函数的平均变化率与导数

合集下载

变化率与导数

变化率与导数

变化率与导数、导数的运算课前双击巩固1.变化率与导数 (1)平均变化率: 概念 对于函数y=f (x ),f(x 2)-f(x 1)x 2-x 1=Δy Δx 叫作函数y=f (x )从x 1到x 2的 变化率几何 意义 函数y=f (x )图像上两点(x 1,f (x 1)),(x 2,f (x 2))连线的物理 意义 若函数y=f (x )表示变速运动的质点的运动方程,则ΔyΔx 就是该质点在[x 1,x 2]上的 速度(2)导数:概念点x 0处 limΔx→0ΔyΔx =limΔx→0f(x 0+Δx)−f(x 0)Δx,我们称它为函数y=f (x )在 处的导数,记为f'(x 0)或y'|x=x 0,即f'(x 0)=limΔx→0ΔyΔx= lim Δx→0f(x 0+Δx)−f(x 0)Δx区间 (a ,b )当x ∈(a ,b )时,f'(x )=lim Δx→0ΔyΔx =lim Δx→0 叫作函数在区间(a ,b )内的导数几何 意义 函数y=f (x )在点x=x 0处的导数f'(x 0)就是函数图像在该点处切线的 .曲线y=f (x )在点(x 0,f (x 0))处的切线方程是物理 意义 函数y=f (x )表示变速运动的质点的运动方程,则函数在x=x 0处的导数就是质点在x=x时的 速度,在(a ,b )内的导数就是质点在(a ,b )内的 方程2.导数的运算 常用 导数 公式原函数导函数特例或推广常数函数 C'=0(C 为常数)幂函数(x n)'= (n ∈Z )1x'=-1x 2三角函数(sin x)'=,(cos x)'=偶(奇)函数的导数是奇(偶)函数,周期函数的导数是周期函数指数函数(a x)'=(a>0且a≠1) (e x)'=e x对数函数(log a x)'=(a>0且a≠1)(ln x)'=1x,(ln|x|)'=1x四则运算法则加减[f(x)±g(x)]'=(∑i=1nf i(x))'=∑i=1nf'i(x)乘法[f(x)·g(x)]'=[Cf(x)]'=Cf'(x) 除法f(x)g(x)'=(g(x)≠0)1g(x)'=-g′(x)[g(x)]2复合函数导数复合函数y=f[g(x)]的导数与函数y=f(u),u=g(x)的导数之间具有关系y'x=,这个关系用语言表达就是“y对x的导数等于y对u的导数与u对x的导数的乘积”题组一常识题1.[教材改编]向气球中充入空气,当气球中空气的体积V(单位:L)从1 L增加到2 L时,气球半径r(单位:dm)的平均变化率约为.2.[教材改编]已知将1吨水净化到纯净度为x %时所需费用(单位:元)为c(x)=5284100−x(80<x<100),当净化到纯净度为98 %时费用的瞬时变化率为.3.[教材改编] y=sin(πx+φ)的导数是y'=.4.[教材改编]曲线y=xe x-1在点(1,1)处切线的斜率等于.题组二常错题◆索引:平均变化率与导数的区别;求导时不能掌握复合函数的求导法则致错;混淆f'(x 0)与[f (x 0)]',f'(ax+b )与[f (ax+b )]'的区别.5.函数f (x )=x 2在区间[1,2]上的平均变化率为 ,在x=2处的导数为 .6.已知函数y=sin 2x ,则y'= .7.已知f (x )=x 2+3xf'(2),则f (2)= .8.已知f (x )=x 3,则f'(2x+3)= ,[f (2x+3)]'= .课堂考点探究探究点一 导数的运算1(1)函数f (x )的导函数为f'(x ),且满足关系式f (x )=x 2+3xf'(2)-ln x ,则f'(2)的值为( )A.74 B.-74 C.94 D.-94(2)已知f (x )=-sin x2(1−2cos 2x4),则f'(π3)= .[总结反思] (1)对于复杂函数的求导,首先应利用代数、三角恒等变换等变形规则对函数解析式进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)利用公式求导时要特别注意除法公式中分子的符号,不要与求导的乘法公式混淆. 式题 (1)函数y=sinx x 的导数为y'= .(2)已知f (x )=(x+1)(x+2)(x+a ),若f'(-1)=2,则f'(1)= . 探究点二 导数的几何意义考向1 求切线方程2 函数f (x )=e x·sin x 的图像在点(0,f (0))处的切线方程是 .[总结反思] (1)曲线y=f (x )在点(x 0,f (x 0))处的切线方程为y-f (x 0)=f'(x 0)(x-x 0);(2)求解曲线切线问题的关键是求切点的横坐标,在使用切点横坐标求切线方程时应注意其取值范围;(3)注意过某点的切线和曲线上某点处的切线的区别. 考向2 求切点坐标3设a∈R,函数f(x)=e x+a·e-x的导函数是f'(x),且f'(x)是奇函数.若曲线y=f(x)的一条切线的斜率是32,则切点的横坐标为( )A.ln 2B.-ln 2C.ln22 D.-ln22[总结反思] f'(x)=k(k为切线斜率)的解即为切点的横坐标.考向3求参数的值4已知曲线C在动点P(a,a2+2a)与动点Q(b,b2+2b)(a<b<0)处的切线互相垂直,则b-a的最小值为( )A.1B.2C.√2D.-√2[总结反思](1)利用导数的几何意义求参数的基本方法:利用切点的坐标、切线的斜率、切线方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.(2)注意:①曲线上横坐标的取值范围;②切点既在切线上又在曲线上.强化演练1.【考向1】已知函数f(x)=xln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为( )A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=02.【考向3】直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于( )A.2B.-1C.1D.-23.【考向2】已知在平面直角坐标系中,f(x)=aln x+x的图像在x=a处的切线过原点,则a=( )A.1B.eC.1eD.04.【考向2】若曲线y=xln x在点P处的切线平行于直线2x-y+1=0,则点P的坐标是.5.【考向1】函数f(x)=xe x的图像在点P(1,e)处的切线与坐标轴围成的三角形面积为.。

高中数学变化率问题导数的概念(老师版)

高中数学变化率问题导数的概念(老师版)

变化率的“视觉化”, %越大,曲线y = f(x)在区间[X 1, X 2]上越“陡峭”,反之亦然 平均变化率的几何意义是函数曲线上过两点的割线的斜率,若函数 则fx2― fx1X 2 — X 1知识点二瞬时速度与瞬时变化率 把物体在某一时刻的速度称为瞬时速度.做直线运动的物体,它的运动规律可以用函数s = s(t)描述,设 A 为时间改变量,在t o + A t 这段时间内,物体的位移 (即位置)改变量是A s = s(t o ^ At) — s(t 0),那么位移改变量 A s 与时间改变量A t 的比就是这段时间内物体的平均速度s s t o + A t — s t oV ,即 V = A t = A t1.1.1 变化率问题1.1.2导数的概念[学习目标]1•理解函数平均变化率、瞬时变化率的概念 .2.掌握函数平均变化率的求法 3掌握导数的概念,会用导 数的定义求简单函数在某点处的导数 . 知识梳理自主学习知识点一函数的平均变化率 1•平均变化率的概念 设函数y = f(x), X 1, X 2是其定义域内不同的两个点,那么函数的变化率可用式子f X2 — f X1我们把这个式子称 X 2 — X 1 为函数y = f(x)从X 1到X 2的平均变化率,习惯上用 A x 表示X 2 — X 1,即A x = X 2— X 1,可把A x 看作是相对于X 1的一个 “增量”,可用 X 1+ A x 代替X 2;类似地,A y = f(X 2)— f(X 1).于是,平均变化率可以表示为A y A2•求平均变化率 求函数y = f(x)在[*, x 2]上平均变化率的步骤如下: (1)求自变量的增量 A x = X 2— X 1 ; ⑵求函数值的增量 A y = f(x 2)- f(x 1); ⑶求平均变化率A x X 2 — X 1 A y f X 2 — f X 1 f X 1 + A x — f X 1 A x 思考 (1)如何正确理解 A x , A y? (2)平均变化率的几何意义是什么? 答案(1) A 是一个整体符号,而不是 △与X 相乘,其值可取正值、负值,但 时0 ;A y 也是一个整体符号,若 A x=X 1 — x 2,贝U A y = f(X 1)— f(X 2),而不是 A y = f(X 2)— f(X 1), A y 可为正数、负数,亦可取零(2)如图所示: y = f(x)在区间[X 1, X 2]上的平均变化率 “数量化”,曲线陡峭程度是平均 y = f(x)图象上有两点 A(X 1, f(X 1)) , B(X 2, f(X 2)),物理学里,我们学习过非匀速直线运动的物体在某一时刻 t o 的速度,即t o 时刻的瞬时速度,用 v 表示,物体在t o 时刻的瞬时速度 v 就是运动物体在t o 到t o +A t 这段时间内的平均变化率 s+弓+_在A t T 0时的极限,即v = limA ss t o + A t — s t o 一 一△t = ym o 石 •瞬时速度就是位移函数对时间的瞬时变化率 .思考(1)瞬时变化率的实质是什么?(2)平均速度与瞬时速度的区别与联系是什么? 答案⑴其实质是当平均变化率中自变量的改变量趋于 o 时的值,它是刻画函数值在某处变化的快慢 •⑵①区别:平均变化率刻画函数值在区间[X 1, X 2]上变化的快慢,瞬时变化率刻画函数值在 x o 点处变化的快慢;②联系:当A X 趋于o 时,平均变化率A y 趋于一个常数,这个常数即为函数在 x o 处的瞬时变化率,它是一个固定值 • 知识点三导数的概念函数y = f(x)在x = x o 处的导数一般地,函数y = f(x)在x = xo 处的瞬时变化率是 |im o 多=妁。

导数与函数的平均值定理解析与归纳

导数与函数的平均值定理解析与归纳

导数与函数的平均值定理解析与归纳导数与函数的平均值定理是微积分中的重要概念和定理之一。

通过对导数的分析,我们可以得到函数在某一区间上的平均变化率与函数在该区间上某一点的导数值之间的关系。

本文将对导数与函数的平均值定理进行解析与归纳,以帮助读者更好地理解和应用这一定理。

导数是函数在某一点上的切线斜率,表示函数在该点上的瞬时变化率。

在数学上,导数的定义为函数在自变量趋于该点时的极限值。

简而言之,导数告诉我们函数在某一点附近的变化趋势。

函数的平均值定理是说,在一个闭区间上连续的函数一定会在某一点上取到其平均变化率的值。

具体而言,如果函数在一个闭区间上连续并且可导,那么存在至少一个点,使得函数在这个点的导数等于函数在整个区间上的平均变化率。

为了更好地理解平均值定理,我们先考虑一个简单的例子。

假设有一个车辆在某一时刻的位置为x(t),其中t表示时间。

如果我们想知道车辆在某一时间段内的平均速度,可以通过计算车辆的位移与时间的比值来得到。

这个比值就是车辆在该时间段内的平均速度。

类比到函数中,如果我们想知道函数在一个闭区间上的平均变化率,可以通过计算函数值的差与自变量的差的比值来得到。

这个比值就是函数在该区间上的平均变化率。

具体来说,设函数f(x)在闭区间[a, b]上连续且可导。

根据平均值定理,存在一个点c,满足a < c < b,并且f'(c)等于函数在区间[a, b]上的平均变化率。

换句话说,即使函数在这个区间上变化不均匀,仍然存在某一点处函数的瞬时变化率等于平均变化率。

这一定理在实际应用中有着广泛的用途。

例如,在经济学中,我们可以利用平均值定理来分析某一产品在一段时间内的平均价格变化率与其在某一时刻的瞬时价格变化率之间的关系。

在物理学中,平均值定理可以帮助我们理解某一质点在某一时间段内的平均速度与其在某一时刻的瞬时速度之间的联系。

导数与函数的平均值定理为我们提供了一种分析函数变化的方法,通过它,我们可以更深入地了解函数的性质和行为。

导数的概念、意义及运算

导数的概念、意义及运算
(2)进行导数运算时,要牢记导数公式和导数的四则运算法则,切忌记错记
混.
(3)复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复
合过程,然后求导.
对点训练1求下列函数的导数.
(1)y=x2sin x;
(2)y=ln
1
x+ ;
cos
(3)y= e ;
(4)y=ln(2x-5).
1
由题意得, +1=2,解得 x0=1,故 y0=ln
0
y=2x.
1
y'= +1.
1+1+1=2,切线方程为 y-2=2(x-1),即
解题心得求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切
线,曲线y=f(x)在点P(x0,f(x0))处的切线方程是y-f(x0)=f'(x0)(x-x0).求过某点的
3.函数f(x)的导函数
从求函数y=f(x)在x=x0处导数的过程可以看到,当x=x0时,f'(x0)是一个唯一
确定的数.这样,当x变化时,y=f'(x)就是x的函数,我们称它为y=f(x)的导函数
(简称导数).y=f(x)的导函数有时也记作y',即
(+Δ)-()
f'(x)=y'= lim
【例4】 若曲线f(x)=xln x+2m上点P处的切线方程为x-y=0.
(1)求实数m的值;
(2)若过点Q(1,t)存在两条直线与曲线y=f(x)相切,求实数t的取值范围.
解 (1)设点P坐标为(n,n).f(x)=xln x+2m的导数为f'(x)=1+ln x,点P(n,n)处的
1

