复变函数与积分变换:7-Fourier变换习题课

合集下载

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛⎫-+-- ⎪⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭∴Re 1=⎝⎭, Im 0=⎝⎭.④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数①解:2i -+== ②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++④解:1i 1i 22++==4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. 并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式 ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭ 8.计算:(1)i 的三次根;(2)-1的三次根;(3) 的平方根.⑴i 的三次根. 解:∴1ππ1cosisin i 662=+z .2551cos πisin πi 662=+=+z ⑵-1的三次根 解:∴1ππ1cos isin 332=+=z的平方根.解:πi 4e ⎫⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图. 解:(1)、argz =π.表示负实轴. (2)、|z -1|=|z |.表示直线z =12. (3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变(北京邮电大学)课后的习题答案

复变函数与积分变(北京邮电大学)课后的习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换第一章习题课.

复变函数与积分变换第一章习题课.

解:
1)(1 i 3)10 [2(cos2 i sin 2 )]10
3
3
210 (cos20 i sin 20 )
3
3
1024(cos2 i sin 2 )
3
3
512 i512 3.
2)3
27
2k i
3e 3 , k
0,1,2.
13
13
w0
3( 2
i
2
), w1
3,
w2
3( 2
x2
x
y2
i
x2
y
y2
u iv,
u2 v2 1 . 4
13.已知映射 z3,求: 2)区域0 arg z 在平面上的像。
3
解:
2)映射 z3将区域0 arg z 映成
3
0 arg z .
15.设f (z) 1 ( z z ),(z 0),试证:当 2i z z
22
2
2 22
z 34 , Argz arctan5 2k , k 0,1,.
2
3
2.当x, y等于什么实数时,等式
x 1 i( y 3) 1 i 5 3i
成立。
解:
原式等价于x 1 i( y 3) 2 8i, 根据复数
相等的概念,有
x y
1 3
28,即
x 1 .
y 11
13. 三角函数
1)定义:
sin z eiz eiz , cos z eiz eiz
2i
2
2)性质: 在复平面内是解析的,且 (sin z) cosz ,(cosz) sin z .
14. 对数函数
定义: 若 ew z ,则称 w 为复变函数 z 的对数 函数,记为 Lnz .

复变函数与积分变换课后习题答案详解

复变函数与积分变换课后习题答案详解

…复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)/——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππ2222e cos isin i i 442222-⎛⎫⎛⎫⎛⎫=-+-=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 3331313;;;.22n i i z i ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解: ∵()()()()(){}332321i 31i 3113133133288-+⎛⎫-+⎡⎤⎡⎤==--⋅-⋅+⋅-⋅-⎪ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ④解:∵()()()()()2332313133133i 1i 328⎡⎤--⋅-⋅-+⋅-⋅-⎛⎫⎢⎥-+⎣⎦= ⎪ ⎪⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++ ①解:2i 415-+=+=.2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i 51365++=++=⋅=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 2222++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈,则z x x ==.∴z z =.命题成立.5、设z ,w ∈,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式 3352π2π;;1;8π(13);.cos sin 7199i i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i 17e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π13i 16ππ3θ-==-.∴()2πi 38π13i 16πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 33i的平方根.⑴i 的三次根. 解:()133ππ2π2πππ22i cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ31cosisin i 662=+=+z .25531cos πisin πi 662=+=z39931cos πisin πi 662=+=-z⑵-1的三次根 解:()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-+=+=∴1ππ13cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin π332=+=-z33i 的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i44ππ2π2π4433i 6e 6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换-第七章-傅里叶变换

复变函数与积分变换-第七章-傅里叶变换
证:f t 1 F ejt d
2
1
2

2d

0 ejt d
ejt
0
ej0t
.
即ej0t 和2d 0 构成了一个傅氏变换对。
由上面两个函数的变换可得
e jt dt 2d
1
2


f ( )cos(t )d

j

f
(
) sin
(t

)d

d
因 f ( )sin(t )d 是ω的奇函数, f cos t d是 的偶函数,
定义
d
t


lim
0
d

t


0
t 0。 t 0
O


d t dt

lim 0

d t dt
lim 0
1 dt
0
1
(在极限与积分可交换意义下)
工程上将d-函数称为单位脉冲函数。
22
d -函数的筛选性质:
若f(t)为无限次可微的函数,则有
2 3

