不同容量逆变器并联主从控制
多逆变器并联的均流控制策略
多逆变器并联的均流控制策略张建文;王鹏;王晗;蔡旭【摘要】采用多逆变器并联系统是提高电机驱动功率的一种有效方法,但其存在环流和不均流问题.针对这些问题,建立了多逆变器并联系统的数学模型,提出了不均流度概念,建立了环流和不均流度的数学表达式,对引起环流和不均流现象的原因进行了分析,证明了环流产生的原因是并联逆变器输出电压不一致造成的.在上述分析的基础上,提出一种基于主从控制器的硬件电路结构,解决了并联系统存在的环流问题,并通过脉冲延时补偿解决了逆变器输出电流的不均流问题.实验结果验证了所提出方法的正确性.【期刊名称】《电工技术学报》【年(卷),期】2015(030)018【总页数】8页(P61-68)【关键词】多逆变器并联;环流;不均流度;主从控制;脉冲延时补偿【作者】张建文;王鹏;王晗;蔡旭【作者单位】上海交通大学风力发电研究中心上海200240;上海交通大学风力发电研究中心上海200240;上海交通大学风力发电研究中心上海200240;上海交通大学风力发电研究中心上海200240【正文语种】中文【中图分类】TM464近年来,随着电力电子技术的迅速发展,逆变器越来越朝着大容量的方向发展[1]。
特别是在新能源应用领域,例如风力发电,光伏发电和蓄能电站等,其中逆变器的容量可以高达数MW。
然而受制于功率开关器件通流能力,在大功率应用场合特别是在低压大电流领域,单逆变器技术方案难以满足功率输出的要求,只能采用多个逆变器并联的技术方案以提高逆变器的输出功率。
并联技术的采用使得在大容量应用场合采用低功率等级的开关器件成为可能,降低了生产成本;同时,采用并联技术便于进行模块化设计以缩短生产周期,并拓宽了功率模块的使用范围[2,3]。
一般采用的单套逆变器系统为三相三线制结构,所以没有零序环流通道,故不存在环流问题,但在多逆变器并联的系统中,存在环流通道,如果不加以抑制,就会引起严重的环流问题[4-6]。
由于环流只在并联的逆变器之间流动,并不体现在并联逆变器的输出总电流中,因此环流的存在一定程度上降低了系统的有效容量,同时增加了电路的损耗,降低了系统的效率[4,5]。
用于电机传动系统的多逆变器并联控制技术
Kf ( / Ts+1)
图5 Fig. 5
电机电流的传递函数示意图
Sketch of transfer function of motor current
图 5 中, 当逆变器的开关频率足够高时, 忽略开 关频率附近及以上各次谐波, 逆变器可视为一比例环 节 K PWM , 只对调制波进行放大; i m 为实际的电机定子 电流, 电流调节器选用 PI 型, 其参数为 K i ( τ i s + 1 ) / τ i s; K f / ( Ts + 1) 为电流环的反馈环节模型; Z1 = R1 + L1 s 为均流电抗器 1 的阻抗,Z L = R L + L L s 为电机等 效阻抗。因此, 电机电流的开环传递函数 G m 为 K( τ i s + 1 ) G m ( s) = , (7) ( L1 + NL L ) s s ( Ts + 1 ) ( R1 + NR L ) + 1
( Department of Electrical Engineering,Naval University of Engineering,Wuhan 430033 ,China)
Abstract: In order to solve the problem of current balancing control of parallel inverters for lowvoltage largecurrent motor drive system,the masterslave vector control system of tracking the reference current is studied. Based on the circuit models and the control principles of motor current and circulating current,the masterslave control system of tracking the reference current was developed,and the current regulator was designed from the motor stability. The performances of the control system were verified by simulations and experiments. The results show that the motor current can be shared and has good dynamic characteristics. Key words: parallel inverters; motor drive; masterslave control; current sharing
逆变电源并联控制综述
逆变电源并联控制综述潘慧梅【摘要】The parallel of inverter power can improve power system's capacity,maintainability and redundancy,but design of main circuit and control method is more complex.This paper detailed the analysis of the inverter's main circuit with topology.including independent parallel systems,interactive parallel system,independent parallel of DC power inverter and parallel of common DC power,and their advantages and disadvantages. Aim to different topologycal main circuit,this paper introduced the relevant control method,which is of certain guidance for improving the stability and reliability of industrial automatic power and high-end inverter welding power system.%逆变器并联虽然能提高电源系统的容量、可维护性和可冗余度,但是其主电路设计和控制方法比单台逆变器复杂,基于此,详细综述了逆变器主电路的拓扑结构.在主电路结构中,分别介绍了独立并联系统、交互并联系统、独立直流电源逆变器并联和共用直流电源并联的主电路结构,同时分别介绍了各自的优缺点,针对不同的主电路拓扑电路,介绍了相应的控制方法.对提高工业自动化电源、高端焊接逆变电源系统的稳定性和可靠性具有一定的参考价值.【期刊名称】《电焊机》【年(卷),期】2011(041)005【总页数】4页(P22-25)【关键词】逆变电源;并联;直流电源;拓扑电路;控制【作者】潘慧梅【作者单位】攀枝花学院电气信息工程学院,四川攀枝花617000【正文语种】中文【中图分类】TM71随着电力电子技术不断的发展,逆变电源并联广泛应用于工业自动化、军工以及船舶等高端设备系统中。
