单调递减,则其反函 数在相应的区间上单调 递增。
单调性与导数的关系
01
导数与单调性的关系
如果函数在某区间的导数大于0,则该函数在此区间单调递增;如果导
数小于0,则函数在此区间单调递减。
02
导数不存在的点
对于使导数不存在的点,需要单独判断其单调性。
03
高阶导数与单调性的关系
高阶导数的符号可以提供关于函数单调性更精细的信息。例如,二阶导
数大于0表示函数在相应点处有拐点,即由单调递增变为单调递减或反
之。
02 导数在判断函数单调性中 的应用
导数大于0与函数单调性的关系
定义法判断单调性
• 定义法判断单调性是指通过比较函数在某区间内任意两点x1和x2的函数值f(x1)和f(x2),来判断函数在该区间内的单调性。 如果对于任意x1<x2,都有f(x1)<f(x2),则函数在该区间内单调递增;如果对于任意x1<x2,都有f(x1)>f(x2),则函数在该 区间内单调递减。
03 导数在实际问题中的应用
导数在经济学中的应用
边际分析
导数可以用来分析经济函数的边 际变化,例如边际成本、边际收 益等,帮助企业做出更好的经济
决策。
最优化问题
导数可以用来解决最优化问题,例 如最大利润、最小成本等,为企业 提供最优的资源配置方案。
需求弹性
导数可以用来分析需求弹性,例如 价格敏感度、需求变化等,帮助企 业制定更加精准的市场策略。
函数的单调性与导数优秀ppt课件
①当1<x<4时,f’(x)>0; ②当x>4,或x<1时,f’(x)<0; ③当x=4,或x=1时,f’(x) =0. 试画出函数f(x)图象的大致形状。
y y=f(x)
O1
4
x
7/20/2024
例2 求函数 f (x) 2x3 3x2 12x 1 的单调区间
解: f '(x) 6x2 6x 12
7/20/2024
例1
设 f '( x)是函数 f ( x) 的导函数,y f '( x)的图象如
c 右图所示,则 y f ( x) 的图象最有可能的是( )
y
y f (x)
y
y f (x)
y
y f '( x)
o 1 2x o 1 2x
(A)
y y f (x)
(B)
o
2x
y y f (x)
G=(a,b)
y
y
oa
bx
oa
bx
若 f(x) 在G上是增函数或减函数,
则 f(x) 在G上有单调性。
G 称为单调增(减少)区间
新授 画出下列函数的图像,并根据图像指出每个函数的单调区间
y x2
y x3
y1 x
y
y
y
ox
ox
o
x
(-∞,0) (0,+∞)
(- ∞ ,+∞) (-∞,0) (0,,+∞)
为增区间; (4)解不等式f’(x)<0,解集在定义域内的部分
为减区间.
7/20/2024
课堂练习 求下列函数的单调区间。
(1) f (x) x2 2x 3 (2) f (x) x3 3x
y y=f(x)
O1
4
x
7/20/2024
例2 求函数 f (x) 2x3 3x2 12x 1 的单调区间
解: f '(x) 6x2 6x 12
7/20/2024
例1
设 f '( x)是函数 f ( x) 的导函数,y f '( x)的图象如
c 右图所示,则 y f ( x) 的图象最有可能的是( )
y
y f (x)
y
y f (x)
y
y f '( x)
o 1 2x o 1 2x
(A)
y y f (x)
(B)
o
2x
y y f (x)
G=(a,b)
y
y
oa
bx
oa
bx
若 f(x) 在G上是增函数或减函数,
则 f(x) 在G上有单调性。
G 称为单调增(减少)区间
新授 画出下列函数的图像,并根据图像指出每个函数的单调区间
y x2
y x3
y1 x
y
y
y
ox
ox
o
x
(-∞,0) (0,+∞)
(- ∞ ,+∞) (-∞,0) (0,,+∞)
为增区间; (4)解不等式f’(x)<0,解集在定义域内的部分
为减区间.