第五章一 元函数的导数及其应用复习-2020-2021学年高二数学(人教A版选择性必修第二册)

第五章一 元函数的导数及其应用复习-2020-2021学年高二数学(人教A版选择性必修第二册)

设切线的倾斜角为α,那 么当Δx→0时,割线PQ的 斜率,称为曲线在点P处的 切线的斜率.
P o
即:
y=f 割 (xQ) 线
切T 线
x
返回
1.若 f(x)=2x2 图象上一点(1,2)及附近一点(1+Δx,2+
Δy),则ΔΔyx等于( )
A.3+2Δx
B.4+Δx
C.4+2Δx
D.3+Δx
解析:Δy=f(1+Δx)-f(1)=4Δx+2(Δx)2, ∴ΔΔyx=4+2Δx.
x 0
f (x) lim f(x2 ) f (x1)
x
x2 x1
x2 x1
lim f (x) f ' (x)
x 0
x
导数
基础知识梳理
liΔxm→0
f(x0+Δx)-f(x0) Δx
y′|x=x0
liΔxm→0
f(x0+Δx)-f(x0) Δx
基础知识梳理
f(x+Δx)-f(x)
y′
=6x4+3x3-8x2-4x,∴y′=24x3+9x2-16x-4. 法二:y′=(3x3-4x)′(2x+1)+(3x3-4x)(2x+)′
=(9x2-4)(2x+1)+(3x3-4x)·2=24x3+9x2-16x-4.
(2)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx.
基本初等函数的导数公式
1.若f(x)=c,则f'(x)=0
2.若f(x)=xn,则f'(x)=nxn-1(n R)
3.若f(x)=sinx,则f'(x)=cosx
4.若f(x)=cosx,则f'(x)=-sinx
5.若f(x)=ax,则f'(x)=ax ln a

高中数学变化率问题、导数精选题目(附答案)

高中数学变化率问题、导数精选题目(附答案)

高中数学变化率问题、导数精选题目(附答案)(1)函数的平均变化率对于函数y=f(x),给定自变量的两个值x1和x2,当自变量x从x1变为x2时,函数值从f(x1)变为f(x2),我们把式子f(x2)-f(x1)x2-x1称为函数y=f(x)从x1到x2的平均变化率.习惯上用Δx表示x2-x1,即Δx=x2-x1,可把Δx看作是相对于x1的一个“增量”,可用x1+Δx代替x2;类似地,Δy=f(x2)-f(x1).于是,平均变化率可表示为Δy Δx.(2)瞬时速度①物体在某一时刻的速度称为瞬时速度.②若物体运动的路程与时间的关系式是S=f(t),当Δt趋近于0时,函数f(t)在t0到t0+Δt之间的平均变化率f(t0+Δt)-f(t0)Δt趋近于常数,我们就把这个常数叫做物体在t0时刻的瞬时速度.(3)导数的定义一般地,函数y=f(x)在x=x0处的瞬时变化率是:lim Δx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(4)导数的几何意义函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx.(5)导函数从求函数f(x)在x=x0处导数的过程可以看到,当x=x0时,f′(x0)是一个确定的数.这样,当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).y=f(x)的导函数有时也记作y′.即f′(x)=y′=lim Δx→0f(x+Δx)-f(x)Δx.1.已知函数f (x )=3x 2+5,求f (x ): (1)从0.1到0.2的平均变化率; (2)在区间[x 0,x 0+Δx ]上的平均变化率.2.已知函数f (x )=x +1x ,分别计算f (x )在自变量x 从1变到2和从3变到5时的平均变化率,并判断在哪个区间上函数值变化得较快.3.若一物体的运动方程为S =⎩⎨⎧29+3(t -3)2,0≤t <3,3t 2+2,t ≥3,(路程单位:m ,时间单位:S ).求:(1)物体在t =3 S 到t =5 S 这段时间内的平均速度; (2)物体在t =1 S 时的瞬时速度.求瞬时速度的步骤(1)求物体运动路程与时间的关系S =S (t );(2)求时间改变量Δt ,位移改变量ΔS =S (t 0+Δt )-S (t 0); (3)求平均速度Δs Δt; (4)求瞬时速度v =lim Δt →0Δs Δt. 4.一质点按规律S (t )=at 2+1做直线运动(位移单位:m ,时间单位:S ),若该质点在t =2 S 时的瞬时速度为8 m/S ,求常数a 的值.[思考] 任何一个函数在定义域中的某点处均有导数吗?函数f (x )=|x |在x =0处是否存在导数?解:不一定,f (x )=|x |在x =0处不存在导数.因为Δy Δx =f (0+Δx )-f (0)Δx =|Δx |Δx =⎩⎨⎧1,Δx >0,-1,Δx <0,所以当Δx →0时,Δy Δx 的极限不存在,从而在x =0处的导数不存在.5.利用导数的定义求函数f (x )=3x 2-2x 在x =1处的导数.求函数y =f (x )在点x 0处的导数的三个步骤简称:一差、二比、三极限.6.利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.7.已知曲线y=x2,(1)求曲线在点P(1,1)处的切线方程;(2)求曲线过点P(3,5)的切线方程.利用导数的几何意义求切线方程的方法(1)若已知点(x0,y0)在已知曲线上,求在点(x0,y0)处的切线方程,先求出函数y=f(x)在点x0处的导数,然后根据直线的点斜式方程,得切线方程y-y0=f′(x0)(x-x0).(2)若点(x0,y0)不在曲线上,求过点(x0,y0)的切线方程,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.8.已知曲线y=2x2-7,求:(1)曲线上哪一点的切线平行于直线4x-y-2=0?(2)曲线过点P(3,9)的切线方程.9.若曲线y=x3-3x2+1在点P处的切线平行于直线y=9x-1,求P点坐标及切线方程.10.已知抛物线y=2x2+1,求(1)抛物线上哪一点的切线平行于直线4x-y-2=0?(2)抛物线上哪一点的切线垂直于直线x+8y-3=0?11.(1)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是下图中的()(2)已知函数y=f(x),y=g(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()12.如图,点A(2,1),B(3,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的()参考答案:1.解:(1)因为f(x)=3x2+5,所以从0.1到0.2的平均变化率为3×0.22+5-3×0.12-50.2-0.1=0.9.(2)f(x0+Δx)-f(x0)=3(x0+Δx)2+5-(3x20+5)=3x20+6x0Δx+3(Δx)2+5-3x20-5=6x0Δx+3(Δx)2.函数f(x)在区间[x0,x0+Δx]上的平均变化率为6x0Δx+3(Δx)2Δx=6x0+3Δx.(1)求函数平均变化率的三个步骤第一步,求自变量的增量Δx=x2-x1.第二步,求函数值的增量Δy=f(x2)-f(x1).第三步,求平均变化率ΔyΔx=f(x2)-f(x1)x2-x1.(2)求平均变化率的一个关注点求点x0附近的平均变化率,可用f(x0+Δx)-f(x0)Δx的形式.2.解:自变量x从1变到2时,函数f(x)的平均变化率为f(2)-f(1) 2-1=2+12-(1+1)1=12;自变量x从3变到5时,函数f(x)的平均变化率为f(5)-f(3)5-3=5+15-⎝⎛⎭⎪⎫3+132=14 15.因为12<14 15,所以函数f(x)=x+1x在自变量x从3变到5时函数值变化得较快.3.[尝试解答](1)因为ΔS=3×52+2-(3×32+2)=48,Δt=2,所以物体在t=3 S到t=5 S这段时间内的平均速度为ΔsΔt=482=24(m/S).(2)因为ΔS=29+3[(1+Δt)-3]2-29-3×(1-3)2=3(Δt)2-12Δt,所以Δs Δt=3(Δt)2-12ΔtΔt=3Δt-12,则物体在t=1 S时的瞬时速度为S′(1)=limΔx→0ΔsΔt=limΔx→0(3Δt-12)=-12(m/S).4.解:因为ΔS=S(2+Δt)-S(2)=a(2+Δt)2+1-a·22-1=4aΔt+a(Δt)2,所以Δs Δt =4a +a Δt ,故在t =2S 时,瞬时速度为S ′(2)=lim Δx →0 Δs Δt=4a (m/S ). 由题意知,4a =8,所以a =2.5.解: Δy =3(1+Δx )2-2(1+Δx )-(3×12-2×1)=3(Δx )2+4Δx , ∵Δy Δx =3(Δx )2+4ΔxΔx =3Δx +4,∴y ′|x =1=lim Δx →0 ΔyΔx =lim Δt →0(3Δx +4)=4. 6.解:由导数的定义知,函数在x =2处的导数f ′(2)=lim Δx →0f (2+Δx )-f (2)Δx,而f (2+Δx )-f (2)=-(2+Δx )2+3(2+Δx )-(-22+3×2)=-(Δx )2-Δx ,于是f ′(2)=lim Δx →0 -(Δx )2-ΔxΔx =li m Δx →0 (-Δx -1)=-1. 7.解: (1)设切点为(x 0,y 0), ∵y ′|x =x 0=lim Δx →0 (x 0+Δx )2-x 20Δx=lim Δx →0 x 20+2x 0·Δx +(Δx )2-x 2Δx=2x 0, ∴y ′|x =1=2.∴曲线在点P (1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.(2)点P (3,5)不在曲线y =x 2上,设切点为(x 0,y 0), 由(1)知,y ′|x =x 0=2x 0, ∴切线方程为y -y 0=2x 0(x -x 0),由P (3,5)在所求直线上得5-y 0=2x 0(3-x 0),① 再由A (x 0,y 0)在曲线y =x 2上得y 0=x 20,② 联立①,②得x 0=1或x 0=5.从而切点为(1,1)时,切线的斜率为k 1=2x 0=2, 此时切线方程为y -1=2(x -1),即y =2x -1, 当切点为(5,25)时,切线的斜率为k 2=2x 0=10, 此时切线方程为y -25=10(x -5),即y =10x -25.综上所述,过点P (3,5)且与曲线y =x 2相切的直线方程为y =2x -1或y =10x-25.8.解:y′=limΔx→0ΔyΔx=limΔx→0[2(x+Δx)2-7]-(2x2-7)Δx=limΔx→0(4x+2Δx)=4x.(1)设切点为(x0,y0),则4x0=4,x0=1,y0=-5,∴切点坐标为(1,-5).(2)由于点P(3,9)不在曲线上.设所求切线的切点为A(x0,y0),则切线的斜率k=4x0,故所求的切线方程为y-y0=4x0(x-x0).将P(3,9)及y0=2x20-7代入上式,得9-(2x20-7)=4x0(3-x0).解得x0=2或x0=4,所以切点为(2,1)或(4,25).从而所求切线方程为8x-y-15=0或16x-y-39=0.9.解:设P点坐标为(x0,y0),Δy Δx=f(x0+Δx)-f(x0)Δx=(x0+Δx)3-3(x0+Δx)2+1-x30+3x20-1Δx=(Δx)2+3x0Δx-3Δx+3x20-6x0.所以f′(x0)=limΔx→0[(Δx)2+3x0Δx-3Δx+3x20-6x0]=3x20-6x0,于是3x20-6x0=9,解得x0=3或x0=-1,因此,点P的坐标为(3,1)或(-1,-3).又切线斜率为9,所以曲线在点P处的切线方程为y=9(x-3)+1或y=9(x +1)-3,即y=9x-26或y=9x+6.10.解:设点的坐标为(x0,y0),则Δy=2(x0+Δx)2+1-2x20-1=4x0·Δx+2(Δx)2.∴ΔyΔx=4x0+2Δx.当Δx无限趋近于零时,ΔyΔx无限趋近于4x0.即f′(x0)=4x0.(1)∵抛物线的切线平行于直线4x-y-2=0,∴斜率为4,即f′(x0)=4x0=4,得x0=1,该点为(1,3).(2)∵抛物线的切线与直线x+8y-3=0垂直,∴斜率为8,即f′(x0)=4x0=8,得x0=2,该点为(2,9).11.解:(1)由导数的几何意义知导函数递增说明函数切线斜率随x增大而变大,因此应选A.(2)从导函数的图象可知两个函数在x0处斜率相同,可以排除B、C.再者导函数的函数值反映的是原函数的斜率大小,可明显看出y=f(x)的导函数的值在减小,所以原函数的斜率慢慢变小,排除A.12.解析:选D函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度变化量Δx内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.。