逆变电源并联运行参数设计及控制策略
综合式(1.6)、式(1.8)和式(1.9),可将逆变器侧电感 L1 的大小表示为 (1.10)
1.4 设计结果
额定有功功率 Pn=100 kW,电网线电压有效值 Us=380 V,开关频率 =12 kHz。 利用 1.3 节中的滤波器设计方法,对 LCL 滤波器参数进行优化设计。
取 λ=1%,由式(6)计算得 Cf=21.9 µF。 取 µ=0.05,采用 1.3 节的优化方法 k 取 11 时总电感量最小,h=240。 将 Cf、k 代入式(8)、式(10)得 L2 =0.088 mH, L1=0.035 mH。
对逆变器的控制通常分为电压控制和电流控制。采用电压控制时, 如果逆变器输 出电压相位与电网电压不一致, 将会有环流出现, 而且并网后, 交流侧只能检测电网电 压而不能有效地控制输出电压的变化。如果逆变器的输出采用电流控制, 则只需控制逆 变器的输出电流以跟踪电网电压, 即可达到并联运行的目的。由于其控制方法相对简单, 因此使用比较广泛。鉴于以上原因, 光伏并网逆变器一般都采用电压源输入、电流源输 出的控制方式。
与 L 型滤波器相比,LCL 滤波器是利用了电感与电容对不同频率分量所呈现阻 抗的差异性的特点,滤波器增加了滤波电容 Cf 和网侧滤波电感 L2,高频情况下电感 支路的阻抗大,而电容支路阻抗则小,引入 L2 和 Cf 后可对含有高次谐波的逆变器桥 输出电流 进行并联阻抗分流,滤波电容 Cf 为高频部分提供低阻通路,从而有效降 低注入电网电流 中的谐波电流分量。
2
电流谐波衰减与两侧电感量比值的变化关系。但参数设计过程中需要首先给定两侧电感 量合适的比值,否则将不能保证满足所有的约束条件,需重新给定两侧电感量的比值。 文献[4]提出了利用滤波电容吸收的无功功率设计滤波电容、利用纹波电流限制条件设计 逆变器侧电感、利用开关频率处电流衰减率要求设计两侧电感比值的 LCL 型滤波器的 参数设计方法,并且分析了阻尼电阻对系统稳定性的影响。
虚拟振荡器控制的新型逆变器无线并联方案
流电压幅值不一定为 Um,振荡器电路必须有衰减 振荡或自激振荡到 Um 的过程。当振荡器电路电压 幅值高于 Um 时,SR 模块工作于电阻状态,系统衰 减振荡。当振荡器电路电压幅值低于 Um 时,SR 模 块工作于电流源状态,且要求 SR 模块发出的能量
大于电阻 ROS 消耗的能量,系统自激振荡。 文献[11]处理振荡器自激振荡的方法是让图 3
(a) SR 模块作用于受控电流源模式
(b) SR 模块作用于可控电阻模式
图 2 振荡器电路结构
Fig. 2 Circuit structure of oscillator
设 gSR 为 SR 模块的等效电导值,则 gSR 的大 小为
gSR = iSR / uO
(3)
设图 2(b)的 iSR 的方向为参考正方向,若式(3) 中 iSR 的方向与参考方向相同,则 gSR > 0,SR 模块 体现为电阻性质;反之 gSR < 0,SR 模块体现为负 阻性质。图 3 为 SR 模块受控于输出电压 uO 的函数 模型[11]。从 SR 模块的函数图像可以得出,当振荡
LOS
d[COS
duO (t) dt
+
(GOS dt
±
gSR
)uO (t)]
+
uO (t)
=
0
(5)
整理式(5),可得到 SR 模块分别工作于电阻状 态和电流源状态的振荡器系统微分方程如下:
LOSCOS
d2uO (t) dt 2
+
LOS
(GOS
+
gSR
)
duO (t) dt
+ uO
(t)
=
0
(6)
分布式电源并联运行控制新方法
分布式电源并联运行控制新方法易桂平;刘悦;胡仁杰【摘要】在分析微网多逆变器并联功率分配机理基础上,分析了不同额定容量逆变器间有功功率和无功功率环流的变化规律,并具体分析了等效线路阻抗对功率分配的影响机理及传统下垂控制法的局限性,为此提出了一种改进的Q-En下垂控制方法和En电压恢复机制来改善无功功率的分配并分析了它们的控制原理.仿真和实验表明设计的改进下垂控制器可使得并联运行的逆变器能按额定容量精确分配负荷有功和无功,设计的控制器具备较强的鲁棒性能.【期刊名称】《电机与控制学报》【年(卷),期】2016(020)003【总页数】10页(P109-118)【关键词】逆变器并联;恢复机制;改进功率下垂控制;功率分配;比例负荷分配【作者】易桂平;刘悦;胡仁杰【作者单位】常熟理工学院电气与自动化工程学院,江苏常熟215500;开封大学信息工程学院,河南开封475004;东南大学电气工程学院,江苏南京210096【正文语种】中文【中图分类】TM712分布式发电技术以其灵活性高、成本和损耗低、节能环保等优点,日益成为新能源发电领域的研究热点。
为大规模地利用分布式能源,通过微电网的形式接纳各种分布式发电,可灵活地实现与大电网并网运行或者孤岛自治运行。
在微电网中,大多数分布式微源均通过逆变器接口接入大电网,从而形成了一种多逆变器并联运行环境。
因此,多逆变器并联系统的稳定运行将极大提高微电网系统的整体容量和可靠性。
目前,逆变器并联运行控制策略一般采用主从控制法以及下垂控制法等方法。
主从控制法在控制上需要互联线,会限制并联分布式电源之间的距离,同时也可能引入噪声,因而其应用有一定的局限性。
下垂控制法是一种无联络信号线独立控制技术,通过借鉴同步发电机的自同步和电压下垂特性,实现单元间无信号线的并联技术。
它不需要逆变器间的互联信号线,只需要采集各逆变器的输出、依赖其内部控制策略,即可实现并联多逆变器的同步、均流运行。
相比其他控制方式而言,下垂控制可使得系统的结构简单、功能冗余、安装维修快捷、系统扩容方便、成本低、并联运行更加可靠。
基于逆变器并联及其控制技术的设计mwl
毕 业 论 文课 题 急于逆变器并联运行及其控制技术的设计学生姓名毛卧龙 院 部电气工程系 专业班级电气工程及其自动化(2)班 指导教师 朱珠二 ○ 一 四 年 五 月铜陵学院毕业论文(设计)摘要逆变电源的并联能够能够把复杂的大容量的供电变为现实,是逆变技术现在需要着力发展的去向。
并联逆变器技术能够扩大容量,这就极大的使系统的灵活度增大,并且使提供电能的电源系统的体积减小重量减轻。