7/20/2024
课堂练习 求下列函数的单调区间。
(1) f (x) x2 2x 3 (2) f (x) x3 3x
《函数单调性与导数》课件
导数在物理问题中的应用
速度与加速度
在运动学中,导数可以用来描述 物体的速度和加速度。例如,自 由落体运动中,物体的速度和加
速度可以通过求导得到。
热传导
在热力学中,导数可以用来描述 热量传递的过程。例如,通过求 导得到温度场的变化率,可以帮
助我们理解热传导的规律。
弹性力学
在弹性力学中,导数可以用来描 述物体的应力应变关系。例如, 通过求导得到物体的应力分布和 应变状态,可以帮助我们理解物
调性
利用导数的符号变化,确定函数 在某区间内的增减性
通过求解一阶导数的不等式,判 断函数的单调性
利用导数判断函数单调性的方法
直接求导
对于已知函数,直接求导并分 析导数的符号变化
利用导数的几何意义
通过导数的几何意义,绘制函 数图像,直观判断函数的单调 性
构造新函数
通过构造函数并求导,利用导 数判断新函数的单调性来研究 原函数的单调性
成本效益分析
导数可以用来分析企业的成本效益,从而制定最优的经营策略。例如,通过求导找到最小 化成本或最大化的利润点,可以帮助企业制定合理的价格和产量策略。
投资组合优化
在金融领域,导数可以用来优化投资组合,以实现最大的收益或最小的风险。例如,通过 求导找到最优的投资组合比例,可以帮助投资者实现资产配置的目标。
详细描述:导数的计算方法包括定义法、求导公式和法则、复合函数求导、隐函数求导、参数方程确定的函数求导等。
03
利用导数判断函数单调性
导数与函数单调性的关系
导数大于零,函数单 调递增
导数等于零,函数可 能为极值点或拐点
导数小于零,函数单 调递减
单调性判定定理的推导
基于极限的导数定义,通过分析 函数在某区间的变化率来判断单
高二数学函数的单调性与导数授课PPT
1.3.1 函数的单调性与导数
观察函数y=x2-4x+3的图象:
y
0 ....2
.. .
总结: 该函数在区间 (-∞,2)上各点处 切线斜率小于0,即导 数为负,函数递减
在区间(2,+∞) 上各点处切线斜率
x 大于0,即导数为正,
函数递增
而当x=2时切线斜 率为0,即导数为0. 函数在该点单调性 发生改变.
3令f x 0,求根 4画决定f x正负的部分函数图象, 在定义域内判断根两侧f x的正负
5 写出单调区间 不用“U”
二、函数单调性与导数值大小的关系
一般地,设函数y=f(x),在区间(a,b)内 (1)如果|f′(x)|越大,函数在区间(a,b)内变化得_快____,函数 的图象就比较“陡峭”(向上或向下); (2)如果|f′(x)|越小,函数在区间(a,b)内变化得__慢___,函数 的图象就比较“平缓”(向上或向下).
一、函数的单调性与其导数正负的关系
在定义域的某个区间(a, b)内,
f '( x) 0 f ( x)在(a, b)内单调递增 f '( x) 0 f ( x)在(a, b)内单调递减
单调性:定义域、导数正负
例1、设 f x是 函数 的f x导 函数, y 的 f图象x 如
例4、若函数f x 2x a 在1,上单增,求a的取值范围
x 1
解:
f
x
2x 1 2x x 12
a
2a
x 12 0
a 2
又 当a 2时,f x 2
a ,2
பைடு நூலகம்
右图所示,则 y f的x图 象最有可能的是(
y
y f (x)
观察函数y=x2-4x+3的图象:
y
0 ....2
.. .
总结: 该函数在区间 (-∞,2)上各点处 切线斜率小于0,即导 数为负,函数递减
在区间(2,+∞) 上各点处切线斜率
x 大于0,即导数为正,
函数递增
而当x=2时切线斜 率为0,即导数为0. 函数在该点单调性 发生改变.
3令f x 0,求根 4画决定f x正负的部分函数图象, 在定义域内判断根两侧f x的正负
5 写出单调区间 不用“U”
二、函数单调性与导数值大小的关系
一般地,设函数y=f(x),在区间(a,b)内 (1)如果|f′(x)|越大,函数在区间(a,b)内变化得_快____,函数 的图象就比较“陡峭”(向上或向下); (2)如果|f′(x)|越小,函数在区间(a,b)内变化得__慢___,函数 的图象就比较“平缓”(向上或向下).