函数的平均变化率与导数(Word)

函数的平均变化率与导数(Word)

导数的概念及运算知识梳理1. 平均变化率与瞬时变化率(1)函数()f x 从1x 到2x 的平均变化率x y∆∆= .(2)函数()f x 在处0x x =的瞬时变化率为 2. 导数的概念(1)函数()f x 在x x =处的导数:()f x 在点0x 处的导数就是函数()f x 在x x =处的瞬时变化率即()0'x f =(2)函数()f x 的导函数:当x 变化时()x f '是x 的一个函数,称()x f '为()f x 的导函数(简称导数)即()x f '=3. 导数的几何意义与物理意义 (1)几何意义切线方程为: (2)物理意义4.基本初等函数的导数①;C '=②();nx '=③(sin )x '=; ④(cos )x '=;⑤()x a '=;⑥();x e '=⑦()l g a o x '=; ⑧()ln x '=.5.导数的运算法则_______ ______ ______ [](4)()'C f x ⋅=_______ ___________ 6.复合函数的导数()()()()的导数的关系为:的导数与复合函数x g u u f y x g f y ===,【题型分析】一.导数的概念及其几何意义例1:(1)若0'()2f x =,则当k 无限趋近于0时00()()2f x k f x k--=________()()()()()====k x f x x f y x f y x x f y 切线的斜率即:处的在点是曲线处的导数在函数000'0,P ()=0'x f ()()时刻的是物体运动在处的导数在函数00'0t t S S S ===t t t t ()()时刻的是物体运动在处的导数在函数00'0t t V V V ===t t t t ()()()'1f x g x ±=⎡⎤⎣⎦()()()'2.f x g x =⎡⎤⎣⎦()()'15f x ⎡⎤=⎢⎥⎣⎦()()()'3f x g x ⎡⎤=⎢⎥⎣⎦(2)如图,函数()f x 的图象是折线段ABC ,其中A B C ,, 的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;(1)(1)limx f x f x∆→+∆-=∆.(用数字作答)二.导数的计算例2:求下列函数的导数(1)2()(2)()f x x a x a =+- (2)22()cos sin cos f x x x x =⋅+(3)()x xf x = (4)()f x =(5)()()ln ln ln f x x =⎡⎤⎣⎦ (6)()2()3lg 1cos2xf x x =⋅-三.与切线相关的问题例3:(1)曲线32242y x x x =--+在点(1,3)-处的切线方程是_________。

第2篇 第10节 导数的概念与计算课件 理 新人教A版 课件

第2篇 第10节 导数的概念与计算课件 理 新人教A版 课件
1 f′(x)=____x _____
质疑探究 1:如果 f(x)=ln |x|,则 f′(x)=1x? 提示:正确,分 x>0,x<0 去绝对值,求导数可得.
4.导数的运算法则和复合函数的导数
(1)导数的运算法则 ①[f(x)± g(x)]′=___f_′(_x_)_±__g_′(_x_)_____; ②[f(x)·g(x)]′=_f_′(_x_)g_(_x_)_+__f(_x_)_g_′(_x_) ______;
解析:设过点(1,0)的直线与 y=x3 相切于点(x0,x30), 所以切线方程为 y-x30=3x02(x-x0), 即 y=3x20x-2x30, 又(1,0)在切线上, 则 x0=0 或 x0=32, 当 x0=0 时,由 y=0 与 y=ax2+145x-9 相切可得 a=-2654, 当 x0=32时,
导数,记作 f′(x0)或 y′|x=x0,即 ___Δ_lix_m→_0__f_x_0+__Δ_Δ_xx_-__f_x_0_____.
f′(x0)=Δlixm→0
ΔΔyx=
②几何意义
函数 f(x)在 x=x0 处的导数 f′(x0)的几何意义是在曲线 y= f(x)上点(x0,f(x0))处的 切线的斜率 (瞬时速度就是位移函数 s(t) 对 时 间 t 的 导 数 ) . 相 应 地 , 切 线 方 程 为 ___y_-__f(_x_0_)=__f_′(_x_0_)(_x_-__x_0)__________.
即f′(x+T)=f′(x), 所以导函数为周期函数. 因为y=f(x)是奇函数, 所以f(-x)=-f(x), 两边求导得f′(-x)(-x)′=-f′(x), 即-f′(-x)=-f′(x), 所以f′(-x)=f′(x), 即导函数为偶函数,故选B. 答案:B

导数与函数的变化率

导数与函数的变化率

导数与函数的变化率函数是数学中的重要概念,在解决实际问题中经常用到。

而了解函数的变化率对于我们理解函数的性质、以及进一步研究函数的应用具有重要意义。

在这篇文章中,我们将探讨导数与函数的变化率之间的联系,并且阐述导数与函数变化率的定义与计算方法。

一、导数的定义与计算方法导数可以看作是函数在某一点处的变化率。

如果我们考虑一个函数f(x),并且在区间[a, a+h]上的平均变化率为:\[ \frac{{f(a+h)-f(a)}}{h} \]而当h趋近于0时,这个平均变化率就趋近于某个值,这个值便是函数f(x)在点a处的导数。

导数用f'(a)或者\[\frac{{df}}{{dx}}(a)\]来表示。

那么如何计算导数呢?一般来说,我们可以使用几种方法来计算函数的导数:1. 使用函数的定义式来计算。

根据导数的定义,我们可以将函数的表达式代入到导数的定义式中,然后求解极限,从而得到导数的值。

2. 使用导数的性质来计算。

根据导数的性质,我们可以利用一些常见函数的导数公式,比如多项式函数的导数公式、幂函数的导数公式等,来计算函数的导数。

3. 使用数值计算方法来近似计算。

当函数的表达式较为复杂时,我们可以使用数值计算方法来近似计算导数的值,比如使用微分方程或者数值微分等方法。

二、了解导数与函数的变化率之间的关系可以帮助我们更好地理解函数的性质。

具体而言,导数可以告诉我们函数在某一点处的变化趋势。

1. 导数的正负性与函数的单调性导数的正负性可以帮助我们判断函数在某一区间上的单调性。

如果函数在某一区间上的导数始终大于0,那么函数在该区间上是递增的;如果函数在某一区间上的导数始终小于0,那么函数在该区间上是递减的。

2. 导数的零点与函数的极值点函数在某一点处导数为0时,这个点称为函数的驻点。

如果函数在驻点的导数存在,那么该点为函数的极值点。

当导数从正数变为负数时,函数在该点取得极大值;当导数从负数变为正数时,函数在该点取得极小值。

高中数学第6章导数及其应用6.1导数6.1.1函数的平均变化率课件新人教B版选择性必修第三册

高中数学第6章导数及其应用6.1导数6.1.1函数的平均变化率课件新人教B版选择性必修第三册

1.平均速度反映运动物体的位移随时间变化而变化的情况.平 均速度是运动物体在一个时间段里位移的改变量与这段时间的比值.
2.运动物体在 t0 到 t1 这段时间内运动的平均速度就是物体运动 的位移函数 s(t)在区间[t0,t1]上的平均变化率,因此求平均速度的实 质就是求函数的平均变化率.
[跟进训练] 3.一个物体做直线运动,位移 s(单位:m)与时间 t(单位:s)之 间的函数关系为 s(t)=5t2+mt,且这一物体在 2≤t≤3 这段时间内的 平均速度为 26 m/s,则实数 m 的值为( ) A.2 B.1 C.-1 D.6 B [由已知,得s33--2s2=26,所以(5×32+3m)-(5×22+2m) =26,解得 m=1,选 B.]
当ΔΔyx=0 时,并不能说明函数在该区间上一定为常函数,如 f(x) =x2 在区间[-2,2]上的平均变化率是 0,但它不是常函数.
拓展:函数平均变化率的几何意义 如图所示,函数 f(x)在区间[x1,x2]上的平均变化率,就是直线 AB 的 斜率,其中 A(x1,f(x1)),B(x2,f(x2)),事实上 kAB=fxx22--fx1x1=ΔΔyx.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)Δx 表示 x2-x1,是相对于 x1 的一个增量,Δx 的值可正可负 f(x2)-f(x1),Δy 的值可正可负,也可以为零.
()
(3)ΔΔxy表示曲线 y=f(x)上两点(x1,f(x1)),(x2,f(x2))连线的斜率.
求物体运动的平均变化率
【例 2】 跳水运动员相对于水面的高度 h(单位:m)与起跳后的 时间 t(单位:s)存在函数关系 h(t)=-4.9t2+6.5t+10.
(1)求运动员在0,6459这段时间内的平均速度; (2)运动员在0,6459这段时间内是静止的吗? (3)你认为用平均速度描述运动员的运动状态有什么问题?

利用函数的导数解决变化率问题

利用函数的导数解决变化率问题

利用函数的导数解决变化率问题函数的导数在解决变化率问题中发挥着重要的作用。

在数学和应用领域中,我们经常需要计算事物随时间、空间或其他变量的变化速率。

这些问题可以通过函数的导数来求解,下面将介绍一些常见的变化率问题以及如何利用函数的导数来解决它们。

一、平均变化率平均变化率是描述函数在某个区间内的平均变化速率。

假设有一个函数f(x),我们想要求解它在区间[a, b]上的平均变化率。

这可以通过计算函数值的差异除以自变量的变化量得到:平均变化率 = (f(b) - f(a)) / (b - a)二、瞬时变化率瞬时变化率是指函数在某一点上的变化速率。

函数的导数可以用来计算瞬时变化率。

给定一个函数f(x),我们可以通过求解其导函数f'(x)来得到瞬时变化率。

瞬时变化率 = f'(x)三、最大和最小变化率函数的导数还可以帮助我们找到函数在某个区间内的最大和最小变化率。

通过找到函数的导数的最大和最小值,我们可以确定在哪些点上函数的变化率达到最大或最小。

最大和最小变化率 = f'(x) = 0四、应用实例以物理学中的运动问题为例,假设一个物体的位移随时间的变化关系可以用函数f(t)表示。

我们想要求解该物体在某一时刻的瞬时速度。

可以通过计算函数f(t)的导函数f'(t)来得到瞬时速度。

瞬时速度 = f'(t)五、其他变化率问题除了上述提到的问题,函数的导数还可以应用于其他各种变化率问题,比如计算人口增长率、温度变化率、经济增长率等。

只要有一个与时间或其他变量相关的函数,就可以利用函数的导数来解决相应的变化率问题。

总结:通过函数的导数,我们可以解决各种变化率问题,包括平均变化率、瞬时变化率、最大和最小变化率等。

函数的导数可以帮助我们更好地理解和分析事物的变化过程,并且应用广泛。

无论是在数学领域还是其他应用领域,函数的导数都是一个强大的工具,能够提供准确的变化率信息,帮助我们更好地理解和解决问题。

平均变化率和导数的关系

平均变化率和导数的关系

平均变化率和导数的关系
均值变化比率是一个重要的统计量,它表示任何一段时间内数据的"变化程度"。

均值
变化比率的计算,实际上是对数据变化的一种度量,可用来衡量数据的变化情况。

均值变
化率和导数的关系,体现了一种函数的局部变化率和全局变化率的关系。

其次,均值变化率和导数表示函数变化的关系也不同。

均值变化率表示的是一段时间
内数据的变化程度,它在一个更宏观层次上反映了函数的变化情况,这种变化可能会随着
时间的变化而变化;而导数表示的则是函数在某个特定点的局部变化率,它反映函数在某
一点的变化速度,是函数局部变化的一种衡量标准,这种变化可以在局部区域内是一致的。

最后,均值变化率和导数的变化趋势也是不同的。

当函数的均值变化率大于0时,表
明数据呈现出正增长趋势;而对函数的导数的变化而言,表示的是该函数上某一点切线斜
率的变化情况,如果切线斜率大于0,表明该函数在这一点处呈现出单调递增的特性,也
就是函数在这一点呈现出正增长趋势。

总而言之,均值变化率和导数之间存在着一定的关系,它们均可以用来衡量函数变化
的程度。

但具体变化情况要根据均值变化率和导数的变化情况来判断。

导数概念--公式知识点总结+习题含详细讲解

导数概念--公式知识点总结+习题含详细讲解

.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x+∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)

