河南省开封市七年级上学期数学11月月考试卷

合集下载

河南省信阳市浉河中学2022-2023学年七年级上学期月考数学试题(11月份)

河南省信阳市浉河中学2022-2023学年七年级上学期月考数学试题(11月份)

河南省信阳市浉河中学2022-2023学年七年级上学期月考数学试题(11月份)一、单选题1.中国古代数学著作《九章算术》,在世界数学史上首次正式引入负数,用正、负数来示具有相反意义的量.如果向西走30米记作30-米,那么20+米表示( )A .向东走20米B .向南走20米C .向西走20米D .向北走20米2.下列语句中正确的有 ( )① 所有整数都是正数;② 所有正数都是整数;③ 自然数都是正数;④ 分数是有理数;⑤ 在有理数中除了正数就是负数.A .1 个B .2 个C .3 个D .4 个 3.今年9月19日,我国自主设计研制的第三代航天远洋测量船远望5号圆满完成两次海上测控任务后,已安全顺利返回中国卫星海上测控母港.本次出航,远望5号历时69天,安全航行14000余海里.其中,数字14000用科学记数法表示为( )A .31410⨯B .41.410⨯C .50.1410⨯D .60.01410⨯ 4.以下是四位同学画的数轴,其中正确的是( )A .B .C .D . 5.如图,数轴上的两个点分别表示数a 和2-,则a 可以是( )A .3-B .1-C .1D .26.数轴上表示数为a 和a -4的点到原点的距离相等,则a 的值为( )A .-2B .2C .4D .不存在 7.对于:①绝对值等于它本身的数是0、1;②相反数大于本身的数是负数;③近似数9.7万精确到十分位;④倒数等于它本身的是1、﹣1.其中正确的是( )A .0个B .1个C .2个D .3个8.下列各组数中,相等的一组是( )A .()1--与1--B .23-与()23-C .()34-与34-D .223与223⎛⎫ ⎪⎝⎭ 9.下列说法中正确的是( )A .a -一定是负数B .若一个数的平方是它本身,则这个数是0或1C .0是最小的整数D .分数不是有理数10.现定义运算:对于任意有理数a 、b ,都有23a b a b ⊗=-,如:2131338⊗=-⨯=-,则()523-⊗-⊗的值为( )A .20B .25C .38D .40二、填空题11.145-的倒数是. 12.-24中底数是,指数是,运算结果为.13.比较大小: 2.7--()3.32--14.点P 是数轴上表示﹣3的点,点Q 到点P 的距离为4个单位,则点Q 在数轴上表示的数为 .15.以下说法中:①若|a |=﹣a ,则a <0;②若220a b -=,则a =b ;③﹣1<a <0,则21a a-<;④若b <a <0,且|a |<|b |,则|a ﹣b |=﹣|a |+|b |,其中正确的有 .(填序号)三、解答题16.已知点A 、B 、C 、D 、E 在数轴上分别对应下列各数:0, 3.5-,()21-,()4-+,122-. (1)如图所示,在数轴上标出表示其余各数的点;(标字母)(2)用“<”号把这些数连接起来.17.计算:(1)( 5.3)( 3.2)( 3.2)( 5.3)( 4.8)-+------+;(2)149915()⨯-; (3)1471()691236--+÷; (4)25111()(4)9353-÷--⨯-. 18.已知数轴上有理数m 所表示的点到表示3的点的距离为4个单位长度,a 、b 互为相反数,且都不为0,c 、d 互为倒数,求:2a ⨯+2b ⨯+(-1-3c d ⨯⨯)-m 的值.19.对于有理数a ,b ,定义一种新运算“@”,规定@a b a b a b =+--.如3@53535826=+--=-=.(1)计算()3@4-的值;(2)计算[]()2@1@3-的值.20.学校对七年级学生进行了引体向上测试,以做10个为标准,超过的个数用正数表示,不足的个数用负数表示,其中8名男生的成绩如表:请回答下列问题:(1)表中“+3”表示6号男生做了个引体向上,表中“﹣1”表示.(2)请直接写出这8名男生中人达到标准.(3)求8名男生共做了多少个引体向上?21.东江湖蜜桔是我们湖南郴州的特产,口感香甜,入口即化.科技改变生活,当前网络销售日益盛行.湖南某网红主播为了帮助农民脱贫致富,在某直播间直播销售东江湖蜜桔,计划每天销售20000千克,但实际每天的销售量与计划量相比有增减,超过计划量记为正,不足计划量记为负.下表是该主播在直播带货期间第一周销售蜜桔的情况:(1)该主播在直播带货期间第一周销售蜜桔最多的一天比最少的一天多销售多少千克?(2)若该主播在直播期间按6元/千克进行蜜桔销售,平均快递运费及其它费用为2元/千克,则该主播第一周直播带货销售蜜桔为当地农民一共创收多少元?22.定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是[],A B 的美好点.例如;如图1,点A 表示的数为1-,点B 表示的数为2,表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[],A B 的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是[],A B 的美好点,但点D 是[],B A 的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2.(1)点E ,F ,G 表示的数分别是3-,6.5,11,其中是[],M N 美好点的是________;写出[],N M 美好点H 所表示的数是___________.(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,点P 恰好为M 和N 的美好点?23.如图,在数轴上点A 表示的有理数为–6,点B 表示的有理数为6,点P 从点A 出发以每秒3个单位长度的速度在数轴上由A 向B 运动,当点P 到达点B 后立即返回,仍然以每秒3个单位长度的速度运动至点A 停止运动,设运动时间为t (单位:秒)(1)求t =1时点P 表示的有理数;(2)求点P 与点B 重合时的t 值;(3)在点P 沿数轴由点A 到点B 再回到点A 的运动过程中,求点P 与点A 的距离;(用含t 的代数式表示)(4)当点P 表示的有理数与原点的距离是3个单位长度时,直接写出所有满足条件的t 值.。