19
3.单位脉冲函数及其傅里叶积分变换
在物理和工程技术中, 常常会碰到单位脉冲函数. 因为有许多物理现象具有脉冲性质, 如在电学中, 要 研究线性电路受具有脉冲性质的电势作用后产生的电 流; 在力学中, 要研究机械系统受冲击力作用后的运 动情况等. 研究此类问题就会产生我们要介绍的单位 脉冲函数.
从 f t 1
2



f

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数第1节 傅氏积分,傅氏变换

复变函数第1节 傅氏积分,傅氏变换

解. 由Fourier变换的定义
F (w) F [ f (t)] f (t) e-iw td t -
1 e-iw t d t e-iwt 1 2sinw
-1
-iw -1
w
再求F(w)的Fourier逆变换即得 f(t)的积分表达式,
f (t) F -1[F (w)] 1 F (w) eiwtd w
1
1/2
t
二、单位脉冲函数及其傅氏变换
在物理学和工程技术中,除了连续分布量之外, 还有集中作用在一点的量. 例如,点电荷、点热源、 质点、单位脉冲等. 下面分析在原点处的单位脉冲.
设矩形电流脉冲:
(t
)
1
/
0
0t
其它
- (t)dt 1
(t)
1/
O
t
lim
0
(
t
)
0
t 0 t 0
引进狄拉克(Dirac)的函数,
i
-
f
( ) sin w(t
-
)d
dw
1
2p
-
-
f
(
)
cos w (t
-
)
d
d
w
(1.5)

f (t) 1
2p
-
-
f
(
)
cos w (t
-
)
d
d
w
(1.5)
可得
f (t) 1
p
0
-
f ( ) cosw(t
-
)
d
d
w
(1.6)
傅氏积分公式的三角形式
-
)
d
d

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ①:∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos isin i 662=+=+z . 2551cos πisin πi 662=+=z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.πi 4e ⎫⎪⎪⎝⎭)()1π12i44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换第1章Fourier解读

复变函数与积分变换第1章Fourier解读

第一章Fourier变换§ 1.1 Fouriei•积分§ 1.2 Fourier变换的概念与性质§ 13 Fourier变换的应用主要内容Fourier变换是一种对连续时间函数的积分变换,通过特定形式的积分建立函数之间的对应关系•它既能简化计算(如解微分方程或化卷积为乘积等),又具有明确的物理意义(从频谱的角度来描述函数的特征),因而在许多领域被广泛地应用•离散和快速Fourier变换在计算机时代更是特别重要.§ 1.1 Fouriei•积分Recall:周期函数在一定条件下可以展开为Fourier级数;但全直线上的非周期函数不能有Fourier表示;引进类似于F ourier级数的Fourier积分(周期趋于无穷时的极限形式)1.1 Recall:在工程计算中,无论是电学还是力学,经常要和随时间而变的周期函数广应)打交道•例如:具有性质/ra+rW/G,其中卩称作周期,而1/T代表单位时◎动的次数,单位时间通常取秒,即每秒重复多少次,单匸疋赫兹(Herz,或Hz).最常用的一种周期函数是三角函数。

人们发现,所有 的工程中使用的周期函数都可以用一系列的三角函数的 线性组合来逼近••…Fourier 级数研究周期函数实际上只须研究其中的一个周期内的情况,通常研究在闭区间[-T/2JV2]内函数 变化的情况.Dirichlet 条件:•心⑴连续或仅有有限个第一类间断点;⑴仅有有限个极值点贝呢⑴可展开为Fourier 级数,且在连续点f 处成立:Q0九⑴为T-周期函数,在上满足©叶鉴+ 工(色cos neat + b n sin ncot^n=\其中3=2兀「£ = ¥『;/(/) bn =討丁;/厂⑴sin 叱血(〃 =1,2,…) 在间断点f 处成立:M+ 0) +m - 0)七 +£ (a” COST +b n sin n^t)2n=\• incot—e2i级数化为:2 2令5 =等C” = 乎,d” = 屮,则c° =缶心 S £ J ;;齐⑴ 2°cosncotdt (H = 0,1,2,-・・)2 引进复数形式: 』net * ^ incot cos HCD Z = ------------------------ , sin neo t = ---- 2 Jn (dt . -in (dt / -in (x )t 、e 4-ef e —ean -------------- - ----------- + O’ ------------- --- ----------22i )'a n - ib n in(dt + % +比八^一和冋]7占dtfc /=: —flWsin 妁M = * J;;") 〃” =£ J;;加)[COSM/+i sin ncot]dt= ”:J ⑴^^n = l,2,・.)(j =耳)合并为:C 弓]T :J T (”叫心=0,± 1, ±2,…)=ly Pf 72T 厶 J-r/2丄 M=—8」C n = F(nco^—f T (J )的离散频谱;|c”|—A ・(r)的离散振幅频谱; argc”一/^(f)的离散相位频谱;乙若以触/)描述某种信号,贝陀”可以刻画齐(/)的◎频率特征。