这样就降低了成本的同时使系统的可靠性得到了增强,系统的功率密度也增大了。
所以现在许多科学家和研究人员都在致力于使用多台逆变电源的并联技术提高电源容量,使得各个电源模块的负载功率变小,使得这些模块中流过逆变器中主开关电流变小电流应力减小,从而增加了可靠性,缩减设备资金,增大了功率密度,灵活的组成了各样功率容量。
因为逆变器的好坏也能影响并联系统的性能好坏,因此我这篇论文先从怎么去设计逆变器开始,涉及到数学建模,滤波器的设计和控制参数设置等一些知识。
本篇论文一开始分析了逆变器的设计,及其在并联系统中出现的一些问题和相应的解决方案。
当然我们主要研究的还是环流的产生和它的消除方法这些方面,并展开了系统的讲解说明,在研究结果中显示并联逆变系统能够很好的消除基准差异产生的环流,研究表明因为各个并联模块的电感电流跟随同意给定。
在这个时候滤波电容成为影响环流的首要因素,电流回馈系数造成的影响也在其后。
关键词:逆变器;输出滤波器;逆变电源;环流毛卧龙:逆变器并联运行及其控制技术的设计AbstractThe parallel power supply can change the complex large capacity into reality, and it is the destination of the development of the inverter technology.. Parallel inverter technology can expand capacity, which greatly increases the flexibility of the system, and can reduce the volume of power supply system to reduce the weight loss. So the reliability of the system is enhanced and the power density of the system is also increased.. So now many scientists and researchers are working on the use of multi inverters parallel technology to increase the capacity of power supply, making each power supply module load power is smaller, makes these modules in flowing through the inverter main switch current variable low current stress decreases, so as to increase the reliability, reduce the capital equipment, increase the powerdensity, flexible composition of a variety of power capacity.Because the quality of the inverter can also affect the parallel system performance is good or bad, so this paper I first from how to design the inverter start relates to mathematical modeling and filter design and control parameter settings, etc. some knowledge. In this thesis, the design of inverter and some problems in parallel system are analyzed and some solutions are also made.. Of course, our main research or circulation and its elimination method these aspects, and launched a systematic explanation, in the results of the study show parallel inverter system can eliminate the differential base of circulation. The results show that because of the various modules in parallel electrical sense current to follow the consent given. At this time, the filter capacitor is the primary factor affecting the circulation, and the influence of current feedback coefficient is also subsequently.Key words:inverter; output filter; inverter power supply;circulation目录摘要 (I)插图清单:........................................................................................................................................................ I II 第1章绪论 ............................................................................................................................................. - 1 -1.1逆变技术的研究背景................................................................................................................. - 1 -1.2逆变技术的发展方向................................................................................................................. - 1 -1.3主要研究内容................................................................................................................................ - 1 - 第2章逆变器的基本概念和逆变器的设计 ..................................................................................... - 2 -2.1现代逆变技术概述 ..................................................................................................................... - 2 -2.1.1逆变的概念和分类 .......................................................................................................... - 2 -2.1.2 逆变控制技术 ................................................................................................................... - 2 -2.1.3 逆变技术的应用.............................................................................................................. - 3 -2.2 逆变的目的和优越性................................................................................................................. - 4 -2.2.1逆变的目的....................................................................................................................... - 4 -2.2.2 使用逆变技术的好处 ..................................................................................................... - 4 -2.3逆变器主电路的建模 ................................................................................................................ - 4 -2.4 滤波器设计.................................................................................................................................. - 6 -2.5控制电路的设计 ......................................................................................................................... - 8 -2.5.1电流内环的设计.............................................................................................................. - 8 -2.5.2 电压外环的设计.............................................................................................................. - 9 -第3章逆变电源并联原理 .................................................................................................................. - 11 -3.1逆变电源并联原理.................................................................................................................... - 11 -3.2串联限流电感均流的技术......................................................................................................- 13 -3.3有功和无功功率的控制方法 ................................................................................................- 13 -3.4主从模块法 .................................................................................................................................- 15 -第4章总结与展望................................................................................................................................- 17 -4.1设计总结 ..................................................................................................................................- 17 -4.2设计展望...................................................................................................................................- 17 -致谢 ....................................................................................................................................................- 18 -参考文献: ................................................................................................................................................- 19 -铜陵学院毕业论文(设计)插图清单:图2- 1 主电路的拓扑结构................................................................... 错误!未定义书签。