河南省开封市七年级上学期数学第三次月考试卷

河南省开封市七年级上学期数学第三次月考试卷

河南省开封市七年级上学期数学第三次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分) (2020七上·北海期末) 对于直线、射线、线段,在下列各图中能相交的是()A .B .C .D .2. (2分) (2020七上·丹江口期末) 如图,一副三角尺按不同的位置摆放,摆放位置中的图形的个数是()A .B .C .D .3. (2分) (2019七上·湖北月考) 下列判断错误的有:①延长射线 OA;②直线比射线长,射线比线段长;③如果线段 PA=PB,那么点 P 是线段 AB 的中点;④连接两点间的线段,叫做两点间的距离.()A . 0 个B . 2 个C . 3 个D . 4 个4. (2分) (2019七下·遂宁期中) 关于x的方程是一元一次方程,那么k的值为()A . 2B .C . -2D .5. (2分) (2019七上·且末期末) 一件衬衣的售价是120元,可获利20%,则这件衬衣的进价是()A . 105元B . 100元C . 108元D . 118元6. (2分)已知关于x的方程4x-3m=2的解是x=m,则m的值是()A . 2B . -2C .D .7. (2分) (2017七上·江津期中) 若式子比小1,则x的值为()A .B . -C . -D .8. (2分) (2019七上·阳高期中) 某校去年初一招收新生x人,今年比去年增加20%,今年该校初一学生人数用代数式表示为()A . (20%+x)人B . 20%x人C . (1+20%)x人D . 人9. (2分) (2018七上·天门期末) 互联网“微商”经营已成为大众创业新途径.某微信平台上一件商品标价为440元,按标价的五折销售,仍可获利10%,则这件商品的进价为()A . 240元B . 200元C . 160元D . 120元10. (2分) (2019八上·三台月考) 如图,中,,,,与的平分线交于点O ,过点O作,分别交AB , AC于点D , E ,则的周长为()A . 13cmB . 14cmC . 15cmD . 16cm11. (2分) (2018九上·天台月考) 如图,⊙O的直径AB=2,C是弧AB的中点,点E是∆ABC的内心,以E 为圆心,AE为半径作扇形EAB ,π取3,则阴影部分的面积为()A .B .C .D .二、填空题 (共11题;共16分)12. (1分) (2018七上·新乡期末) 过A,B,C三点中的任意两点作直线,小明说有3条,小亮说有1条,小红说有1 条或3条,你认为________说的对.13. (1分) (2020七上·扎鲁特旗期末) 若(m-2)x|m|-1=5是关于x的一元一次方程,则m的值为________.14. (1分) (2020七下·衡阳期末) 若方程组的解适合x+y=2,则k的值为________.15. (1分) (2020七上·建邺期末) 已知是方程的解,则________.16. (1分) (2019七下·武汉期末) 一个人从A点出发向北偏西30° 方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC=________。