(完整版)《复变函数与积分变换》习题册(2)

(完整版)《复变函数与积分变换》习题册(2)

第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。

一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 。

8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________.9、设i z 21=,i z -=12,则)(21z z Arg = _ _____.10、设4i e 2z π=,则Rez=____________. Im()z = 。

z11、.方程0273=+z 的根为_________________________________.12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 。

13、方程3)Im(=-z i 表示的曲线是__________________________. 14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________. 15、不等式114z z -++<所表示的区域是曲线 的内部。

16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。

复变函数与积分变换-第七章-傅里叶变换

复变函数与积分变换-第七章-傅里叶变换

t e intdt n
0,1,2,L

这就是Fourier级数的复指数形式,或者写为
6
接下来讨论非周期函数的展开问题。
任何一个非周期函数 f (t) 都可以看成是由某个 周期函数 fT(t) 当T时转化而来的。
作周期为T 的函数 fT (t), 使其在[T/2,T/2]之内 等于 f (t), 在[T/2,T/2]之外按周期T 延拓到整个数轴 上, 则T 越大, fT (t)与 f (t) 相等的范围也越大, 这就说 明当T时, 周期函数 fT(t) 便可转化为 f (t), 即有
1
2


f ( )cos(t )d

j

f
(
) sin
(t

)d

d
因 f ( )sin(t )d 是ω的奇函数, f cos t d是 的偶函数,
1 F eitd 称为F 的Fourier逆变换,
2
n-1n

又 (n )
1
2


f
(
)e jn
d

e jnt

f
(t
)

lim
n 0
n
T
(n
)n



(n ) d n
( )d

最后可得:
f (t) 1
2

an
2 T
T2
T 2 fT t cosntdt
bn
2 T
T2
T 2 fT t sinntdt
在间断点t 处成立:

复变函数与积分变换:7-Fourier变换习题课

复变函数与积分变换:7-Fourier变换习题课

0
1
0
2 2 4 4 4 cos
td .

2
0 4
2 costd
4
e|t| cos t .
2
13
机动 目录 上页 下页 返回 结束
例4 已知某函数的傅氏变换为
F ( ) sin ,
求该函数.

f
(t)
1
2
sin eitd
1
0
sin
cos
td
1
2
0
sin(1
t )d
25
机动 目录 上页 下页 返回 结束
4. 综合运用
例7 计算函数f (t) tu(t)et sin 0t的Fourier
变 换.
解 法一 由F [u(t )et ] 1 ,
i
利用位移性质
F [u(t )et sin 0t]
1 F [u(t )etei0t ] 1 F [u(t )etei0t ],
2i
2i
26
机动 目录 上页 下页 返回 结束
1
1
1
1
2i i( 0 ) 2i i( 0 )
2 0
0 (
i
)2
,
再由微分性质
F
[tu(t )et
sin 0t]
i
d
d
02
0 (
i )2
20 (
[
2 0

i ) i)2 ]2
27
机动 目录 上页 下页 返回 结束
法二
F
[tu(t )et
(C )F [2 (t )] 1
(D)F [sgn(t )] 2
i

复变函数与积分变换课后习题答案(北京邮电大学出版社)

复变函数与积分变换课后习题答案(北京邮电大学出版社)

复变函数与积分变换课后答案(北京邮电大学出版社)复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案1 / 37习题一1.用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解:()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解:()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① : ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明:z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos i sin 332=+=+z2cos πisin π1=+=-z3551cos πi sin π332=+=-z的平方根.πi 4e ⎫=⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2.∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换第7章Fourier变换

复变函数与积分变换第7章Fourier变换
令-t=u,则

由定义7.5知δ (t)=δ (-t).
页 退出
复数函数与积分变换
出版社 理工分社
性质3设a≠0为实数,则 我们仅证①,事实上只要证对于(-∞,+∞)上的任意连续函数f(t)有
即可. 下面区分两种情况: 当a>0时,令x=at,则

页 退出
复数函数与积分变换
可知①成立. 当a<0时,令x=at,则
fT(t)与f(t)相等的范围也越大,即有
记 式(7.4)知
,则当T→∞时,有Δ ω n→0,由式(7.5) 、

