地区电网AVC控制策略的研究与分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地区电网A VC控制策略的研究与分析
发表时间:2018-08-13T09:34:30.770Z 来源:《基层建设》2018年第21期作者:代礼琴秦建明
[导读] 摘要:在电力系统SCADA调度自动化系统发展的越来越成熟的前提下,自动电压控制(Automatic V oltage Control,A VC)在地区电网的运用也越来越有必要。
云南电网责任有限公司怒江供电局云南省怒江傈僳族自治州 673200
摘要:在电力系统SCADA调度自动化系统发展的越来越成熟的前提下,自动电压控制(Automatic Voltage Control,AVC)在地区电网的运用也越来越有必要。AVC在极大程度上提高电网系统的电压水平、减少网损、拉升地区的经济效益,对于国民经济增长来说,也是重要的提升手段。相比于传统的控制方式,这一控制方法的优势较为明显。但AVC因自身的电压有着极大的非线性特点,再具体的实现上比较复杂。因此,本文将结合实际的电网控制情况,对地区电网的AVC控制策略进行研究与分析。
关键词:地区电网;AVC控制策略;研究分析
电压是电力系统可靠性运行的重要指标,电力系统的特性决定了电压值的不唯一性,而电力系统的安全性、稳定性对电压值的唯一性有着极高的要求,这就决定了对电网电压控制上有着极高的标准,应用电压无功自动控制系统之后,变电站电压和无功的控制方式得到了革新,AVC系统的控制策略也就成为了有关领域关注的焦点,而电压调整本着分层分区、就地平衡的原则,由此可见,地区电网AVC控制策略的研究具有现实意义。
1 AVC概述
1.1 AVC定义
AVC是自动电压控制的英文缩写,是通过无功率调整装置进行集中自动调整无功功率输入量以及自动改变无功功率分布,使得注入电网的无功值转化为电网经济运行要求的具体优化值,从而实现电网最经济运行的目标。
1.2 AVC系统工作原理
AVC系统是通过调度自动化系统采集各节点遥测、遥信等实时数据以各节点电压合格、关口功率因数为约束条件,进行在线电压无功优化分析与控制,实现主变分接开关调节次数最少和电容器投切最合理、电压合格率最高和输电网损率最小的综合优化目标,最终形成控制指令,通过SCADA调度自动化系统自动执行,实现了电压无功优化运行闭环控制。
1.3 AVC体系结构
目前,电压自动控制结构体系可分为三个等级:变电站、地区电网、全网。而地区电网变电站多采用无人值班管理形式,在地区电网调度的层次之下建立多个集控站,由集控站管理若干个无人值班变电站,等级由下至上,由简单向复杂转变,体系相对比较完善。在一个地区内,电网是直接面向广大的电力用户的,因此AVC系统也应当对电能的整体质量进行监控,使其满足正确的电能需求。
2.地区电网的AVC策略
2.1 区域电压控制
区域整体无功平衡对区域群体电压水平具有重要影响,AVC系统实现了自适应区域嵌套划分,并且实现了实时灵敏度分析,进而监测区域枢纽厂站的运作状态,如果区域内电压出现波动,AVC系统可以及时对厂站无功设备进行调控,从而保证区域电压符合标准,此外电压无功自动控制系统可以避免多主变同时调节,增强了系统的稳定性和可靠性。
2.2 就地电压控制
由实时灵敏度分析可知,就地无功设备控制能够最快、最有效校正当地电压,消除电压越限。当某厂站电压越限时,启动该厂站内无功设备调节。该厂站内变压器和电容器按就地电压策略协调控制,实现电压无功综合优化。
2.3 区域无功控制
区域内的无功控制,应当尽可能的减少该区域内线路的无功功率传输。对于控制对象来说,为全电网内的无功设备。因此在电网的电压处于较高的运行水平的情况下,AVC系统会自动检查这一线路的实际无功传输是否合理,并且通过系统内的实际运算系统进行分析研究,决定无功补偿装置的具体投切情况,进而达到减少线路的无功传输目的,并且在一定程度上降低线损。在这一具体的过程中应当从无功切除策略与无功投入策略两个具体方面进行考量,达到无功控制的最佳效果。
3.地区电网AVC控制策略优化
AVC系统的运行,大幅提高了各级电压水平,但由于其对无功电压调整精细的特点,增加了变电站无功设备的动作次数,为了提高无功设备使用寿命,对其策略可做进一步优化。
3.1 冲击负荷判别:AVC系统一般设定10秒为一个取数周期,即每隔10秒从SCADA中取一次量测数据,判断越限的条件是需要满足连续几个取数次数都越限才认为是越限。对于带有钢铁、电铁等冲击性负荷的变电站,冲击负荷会造成母线电压短时内大幅波动,负荷到来时电压越下限,负荷消失后电压越上限,造成无功设备反复调整。针对冲击性负荷,在系统设定中,可增加采样次数,同时对AVC下发的控制命令进行延时设置,使其动作时间大于负荷冲击时间,这样在负荷冲击过程中,AVC系统不会动作,电压虽然短时间越限,但总体呈现平稳状态,大幅减少变电站无功设备动作次数。
3.2 分时段设置电压限值:目前AVC系统无法判断负荷变化趋势,负荷爬升或回落时段存在电容器投切造成电压短时越限后再用主变档位反向校正电压的情况,增加分头动作次数。针对此种情况,可将AVC限值按照峰、平、谷时段分时设置,并根据季节性负荷特点,灵活掌握。如正常10kV母线电压限值为10.1-10.6kV,而在高峰时限值设为10.35-10.65kV,使其实现“逆调压”,补偿电网电压的损失。
4.总结
目前。地区电网电压和无功的调节仍以手动操作变电站无功设备为主,研究出适用于地区电网的AVC控制系统可取代传统的手动操作,减少了工作人员的劳动量,同时也可提高系统的可靠性,AVC动控制系统是利用无功平衡的局域性和分散性来控制电压无功。笔者认为,在电力系统SCADA调度自动化系统不断发展的今天,AVC系统的运用势在必行,在今后的很长一段时间我们仍要致力于对AVC系统的研究、分析与应用,为电网的经济、安全运行提供可靠的AVC控制系统。
参考文献:
[1]陈琪. 基于AVC 控制策略地区电网无功优化研究[J]. 中国电业(技术版),2013(79108):28-32.