5.1.2导数的概念及其几何意义要点一 导数的概念1.平均变化率:对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,则把Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率.2.导数:如果Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称瞬时变化率),记作f ′(x 0)或y ′|0x x = ,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx . 【重点小结】(1)当Δx ≠0时,比值Δy Δx 的极限存在,则f(x)在x =x 0处可导;若ΔyΔx的极限不存在,则f(x)在x =x 0处不可导或无导数.(2)在x =x 0处的导数的定义可变形为f ′(x 0)=lim Δx →0 f (x 0-Δx )-f (x 0)-Δx 或f ′(x 0)=lim x →x 0 f (x )-f (x 0)x -x 0.要点二 导数的几何意义对于曲线y =f (x )上的点P 0(x 0,f (x 0))和P (x ,f (x )),当 点P 0趋近于点P 时,割线P 0P 趋近于确定的位置,这个确定位置的直线P 0T 称为点P 0处的切线.割线P 0P 的斜率是k =f (x )-f (x 0)x -x 0.当点P 无限趋近于点P 0时,k 无限趋近于切线P 0T 的斜率.因此,函数f (x )在x =x 0处的导数就是切线P 0T 的斜率k ,即k =li m Δx →0f (x 0+Δx )-f (x 0)Δx 【重点总结】(1)曲线的切线与割线①曲线的切线是由割线绕一点转动,当另一点无限接近这一点时割线趋于的直线. ②曲线的切线就是割线趋近于某一确定位置的直线,体现了无限趋近的思想. (2)曲线的切线与导数①函数f(x)在x =x 0处有导数,则在该点处函数f(x)表示的曲线必有切线,且导数值是该切线的斜率. ②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,如f(x)=3x 在x =0处有切线,但不可导.曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.与曲线只有一个公共点的直线也不一定是曲线的切线. 要点三 导函数对于 函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx【重点总结】函数在某点处的导数与导函数的区别(1)函数在某点处的导数是一个定值,导函数是一个函数.(2)函数f(x)在x0处的导数就是导函数f ′(x)在x=x0处的函数值.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数f(x)在x=x0处有意义,则f′(x0)存在.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)导函数f′(x)的定义域与函数f(x)的定义域相等.()(4)曲线f(x)=x2在原点(0,0)处的切线方程为y=0.()【答案】(1)×(2)×(3)×(4)√2.若函数f(x)=-3x-1,则f′(x)=()A.0 B.-3xC.3 D.-3【答案】D【解析】k=li mΔx→0-3(x+Δx)-1-(-3x-1)Δx=-3.3.设曲线y=x2+x-2在点M处的切线斜率为3,则点M的坐标为() A.(0,-2) B.(1,0)C.(0,0) D.(1,1)【答案】B【解析】设点M(x0,y0),∴k=limΔx→0(x0+Δx)2+(x0+Δx)-2-(x20+x0-2)Δx=2x0+1,令2x0+1=3,∴x0=1,则y0=0.故选B.4.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.【答案】2【解析】点(5,f(5))在切线y=-x+8上,∴f(5)=-5+8=3.且f′(5)=-1,∴f(5)+f′(5)=2.题型一 求函数在某点处的导数【例1】(1)已知函数f (x )=2x 2+4x ,则f ′(3)=________. 【答案】(1)16【解析】(1)Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴f ′(3)=li m Δx →0(2Δx +16)=16.(2)已知函数f (x )=2x 2+4x ,若f ′(x 0)=12,则x 0=________. 【答案】(2)2【解析】(2)根据导数的定义f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →f (x 0+Δx )-f (x 0)Δx=li m Δx →2(x 0+Δx )2+4(x 0+Δx )-(2x 20+4x 0)Δx=li m Δx →04x 0·Δx +2(Δx )2+4ΔxΔx =li m Δx →(4x 0+2Δx +4)=4x 0+4,∴f ′(x 0)=4x 0+4=12,解得x 0=2.【方法归纳】用导数定义求函数在某一点处的导数的三个步骤 (1)作差Δy =f (x 0+Δx )-f (x 0). (2)作比Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)取极限f ′(x 0)=li m Δx →0ΔyΔx. 简记为一差、二比、三极限.【跟踪训练1】已知函数f (x )=x +1x,则f ′(1)=________.【答案】0【解析】f ′(1)=lim Δx →f (1+Δx )-f (1)Δx=lim Δx →0⎣⎡⎦⎤(1+Δx )+11+Δx -(1+1)Δx=lim Δx →0⎝⎛⎭⎫Δx +11+Δx -1Δx=lim Δx →0⎝⎛⎭⎫1-11+Δx =0题型二 求曲线的切线方程【例2】已知曲线y =13x 3,求曲线在点P (3,9)处的切线方程.【解析】由y =13x 3,得y ′=li m Δx →0 ΔyΔx =li m Δx →013(x +Δx )3-13x 3Δx=13li m Δx →3x 2Δx +3x (Δx )2+(Δx )3Δx=13li m Δx →[3x 2+3xΔx +(Δx )2]=x 2, y ′|x =3=32=9,即曲线在P (3,9)处的切线的斜率等于9. 由直线的点斜式方程可得,所求切线方程为y -9=9(x -3), 即9x -y -18=0.【变式探究】本例条件不变,求曲线过点M (1,0)的切线方程.【解析】设切点坐标为⎝⎛⎭⎫x 0,13x 30,由例2知切线方程为:y -13x 30=x 20(x -x 0) ∵切线过点(1,0), ∴-13x 30=x 20(1-x 0)即23x 30-x 20=0,解得x 0=0或x 0=32. ∴切点坐标为(0,0)或⎝⎛⎭⎫32,98,∴切线方程为:y =0或y -98=94⎝⎛⎭⎫x -32. 即y =0或9x -4y -9=0. 设切点,写出切线方程,已知点代入,求切点. 【方法归纳】1.求曲线上某点切线方程的三个步骤2.过曲线外的点P (x 1,y 1)求曲线的切线方程的步骤 (1)设切点为Q (x 0,y 0).(2)求出函数y =f (x )在点x 0处的导数f ′(x 0).(3)利用Q 在曲线上和f ′(x 0)=k PQ ,解出x 0,y 0及f ′(x 0). (4)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0). 【跟踪训练2】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由. 【解析】将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx=3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 题型三 导数几何意义的应用 探究1 求切点坐标【例3】已知曲线y =x 2+6的切线分别符合下列条件,求切点. (1)平行于直线y =4x -3; (2)垂直于直线2x -y +5=0. 【解析】设切点坐标为(x 0,y 0).f ′(x )=li m Δx →f (x +Δx )-f (x )Δx=li m Δx →0 (x +Δx )2+6-(x 2+6)Δx=li m Δx →0(2x +Δx )=2x .∴过(x 0,y 0)的切线的斜率为2x 0.(1)∵切线与直线y =4x -3平行,∴2x 0=4,x 0=2,y 0=x 20+6=10, 即过曲线y =x 2+6上点(2,10)的切线与直线y =4x -3平行. (2)∵切线与直线2x -y +5=0垂直,∴2x 0×2=-1,得x 0=-14,y 0=9716,即过曲线y =x 2+6上点⎝⎛⎭⎫-14,9716的切线与直线2x -y +5=0垂直. 【方法归纳】求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0); (2)求导函数f ′(x ); (3)求切线的斜率f ′(x 0);(4)由斜率间的关系列出关于x 0的方程,解方程求x 0; (5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.探究2 与曲线的切点相关的问题【例4】已知直线l 1为曲线y =x 2+x -2在(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. (1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴围成的三角形面积.【解析】(1)y ′=lim Δx →0(x +Δx )2+(x +Δx )-2-x 2-x +2Δx=lim Δx →02xΔx +(Δx )2+ΔxΔx=lim Δx →0(2x +Δx +1)=2x +1.所以y ′|x =1=2×1+1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), 则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23,B ⎝⎛⎭⎫-23,-209,所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×52=12512.(1)先由已知求出l 1的斜率,再由l 1⊥l 2,求出l 2的斜率,进而求出切点坐标,得出l 2的方程. (2)求出l 1与l 2的交点坐标,l 1,l 2与x 轴的交点,求出直线l 1,l 2和x 轴围成的三角形的面积. 【方法归纳】利用导数的几何意义处理综合应用题的两种思路(1)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.(2)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.【跟踪训练3】(1)已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )=f ′(x B ) C .f ′(x A )<f ′(x B )D .f ′(x A )与f ′(x B )大小不能确定 【答案】A【解析】由y =f (x )的图象可知,k A >k B ,根据导数的几何意义有f ′(x A )>f ′(x B ).故选A.(2)曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =________.【答案】(2)±1【解析】(2)因为f ′(a )=li m Δx →(a +Δx )3-a 3Δx =3a 2,所以曲线在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为⎝⎛⎭⎫23a ,0,由题意知三角形面积为12⎪⎪⎪⎪a -23a ·|a 3|=12×⎪⎪⎪⎪a 3·|a 3|=16a 4=16.∴a 4=1,即a =±1. 【易错辨析】求切线方程时忽略“过”与“在”的差异致错【例5】已知抛物线y =x 2+x +1,则过抛物线原点的切线方程为________. 【答案】3x -y =0或x +y =0【解析】设切点坐标为(x 0,y 0),则f ′(x 0)=lim Δx →(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=lim Δx →0(2x 0+1+Δx )=2x 0+1,所以斜率k =2x 0+1,故所求的切线方程为y -y 0=(2x 0+1)(x -x 0),将(0,0)及y 0=x 20+x 0+1代入上式得:-(x 20+x 0+1)=-x 0(2x 0+1), 解得x 0=1或x 0=-1,所以k =3或k =-1,所以切线方程为y =3x 或y =-x , 即3x -y =0或x +y =0. 【易错警示】 1.出错原因把原点当作切点,易求的是在原点处的切线方程. 2.纠错心得(1)看清楚求的是原点处的切线,还是过原点的切线. (2)过原点的切线,原点不一定是切点,需设切点为(x 0,y 0).一、单选题1.设()f x 在0x x =处可导,则()()000lim2h f x h f x h h→+--=( ). A .()02f x ' B .()012f x ' C .()0f x ' D .()04f x '【答案】C 【分析】根据导数的定义即可求解. 【解析】解:∵()f x 在0x 处可导, ∵()()()0000lim2h f x h f x h f x h→+--'=,故选:C.2.函数()y f x =在0x x =处的导数可表示为0x x y =',即( ). A .()()()000f x f x x f x =+∆-' B .()()()0000lim x f x f x x f x ∆→'=+∆-⎡⎤⎣⎦ C .()()()0000lim x f x x f x f x x∆→+∆-'=∆D .()()()000f x x f x f x x+∆-'=∆【答案】C 【分析】结合导数定义直接选择即可. 【解析】x x y ='是()0f x '的另一种记法,根据导数的定义可知C 正确.故选:C3.若函数()f x 在0x x =处可导,则()()000limh f x h f x h→+-的结果( ).A .与0x ,h 均无关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 均有关【答案】B 【分析】根据导数的定义即可求解. 【解析】 解:因为()()()0000limh f x h f x f x h→+-'=,所以结果仅与0x 有关,而与h 无关, 故选:B.4.设()f x 为可导函数,且满足0(1)(12)lim12x f f x x→--=-,则'(1)f 为( )A .1B .1-C .2D .2-【答案】B 【分析】利用导数的定义进行求解. 【解析】 因为0(1)(12)lim12x f f x x →--=-,所以20(1)(12)lim =12x f f x x→---,即20(12)(1)lim12x f x f x-→--=--所以'(1)1f =-. 故选:B.5.已知函数f (x )可导,且满足0(3)l (m 2i 3)x f f x x∆→-+∆=∆,则函数y =f (x )在x =3处的导数为( )A .-1B .-2C .1D .2【分析】根据导数的定义即可得到答案. 【解析】 由题意,()()()()()003333lim lim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆,所以()32f '=-.故选:B.6.已知函数()f x 的图像如图所示,()f x '是()f x 的导函数,则下列结论正确的是( )A .()()()()310132f f f f '<-'<< B .()()()()310312f f f f -''<<< C .()()()()310312f f f f '<-'<< D .()()()()310132f f f f ''<<-< 【答案】B 【分析】结合图象,判断出()()()()310,3,,12f f f f ''-的大小关系. 【解析】由题图可知函数()f x 的图像在1x =处的切线的斜率比在3x =处的切线的斜率大,且均为正数,所以()()031f f ''<<. AB 的斜率为()()3131f f --,其比在1x =处的切线的斜率小,但比在3x =处的切线的斜率大,所以()()()()310312f f f f -''<<<. 故选:B7.已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20【分析】根据导数的定义可得()()()0121lim 21x f x f f x∆→+∆='-∆,再用求导公式可得()28f x x'=+,代入1x =即可得解. 【解析】因为()2ln 8f x x x =+,所以()28f x x'=+, 所以()()()()()020121121lim2lim 21202x x f x f f x f f xx∆→∆→+∆-+∆-=∆'==∆.故选:D8.下列说法正确的是( )A .曲线的切线和曲线有且只有一个交点B .过曲线上的一点作曲线的切线,这点一定是切点C .若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处无切线D .若曲线()y f x =在点()()00,x f x 处有切线,但()0f x '不一定存在 【答案】D 【分析】根据瞬时变化率和导数的基本概念对各选项逐一判断即可. 【解析】对于A ,曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,故A 错误;对于B ,过曲线上的一点作曲线的切线,由于曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,所以这个点不一定是切点,故B 错误;对于C ,()0f x '不存在,曲线()y f x =在点()()00,x f x 处切线的斜率不存在,但切线可能存在,故C 错误; 对于D ,曲线()y f x =在点()()00,x f x 处有切线,但切线斜率可能不存在,所以()0f x '不一定存在,故D 正确. 故选:D二、多选题9.已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则下列数值的排序正确的是( )A .()()32f f ''<B .()()()332f f f '<-C .()()()232f f f '<-D .()()320f f -<【答案】AB 【分析】根据导数的几何意义可得()()23f f ''>,记()()22A f ,,()()33B f ,,作直线AB ,根据两点坐标求出直线AB 的斜率,结合图形即可得出()()()323f f f '->. 【解析】由函数的图象可知函数()f x 是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在2x =处的切线斜率1k 大于在3x =处的切线斜率2k ,所以()()23f f ''>; 记()()22A f ,,()()33B f ,,作直线AB ,则直线AB 的斜率()()()()323232f f k f f -==--,由函数图象,可知120k k k >>>,即()()()()23230f f f f ''>->>. 故选:AB10.(多选题)若函数f (x )在x =x 0处存在导数,则000()()limh f h x f x h→+-的值( )A .与x 0有关B .与h 有关C .与x 0无关D .与h 无关【答案】AD 【分析】由导数的定义进行判定. 【解析】由导数的定义,得:'0000()()lim()h f x f x f x hh →-=+,即函数f (x )在x =x 0处的导数与x 0有关,与h 无关. 故选:AD.11.甲、乙两个学校同时开展节能活动,活动开始后两学校的用电量()W t 甲(单位:kW h ⋅),()W t 乙(单位:kW h ⋅)与时间t (单位:h )的关系如图所示,则一定有( )A .甲校比乙校节能效果好B .甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小C .两学校节能效果一样好D .甲校与乙校在活动期间的用电量总是一样大 【答案】AB 【分析】根据切线斜率的实际意义判断AC 选项的正确性.根据平均变化率的知识确定B 选项的正确性.根据图象判断用电量是否“总是一样大”,由此判断D 选项的正确性. 【解析】由图可知,对任意的()100,t t ∈,曲线()W t 甲在1t t =处的切线斜率的绝对值比曲线()W t 乙在1t t =处的切线斜率的绝对值大,所以甲校比乙校节能效果好,A 正确,C 错误; 由图可知,()() 000W t W t -甲甲()()000W t W t -<乙乙,则甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小,B 正确;由于曲线()W t 甲和曲线()W t 乙不重合,故D 错误. 故选:AB.12.(多选)设()f x 在0x 处可导,下列式子中与()0f x '相等的是( ) A .()()0002lim2x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆-+∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】AC 【分析】利用导数的定义对各选项逐一分析计算并判断作答. 【解析】 对于A ,()()()()()000000202222lim lim 22x x f x f x x f x x x f x x f x x x ∆→∆→--∆-∆+∆--∆'==∆∆,A 满足; 对于B ,()()()()()000000202lim 2lim 22x x f x x f x x f x x x f x x f x x x ∆→∆→+∆--∆-∆+∆--∆'==∆∆,B 不满足; 对于C ,()()()00002limx f x x f x x f x x∆→+∆-+∆'=∆,C 满足;对于D ,()()()()()000000302232lim 3lim 33x x f x x f x x f x x x f x x f x x x∆→∆→+∆--∆-∆+∆--∆'==∆∆,D 不满足. 故选:AC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.某生物种群的数量Q 与时间t 的关系近似地符合10()9tt e Q t e =+.给出下列四个结论:①该生物种群的数量不会超过10;②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ④该生物种群数量的增长速度最大的时间()02,3t ∈. 根据上述关系式,其中所有正确结论的序号是__________. 【答案】①②④ 【分析】对解析式上下同时除以t e ,结合反比例函数模型可判断①正确;对10()9tt e Q t e =+求导,()Q t '即为该生物种群数量的增长速度与时间的关系式,结合导函数特征和对勾函数模型可判断③错,②④正确 【解析】1010()991t t t e Q t e e ==++,因为0te >,故()911,t e+∈+∞,()100,1091t e ∈+,故该生物种群的数量不会超过10,①正确;由()28109090()()89191t tt t t t e e Q t Q t e e e e=⇒'=+++=+,显然该生物种群数量的增长速度与种群数量不成正比,③错;因为81tt e e +为对勾函数模型,故81tt e e+≥,当且仅当9t e =时取到等号,故811890t t e e++整体先增加后减小,当()03ln92,t =∈时,()Q t '最大,故②④正确, 综上所述,①②④正确, 故答案为:①②④ 14.若02)(=f x ',则00Δ0()(Δ)lim2Δx f x f x x x→-+=________.【答案】1- 【分析】利用导数的定义进行求解. 【解析】00Δ0()(Δ)lim2Δx f x f x x x→-+00Δ0(Δ)()1lim 2Δx f x x f x x →+-=- '01()2f x =-1=-.故答案为1-.15.已知函数f (x ),则()1f '=________. 【答案】12 【分析】根据导数的定义即可得到答案. 【解析】()()()001111lim lim 21x x f x f f x x →→+∆-'====∆+∆+.故答案为:12.16.函数()f x 在R 上可导,且()02f '=,x y R ∀∈,,若函数()()()f x y f x f y +=成立,则()0f =________.【答案】1 【分析】令0y =,则有()()()0f x f x f =,再根据条件即可求出答案. 【解析】解:令0y =,则有()()()0f x f x f =,()02f '=, ()f x ∴不恒为0, ()01f ∴=,故答案为:1.四、解答题17.已知2()f x x =,利用2'(1)11,(1)2,Δ0.03f f x ====,求(1.03)f 的近似值. 【答案】1.06 【分析】将'(1)1,(1)2,Δ0.03f f x ===代入'000()()()f x x f x f x x +∆≈+⋅∆中计算即可得到答案.【解析】由'000()()()f x x f x f x x +∆≈+⋅∆,可知'(1.03)(1)(1)0.03120.03 1.06f f f ≈+⨯=+⨯=.18.已知某产品的总成本函数为22C Q Q =+,总成本函数在0Q 处导数()0f Q '称为在0Q 处的边际成本,用()0MC Q 表示.求边际成本(500)MC 并说明它的实际意义.【答案】(500)1002MC =,其实际意义是:此时多生产1件产品,成本要增加1002. 【分析】利用导数的定义计算即可. 【解析】设500Q =时,产量的改变量为Q ∆,22(500)2(500)(5002500)C Q Q Q Q ∆+∆++∆-+⨯=∆∆ 1002Q =∆+,则0(500)lim (1002)1002Q MC Q ∆→=∆+=,即产量为500时的边际成本为1002,其实际意义是:此时多生产1件产品,成本要增加1002.。