页 退出
复数函数与积分变换
出版社 理工分社
式(7.6)称为f(t)的Fourier积分公式。 定理7.1(Fourier积分定理) 若f(t)在区间(-∞,+∞)上有定义且 ①f(t)在任何有限区间上满足Dirichlet条件; ②f(t)在区间(-∞,+∞)上绝对可积,即
例如, 因为F[δ (t)]=1,则由原函数的位移性质知
页 退出
复数函数与积分变换
(3)象函数的位移性质 (4)相似性质
出版社 理工分社
页 退出
复数函数与积分变换
(5)原函数的微分性质
出版社 理工分社
证首先,由高等数学知识可知,对任何k∈N∪{0},满足Fourier积分定理
条件的函数
于是由Fourier变换定义,利
页 退出
复数函数与积分变换
出版社 理工分社
例7.4设x轴表示一根弦,质量分布函数为
,求线密度函数
ρ (x).
解任取x∈(-∞,+∞),当x≠0且δ >0充分小时,(x-δ ,x+δ )上分布的

积分变换(Fourier)课件与习题

积分变换(Fourier)课件与习题

的工程中使用的周期函数都可以用一系列的三角函数的
线性组合来逼近.---- Fourier级数
方波
4个正弦波的逼近
100个正弦波的逼近
4
研究周期函数实际上只须研究其中的一个周 期内的情况即可, 通常研究在闭区间[T/2,T/2]内 函数变化的情况.
T T fT (t )为T 周期函数,在 , 上满足 2 2 Dirichlet条件: fT (t )连续或仅有有限个第一类间断点; fT (t )仅有有限个极值点 则fT (t )可展开为Fourier级数,且在连续点t处成立: a0 fT (t ) an cos nt bn sin nt 2 n1

18
一般地, 对于周期T
1 T2 j n t cn T fT (t )e dt T 2 1 1 j n t e dt T 1 1 1 1 j n t j n j n e e e Tj n Tj n 1 2 sin n 2 sinc( n ) (n 0,1,2, ) T n T
cos nt
e
int
e 2
int
, sin nt
e
int
e 2i
int
6
级数化为: a0 e int e int e int e int an bn 2 n 1 2 2i a0 a n ibn int a n ibn int e e 2 n 1 2 2
1 从 而f (t ) f ( )cos (t )d d 2 1 可得 f (t ) f ( )cos (t )d d , 0 这就是f (t )的Fourier积分公式的三角形式。

Fourier变换练习题(全,有答案)(可编辑修改word版)

Fourier变换练习题(全,有答案)(可编辑修改word版)

0
eateit dt
0
R
0
= lim e(ai)t dt lim e(ai)t dt
R
=
lim
R
0
e(ai )t (a i)
R 0
R R
lim e(ai)t R a i
0 R
1 a i
1 a i
2a a2 2
;
F1[F ()]
1 2
F ()eitd=
1 2
2a a2 2
sin
td
2
0
1 0
1d
cos
sin td
2
0
1
cos
1 0
1 0
cos d
sin td
2
0
1
cos
sin
1 sintd 0
2
0
1
cos
sin
sin
td
2
sin
2
cos
sin td
0
3
0,
(2)
f
(t
)
1,
1,
0,
2
1 2i (cos sin )(cost i sin t)d
2
2 sin sin t cos sin t d
0
2
解法二:由于 f(t)为奇函数,故由课本 P12 页的(1.12)式可知,
f
(t)
2
0
0
f
(
) sin d
sin
td
2
0
1 0
sin d
(1)
f
(t
)
t, 0,
| t | 1

Fourier变换练习题(全,有答案)(2021年整理精品文档)

Fourier变换练习题(全,有答案)(2021年整理精品文档)

Fourier变换练习题(全,有答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(Fourier变换练习题(全,有答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为Fourier变换练习题(全,有答案)的全部内容。

