空间中的平行关系练习题(优.选)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 2word.
空间中的平行关系
直线与平面平行的判定定理: 平面与平面平行的判定定理: 直线与平面平行的性质定理: 平面与平面平行的性质定理:
1.以下说法中正确的个数是(其中a ,b 表示直线, 表示平面α) ( ) ①若a ∥b ,b ∥α,则a ∥α ②若a ∥α ,b ∥α ,则a ∥b ③若a ∥b ,b ⊂α,则a ∥α ④若a ∥α ,b ∥α,则a 与b 相交 A. 0个 B. 1个 C. 2个 D. 3个
2.a ∥α ,b ∥β ,a ∥b ,则α 与β 的位置关系是
( )
A.平行
B.相交
C.平行或相交
D.一定垂直
3.如果平面α外有两点A 、B ,它们到平面α的距离都是d ,则直线AB 和平面α的位置关系一定是( ) A.平行 B.相交 C.平行或相交 D. AB ⊂α
4.当α∥β时,必须满足的条件 ( ) A.平面α内有无数条直线平行于平面β B.平面α与平面β同平行于一条直线
C.平面α内有两条直线平行于平面β
D.平面α内有两条相交直线与β平面平行 5.直线a ∥平面α,点A ∈α,则过点A 且平行于直线a 的直线 ( ) A.只有一条,但不一定在平面α内 B.只有一条,且在平面α内 C.有无数条,但都不在平面α内 D.有无数条,且都在平面α内 6. A 、B 是直线l 外的两点,过A 、B 且和l 平行的平面的个数是 ( ) A.0个 B.1个 C.无数个 D.以上都有可能
7.设α,β是不重合的两个平面,l 和m 是不重合的两条直线,则能得出α∥β的是( ) A.l ⊂α,m ⊂α,且l ∥β,m ∥β B.l ⊂α,m ⊂β,且l ∥m C. l ⊂α,l ∥m ,且m ∥β D.l ∥α,m ∥β,且l ∥m 8. 如图所示,在三棱柱ABC —A 1B 1C 1中,M 、N 分别是BC 和A 1B 1的中点. 求证:MN ∥平面AA 1C 1
9.正方体AC 1中,E 、F 、G 分别为B 1C 1、A 1D 1、A 1B 1的中点 求证:平面EBD//平面FGA .
10、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG.求证:EH ∥
BD .
H G F
E D B
A
C
2 / 2word.
B
P
图D A
C D
A
B
C
Q
11. 如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、E 、F 分别是AC 、BC 、SC 的中点,试判断SG 与平面DEF 的位置关系,并给予证明.
12.设P 、Q 是单位正方体AC1的面AA 1D 1D 、面A 1B 1C 1D 1的中心. 如图:(1)证明:PQ ∥平面AA1B1B.
(2)求线段PQ 的长.
练习:
1. 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心. (1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △321G G G ∶S △ABC .
2.如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是BC 、CC 1、C 1D 1、A 1A 的中点.求证: (1)BF ∥HD 1;
(2)EG ∥平面BB 1D 1D ;
(3)平面BDF ∥平面B 1D 1H .、 ,
最新文件---------------- 仅供参考--------------------已改成word 文本 --------------------- 方便更改