2020版高中数学人教B版选修2-2课件:1.1.1 函数的平均变化率

2020版高中数学人教B版选修2-2课件:1.1.1 函数的平均变化率

【解析】质点在2到2+Δt之间的平均速度为
[(2 t)2 1] 22 1 4t (t)2
v
4 t.
t
t
又 v≤5,即4+Δt≤5,
所以Δt≤1.
又Δt>0,
所以Δt的取值范围为(0,1]. 答案:(0,1]
【易错误区案例】 求解函数的平均变化率问题 【典例】函数y=2x2+3x在[1,2]内的平均变化率为_-_9_.
y x
f x2 f x1
x2 x1
公式中Δx与Δy可能同号,也可能异号.
(3)×.函数值的改变量应是f(x0+Δx)-f(x0).
2.若已知函数f(x)=x2-1的图象上一点(1,0)及附近一 点(1+Δx,Δy),则Δy的值为________. 【解析】Δy=f(1+Δx)-f(1)= (1+Δx)2-1=(Δx)2+2Δx. 答案:(Δx)2+2Δx
33 3
所以函数f(x)=3-x2在x0=1附近的平均变化率最大.
【方法技巧】 比较平均变化率的方法步骤
(1)求出两不同点处的平均变化率. (2)作差(或作商),并对差式(或商式)作合理变形,以 便探讨差的符号(或商与1的大小). (3)下结论.
【补偿训练】一质点做直线运动,其位移s与时间t的 关系为s(t)=t2+1,该质点在2到2+Δt(Δt>0)之间的 平均速度不大于5,则Δt的取值范围是______.
为 f x1 f x2 ?
x1 x2
提示:能.若从x1变为x2,平均变化率为
若从x2变为x1,平均变化率为
而 f x2 =f x1 f x.1 f x2
f x1 f,