微电网逆变器并联控制策略研究
微电网逆变器并联控制策略研究邵明强【摘要】随着电力电子技术的日益发展,基于逆变器的分布式发电得到了大规模应用.多模块并联运行以扩大电源容量是当今电源变换技术发展的重要方向之一,大大提高了系统的灵活性和可靠性.但同时,多台逆变器的并联系统也存在着一些问题亟待解决.介绍和分析了针对并联逆变器间负荷均分问题,并提出了带有虚拟阻抗的下垂控制方式的控制策略.首先介绍了当今常用的主要逆变器并联控制技术,其中下垂控制的无互连线控制技术具有明显的优势和发展潜力.然后介绍了两台逆变器的并联系统,并从理论和仿真中引出了由于各逆变器间的参数差异而产生环流的问题.接着介绍了下垂控制与虚拟阻抗控制策略,以解决由于环流造成的负载功率不均分问题.最后,在simulink中进行了仿真中,得出了加入虚拟阻抗控制后的下垂控制方式,在工频和高频情况下,都能很好地做到功率均分,且改善输出电压的波形畸变,验证了结论的正确性.【期刊名称】《电力与能源》【年(卷),期】2016(037)003【总页数】4页(P304-307)【关键词】微电网;电力电子技术;逆变器并联控制技术;下垂控制策略;虚拟阻抗控制策略【作者】邵明强【作者单位】浙江浙能集团嘉兴发电有限公司,浙江嘉兴314000【正文语种】中文【中图分类】TM464随着DG的大量引入,逆变器的应用不可或缺。
通常采用多模块并联运行以扩大电源容量。
但是在逆变器并联运行状态中,必须保持各逆变器的输出电压的幅值、相位、频率及各逆变器参数相同,否则各逆变电源的输出电流会有差异,出现环流。
该环流的存在,使得各逆变器无法平均分担负载功率,从而增加了个别逆变器的负担,增加系统的损耗,严重时会损坏功率器件使系统崩溃,导致供电中断。
因此,必须采取有效的环流抑制措施来实现并联系统的可靠运行。
2台逆变器的并联系统等效图见图1。
定义环流如下:可以看出,环流与各逆变器的空载输出电压的幅值、相位、频率以及等效输出阻抗等因素有关。
基于改进下垂控制的多逆变器功率分配控制
电气传动2020年第50卷第12期摘要:多逆变器并联组网运行时,针对传统下垂控制中一次调频和调压能力有限而导致的频率和电压越限问题,提出了一种具有自愈能力的改进下垂控制策略。
该策略通过适当提高空载角频率和空载电压,将逆变器实际输出功率与预期功率的差值通过积分环节来调整下垂系数大小,从而实现频率和电压的自愈。
在此基础上,分析了下垂系数对功率分配的影响,通过基准逆变器功率变化信息的共享,按容量比设置积分系数,控制不同逆变器下垂系数大小时刻成比例,实现了频率和电压自愈的同时有功和无功功率在多台不同容量逆变器之间的精确分配。
建立了系统小信号建模,通过根轨迹法分析了控制器参数变化时对系统稳定性的影响。
最后,通过实验和仿真结果验证了所提策略的可行性和有效性。
关键词:多逆变器并联;下垂控制;下垂系数;自愈能力;小信号模型中图分类号:TM72文献标识码:ADOI :10.19457/j.1001-2095.dqcd20125Abstract:When multiple inverters are connected in parallel ,in order to solve the problem of frequency and voltage overstepping caused by the limited capacity of primary frequency and voltage regulation in traditional droop control ,an improved droop control strategy with self-healing ability was proposed.By properly increasing the no-load frequency and no-load voltage ,the difference between the actual output power and the expected power of the inverter was used to adjust the droop coefficient through the integral link ,so as to realize the self-healing of frequency and voltage.On this basis ,the influence of droop coefficient on power distribution was analyzed.By sharing the power change information of the reference inverter and setting the integral coefficient according to the capacity ratio ,the droop coefficient of different inverters was controlled to be proportional at different times ,and the precise distribution of active and reactive power among inverters with different capacities was realized while the frequency and voltage self-heal was realized.The small signal modeling of the system was established ,and the influence of the controller parameters on the system stability was analyzed by the root locus method.Finally ,simulation and