七年级上学期11月月考数学试题

七年级上学期11月月考数学试题

2020-2021学年河南省实验中学七年级(上)第一次月考数学试卷一、选择题(本题10小题,每小题3分,共30分) 1.(3分)-2020的绝对值是( ) A .2020B .-2020C .12020-D .120202.(3分)下列几何体中,属于柱体的有( )A .1个B .2个C .3个D .4个3.(3分)校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从学校出发,向北走了50米,接着又向北走了70米,此时张明的位置在( ) A .在家 B .在学校 C .在书店 D .不在上述地方 4.(3分)俗语:“下雪不冷化雪冷”,温度由-2℃下降6℃后是( ) A .4℃B .8℃C .-4℃D .-8℃5.(3分)下列交换加数的位置的变形中,正确的是( ) A .14541445-+-=-+- B .1311131134644436-+--=+-- C .12342143-+-=-+-D .4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-6.(3分)某正方体的每个面上都有一个汉字,分别是“时、间、就、是、生、命”,其中“时”与“命”相对.如图是它展开图的一部分,则汉字“命”位于( )A .①B .②C .③D .④7.(3分)下列说法正确的个数是( )①0仅表示没有;②一个有理数不是整数就是分数; ③正整数和负整数统称为整数;④如果一个数的绝对值是它本身,那么这个数是正数;⑤互为相反数的两个数在数轴上对应的两个点到原点的距离相等. A .1B .2C .3D .48.(3分)如图所示,有几滴墨水滴在数轴上,则被墨迹遮住的所有整数的和为( )A .-11B .1C .-15D .-69.(3分)如图是一个正方体线段AB ,BC ,CA 是它的三个面的对角线下列图形中,是该正方体的表面展开图的是( )A .B .C .D .10.(3分)古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13310=+B .25916=+C .361521=+D .491831=+二、填空题(共5小题,每小题3分,共15分)1.(3分)如果盈利350元记作+350元,那么亏损80元记作______元. 2.(3分)秒针旋转一周时,形成一个圆面,用数学知识可以理解为______. 3.(3分)比较大小:45-______56-.(填“>”或“<”) 4.(3分)下图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是______.5.(3分)如果数轴上的点A 对应的数为-1,那么与A 点相距3个单位长度的点所对应的有理数为______. 三、解答题(共8小题,共75分) 1.(16分)计算:(1)()()50512++---;(2)()()()12111839-++---;(3)()2115212 2.754⎛+--⎫--- ⎪⎝⎭; (4)1234561920-+-+-+⋅⋅⋅+-.2.(8分)画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来.132-,2--,2.5,()4--,13. 3.(9分)如图是由几个小立方块所搭几何体从上面看和从左面看的形状图,请画出从正面看到的该几何体的所有可能的形状图.4.(6分)已知a ,b 互为相反数,c ,d 满足1606c d -+-=,x 的绝对值是4,求()x a b cd -++的值. 5.(8分)如图,把一根底面半径为2dm ,高为6dm 的圆柱形木料沿相互垂直的两条直径锯成大小相等的4块每块木料的表面积是多少平方分米?6.(8分)一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10. (1)守门员是否回到了原来的位置? (2)守门员离开球门的位置最远是多少? (3)守门员一共走了多少路程?7.(10分)有10筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下: 与标准质量的差值(单位:千克)-3 -2 -1.5 0 1 2.5 筐数111313(1)10筐白菜中,最重的一筐比最轻的一筐重多少千克? (2)与标准重量比较,10筐白菜总计超过或不足多少千克? (3)若白菜每千克售价2.5元,则出售这10筐白菜可卖多少元?8.(10分)阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1所示,AB OB b a b ===-;当A 、B 两点都不在原点时.(1)如图2所示,点A 、B 都在原点右边, AB OB OA b a b a a b =-=-=-=-; (2)如图3所示,点A 、B 都在原点左边,()AB OB OA b a b a a b =-=-=---=-; (3)如图4所示,点A 、B 在原点两边,()AB OB OA b a a b a b =+=+=+-=-. 综上所述,数轴上A 、B 两点之间的距离表示为AB a b =-. 根据阅读材料回答下列问题:(1)数轴上表示-2和-5的两点之间的距离是______,数轴上表示1和-3的两点之间的距离是______. (2)数轴上表示x 和-3的两点A 、B 之间的距离是______,如果2AB =,则x 为______.(3)当代数式12x x ++-取最小值时,即在数轴上,表示x 的动点到表示-1和2的两个点之间的距离和最小,这个最小值为______,相应的x 的取值范围是______.2020-2021学年河南省实验中学七年级(上)第一次月考数学试卷(答案&解析)一、选择题(本题10小题,每小题3分,共30分) 1.解:根据绝对值的概念可知:20202020-=, 故选:A .【解析】根据绝对值的定义直接进行计算.2.解:第一个图是圆锥;第二个图是三棱锥;第三个图是正方体,也是四棱柱;第四个图是球;第五个图是圆柱;其中柱体有2个,即第三个和第五个, 故选:B .【解析】柱体分为圆柱和棱柱,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,由此可选出答案. 3.根据题意,以小明家为原点,向北为正方向,20米为一个单位,在数轴上用点表示各个建筑的位置,可得此时张明的位置在书店, 故选C .【解析】根据题意,在数轴上用点表示各个建筑的位置,进而分析可得答案. 4.解:温度由-2℃下降6℃后是()26268--=-+-=-(℃), 故选:D .【解析】根据题意列出算式26--,再依据减法法则计算可得.5.