高考数学 导数 知识汇总

高考数学 导数 知识汇总

知识点1.函数的平均变化率一般地,已知函数y=f(x),f (x 2)−f(x 1)x 2−x 1称作函数y=f(x)在[x 1,x 2]上的平均变化率. x 2−x 1表示自变量x 的改变量,计作∆x ;y 2−y 1表示函数值的改变量,计作∆y .于是平均变化率也可用Δy Δx表示.这里∆x ,∆y 可为正值,也可为负值,但∆x ≠0,∆y 可以为0.函数的平均变化率f (x 2)−f(x 1)x 2−x 1表示函数值的改变量与对应的自变量的改变量之间的比例,它表示函数图像上(x 1,f(x 1)),( x 2,f(x 2))两点连线的斜率,近似地刻画了曲线在区间[x 1,x 2]上的变化趋势.在式子Δy Δx=f (x 2)−f(x 1)x 2−x 1=f (x 1+Δx )−f(x 1)Δx中,当x 1取定值,Δx 取不同的数值时,函数的平均变化率不同;当Δx 取定值,x 1取不同的数值时,函数的平均变化率也不同.平均变化率的几何意义:设函数y=f(x)的图像如下图所示.PQ 是曲线的一条割线,其斜率为tan β=∆y ∆x =f (x 0+∆x )−f(x 0)∆x可知曲线割线的斜率就是函数的平均变化率.2.平均速度设物体运动路程与时间的关系是s=f(t),在t 0到t 0+Δt 这段时间内,物体的平均速度是v ̅=f (t 0+Δt )−f(t 0)Δt=ΔsΔt在匀速直线运动中,比值ΔsΔt 是恒定的.在非匀速直线运动中,比值ΔsΔt 是不恒定的.要精确地描述非匀速直线运动,就要知道物体在每一时刻运动的快慢程度,即瞬时速度.3.瞬时速度作变速直线运动的物体在不同时刻的速度是不同的,把物体在某一时刻的速度叫做瞬时速度.设物体运动的路程与时间之间的关系是s=f(t),当∆t →0时,函数f(t)在t 0到t 0+∆t 之间的平均变化率f (t 0+Δt )−f(t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.即V=lim ∆t→0Δs Δt=lim∆t→0f (t 0+∆t )−f(t 0)∆t同理,对于速度函数y=v(t) 其在t 0的瞬时变化率就是在t 0时刻的瞬时加速度,即当t 0→0,v (t 0+∆t )−v(t 0)∆t表示t 0时刻的瞬时加速度.瞬时速度实质是平均速度当Δt →0时的极限值.瞬时速度的计算必须先求出平均速度v ̅=Δs Δt,再对平均速度取极限.Δt →0,是指时间间隔Δt 越来越短,能超过任意小的时间间隔,但始终不能为零. Δt 、Δs 在变化中都趋近月0,但它们的比值却趋近于一个确定的常数. 4.导数的概念 4.1导数设函数y=f(x)在x 0及其附近有定义,当自变量在x=x 0附近改变量为∆x 时,函数值相应地改变∆y=f(x 0+∆x)-f(x 0).当∆x 趋近于0时,平均变化率Δy Δx =f (x 0+∆x )−f(x 0)∆x趋近于一个常数l,那么常数l称为函数f (x )在点x 0的瞬时变化率,计作当∆x →0时,f (x 0+∆x )−f(x 0)∆x→l,或lim ∆x→0f(x0+∆x)−f(x0)∆x=l.一般地,函数y=f(x)在点x0处的瞬时变化率,称为f(x)在点x0处的导数,并计作,f´(x0)或y′|x=x.这时又称f(x)在点x0处是可导的.于是上述变化过程又可计作当∆x→0时,f(x0+∆x)−f(x0)∆x→f´(x0).或lim ∆x→0f(x0+∆x)−f(x0)∆x= f´(x0).∆x是自变量x在x0处的改变量,所以∆x可正、可负,但不能为0.当∆x >0(或<0)时,∆x→0表示x0+∆x从右边(或从左边)趋近于x0.∆y是相应函数的改变量,∆y可正、可负、也可为0.求函数y=f(x)在点x0处的导数的步骤如下:(1)求函数的增量∆y=f(x0+∆x)-f(x0);(2)求函数的平均变化率:ΔyΔx =f(x0+∆x)−f(x0)∆x;(3)取极限,求得f´(x0)=lim∆x→0∆y∆x.4.2导函数如果f(x)在区间(a,b)内每一点x都是可导的,则称f(x)在区间(a,b)可导,这样对于区间(a,b)内每个值x,都对应一个确定的导数f´(x).于是,在区间(a,b)内,f´(x)构成一个新的函数,叫做y= f (x)的导函数,计作f´(x)或y´.导函数通常简称导数.求函数在某一点处的导数,一般是先求处函数的导函数,再计算这点的导函数值.注意区分函数y=f(x)“在x0处的导数”、“导函数”、“导数”.函数在x0处的导数表示在点x0函数的改变量与自变量的比的极限,它是一个数值,不是变数;导函数是如果函数f(x)在区间(a,b)可导,这样对于区间(a,b)内每个值x,都对应一个确定的导数f´(x),而构成一个新的函数y= f´(x);导函数简称导数,于是导数{f (x )在点x 0处的导数导函数.5.导数的几何意义设函数y=f(x)的图像如下图所示.P P 0是曲线的一条割线,其斜率为可知曲线割线的斜率就是函数的平均变化率.当点P 0沿曲线趋近于点P 时,其最终位置为曲线在点P 的切线,此时,切线的斜率为由导数意义可知,曲线y=f(x)在点(x 0,f(x 0) )的切线的斜率等于f ´(x 0).我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线是切线”.以前我们学过圆的切线:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线.圆是一种特殊的曲线,如果将圆的切线定义推广到一般曲线,显然是不合适的.观察下图虽然直线l与曲线有唯一公共点,但是我们不能说l与曲线相切;而尽管直线m与曲线有不止一个公共点,我们却可以说直线m与曲线相切.因此,对于一般曲线不能以公共点个数来界定直线与曲线相切与否.6.利用导数的几何意义求曲线的切线方程6.1利用导数的几何意义求曲线的切线方程的步骤第一步:求出函数y=f(x)在点x0处的导数f´(x0);第二步:根据直线的点斜式方程,得切线方程为y-y0=f´(x0)(x-x0).特别地,若切线平行于y轴(即倾斜角为π2),此时导数不存在,曲线在点(x0,f(x0) )处的切线方程是x=x0.观察图像易知,f´(x0)>0则切线的倾斜角为锐角;f´(x0)<0则切线与x轴正向的夹角为钝角;f´(x0)=0则切线与x轴平行.函数在某点可导是曲线在该点存在切线的充分不必要条件,如果函数在某一点不可导,则可利用切线的定义来求切线方程.过某一点P的切线与在点P处的切线是不同的概念,过点P的切线不一定以点P为切点,在点P处的切线是以点P为切点的直线,注意不要混淆.6.2几种常见曲线的切线方程(1)过圆(x-a)²+(y-b)²=r²上过一点P0(x0,y0)的切线方程为(x0-a)(x-a)+( y0-b)(y-b)=r².特例,当a=b=0时,即圆心在坐标原点,此时,过点P0(x0,y0)的切线方程为x0x+y0y=r².(2)过椭圆x²a²+y²b²=1上的一点P0(x0,y0)的切线方程为x0xa²+y0yb²=1.(3)过双曲线x²a²−y²b²=1上的一点P0(x0,y0)的切线方程为x0xa²−y0yb²=1.(4)过抛物线y²=2px上的一点P0(x0,y0)的切线方程为y0y=p(x+x0).7.几个常用函数的导数7.1常数函数y=f(x)=c的导数y´=lim∆x→0ΔyΔx=lim∆x→0f (x+∆x )−f(x)∆x=lim∆x→0c−cΔx=0.y ´=0的几何意义为函数y=c 图像上每一点处的切线的斜率都为0,.其物理意义为若y=c 表示路程关于时间的函数,则y´=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.7.2函数y=x 的导数 y´=lim∆x→0Δy Δx=lim∆x→0(x+∆x )−x∆x=lim ∆x→01=1.同理,对于y=2x ,y´=2;对于y=3x ,y´=3……对于y=x ,y´=1表示函数y=x 图像上每一点处的切线斜率都是1.函数y=kx (k >0)增加的快慢与k 有关,即与函数的导数有关系.k 越大,函数增加得越快;k 越小,函数增加的越慢.函数y=kx (k <0)减少的快慢与|k|有关系,即与函数导数的绝对值有关系. |k|越大,函数减少得越快;|k|越小,函数减少得越慢.7.3函数y=f(x)=x ²的导数. y´=lim∆x→0Δy Δx =lim∆x→0f (x+∆x )−f(x)∆x=lim∆x→0(x+∆x )²−x ²∆x=lim∆x→0x ²+2x·∆x+(∆x )2−x ²∆x=lim ∆x→0(2x+∆x )+2x7.4函数y=f(x)=1x的导数 y´=lim∆x→0Δy Δx=lim∆x→0f (x+∆x )−f(x)∆x =lim∆x→01x+Δx −1xΔx=lim∆x→0x−(x+∆x )x(x+∆x)∆x =lim ∆x→0[−1x(x+∆x)]=-1x ².函数y=1x的图像如:结合函数图像及其导数y´=-1x²发现,当x<0时,随着x的增加,函数y=1x减少的越来越快;当x>0时,随着x的增加,函数减少得越来越慢;7.5函数y=√x的导数设y=f(x)=√x(x>0),y´=lim∆x→0ΔyΔx =lim ∆x→0f(x+∆x)−f(x)∆x=lim∆x→0√x+Δx−√xΔx=limΔx(√x+Δx+√x)=lim√x+Δx+√x=2√x(x>0)由y´=2√x可知,函数y=√x的图像上没一地啊n的切线斜率都大于零(不包括原点).以上公式是进行导数运算的基础,务必要熟练掌握.上述公式可划分为四类,第一类是幂函数y ´=(x μ )´ =μx μ−1;第二类为指数函数y ´=(a x )′a x ln a ,(e x )′=e x 是一个特例;第三类为对数函数y ´=(log a x)′=1x ln a ,(ln x)′=1x 是对数函数的一个特例;第四类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数.对于公式(ln x )´=1x 和(e x )´=e x 很好记,但对于(log a x )´=1x log a e 和 (a x )´=a x ln a 的记忆就比较难,应从以下几个方面加深对公式的理解和记忆:(1)区分公式的结构特征,从纵的方面区分(ln x )´与(log a x )´,和(e x )´与(a x )´,找出差异,记忆公式;(2)对公式(log a x )´,用(ln x )´和复合函数求导法则证明来帮助记忆,即求证对数函数求导公式(log a x )´=1x log a e证明如下: (log a x )´=(ln x ln a)´=1ln a ·1x=1xlog a e这样知道了(log a x )´=1x log a e 中log a e 的来历,对于公式的记忆和区分是很有必要的.9.导数的四则运算9.1函数和或差的求导法则设函数f(x),g(x)是可导的,则(f(x)±g(x))´=f ´(x) ±g ´(x).即,两个函数的和(或差)的导数,等于这两个函数的导数和(或差).这个法则可以推广到任意有限个函数,即(f 1±f 2±⋯±f n )′=f 1′±′f 2′±⋯±f n ′.9.2函数积的求导法则设函数f(x),g(x)是可导的,则(f(x) g(x))´= f ´(x) g(x)+ f(x) g ´(x).即,两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.另,[Cf(x)]´=Cf ´(x).(C 为常数)切忌与函数和(或差)的公式混淆,(f(x) g(x))´≠f ´(x)g ´(x),与(f(x)±g(x))´=f ´(x) ±g ´(x)要分清.9.3函数的商的求导法则设函数f(x),g(x)是可导的,g(x) ≠0,则[f(x)g(x)]′=g (x )f ′(x )−f (x )g ′(x)g ²(x).特别地,当f(x) ≡1时,有[1g(x)]′=g ′(x)g ²(x).注意f ´(x 0)与(f (x 0)) ´的区别.f ´(x 0)代表函数f(x)在x= x 0处的导数值,不一定为0;而(f(x 0)) ´是函数值f(x 0)的导数,而f(x 0)是一个常量,其导数值一定为0,即(f(x 0))´=0.9.4复合函数的求导法则由几个函数复合而成的函数,叫做复合函数.由函数y=f(u)与u=φ(x)复合而成的函数一般形式是y=f(φ(x)),其中,u 称为中间变量.设函数u=φ(x)在点x 处可导,函数y=f(u)在点x 对应点u 处也可导,则复合函数y=f(φ(x))在点x 处也可导,且y´x =y´u ·u´x 或f´x (φ(x))=f ´(u) φ′(x).注意:(1)要弄清复合函数的结构关系,分清它是由哪些基本函数复合而成的,选择合适的中间变量;判断复合函数复合关系时,一般是从外向里分析,最外层的主题函数结构是以基本函数为主要形式,各层的中间变量结构也都是基本函数关系,直到最里层应是关于自变量的基本函数或关于自变量的基本函数经过有限次四则运算而得到的函数.(2)复合函数求导方法:①将复合函数的复合关系一一分解;②分步计算,每一步都要清楚是对哪个变量求导,特别要注意中间变量的导数;③根据基本初等函数的求导公式以及运算法则求出个函数的导数,并把中间变量转换成自变量的函数;④熟练掌握复合函数的求导后,中间步骤可以省略不写.(3)上述复合函数的求导公式可以推广到有限次的复合函数求导,如:y=f(u),u=u(t),t=t(w),w=w(x),则y´x =f´u ·u´t ·t´w ·w´x .复合函数求导法则的应用.利用复合函数的求导法则可以求出抽象函数的导数.例:求证存在导函数的奇函数的导数是偶函数.证明:设f(x)是奇函数,即f(-x)=f(x).两边分别对x求导数,得f´(-x)·(-x)´=-f´(-x),即-f´(x)= -f´(-x),∴f´(x)= f´(-x),故命题成立.10.利用导数判断函数的单调性10.1对于函数f(x),在区间(a,b)内,如果f′(x)>0,那么函数f(x)在这个区间内单调递增;如果f′(x)<0,那么函数f(x)在这个区间内单调递减.注意:(1)用曲线的切线的斜率来理解法则,当切线斜率非负时,切线的倾斜角小于90°,函数曲线呈向上增加趋势;当切线斜率为负时,切线的倾斜角大于90°,小于180°,函数曲线呈向下减少趋势;(2)如果在某个区间内恒有f(x)=0.则f(x)在这个区间内等于常数;(3)对于可导函数f(x)来说,f′(x)>0是f(x)在(a,b)上单调递增的充分不必要条件,f′(x)<0是f(x)在(a,b)上单调递减的充分不必要条件.例如f(x)=x3在R 上为增函数,但f′(0)=0,所以在x=0处不满足f′(x)>0.函数单调性的必要条件是:函数f(x)在(a,b)内可导,若f(x)在(a,b)上单调递增(或递减),则f′(x)≥0(或f′(x)≤0)且f′(x)在(a,b)的任意子区间上都不恒为0.10.2求可导函数单调区间的一般步骤和方法:第一步,确定函数f(x)的定义域;第二步,求f′(x);第三步,在定义域内,f′(x)>0的解集对应的区间为f(x)的增区间;f′(x)<0的解集对应的区间为f(x)的减区间.