积分变换练习题 第一章 Fourier 变换________系_______专业 班级 姓名______ ____学号_______§1 Fourier 积分 §2 Fourier 变换一、选择题1.设0()()f t t t δ=-,则[()]f t =F [ ] (A)1 (B)2π (C )0j t e ω (D )0j t e ω-000[()]()i t i t i tt t f t t t e dt e e ωωωδ∞---=-∞⎛⎫=-== ⎪⎝⎭⎰F二、填空题1.设0a >,,0(),0at at e t f t e t -⎧<=⎨>⎩,则函数()f t 的Fourier 积分表达式为222cos atdt a ωπω∞+⎰ 000()()00()()2201()[()]()==lim lim 112=lim lim ;()112[()]()=22i t at i t at i t R a i t a i tR R RR a i t a i t R R R i tF f t f t e dt e e dt e e dt e dt e dte e a a i a i a i a i a F F e d ωωωωωωωωωωωωωωωωωππ∞∞-----∞-∞-+-→∞→∞--+-→∞→∞-∞--∞==+++=+=-+-+-+=⎰⎰⎰⎰⎰⎰F F 22220(cos sin )2cos =a t i t d a a t d a ωωωωωωπω∞-∞∞⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎪ ⎪++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎰⎰ 2.设[()]()f t δω=F ,则()f t =12π10111[()]()=222i ti t e d e ωωωδωδωωπππ∞-=-∞⎛⎫== ⎪⎝⎭⎰F 3.设2()sin f t t =,则[()]f t =F ()[(2)(2)]2ππδωδωδω-++-2221cos2[()]()=sin 211()()[(2)(2)]242i t i t i t i t it it i tt f t f t e dt te dt e dt e dt e e e dt ωωωωωππδωδωδω∞∞∞----∞-∞-∞∞∞----∞-∞⎛⎫-== ⎪ ⎪ ⎪ ⎪=-+=-++- ⎪⎝⎭⎰⎰⎰⎰⎰F4.设()δt 为单位脉冲函数,则2()cos ()3πδ+∞-∞+=⎰t t dt 14221()cos ()cos ()334t t dt ππδ+∞-∞⎛⎫+== ⎪⎝⎭⎰ 三、解答题1.求下列定积分: (可用《高等数学》的方法做)1(1)sin azebzdz ⎰ 1(2)cos azebzdz ⎰1()111()000022222211(cos sin )((cos sin )1)()cos sin 1sin cos (cos sin )(co a ib z a ib az az ibz a ib za a a a a az ax e e e bz i bz dz e e dz e dz a iba ibe b i b a ib ae b be b ae b be b b ia b a b a b I e bz i bz dz e +++-+====+++-+--+-==++++=+=⎰⎰⎰⎰在原积分中,由于被积函数解析,则1111s sin ),cos Re ;sin Im ax ibx az az bx i bx dx e e dx e bzdz I e bzdz I+===⎰⎰⎰⎰从而 2.求矩形脉冲函数,0()0,A t f t τ≤≤⎧=⎨⎩其他的Fourier 变换.(1)[()]()=Ai i ti tA e f t f t edt Aedt i τωωωω∞----∞-==⎰⎰F3.求下列函数的Fourier 积分: ,||1(1)()0,||1t t f t t ≤⎧=⎨>⎩,解法一:1112221()()=1112sin (cos )112sin ()()(cos )2212sin (cos )(cos sin )22sin sin cos sin i ti t i ti i i ti t F f t edt te dti ti i ie e e if t F e d e d it i t d t tωωωωωωωωωωωωωωωωωωωωωωωππωωωωωωωπωωωωωωωπ∞---∞----∞∞-∞-∞∞-∞=++-==-=-==-=-+-=⎰⎰⎰⎰⎰;2d ωω∞⎰解法二:由于f (t)为奇函数,故由课本P12页的(1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 广义傅里叶变换 一些常见函数的广义Fourier变换: 1.u(t )和 1 ( )构成一个Fourier变换对.
i
2. (t)和1构成一个Fourier变换对.
3.1和2 ()构成一个Fourier变换对. 4.ei0t和2 ( 0 )构成一个Fourier变换对.
5. (t t0 )和eit0构成一个Fourier变换对.
例3 计算函数f (t ) e|t| cos t的Fourier变换, 并证明
0
2 4
2 4
costd
2
e |t|
cos
t.
解 所给函数Fourier变换为
F ( ) F [ f (t )] f (t )eitdt
e |t| cos teitdt
e |t| e it e it e it dt
2
10
机动 目录 上页 下页 返回 结束
1 0 e(1ii )tdt 0 e(1ii )tdt
2
e(1ii )t dt e (1ii )tdt
0
0
| | 1 e(1ii )t 0
e(1i i )t 0
2 1 i i
1 i i
| | e e (1ii )t
(1 i i )t
性质
Fourier变换
Fourier变换 的应用
线 性
位 移
微 分
积 分
相对 似称
性 性 性 性 性性
质 质 质 质 质质
δ函数
广义Fourier变换
*
3
机动 目录 上页 下页 返回 结束
三、典型例题
1、求古典傅里叶变换、积分并验证广义积分结果
F ( ) f (t )eitdt
f (t) 1
1
0
2(1 cos ) i
5
机动 目录 上页 下页 返回 结束
(2) F ( ) f (t )eitdt
e
(t )2 a
e
it
dt
e dt
2 a
[
t
ai 2 2
]2
a 4
2 2
a
e
a 4
2 2
.
注: e t2 costdt e2 /(4 )
( 0, 为实数)
6
机动 目录 上页 下页 返回 结束
F ( )eitd
2
4
机动 目录 上页 下页 返回 结束
例1 求下列函数的傅立叶变换.
0, t 1
(1)
f
(t
)
1, 1,
1 t 0 t 1
0
0, 1 t
(t )2
(2) f (t) e a .
解 (1)
F ( ) f (t )eitdt
0 e itdt 1 e itdt
第七章 Fourier变换
一、重点与难点 二、 内容提要 三、典型例题
机动 目录 上页 下页 返回 结束
一、重点与难点
重点:1. 求函数的Fourier变换;
2. Fourier变换的简单应用
难点: 求函数的Fourier变换.
2
机动 目录 上页 下页 返回 结束
二、内容提要
Fourier积分定理
17
机动 目录 上页 下页 返回 结束
e dt i( 0 )t
2
(
0 ).
e d i(t t0 )
2
(t
t0 ).
18
机动 目录 上页 下页 返回 结束
练习:
(1) 设f (t ) (t t0 ), 则F [ f (t )] ( D )
(A) 1
(B) 2
(C)ei t0
0
1
0
2 2 4 4 4 cos
td .