解:A .14541544-+-=+--,+5和-4交换位置时,前面的符号没有一起移动,不正确;B .14交换位置时,前面的符号没有一起移动,不正确; C .12341324-+-=+--,每个数交换位置时,前面的符号都没有一起移动,不正确;D .4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-,正确. 故选:D .【解析】根据加法交换律,在交换加数的位置时,一定要连同前面的符号一起移动,据此解答即可. 6.解:正方体的表面展开图,相对的面之间一定相隔一个正方形, ∵“时”与“命”,∴“命”位于③. 故选:C .【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可求得答案. 7.B【解析】正确答案为②⑤有2个选B .①0仅代表没有,错误,举例温度0℃代表一个温度而不是没有. ②正确,有理数的定义整数和分数统称有理数. ③错误,正整数和负整数、0统称为整数. ④错误,0的绝对值是本身. ⑤正确. 8.A【解析】根据数轴上点的特点,找出被墨迹遮住的所有整数,再加起来进行计算即可.解答:观察数轴可知:被墨迹遮住的所有整数有-7,-6,-5,-4,-3,2,3,4,5,这些数字的和是:-11; 故选A .点评:此题考查了有理数的加法和数轴,要读懂题意,了解数轴上点的特点,并掌握整数的概念. 9.C【解析】解:根据正方体展开图的特点分析,选项C 是它的展开图. 故选:C .根据线段AB ,BC ,CA 所在三个面交于一点,依此即可求解. 此题考查了几何体的展开图,关键是熟练掌握正方体展开图的特征.10.这些三角形数的规律是1,3,6,10,15,21,28,36,45,…,且正方形数是这串数中相邻两数之和,很容易看到:恰有361521=+.故选:C.【解析】题目中“三角形数”的规律为1、3、6、10、15、21…“正方形数”的规律为1、4、9、16、25…,根据题目已知条件:从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.可得出最后结果.二、填空题(共5小题,每小题3分,共15分)1.解:∵盈利350元记作+350元,∴亏损80元记作-80元.故答案为:-80.【解析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.2.线动成面【解析】秒针旋转一周,形成一个圆面,把秒针看作一条线,则用数学知识解释就是,线动成面.3.解:∵44245530-==,55256630-==,24253030<,∴45 56 ->-.故答案为:>.【解析】两个负数绝对值大的反而小进行分析即可.4.解:观察图形的特点,动手折一折会更准确,知带数字1,2,4的面交于立方体的一个顶点,且和是最小的为7.故答案为7.【解析】利用正方体的性质入手,确定上下面,把它折叠为一个正方体进行求解.5.-4或2【解析】本题主要考查数轴的基本概念.由题意可知,该点到A点的距离为3.5,故该点所表示的数是13-±,即为-4或2.故本题正确答案为-4或2.三、解答题(共8小题,共75分)1.解:(1)原式50512=+-+12=;(2)原式12111839=-+-+12181139=--++3050=-+20=;(3)原式231322 5244 =--+231 522 =-+215=- 35=-;(4)原式1111=----⋅⋅⋅-10=-.【解析】(1)根据有理数加减混合运算顺序进行计算即可; (2)根据有理数加减混合运算顺序进行计算即可; (3)去括号、去掉绝对值后利用加法运算律进行计算即可;(4)观察数字的变化发现每两个数的和为-1,共10个-1的和,进而可得结果. 2.解:如图所示:从小到大的顺序用不等号连接起来为:()1132 2.5423-<--<<<-- 【解析】在数轴上找出对应的点,注意在数轴上标数时要用原数,最后比较大小的结果也要用化简的原数. 3.解:如图所示:【解析】直接利用左视图以及俯视图进而得出几何体的形状,即可得出主视图的形状. 4.解:根据题意得:0a b +=,60c -=,106d -=,4x =或-4, 解得:6c =,16d =,即1cd =, 当4x =时,原式()4013=-+=; 当4x =-时,原式()4015=--+=-.【解析】利用相反数的性质、绝对值的代数意义,以及非负数的性质求出各自的值,代入原式计算即可求出值. 5.解:每块木料的上下底面的面积为:()221222dm 4ππ⨯⨯⨯=, 侧面的面积为:()2122226624dm 4ππ⎛⎫⨯⨯++⨯=+⎪⎝⎭故每块木料的表面积是:()2262424dm8πππ++=+.答:柱形木料沿相互垂直的两条直径锯成大小相等的4块,每块木料的表面积是()824π+平方分米.【解析】圆柱形木料沿相互垂直的两条直径锯成大小相等的4块,每块木料的上下底面是半径为2dm 的14圆,侧面展开图是长为12222dm 4π⎛⎫⨯⨯++⎪⎝⎭,宽为6dm 的矩形,将底面与侧面面积相加可得表面积. 6.(1)回到了原来的位置;(2)离开球门的位置最远是12米;(3)总路程为54米. 【解析】【详解】分析:(1)将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可. 详解: 根据题意得(1)53108612100-+--+-=,故回到了原来的位置; (2)离开球门的位置最远是12米;(3)总路程531086121054=+-+++-+-+++-=米.点睛:本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定具有相反意义的量. 7.解:(1)从表格可知,最重的超出2.5kg ,最轻的不足3kg , ∴()2.53 5.5kg --=;答:10筐白菜中,最重的一筐比最轻的一筐重5.5千克; (2)()332012 2.522kg -+⨯-++⨯+⨯=-, ∴总重量不足2kg ;答:与标准重量比较,10筐白菜总计不足2千克; (2)()25102 2.5620⨯-⨯=(元), ∴出售这10筐白菜可卖620元. 答:出售这10筐白菜可卖620元.【解析】(1)从表格可知,最重的超出2.5kg ,最轻的不足3kg ,相减即可; (2)将表格中数据进行求和运算即可; (3)求出总重量再乘以单价即可. 8.解:()()1253---=,()134--=;(2)()33x x --=+,∵32x +=,∴32x +=±,∴1x =-或-5; (3)由题意可知:当x 在-1与2之间时, 此时,代数式12x x ++-取最小值,最小值为()213--=,此时x 的取值范围为:12x -≤≤; 故答案为:(1)3,4;(2)3x +,-1或-5;(3)3,12x -≤≤.【解析】根据数轴上A 、B 两点之间的距离表示为AB a b =-即可求出答案。