注意:(1)利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内通过讨论导数的符号来判断函数的单调区间;(2)除了讨论f′(x)>0或f′(x)<0外,还要注意定义域内不连续和不可导点.10.3用导数判断函数单调性的应用(1)证明不等式若证明不等式f(x)>g(x),x∈(a,b),可以转化为证明f(x)-g(x)>0.如果(f(x)-g(x))´>0,说明函数F(x)=f(x)-g(x)在(a,b)上是增函数.若f(a)-g(a)≥0,由增函数的定义可知,当x∈(a,b)时,f(x)-g(x)>0,即f(x)>g(x).(2)证明有关函数根的问题用求导的方法确定方程根的个数,是一种很有效的方法,它是通过函数的变化情况,运用数形结合的思想来确定函数的图像与x轴的交点个数,最简单的一种是只有一个交点(即一个根)的情况,即函数在整个定义域内是单调函数,再结合某一个特殊值来确定f(x)=0.(3)求函数的值域有些函数的值域用以前学的方法有时不简便,这时我们可以考虑研究函数的单调性,特别是函数的自变量定义在某一区间上时,这时可用单调性来研究值域.(4)求参数的值(或取值范围)求函数y=f(x)的单调增区间、减区间分别是解不等式f´(x)>0,f´(x)<0所得的x的取值集合.反过来,若已知f(x)在区间D上单调递增,求f(x)中的参数值的问题,这类问题往往转化为不等式的恒成立问题,即f´(x)≥0在D上恒成立,求f(x)中的参数值.11.利用导数研究函数的极值11.1函数的极值已知函数y=f(x),设点a是定义域(a,b)内任一点,如果对a附近的所有点=f(a).并把a x,都有f(x)<f(a),则称函数f(x)在点a处取极大值,计作y极大称为函数f(x)的一个极大值点.同样,如果在点b附近都有f(x)>f(b),则称函=f(b).并把b称为函数f(x)的一个极小值数f(x)在点b处取极小值,计作y极小点. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值.对于极大值点a,f′(a)=0;而且在点x=a附近的左侧f′(x)>0,右侧f′(x)<0.类似地,对于小值点b,f′(b)=0;而且在点x=b附近的左侧f′(x)<0,右侧f′(x)>0.注意:(1)极值必须在区间内的连续点处取得.一个函数的定义域内可能出现许多个极小值和极大值点,某一点的极小值可能大于另一点的极大值,也即极小值和极大值之间没有必然的大小关系.极值是一个局部性概念.(2)函数的极值点的导数为0,但导数为0的点可能不是函数的极值点.即,f′(c)=0是f(x)在x=c处取极值的必要条件,但不是充分条件.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内一定不是单调函数,即在区间上单调的函数没有极值.(4)如果函数y=f(x)在区间[a,b]内有极值,则极值点的分布是有规律的.相邻两个极大值点之间必然会有一个极小值点,同样相邻两个极小值点之间必然会有一个极大值点.通常当函数y=f(x)在区间[a,b]内有有限个极值点时,其极大值点与极小值点是交替出现的.11.2函数y=f(x)极值的求解方法第一步:求导数f′(x);第二步:求方程f′(x)=0的根;第三步:检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.注意:(1)对于使f′(x)无意义的点也可能是极值点,因此和f′(x)=0的根对应的点一样,都是可疑点,也要进行讨论.(2)极大值点可以看做函数单调递增区间与单调递减区间的分界点,同样极小值点是函数单调递减区间与单调递增区间的分界点.12.利用导数研究函数的最值12.1函数的最大值与最小值对于函数y=f(x),如果在其定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数在定义域I上的最大值.如果在其定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x0)为函数在定义域I上的最小值.函数的最大值与最小值是一个整体性概念,是比较整个定义区间的函数值得出.一般地,若函数f(x)在闭区间上的图像是一条连续不间断的曲线,那么它必有最大值与最小值,且最值必在极值点或端点处取得.函数的极值可以有多个.对于最值,若存在最大值,则最大值唯一;若存在最小值,则最小值唯一;极值有可能是最值,最值只要不在端点处必定是极值.在开区间(a,b)内连续的函数不一定存在最大值与最小值.如函数y=tan x,在区间(-π2,π2)内连续,但没有最大值与最小值. 12.2函数最值的求解方法求可导函数f(x)在区间[a ,b ]上的最大值与最小值的步骤:第一步:求f(x)在(a,b)内的极值;第二步:将f(x)的各极值与f(a)、f(b)比较,其中最大的是最大值,最小的是最小值.如果函数f(x)在[a ,b ]上是单调时,可利用函数的单调性求得函数的最值,即,若f(x)在[a ,b ]上单调递增,则其最大值为f(b),最小值为f(a);若f(x)在[a ,b ]上单调递减,则其最大值为f(a),最小值为f(b).与求函数极值不同,求最值时不需要对各导数为零的点讨论其是最大值还是最小值,只需将导数为零的点的函数值和端点的函数值进行比较就行了.13.函数极值的应用:(1)确定参数的值,这里一般用待定系数法(2)求参数的取值范围(3)判断方程的根的变化,这里一般是利用数形结合的思想来讨论方程的根,即先根据函数的极值情况画出函数f (x )的图像,再观察方程的根(4)证明不等式,这里一般是先构造函数,再根据函数的最值来证明不等式(5)求含参数的值域问题时,通常对参数进行分类讨论,然而当函数有极值,需要确定参数值或其范围时,利用逆向思维较容易解决问题.14.导数的实际应用——最优问题14.1解决优化问题的基本思路(1)在解决实际最优化问题时,不难发现基本思路是:上述解决最优化问题的过程是一个典型的数学建模过程.(2)实际应用问题的解题程序:读题(文学语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答) 函数建模,要设出两个变量,根据题意分析它们的关系,把变量转化成函数关系式,确定自变量的定义域.14.2用导数解决最优问题的一般步骤:第一步:分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x);第二步:求函数的导数f ′(x ),解方程f ′(x )=0;第三步:比较函数在区间端点和使f ′(x )=0的点的数值的大小,最大(小)者为最大(小)值.第四步:将结果代回原问题中,根据实际问题的现实意义判断取舍.注意:应用导数解决实际问题,关键是要建立恰当的数学模型(函数关系).函数建模,要设出两个变量,根据题意分析它们的关系,把变量转化成函数关系式,并确定自变量的定义区间以及其他限制条件.如果函数在定义区间内只有一个点使f ′(x )=0,此时函数在这点有极大(小)值,那么不与端点比较也可以知道这就是最大(小)值.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.15.曲边梯形的面积以及变速直线运动行驶的路程曲边梯形面积的求法主要是用了“以直代曲”的思想,即用直边图形(如矩形)代替曲边梯形的面积,再用求极限的方法求曲边梯形的面积.求曲边梯形的面积可分为四步:分割→近似代替→求和→取极限.把变速直线运动的路程问题划归为求匀速直线运动的路程问题,采用的方法仍然是分割、近似代替、求和、取极限,它与曲边梯形的面积可以归纳为求一个特定形式和的极限.分割的目的在于更精确地“以直代曲”.以“矩形”代替“曲边梯形”,随着分割的等分越来越多,这种“代替”就越精确,所有小矩形的面积和就越逼近曲边梯形的面积.16.定积分的概念设函数y=f(x)定义在区间[a ,b ]上,用分点a=x 0<x 1<x 2<⋯<x n−1<x n <b .把区间[a ,b ]分为n 个小区间,其长度依次为∆x i =x i+1-x i ,i=0,1,2,…,n-1.计λ为这些小区间长度的最大者,当λ趋近于0时,所有的小区间长度都趋近于0.在每个小区间内任取一点ξi ,作和式I n =∑f(ξi )n−1i=0∆x i .当λ→0时,如果和式的极限存在,我们把和式I n 的极限叫做函数f(x)在区间[a ,b ]上的定积分,计作∫f (x )dx ba, 即∫f (x )dx b a =lim λ→0∑f(ξi )n−1i=0∆x i . 其中,f(x)叫做被积函数,a 叫做积分下限,b 叫做积分上限,f(x)dx 叫做被积式.此时称函数f(x)在区间[a ,b ]上可积.注意:(1)定积分∫f (x )dx ba 是一个常数.它的数值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即∫f (x )dx b a =∫f (u )du b a =∫f (t )dt b a =……(称为积分形式不变性); 另外,定积分∫f (x )dx b a 与积分区间[a ,b ]息息相关,不同的积分区间,定积分的积分上、下限不同,所得的值也不同.(2)用定义求定积分的一般方法是:①分割,将区间[a ,b ]n 等分;②近似替代,取点ξi ∈[x i−1,x i ];③求和,∑f(ξi )n i=0b−a n ;④取极限,∫f (x )dx b a =lim n→∞∑f(ξi )b−a n i=0;(3)函数f(x)在区间[a ,b ]上连续这一条件是不能忽视的,它保证了和的极限(定积分)的存在(实际上,函数连续是定积分存在的充分条件,而不是必要条件).17.定积分的性质(1)∫kf (x )dx b a =k ∫f (x )dx b a(k 为常数); (2)∫[f 1(x )±f 2(x )]dx b a =∫f 1(x )dx b a ±∫f 2(x )dx b a;(3)∫f (x )dx b a =∫f (x )dx c a +∫f (x )dx b c (其中a<c<b ).注意:(1)性质(1)、(2)称为定积分的线性性质,性质(3)称为定积分对积分区间的可加性.(2)性质(2)对于有限个函数(两个以上)也成立,性质(3)对于把区间[a ,b ]分成有限个(两个以上)区间也成立.18.定积分的几何意义当函数f(x)在区间[a ,b ]上恒为正时,定积分∫f (x )dx b a的几何意义是由直线x=a,x=b,y=f(x),y=0围成的曲边梯形的面积.一般情况下,定积分∫f (x )dx b a 的几何意义是介于x 轴、函数f(x)的图像以及x=a ,x=b 之间的部分面积的代数和,在x 轴上方的取正好,在x 轴下方的取负号.如上图所示,321)(A A A dx x f ba +-=⎰则(1A 、2A 、3A 表示各阴影部分的面积).注意:(1)定积分∫f (x )dx b a 不一定表示面积,也可能是面积的相反数;定积分也可以是体积,可以是功,可以是路程、压力等,总之定积分还有更多的实际意义.(2)∫f (x )dx b a 、∫|f (x )|dx b a 、|∫f (x )dx ba | 在几何意义上有不同的含义.由于被积函数f(x)在[a ,b ]上可正可负,即它的图像可以在x 轴上方,也可以再x 轴下方,还可以在x 轴的上、下两侧,所以∫f (x )dx ba表示由x 轴,函数f(x)的曲线以及直线x=a ,x=b (a ≠b )围成的图像各部分面积的代数和;而|f (x )|是非负的,所以∫|f (x )|dx ba表示在区间[a ,b ]上所有以|f (x )|为曲边的正曲边梯形的面积;而|∫f (x )dx b a |则是∫f (x )dx ba 的绝对值.三者的值一般情况下是不同的.19.微积分基本定理如果F ′(x )=f (x ),且f(x)在[a ,b ]上可积,则其中F (x )叫做f(x)的一个原函数.由于[F (x )+c ]′=f(x), F (x )+c 也是f(x)的原函数,其中c 为常数.一般,原函数在[a ,b ]上的改变量F(b)-F(a)简记作因此微积分基本定理(又称牛顿——莱布尼兹公式)可以写成注意:(1)利用微积分基本定理计算定积分的关键是找到满足F ′(x )=f (x )的函数F(x).通常我们用基本初等函数的求导公式和倒数的四则运算法则从反方向求出F(x).(2)这项定理揭示了导数与定积分之间的关系,即求积分与求导数是互为逆运算,这也是计算定积分的重要方法,是微积分学中最重要的定理.(3)若F (x )是f(x)的一个原函数,则F (x )+c 也是f(x)的原函数,即f(x)的原函数有无数个.一般只写最简单的一个,不用再加任意常数c 了.20.定积分的简单应用20.1几种典型平面图形面积的计算(1)求由一条曲线y=f(x)和直线x=a ,x=b(a <b)及y=0所围成的平面图形的面积S .常见有以下三种类型: ()ba F x①②③如图①,f(x)>0,∫f (x )dx b a >0,∴S =∫f (x )dx b a如图②,f(x)<0, ∫f (x )dx b a<0,∴S =|∫f (x )dx b a |=-∫f (x )dx b a . 如图③,当a ≤x ≤c 时,f(x)<0,∫f (x )dx c a<0;当c ≤x ≤b 时,f(x)>0,∫f (x )dx bc >0, ∴S =|∫f (x )dx c a |+|∫f (x )dx b c |=-∫f (x )dx c a +∫f (x )dx bc . (2)由两条曲线f(x)和g(x),直线x=a ,x=b ,(a <b )所围成的平面图形的面积S .①②如图①,当f(x)>g(x)>0时,S =∫[f (x )−g(x)]dx b a; 如图②,当f(x)>0,g(x)<0时,S =∫f (x )dx b a +|∫g (x )dx ba |=∫[f (x )−g(x)]dxb a . 求由两条曲线围成的平面图形的面积的解题步骤:第一步:画出图形;第二步:确定图形范围,通过解方程组求出交点的横坐标,确定积分上、下限;第三步:确定被积函数,特别要注意分清被积函数上、下位置; 第四步:写出平面图形面积的定积分表达式;第五步:运用微积分基本公式计算定积分,求出平面图形的面积.20.2作变速直线运动的物体所经过路程S ,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a ,b ]上的定积分,即S=∫v (t )dt b a. 20.3变力做功物体在恒力F (单位:N )的作用下作直线运动,如果物体沿着与F 相同的方向移动了s (单位:m ),则力F 所做的功为:W=Fs.如果物体在变力F (x )的作用下作直线运动,并且物体沿着与F (x )相同的方向从x=a 移动到x=b (a <b ),那么变力F (x )所做的功为:W=∫f (x )dx b a .求变力做功的步骤:第一步:根据物理学的实际意义求出变力F(x)的表达式;第二步:求出起始位置与终止位置;第三步:根据变力做功公式W=∫f (x )dx b a 求出变力F(x)所做的功.。