2
0 4
2 costd
4
e|t| cos t .
2
13
机动 目录 上页 下页 返回 结束
例4 已知某函数的傅氏变换为
F ( ) sin ,
求该函数.

f
(t)
1
2
sin eitd
1
0
sin
cos
td
1
2
0
sin(1
t )d
再由Fourier积分公式得,在连续点处
8
机动 目录 上页 下页 返回 结束
在连续点处
f (t) 1
F
(
)e
it
d
2
i
F ( )sintd
0
2
0
sin
1
sint 2
d

0
sin sint 12
d
2 0,
sint, | t | | t |
.
9
机动 目录 上页 下页 返回 结束
1 i i 0
1 i i 0
11
机动 目录 上页 下页 返回 结束
1 2
1
1 i
i
1
1 i
i
1
1 (1
)i
1
1 (1
)i
2 2 4 44 .
再由Fourier积分公式得
f (t) 1
F
(
)e
it
d
2
12
机动 目录 上页 下页 返回 结束
1
F ( )costd
(D) eit0
(2) 设f (t ) cos 0t, 则F [ f (t )] ( A )
( A) [ ( 0 ) ( 0 )] (B) [ ( 0 ) ( 0 )] (C )i[ ( 0 ) ( 0 )] (D)i[ ( 0 ) ( 0 )]
19
机动 目录 上页 下页 返回 结束
15
机动 目录 上页 下页 返回 结束
练习:
(1)设a
0,
f
(t)
eat ,
e
at
,
t 0,则函数f (t)的 t0
Fourier积 分 为
.
(2)设F
[
f
(t)]
1
3
2
, 则f
(t)
.
答案:
(1) f (t) 2a
0
cost a2 2
d
(2) 3 e |t| 2
16
机动 目录 上页 下页 返回 结束
1
2
0
sin(1
t )d
14
机动 目录 上页 下页 返回 结束
,
2
1
2
2
,
0,
t 1
,
2
t
t 1 0,
t 1
0,
t 1 t 1
1
2
, ,
2
| t | 1 | t | 1
| t | 1
所以
0, | t | 1
f
(t
)
1 2
,
| t | 1.
1 4
,
| t | 1
(3) 设f (t ) (2 t ) ei0t , 则F [ f (t )] ( A )
( A) e2i 2 ( 0 ) (C ) e2i 2 ( 0 )
(B) e2i 2 ( 0 ) (D) e2i 2 ( 0 )
例2 计 算 函 数f
(t)
s in t , 0,
| t | 的Fourier | t |
变 换, 并 证 明
0
s
in sint 12
d
2 0,
s in t ,
| t | | t |
.
解 所给函数是奇函数,其Fourier变换为
7
机动 目录 上页 下页 返回 结束
F ( ) F [ f (t )] f (t )eitdt 2i 0 sint sintdt 2i sin 12 .
相关文档
最新文档