河南省开封市七年级上学期数学第一次月考试卷

河南省开封市七年级上学期数学第一次月考试卷

河南省开封市七年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016七上·仙游期末) -6的绝对值等于()A . 6B . -6C .D . -2. (2分)设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c=()A . 1B . 0C . 1或0D . 2或03. (2分) (2011七下·河南竞赛) 如果︱x-1︱=1-x,那么()A . x<1B . x>1C . x≤1D . x≥14. (2分)下列各组数中,互为相反数的一组是()A . +(-2)和-(+2)B . -|-2|和-|+2|C . -(-2)和-|-2|D . -(+2)和-|+2|5. (2分) (2019七上·花都期中) 如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是()A . -2πB . 3-2πC . -3-2πD . -3+2π6. (2分) (2019七下·江门月考) 若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则-︱a-b︱等于()A . aB . -aC . 2b+aD . 2b-a7. (2分)用字母a表示任意一个有理数,下列四个代数式中,值不可能为0的是()A . 1+|a|B . |a+1|C . a2D . a3+18. (2分)如图,数轴上A,B两点分别对应实数a , b ,则下列结论正确的是()A . |a|>|b|B . a+b>0C . ab<0D . |b|=b9. (2分)a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列()A . -b<-a<a<bB . -a<-b<a<bC . -b<a<-a<bD . -b<b<-a<a10. (2分)(2019·五华模拟) 仔细观察下列数字排列规律,则a=()A . 206B . 216C . 226D . 236二、填空题 (共7题;共7分)11. (1分)在数轴上离开原点4个长度单位的点表示的数是 ________ 。

人教版数学七年级上学期第一次月考数学试卷(含答案)

人教版数学七年级上学期第一次月考数学试卷(含答案)