一、函数的单调性与其导数正负的关系
在定义域的某个区间(a, b)内,
f '( x) 0 f ( x)在(a, b)内单调递增 f '( x) 0 f ( x)在(a, b)内单调递减
单调性:定义域、导数正负
例1、设 f x是 函数 的f x导 函数, y 的 f图象x 如
例4、若函数f x 2x a 在1,上单增,求a的取值范围
x 1
解:
f
x
2x 1 2x x 12
a
2a
x 12 0
a 2
又 当a 2时,f x 2
a ,2
பைடு நூலகம்
右图所示,则 y f的x图 象最有可能的是(
y
y f (x)
函数的单调性(公开课课件)
VS
单调性与极值大小的关系
单调性可以用来比较不同区间上的极值大 小。
单调性与最值的关系
单调性与最值点的关系
单调性可以用来判断函数在某点是否为最值 点。
单调性与最值大小的关系
单调性可以用来比较不同区间上的最值大小 。
THANKS FOR WATCHING感Biblioteka 您的观看CHAPTER 03
函数单调性的应用
利用单调性求参数范围
通过函数的单调性,我们可以确定参数的取值范围,进而解决一些数学问题。
在函数中,如果函数在某区间内单调递增或递减,那么我们可以根据函数值的变化趋势,确定参数的取值范围。例如,如果 函数$f(x)$在区间$(a, b)$内单调递增,且$f(x_0) = 0$,那么对于任意$x in (a, b)$,都有$f(x) > 0$,从而可以得出参数的 取值范围。
单调性可以通过函数的导数来判断,如果函数的导数大于等于0,则函数在该区 间内单调递增;如果函数的导数小于等于0,则函数在该区间内单调递减。
单调增函数和单调减函数
01
单调增函数是指函数在某个区间 内随着自变量的增加而增加。
02
单调减函数是指函数在某个区间 内随着自变量的增加而减少。
函数单调性的几何意义
导数与函数单调性
总结词
导数可以判断函数的单调性,当导数大于0时,函数单调递增;当导数小于0时 ,函数单调递减。
详细描述
导数表示函数在某一点的切线斜率。如果导数大于0,说明切线斜率为正,函数 在该区间内单调递增;如果导数小于0,说明切线斜率为负,函数在该区间内单 调递减。
复合函数的单调性
总结词
复合函数的单调性取决于内外层 函数的单调性以及复合方式。
《函数的单调性与导数》人教版高中数学选修PPT精品课件
;
③解不等式 f ( x) 解不等式f ( x)
>0得f(x)的单调递增区间; <0得f(x)的单调递减区间.
人教版高中数学选修2-2
讲解人: 时间:
感谢你的聆听
第1章 导数及其应用
h(t) = -4.9t2 + 6.5t + 10
的图像.运动员从起跳到最高点,以及从最
高点到入水这两段时间内,随着时间的变化,运动员离水面的高度发生什么变化?
h
M
h f (t)
o
m
t
新知探究
通过观察图像,我们可以发现: (1)运动员从起跳到最高点,离水面高度h随时间t的增加而增加,即h(t)是增函数.相应的,
)
A.a 1 3
B.a 1
C.a 0
D.a 0
课堂练习
D 设函数f(x)在定义域内可导,y=f(x)的图象如右图所示,则导函数y=f’(x)的图象可能是(
(A)
(B)
(C)
(D)
课堂练习
已知函数f(x)=kx3-3(k+1)x2-k2+1(k>0),若f(x)的单调减区间为(0,4),1则k=____.
新知探究
例4 如图1.3-6,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器 中,试分别找出与各容器对应的高度h与时间t的函数关系图像.
1 h
2 h
3 h
o A t
o B t
o C t
图1.3 6
4 h
o D t
新知探究
解 1 → B, 2 → A, 3 → D, 4 → C.
课前导入
单调函数的图象特征
G=(a,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
x
跟踪训练
练习 :求函数
f ( x ) ( )x3 ( )x2 ( )x
的单调区间.
本节小结 知识
通过学习你有 什么收获?
方法
思想
回归生活
过山车
体会数学
感悟:数学来源于生活
人生犹如过山车,站在人生的每个瞬间的点上,我们都能 向上看,人生轨迹就会是持续上升趋势;相反,如果我们被负 面情绪萦绕,我们就会走下坡路. 只要饱含正能量,脚踏实地走好每一步,相信同学们的前 途会一片光明!
y 0 即: x
(函数的平均变化率)
普通高中课程标准实验教科书(人教A版选修1-1)
3.3.1
函数的单调性与导数
安阳市实验中学 张丽园
分析猜想
函数单调性与导数的关系
函数 f ( x )在区间 ( a , b )内是 增函数 减函数. .