experimental results verify the feasibility and effectiveness of the proposed strategy.Key words:multiple inverters in parallel ;droop control ;droop coefficient ;self-healing ability ;small signal model作者简介:刘勇(1976—),男,硕士,副教授,Email :Multi -inverter Power Distribution Control Based on Improved Droop Control LIU Yong 1,LIU Peng 1,PAN Hongbin 1,YANG Jian 2,HE Shengguo 1,LEI Yanke 1(1.College of Information Engineering ,Xiangtan University ,Xiangtan 411105,Hunan ,China ;2.Shenghong Shenzhen Electric Co.,Ltd.,Shenzhen 518000,Guangdong ,China )微网作为未来多种微源组网运行的一种趋势,越来越多地被人们关注,为可再生能源的利用开辟了新的途径[1-2]。
逆变电源并联控制技术
逆变器的并联运行技术摘要:介绍多个电源模块并联使用时,会产生的问题及其解决方法。
关键词:电源模块并联运行均流信息技术的迅速发展,对其供电系统的容量、性能和可靠性要求越来越高,也推动着电力电子技术的研究不断深入,研究领域不断拓宽。
多模块并联实现大容量电源被公认为当今电源变换技术发展的重要方向之一。
多个电源模块并联,分担负载功率,各个模块中主开关器件的电流应力大大减小,从根本上提高可靠性、降低成本。
同时,各模块的功率容量减小而使功率密度大幅度提高。
另外,多个模块并联,可以灵活构成各种功率容量,以模块化取代系列化,从而缩短研制、生产周期和降低成本,提高各类开关电源的标准化程度、可维护性和互换性等。
80年代国外开始研究DC/DC变换器并联运行技术,现已取得实用性的成果,而新的均流技术、系统稳定性等方面的研究仍在不断深入。
同主电路和控制电路的研究发展过程一样,逆变器并联运行技术的研究也是在借鉴DC/DC并联技术的基础上不断深入。
但由于是正弦输出,其并联运行远比直流电源困难,首先要解决三个问题:(1)两台或多台投入运行时,相互间及与系统的频率、相位、幅度必须达到一致或小于容许误差时才能投入,否则可能给电网造成强烈冲击或输出失真。
而且并联工作过程中,各逆变器也必须保持输出一致,否则,频率微弱差异的积累将造成并联系统输出幅度的周期性变化和波形畸变;相位不同使输出幅度不稳。
(2)功率的分配包括有功和无功功率的平均分配,即均流包括有功和无功均流。
直流电源的均流技术不能直接采用。
(3)故障保护。
除单机内部故障保护外,当均流或同步异常时,也要将相应逆变器模块切除。
必要时还要实现不中断转换。
目前,实现逆变器并联运行的几类典型方法有:1 自整步法[1][2][3]并联系统中各模块是等价的,没有专门的控制模块。
通过模块间的均流线实现同步和均流,源于航空恒速恒频(CSCF)电源的自整步并联技术[2]。
其基本原理是(见图1):以两路并联为例。
光伏并网多个逆变器并联运行控制及实现
摘 要 :传统 的 逆变器 并联 控制 方案 中各 个模 块相互 之 间存在 连线 。随 着模 块数 目的 增加 和模块 间距 离 的增
大, 各个 模 块之 间 的信 号容 易受 到 干扰 。根 据逆 变器 弗联 运 行 的原理 , 文分 析 了几 种 逆 变器 并联 的 控制 方 该 案, 比较 了几种 常见 的 P Q下 垂法 的优 缺 点 , 一步研 究 了无 互联 线 逆变 器并 联控 制策 略 , 进 介绍 了一 种 更 加适 合 光 伏并 网 系统 的无 置联 线逆 变 器并联 控 制方 案 , 方 案考 虑 了并 网线 路 电阻 以及谐 波 的影 响 , 该 提高 了系统 的动态 响应 能力 。通 过仿 真验证 了此 方案 的 可行性 。 关键 词 : 光伏并 网 ; 变器 并联 ;Q法 逆 P
m e h d t k s i t a co n i t o a e no c u to gr f d-c ne t d l e r ss a c n h pa a r  ̄csM e wh l, lo i pr v s t e d n on c e i e it n e a d t e i n m ct f o hr no an i i as m et o e h y am i c
中 图分 类 号 :M 6 T 44
文 献 标 识 码 : A
文 章 编 号 :0 300 ( 1)50 1— 4 10 - 172 1 -0 lo 0 0
Abs r ct T ad t aln e t rp r l n r l c em e hchha e t o ne t n a o g e h m o l i h n r as n t e n J — ta : r ion v re a al co to h i i el s sw i v he c n c i m n ac due W t t e i c e e i h L o h m be fmodue nd t e i c e s h sa ce a o g m o l , e sgn s a o g e ch m o l e v l r bl o s fe t re — ro ls a h n r a eso t e dit n m n f duest i al m n a h due 8r une a e t u ri e f r n e ceAcc r n t h rn i e o a al e  ̄ i n o n re st i p ay s s v r lpa a lliv t r c t c e e a d n o dig o t e p i cpl f p r l op r o ive t r , s pa eran lz e e a r l n er on r s h m s.n el f h e e ol c m p r dv n a s a d s d an a esof e e al o n onPQ o  ̄ h dsFu e .t y ft o to e hn l y o ar l o a esa a t ge n dia v t g v r r m s c dr op m o , Rh rsud s o he c n r l c oog fp al t el
浅析逆变器并联控制策略
浅析逆变器并联控制策略摘要:逆变器并联的关键在于负载功率的分配。
若负载功率不均分,将会导致部分工作模块过载,甚至损坏功率器件,造成系统的不稳定。