七年级(上)第一次月考数学试卷一、填空题1.如果盈利700元记为+700元,那么﹣800元表示.2.在数轴上距离原点1.5个单位的点表示的数是.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过,最小不低于.4.用“>”、“<”、“=”号填空:(1)﹣0.02 1;(2)﹣﹣.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,,…6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是℃.7.化简:﹣|﹣|= ,﹣(﹣2.3)= .8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= .9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2=.10.若|x﹣2|与(y+3)2互为相反数,则x+y= .二、选择题11.当|x|=﹣x时,则x一定是()A.负数 B.正数 C.负数或0 D.012.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+616.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.717.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和018.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ …}非正数集合{ …}负分数集合{ …}有理数集合{ …}.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = .(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .七年级(上)第一次月考数学试卷参考答案与试题解析一、填空题1.如果盈利700元记为+700元,那么﹣800元表示亏损800元.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利700元记为+700元,∴﹣800元表示亏损800元.故答案为:亏损800元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在数轴上距离原点1.5个单位的点表示的数是±1.5 .【考点】数轴.【分析】在数轴上距离原点1.5个单位的点表示的数有两个:分别是﹣1.5、1.5.【解答】解:在数轴上距离原点1.5个单位的点表示的数是:±1.5;故答案为:±1.5.【点评】本题考查了数轴的有关知识,比较简单,明确所有的有理数都可以用数轴上的点表示,数轴上与原点的距离为a的点有两个,是互为相反数.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8.04 ,最小不低于7.96 .【考点】正数和负数.【分析】根据正数与负数表示相反意义的量得到8±0.04(m)的含义为最大不超过8+0.04m,最小不超过8﹣0.04m,然后回答问题.【解答】解:零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8+0.04=8.04m,最小不低于8﹣0.04=7.96m,故答案为8.04;7.96.【点评】本题考查了正数和负数:用正数与负数表示相反意义的量,此题基础题,比较简单.4.用“>”、“<”、“=”号填空:(1)﹣0.02 < 1;(2)﹣<﹣.【考点】有理数大小比较.【分析】(1)根据正数大于负数,可得答案;(2)根据两负数比较大小,绝对值大的反而小,可得答案.【解答】解:(1)﹣0.02<1;(2),﹣,故答案为:<,<.【点评】本题考查了有理数比较大小,(1)正数大于负数,(2)先比较绝对值,再比较两负数的大小.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,﹣,…【考点】规律型:数字的变化类.【专题】规律型.【分析】分子是从1开始的连续奇数,分母是相应序数的平方,并且正、负相间,然后写出即可.【解答】解:∵1,,,,,∴要填入的数据是﹣.故答案为:﹣.【点评】本题是对数字变化规律的考查,确定从分子、分母和正反情况三个方面考虑求解是解题的关键.6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是 6 ℃.【考点】有理数的加减混合运算.【专题】计算题.【分析】根据有理数的加减混合运算的运算方法,用南通市某天上午的温度加上中午又上升的温度,再减去夜间又下降的温度,求出这天夜间的温度是多少即可.【解答】解:8+5﹣7=13﹣7=6(℃)答:这天夜间的温度是6℃.故答案为:6.【点评】此题主要考查了有理数的加减混合运算,以及绝对值的含义和求法,要熟练掌握,解答此题的关键是要明确:有理数加减法统一成加法.7.化简:﹣|﹣|= ﹣,﹣(﹣2.3)= 2.3 .【考点】绝对值;相反数.【专题】推理填空题.【分析】根据绝对值的含义和求法,以及相反数的含义和求法,逐一求解即可.【解答】解:﹣|﹣|=﹣,﹣(﹣2.3)=2.3.故答案为:﹣、2.3.【点评】此题主要考查了绝对值的含义和应用,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= 1.5 .【考点】代数式求值.【分析】依据互为相反数的两数之和为0可知a+b=0,互为倒数的两数的乘积为1求解即可.【解答】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=1.5×1+0=1.5,故答案为:1.5.【点评】本题主要考查的是求代数式的值,掌握倒数的定义和互为相反数的两数之和为0是解题的关键.9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2= 1 .【考点】实数的运算.【专题】计算题;新定义;实数.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:﹣3☆2=4﹣3=1.故答案为:1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.若|x﹣2|与(y+3)2互为相反数,则x+y= ﹣1 .【考点】相反数;非负数的性质:绝对值;非负数的性质:偶次方.【专题】常规题型.【分析】根据相反数的定义列式,然后根据非负数的性质列式求出x、y的值,再代入进行计算即可得解.【解答】解:∵|x﹣2|与(y+3)2互为相反数,∴|x﹣2|+(y+3)2=0,∴x﹣2=0,y+3=0,解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故答案为:﹣1.【点评】本题考查了相反数的定义,绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二、选择题11.当|x|=﹣x时,则x一定是()A.负数 B.正数 C.负数或0 D.0【考点】绝对值.【分析】根据绝对值的意义得到x≤0.【解答】解:∵|x|=﹣x,∴x≤0.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.12.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b【考点】有理数大小比较;数轴.【分析】根据数轴和相反数比较即可.【解答】解:因为从数轴可知:a<0<b,|a|>|b|,所以a<﹣b<b<﹣a,故选B.【点评】本题考查了数轴,相反数的,有理数的大小比较的应用,能根据数轴得出﹣a和﹣b的位置是解此题的关键.13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个【考点】有理数大小比较;绝对值.【分析】根据绝对值的意义,可得答案.【解答】解:绝对值小于3.5的整数﹣3,﹣2,﹣1,0,1,2,3,故选:C.【点评】本题考查了有理数比较大小,到原点的距离小于3.5的整数.14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等【考点】绝对值;有理数.【分析】根据绝对值的性质、整数的定义、正数和负数的定义,对A、B、C、D四个选项进行一一判断,从而求解.【解答】解:A、∵﹣1是整数,但﹣1<0,故A错误;B、∵|a|=|﹣a|,∴互为相反数的两个数的绝对值相等,故B正确;C、∵0也是有理数,故C错误;D、∵|﹣1|=|1|,但﹣1≠1,故D错误;【点评】此题主要考查整数的定义、正数和负数的定义及绝对值的性质,当a>0时,|a|=a;当a ≤0时,|a|=﹣a,是一道基础题.15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+6【考点】绝对值;数轴.【分析】绝对值相等的两个数只有两种情况,相等或互为相反数,因为绝对值相等的两个数在数轴上对应的两个点的距离为6,所以这两个数是互为相反数的,可求得为±3.【解答】解:由题意可得,这两个数是互为相反数的,因为两个数在数轴上对应的两个点的距离为6,从而求得这两个数为±3.答案:B.【点评】考查了绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离),要求熟悉绝对值定义和数轴上数的规律.16.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.7【考点】有理数大小比较.【分析】根据有理数的大小比较法则求出﹣6.1和1之间的整数即可.