) f ( x2 ) ; 任意 x1 , x 2 ( a , b ) , 当 x1 x2时,都有 ff ( (x x1 1) f (x 2)
函数 f ( x ) 定义域内的区间 ( a , b ) 任意 x1 , x 2 ( a , b ) , 当 x1 x2 时,都有 f ( x1 ) f ( x2 ) ;
函数 f ( x )在区间 ( a , b )内是 增函数.
f ( x2 ) f ( x1 ) x2 x1
0
0 x2 当 f ( x) 0, 即________________ 时, 单调递减 函数 f ( x) x3 3x 2 _____________ .
f ( x ) 单调递增区间为 ( ,0) , (2,) 单调递减区间为 (0, 2 ) .
;
运用新知
3 2 例 :求出函数 f ( x) x 3x 的单调区间,画出函数的大致图象.
即:
y 0 x
理论分析
函数单调性定义
任意 x1 , x 2 ( a , b ) , 当 x1 x2时,都有 f ( x1 ) f ( x2 ) ; 函数 f ( x )在区间 ( a , b )内是 减函数.
f ( x2 ) f ( x1 ) x2 x1
0
导数 (瞬时变化率)
(0,4) .
问题分析
判断函数 f ( x) x 4 ln x 1 的单调性,并求出单调区间.
f ( x) x 4 ln x 1
f ( x) 1
x 2,5
4 x
运用新知
用导数求单调区间的方法:
3 2
例 :求出函数 f ( x) x 3x 的单调区间,画出函数的大致图象. 解: 函数的定义域为 R 因为 f ( x) x3 3x 2 , 2 所以 f ( x) 3x 6x . x 0或x 2时, 当 f ( x) 0, 即______________ 单调递增 函数 f ( x) x3 3x 2 _____________ ;
课后作业 必做题:教材98页 习题3.3 A组 1、2题; 选做题:
结合所学知识,举几个函数实例,比较 定义法、图象法、导数法求单调区间的特点.
问题分析
判断函数 f ( x) x 4 ln x 1 的单调性,并求出单调区间.
如何运用导数 知识解决?
问题解决
判断函数 f ( x) x 4 ln x 1 的单调性,并求出单调区间. 解: 函数的定义域为(0,), 因为 f ( x) x 4 ln x 1, 4 f ( x ) 1 所以 x . 当 f ( x) 0, 即 x 4 时, 函数 f ( x) x 4 ln x 1单调递增 ; 当 f ( x) 0 ,即 0 x 4 时, 函数 f ( x) x 4 ln x 1 单调递减. f ( x ) 单调递增区间为 (4,), 单调递减区间为
函数的单调性 与导数
问题引入
我市气象站对冬季某一天气温变化的数据统计显示,从2时 到5时的气温 C 与时间 t 可近似的用函数 C (t ) t 4 ln t 1 拟 合,问:这段气温 C 随时间 t 的变化趋势如何?
如何判断函数的单调性? 了解函数的什么性质?
理论分析
函数单调性定义
典例分析
h(t ) 4.9t 2 6.5t 10
高台跳水
t 变化的函数
h '(t ) 9.8t 6.5
高台跳水运动员的高度 h 随时间
h
v
o
a
t
o
a
bt
结论总结
函数的单调性与其导函数正负的关系:
在某个区间 ( a, b) 内,
如果 f ( x) 0 , 那么函数 y f ( x)在 ( a, b) 内单调递增; 如果 f ( x) 0,那么函数 y f ( x)在 ( a, b)内单调递减.
导数的符号
函数的单调性
结论总结
函数的单调性与其导函数正负的关系:
在某个区间 ( a, b) 内,
如果 f ( x) 0 , 那么函数 y f ( x)在 ( a, b) 内单调递增; 如果 f ( x) 0,那么函数 y f ( x)在 ( a, b)内单调递减.
若某个区间内恒有 f ( x) 0
导数 导数的符号 (瞬时变化率)
?
y y 0 即: x
(函数的平均变化率)
合作探究
函数单调性与导数正负的关系
熟悉的基本初等函数? 导数的几何意义?
函数图象在该点处 切线的斜率
合作探究 方
法
函数单调性与导数正负的关系
演 示
探索新知
函数 图象 增区间
增区间上 导数符号
减区间 减区间上 导数符号