在实际系统中,逆变器多为电压型,而且电流量易于检测,因此并联方案多为基于电流均分控制,即有效抑制逆变器之间的环流。
关键字:辅助逆变器;并联;控制早期的逆变器并联采用在输出端串联电感的方法来抑制环流,要想达到较好的环流抑制效果,需要使用较大的电感,从而导致逆变器的体积重量增加,同时输出串联电感上的存在较大的电压降,降低了逆变器的输出精度。
对于车辆辅助逆变器并联系统,各逆变器模块之间距离较远,也没有足够的空间放置环流抑制电感,因此这种环流抑制方法在辅助逆变器并联系统中是不可取的。
目前逆变器的并联控制方式主要有:集中控制方式、主从控制方式、分布逻辑控制方式。
一、集中控制方式集中控制方式是较早应用的并联控制方式,其基本控制框图如图4.1所示。
集中控制方式设置了专门的公共模块,进行同步及均流控制。
该模块发出同步信号,其他模块通过检测该同步信号,控制输出电压的频率、相位,实现模块间输出电压的同步。
同时,通过公共模块检测总的输出电流及并联模块数,确定各模块的输出电流基准,各逆变器控制器根据该电流基准值与检测到的实际输出电流值进行比较,通过动态调节逆变器输出电压幅值消除电流基准值与实际值之间的偏差,以达到各逆变器输出均流的目的。
若应用于辅助逆变器并联控制系统,集中控制方式有如下优点:(1)结构简单。
各逆变模块只与公共模块之间有连线,逆变模块之间没有连线。
在原有系统的基础上很容易扩充新的逆变模块。
(2)控制简单。
公共模块只需要向各逆变模块发送相同的同步信号以及电流基准即可由各逆变器的控制器实现负载电流的均分。
(3)均流效果较好。
因集中控制方式的结构和控制方法都很简单,该方式均流效果较好。
同时,集中控制方式也有如下缺点:(1)可靠性不高。
由于车辆上电磁干扰较大,公共模块较容易受到干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Recently, the use of critical loads such as computers, medical equipment, process controllers, and data processing systems has steadily increased. These critical loads are sensitive to voltage variations and other power quality related problems. Uninterruptible Power Supply (UPS) systems that can supply reliable power to critical loads during power quality events are one of the most popular solutions used in dealing with power quality problems [1]. UPS systems are used in parallel configuration frequently to increase total power capacity of the system or to secure a higher reliability at critical loads [2] [3]. During parallel operation, the load sharing control to maintain the current balance is critical. The load sharing is very sensitive to differences between each UPS module such as amplitude/phase difference, line impedance, and output LC filter. Various methods of parallel operation to increase the total capacity rating and reliability have been researched, including power deviation compensation, voltage/frequency droop method and instantaneous modulation control [4] [5] [6]. However, in these methods, the output voltages of all the modules in parallel need to be synchronized exactly in frequency, phase and amplitude to guarantee identical equality of load sharing. Otherwise, the output current may contain reactive circular components, that is, circulating currents. This can result in decrease of system capability, malfunction and damage to the parallel operation system [7]. Thus, parallel operation schemes are difficult to implement and provide
expansion of the system. Another disadvantage is that these kinds of parallel operation methods could not be applied to UPS systems with different ratings. In this paper, a current sharing control strategy is introduced to solve some of the existing problems with conventional parallel operation. The system consists of a master and a slave UPS. The master UPS provides CVCF (constant voltage, constant frequency) output. The slave UPS added in parallel operation tracks and follows the current reference acquired from