【解答】解:比﹣5.1大,而比1小的整数有﹣5,﹣4,﹣3,﹣2,﹣1,0,共6个.故选:C.【点评】本题考查了有理数的大小比较法则的应用,能求出所有的整数是解此题的关键,题目比较好,难度不大.17.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵1×1=1,(﹣1)×(﹣1)=1,∴一个数和它的倒数相等的数是±1.故选C.【点评】本题考查的是倒数的定义,解答此题时要熟知0没有倒数这一关键知识.18.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|【考点】绝对值;相反数.【分析】分别化简各选项即可判断.【解答】解:A、﹣(﹣1.2)=1.2≠﹣1.2,此选项错误;B、+(﹣1.2)=﹣1.2,﹣(﹣1.2)=1.2,此选项错误;C、﹣(﹣1.2)=1.2,|﹣1.2|=1.2,此选项正确;D、﹣(﹣1.2)=1.2,﹣|﹣1.2|=﹣1.2,此选项错误,故选:C.【点评】本题主要考查相反数和绝对值,掌握相反数的表示方法及绝对值是解题的关键.19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz【考点】非负数的性质:绝对值;代数式求值.【分析】本题可根据非负数的性质解出x、y、z的值,再把x、y、z的值代入(x+1)(y﹣2)(z+3)中求解即可.【解答】解:∵|x﹣1|+|y+2|+|z﹣3|=0,∴x﹣1=0,y+2=0,z﹣3=0,解得x=1,y=﹣2,z=3.∴(x+1)(y﹣2)(z+3)=﹣48.故选B.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②【考点】相反数.【专题】探究型.【分析】根据相反数的定义对各小题进行逐一分析即可.【解答】解:①∵只有符号不同的两个数叫做互为相反数,∴若a、b互为相反数,则a+b=0,故本小题正确;②∵a+b=0,∴a=﹣b,∴a、b互为相反数,故本小题正确;③∵0的相反数是0,∴若a=b=0时,﹣无意义,故本小题错误;④∵=﹣1,∴a=﹣b,∴a、b互为相反数,故本小题正确.故选C.【点评】本题考查的是相反数的定义,在解答此题时要注意0的相反数是0.三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ +5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{ ﹣2.04,﹣…}有理数集合{ +5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…}.【考点】有理数;绝对值.【分析】根据大于零的整数是正整数,小于或等于零的数是非正数,小于零的分数是负分数,有限小数或无限循环小数是有理数,可得答案.【解答】解:正整数集合{+5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{﹣2.04,﹣…}有理数集合{+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…};故答案为:+5,﹣(﹣7);0,﹣2.04,﹣|﹣1|,﹣;﹣2.04,﹣;+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0..【点评】本题考查了有理数,利用有理数的分类是解题关键,注意不能重复,也不能遗漏.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.【考点】有理数大小比较;数轴.【分析】先画出数轴并在数轴上表示出各数,再按照数轴的特点从左到右用小于号把各数连接起来.【解答】解:画出数轴并在数轴上表示出各数:按照数轴的特点用小于号从左到右把各数连接起来为:【点评】本题考查的是有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算括号中的运算,再从左到右依次计算即可得到结果;(5)原式利用绝对值的代数意义化简,计算即可得到结果;(6)原式被除数与除数换过,求出倒数,即可确定出原式的值;(7)原式利用减法法则变形,计算即可得到结果.【解答】解:(1)原式=6﹣6.25++﹣﹣=﹣;(2)原式=﹣×﹣×+×=﹣×(+﹣1)=﹣×=﹣;(3)原式=﹣14﹣40+18=﹣36;(4)原式=×(﹣)××=﹣;(5)原式=+2.5+1﹣2+1=﹣0.5;(6)∵(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,∴原式=﹣;(7)原式=﹣4.3﹣3.2+2.2﹣15.7=﹣23.2+2.2=﹣21.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = ﹣.(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .【考点】规律型:数字的变化类.【专题】推理填空题.【分析】(1)观察题目所给等式,总结隐含的恒等变换,直接写出所求等式.(2)利用等式: =﹣将相邻两个正整数的积的倒数写成它们的倒数的差,然后计算出结果即可.【解答】解:(1)∵﹣=﹣=∴=﹣(2)①+++…+=1﹣+﹣+﹣+…+﹣=1﹣=②+++…+=1﹣+﹣+﹣+…+﹣=1﹣=故答案为:(1)﹣;(2)①;②【点评】本题考查了数字的变化规律问题,解题的关键是能够总结出题目隐含的数字变换规律并加以运用七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0 B.﹣2 C.1 D.2.图中所画的数轴,正确的是()A.B.C.D.3.下列几组数中互为相反数的是()A.﹣和0.7 B.和﹣0.333 C.﹣(﹣6)和6 D.﹣和0.254.计算2×(﹣)的结果是()A.﹣1 B.1 C.﹣2 D.25.|﹣|等于()A.2 B.﹣2 C.D.﹣6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数 D.整数和分数统称为有理数8.下列运算错误的是()A.(﹣2)×(﹣3)=6 B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣249.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣210.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y| C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.12.计算:6÷(﹣3)= .13.计算(﹣5)+3的结果是.14.计算:﹣1﹣2= .15.若|x+2|+|y﹣3|=0,则xy= .16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= .17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= .三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).19.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).21.已知|a|=7,|b|=3,求a+b的值.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8(1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣2的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0 B.﹣2 C.1 D.【考点】正数和负数.【分析】根据负数就是正数前面带负号的数即可判断.【解答】解:A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【点评】本题主要考查了负数的定义,是基础题.2.图中所画的数轴,正确的是()A.B.C.D.【考点】数轴.【分析】数轴的三要素:原点,单位长度,正方向.缺一不可.【解答】解:A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不统一,故错误;D、正确.故选 D.【点评】此题考查数轴的画法,属基础题.3.下列几组数中互为相反数的是()A.﹣和0.7 B.和﹣0.333 C.﹣(﹣6)和6 D.﹣和0.25【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A 符号不同,数也不同,故A不是相反数;B 数的绝对值不同,故B不是相反数;C 符号相同,故C不是相反数;D 只有符号不同,故D是相反数;故选:D.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.4.计算2×(﹣)的结果是()A.﹣1 B.1 C.﹣2 D.2【考点】有理数的乘法.【分析】根据异号两数相乘,结果为负,且2与﹣的绝对值互为倒数得出.【解答】解:2×(﹣)=﹣1.故选A.【点评】本题考查有理数中基本的乘法运算.5.|﹣|等于()A.2 B.﹣2 C.D.﹣【考点】绝对值.【分析】根据负数的绝对值等于它的相反数,可得负数的绝对值.【解答】解:|﹣|=,故选:C.【点评】本题考查了绝对值,负数的绝对值是它的相反数.6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃【考点】有理数的加法.【分析】根据9月1日早晨的气温是﹣1℃,到中午上升了6℃,可以求得中午的气温.