4.1 导数的概念及其运算

4.1 导数的概念及其运算

复合函数及其求导: 四.复合函数及其求导: 复合函数及其求导
高考总复习·数学 高考总复习 数学 (3) 复合函数的求导法则:复合函数y=f[g(x)]对自变量x的导数 y 'x 复合函数的求导法则: ,等于外函数y=f(u)对中间变量u的导数y’u,乘以中间变量u对自变 ′ x 量x(即内函数)的导数 u’x,即 y′ = yu ⋅ u ′ x
高考总复习·数学 高考总复习 数学
导数的基本运算
求下列函数的导数:
1 1 (1) y = x ( x + + 3 ) x x 1 (3) = ( x + 1)( y − 1) x
2
3
x x ;(2)y = x − sin cos 2 2

1 2 ' 2 Q 【解析】(1) y = x + 1 + 2 ∴ y = 3 x − 3 . x x x x 1 (2)先使用三角公式进行化简,得 y = x − sin cos = x − sin x 2 2 2
复合函数求导步骤:分解——求导——回代。 复合函数求导步骤: 法则的推广:若函数y=f(u)在u点处可导,u=g(v)在v 点处可导, 法则的推广 v=h(x)在x点处可导,则复合函数y=f{g[h(x)]}在x点处可导,并且
y ' = f '(u ) ⋅ g '(v) ⋅ h '( x) = y 'u ⋅ u 'v ⋅ v 'x .
高考总复习·数学 高考总复习 数学 2.导数四则运算法则: 导数四则运算法则: 导数四则运算法则
[u ( x) ± v( x)]' = u ' ( x) ± v ' ( x) ①和、差的导数:

变化率与导数关系

变化率与导数关系

(1)y ′=(x211x)′=-12x 112--=-12x 32-=-2321x (2)y ′=2 017x ln2 017. (3)y ′=(ln 3)′=0. (4)因为y =x x 3,所以y =x 52, 所以y ′=(x 52)′=52x 5-12=52x 32=5x x2.类型二 利用导数公式求曲线的切线方程例2、 (1)求过曲线y =sin x 上一点P ⎝⎛⎭⎫π6,12且与过这点的切线垂直的直线方程.(2)已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程. 【解析】 (1)因为y =sin x ,所以y ′=cos x ,曲线在点P ⎝⎛⎭⎫π6,12处的切线斜率是y ′|x =π6=cos π6=32. 所以过点P 且与切线垂直的直线的斜率为-23,故所求的直线方程为y -12=-23⎝⎛⎭⎫x -π6, 即2x + 3y -32-π3=0.(2)因为y ′=(x 2)′=2x ,设切点为M (x 0,y 0),则y ′|x =x 0=2x 0,又因为直线PQ 的斜率为k =4-12+1=1,而切线平行于直线PQ ,所以k =2x 0=1,即x 0=12,所以切点为M ⎝⎛⎭⎫12,14. 所以所求的切线方程为y -14=x -12,即4x -4y -1=0. 方法归纳(1)利用导数的几何意义解决切线问题的两种情况①若已知点是切点,则在该点处的切线斜率就是该点处的导数.②如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. (2)求过点P 与曲线相切的直线方程的三个步骤跟踪训练 2 对于例2(2)改为是否存在与直线PQ 垂直的切线,若有求出切线方程,若没有,说明理由.解析:假设存在与直线PQ 垂直的切线,因为PQ 的斜率为k =4-12+1=1,所以与PQ 垂直的切线斜率k =-1,设切点为(x 0′,y 0′),则y ′|x =x 0′=2x 0′,令2x 0′=-1,则x 0′=-12,y 0′=14,切线方程为y -14=-⎝⎛⎭⎫x +12,即4x +4y +1=0. |素养提升|1.基本初等函数的导数公式可分为四类第一类为幂函数,y ′=(x α)′=αx α-1(注意幂指数α可推广到全体非零实数);第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数; 第三类为指数函数,y ′=(a x )′=a x ln a ,当a =e 时,y =e x 的导数是指数函数的导数的一个特例;第四类为对数函数,y ′=(log a x )′=1x ln a ,也可写为(log a x )′=1x·log a e ,当a =e 时,y =ln x 的导数是对数。

导数的概念、导数公式与应用

导数的概念、导数公式与应用

导数的概念及运算知识点一:函数的平均变化率(1)概念:函数中,如果自变量在处有增量,那么函数值y也相应的有增量△y=f(x0+△x)-f(x),其比值叫做函数从到+△x的平均变化率,即。

若,,则平均变化率可表示为,称为函数从到的平均变化率。

注意:①事物的变化率是相关的两个量的“增量的比值”。

如气球的平均膨胀率是半径的增量与体积增量的比值;②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。

③是自变量在处的改变量,;而是函数值的改变量,可以是0。

函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。

(2)平均变化率的几何意义函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。

如图所示,函数的平均变化率的几何意义是:直线AB的斜率。

事实上,。

作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。

知识点二:导数的概念:1.导数的定义:对函数,在点处给自变量x以增量,函数y相应有增量。

若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。

即:(或)注意:①增量可以是正数,也可以是负数;②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。

2.导函数:如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。

注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在处的函数值,反映函数在附近的变化情况。

3.导数几何意义:(1)曲线的切线曲线上一点P(x0,y)及其附近一点Q(x+△x,y+△y),经过点P、Q作曲线的割线PQ,其倾斜角为当点Q(x0+△x,y+△y)沿曲线无限接近于点P(x,y),即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。

若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。

即:。

(2)导数的几何意义:函数在点x的导数是曲线上点()处的切线的斜率。

变化率与导数

变化率与导数

记为 f ( x0 ) 或
y
x xo
,即
f ( x0 x) f ( x0 ) f f ( x0 ) lim lim x 0 x x 0 x
思考?

观察函数f(x)的图象
Y=f(x) y B
y f(x2 ) f ( x1 ) 平均变化率 x x2 x1
表示什么?
f(x2) f(x2)-f(x1)=△y A f(x1)
直线AB 的斜率
x2-x1=△x x x1 x2
O
四、导数的几何意义:
y
y=f(x) Pn
割 线
T
y
P
切线

x
o
x 我们发现,当点Pn沿着曲线无限接近点P即 Δ x→0时,割线P Pn趋近于确定位置PT.则我们 把直线PT称为曲线在点P处的切线.
因此,函数f(x)在x=x0处
y
y= Q f( x) P

的导数就是切线PT的斜率.
o
'
割 线 T 切 线 x
即:
f ( x0 x) f ( x0 ) y k切线 f ( x0 ) lim lim x 0 x x 0 x
这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质——函数在x=x0处的导数.
f ( x0 x) f ( x0 ) f lim lim x 0 x 0 x x
练习:
1.函数f(x)=x2在x=1处的瞬时变化率为( ).
2.函数f(x)=1-3x在x=x0处的瞬时变化率为( ) 3.质点运动规律s=t2+3,则在t=3秒的瞬时速度为
三、导数
一般地,函数 y =f(x) 在x=x0处的瞬时变化率 称为函数 y = f (x)在点x=x0处的导数,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的概念及运算
知识梳理
1. 平均变化率与瞬时变化率
(1)函数()f x 从1x 到2x 的平均变化率x y
∆∆= .
(2)函数()f x 在处0x x =的瞬时变化率为 2. 导数的概念
(1)函数()f x 在x x =o 处的导数:()f x 在点0x 处的导数就是函数()f x 在x x =o 处的瞬时变化率即()0'x f =
(2)函数()f x 的导函数:当x 变化时()x f '是x 的一个函数,称()x f '为()f x 的导函数(简称导数)即()x f '= 3. 导数的几何意义与物理意义 (1)几何意义
切线方程为: (2)物理意义
4.基本初等函数的导数
①;C '= ②()
;n x
'= ③(sin )x '=; ④(cos )x '=;
⑤()x a '=
;⑥();x e '=
⑦()l g a o x '=
; ⑧()ln x '=
.
5.导数的运算法则
_______ ______ ______
[](4)()'C f x ⋅=_______ ___________ 6.复合函数的导数 【题型分析】
一.导数的概念及其几何意义
例1:(1)若0'()2f x =,则当k 无限趋近于0时
00()()
2f x k f x k
--=________
(2)如图,函数
()f x 的图象是折线段ABC ,其中A B C ,, 的坐标分别为
(04)(20)(64),,,,,,则((0))f f = ;
(1)(1)
lim
x f x f x
∆→+∆-=∆
.(用数字作答)
二.导数的计算
例2:求下列函数的导数
(1)
2()(2)()f x x a x a =+- (2)22()cos sin cos f x x x x =⋅+
()()时刻的是物体运动在处的导数在函数00'0t t S S S ===t t t t ()()()'
3f x g x ⎡⎤=
⎢⎥⎣⎦
(3)
()
x x
f x =(4)
322
ln ()x x x
f x x +=
(5)
()()ln ln ln f x x =⎡⎤⎣⎦
(6)()2()3lg 1cos2x
f x x =⋅- 三.与切线相关的问题
例3:(1)曲线32
242y x x x =--+在点(1,3)-处的切线方程是_________。

(2)若曲线4()f x x x =-在点P 处的切线平行于直线30x y -=,则点P 的坐标为__。

(3)曲线
1
y x
=
和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是__。

(4)设曲线1
1
x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a =____。

(5)在函数3
8y x x =-的图象上,其切线的倾斜角小于4
π的点中,坐标为整数的点
有____个。

(6)曲线
12
x y e =在点()
24,e 处的切线与坐标轴所围三角形的面积为______。

(7)点P 在曲线32
3
y x x =-+
上移动,设在点P 处的切线的倾斜角为α,则α的取值范围是________。

(8)已知曲线3:3S
y x x =-及点(2,2)P ,则过点P 可向S 引切线,其切线共有__条。

(9)点P 是曲线
2ln y x x =-上任意一点,则P 到直线2y x =-的距离的最小值是
______。

例4:已知点P 在曲线4
1
x
y e =+上,α为曲线在点P 处的切线的倾斜角,求α的取值范围。

例5:偶函数4
3
2
()f x ax bx cx dx e =++++的图象过点(0,1)P ,且在1x =处的切线方
程为2y x =-,求()y f x =的解析式。

四.导数的综合应用
例6:对正整数n ,设曲线(1)n y x x =-在2x =处的切线与y 轴交点的纵坐标为n a ,
则数列1n a n ⎧⎫
⎨⎬+⎩⎭
的前n 项和n S =__________。

例7:已知二次函数2()f x ax bx c =++的导数为'()f x ,已知'(0)0f >,且对于任意实数x 都有()0f x ≥,则
(1)
'(0)
f f 的最小值为( )
A .3
B .
52 C .2 D .32
例8:过点()0,4P -作抛物线24G x y =:的切线,求切线方程。

例9:已知过点()0,1P -的直线l 与抛物线24x y =交于两点()11,A x y 、()22,B x y 。

1l 、2l 分别是该抛物线在A 、B 两点处的切线。

M 、N 分别是1l 、2l 与直线1y =-的交
点。

(1)求直线l 的斜率的取值范围
(2)试比较
PM 与PN 的大小,说明理由。

例10:设抛物线方程为()220x py p =>,M 为直线2y p =-上任意一点。

过M 引抛物线的切线,切点分别为A 、B ,求证:A 、M 、B 三点的横坐标成等差数列。

例11:已知抛物线2
4x y =的焦点为F ,A 、B 是直线上的两动点,(0)AF FB λλ=>u u u r u u u r 过A 、B 两点分别作抛物线的切线,设其交点为M 。

(1)证明FM AB ⋅u u u u r u u u r
为定值;
(2)设ABM
∆的面积为S ,写出()S f λ=的表达式,并求S 的最小值。

例12:已知曲线22:20(1,2,)n C x nx y n -+==K .从点(1,0)P -向曲线n C 引斜率为
(0)n n k k >的切线n l ,切点为(,)n n n P x y 。

(1)求数列
{}n x 与{}n y 的通项公式;
(2)
证明:13521n n n
x
x x x x y -⋅⋅⋅⋅<
L。

相关文档
最新文档