the load current. If the slave UPS regulates the output voltage simultaneously with the master UPS without applying adequate controls that were mentioned previously, a circulation current will be generated due to the difference in amplitude and phase difference of the voltages of the master and slave UPS systems. However, this problem can be solved, if the slave UPS performs only current sharing control. This will allow parallel operation of UPS systems with different ratings. Values of parameters such as passive filters (L, C) for UPS systems are not identical for different rating. This affects current sharing and it is difficult to achieve precise current sharing between systems that are operated in parallel. To solve this problem a phase control algorithm is proposed If the master UPS fails during operation, the slave UPS can also control the output voltage by changing the operation mode from a current control to a voltage control within the operating limits of the slave UPS. Therefore, a higher reliability can be guaranteed. In this paper, general problems that need to be considered for parallel operation of UPS systems with different ratings are also presented. The solution is discussed in detail. II. GENERAL PROBLEMS OF PARALLEL OPERATION
A Master and Slave Control Strategy for Parallel Operation of Three-Phase UPS Systems with Different Ratings
Woo-Cheol Lee, Taeck-Ki Lee Sang-Hoon Lee, Kyung-Hwan Kim, Dong-Seok Hyun Department of Electrical Engineering Department of Electrical Engineering HanKyong National University HanYang University AnSung, Kyonggi-do, Korea Seoul, Korea woocheol@hnu.hankyong.ac.kr sanghoon@ihanyang.ac.kr Abstract— Parallel operation of UPS system has been used to increase power capacity of the system or to secure reliable supply of power to critical loads. During parallel operation, load sharing control to maintain the current balance is critical for reliable operation, since load sharing is very sensitive to differences in components of each module such as amplitude /phase difference, line impedance, and output LC filters. To solve these problems various control algorithms have been researched. However, these methods cannot be applied to UPS systems with different ratings. For this case, master and slave control algorithms for parallel operation is adequate. If the ratings of UPS systems are different, the value of passive LC filters will be different, and it will affect current sharing. This paper presents the general problems associated with parallel operation of UPS systems, and control strategy for parallel operation with different ratings. The validity of the proposed control strategy is investigated through simulation and experiment with two UPS systems. Keywords-component; Uninterruptible Power Supply (UPS), Parallel Operation, Load-sharing Control In-Young Suh Power&Industrial Systems R&D Center Hyosung Corporation Seoul, Korea iysuh@