【解答】解:∵9月1日早晨的气温是﹣1℃,到中午上升了6℃,∴中午的温度是:﹣1+6=5℃,故选A.【点评】本题考查有理数的加法,解题的关键是明确有理数加法的计算方法.7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数 D.整数和分数统称为有理数【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:A、非负有理数就是正有理数和零,故A错误;B、零表示没有,是自然数,故B错误;C、整正数、零、负整数统称为整数,故C错误;D、整数和分数统称有理数,故D正确;故选:D.【点评】本题考查了有理数,利用了有理数的分类.8.下列运算错误的是()A.(﹣2)×(﹣3)=6 B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣24【考点】有理数的乘法.【分析】根据有理数的乘法法则计算.【解答】解:A、C、D显然正确;B、(﹣)×(﹣6)=3,错误.故选B.【点评】解答此题只需牢记有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣2【考点】数轴.【专题】图表型.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=1,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.10.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y| C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|【考点】绝对值;相反数.【专题】计算题.【分析】根据绝对值和相反数的性质对各个选项逐一分析,排除错误答案.【解答】解:A、若|x|=|y|,则x=﹣y或x=y;故错误;B、互为相反数的两个数的绝对值相等,故正确;C、若a=2,b=﹣3,则|a|<|b|,但a>b,故错误;D、若a=﹣2,b=1,则a<b,但|a|>|b|,故错误.故选B.【点评】熟练掌握绝对值的性质是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:1的倒数是,故答案为:.【点评】本题考查了倒数,把带分数化成假分数再求倒数是解题关键.12.计算:6÷(﹣3)= ﹣2 .【考点】有理数的除法.【专题】计算题.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣(6÷3)=﹣2.故答案为:﹣2【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.13.计算(﹣5)+3的结果是﹣2 .【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣5)+3=﹣(5﹣3)=﹣2.故答案为:﹣2.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.14.计算:﹣1﹣2= ﹣3 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.15.若|x+2|+|y﹣3|=0,则xy= ﹣6 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程组求出x、y的值,代入代数式求值即可.【解答】解|x+2|+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴xy=﹣2×3=﹣6.故答案为:6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= 9900 .【考点】有理数的混合运算.【专题】规律型.【分析】100!=100×99×98×97×...×1,98!=98×97× (1)【解答】解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴==100×99=9900.【点评】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= 110 .【考点】规律型:数字的变化类.【分析】观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,根据此规律列式进行计算即可得解.【解答】解:根据左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故答案为:110【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).【考点】有理数的加减混合运算.【分析】(1)先化简,再算加减法;(2)先算同分母分数,再算加减法.【解答】解:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)=﹣12﹣13+14﹣15+16=﹣40+30=﹣10;(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+)=(﹣﹣0.75)+(+)﹣=﹣1+1﹣=﹣.【点评】考查了有理数加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.19.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)【考点】有理数的乘法.【分析】根据有理数的乘法,即可解答.【解答】解:(1)﹣0.75×(﹣0.4 )×1==.(2)0.6×(﹣)•(﹣)•(﹣2)=﹣=1【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法.20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).【考点】有理数的除法.【分析】根据有理数的除法:除以一个数等于乘以这个数的倒数,即可解答.【解答】解:(1)﹣5÷(﹣1)=5×=1.(2)(﹣)÷(﹣)÷(﹣1)=﹣=﹣.【点评】本题考查了有理数的除法,解决本题的关键是熟记除以一个数等于乘以这个数的倒数.21.已知|a|=7,|b|=3,求a+b的值.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义进行分析:互为相反数的两个数的绝对值相等.然后a,b搭配的时候,注意考虑四种情况.【解答】解:∵|a|=7,|b|=3.∴a=±7,b=±3.①当a=7,b=3时,a+b=7+3=10;②当a=7,b=﹣3时,a+b=7﹣3=4;③当a=﹣7,b=3时,a+b=﹣7+3=﹣4;④当a=﹣7,b=﹣3时,a+b=﹣7﹣3=﹣10.【点评】考查了绝对值的性质和有理数的运算.此题要特别注意a和b结合起来分析,有四种情况.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义计算即可得到结果;(3)两数利用新定义化简得到结果,即可作出判断.【解答】解:(1)根据题中的新定义得:2*4=8+1=9;(2)根据题中的新定义得:(2*5)*(﹣3)=11*(﹣3)=﹣33+1=﹣32;(3)根据题中的新定义得:x*y=xy+1,y*x=yx+1,则x*y=y*x.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8(1)根据记录的数据可知该厂星期四生产自行车212 辆;(2)产量最多的一天比产量最少的一天多生产自行车26 辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?【考点】正数和负数.【分析】(1)该厂星期四生产自行车200+12=212辆;(2)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(3)这一周的工资总额是200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+12=212辆,故该厂星期四生产自行车212辆.故答案为212;(2)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆.故答案为26;(3)根据图示本周工人工资总额=200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元,故该厂工人这一周的工资总额是42500元.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.。

七年级数学11月月考试题(含解析)

七年级数学11月月考试题(含解析)

七年级数学11月月考试题(含解析)一、选择题(共10小题,每小题3分,满分30分)1.|﹣2|的相反数是()A.B.﹣2 C.D.22.下列叙述正确的是()A.符号不同的两个数是互为相反数B.一个有理数的相反数一定是负有理数C.2与2.75都是﹣的相反数D.0没有相反数3.已知|a|=﹣a,则a是()A.正数B.负数C.负数或0 D.正数或04.如果ab<0,且a>b,那么一定有()A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0 5.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3D.96.(﹣2)5表示()A.5与﹣2相乘的积B.﹣2与5相乘的积C.2个5相乘的积的相反数 D.5个2相乘的积7.已知一个数的平方等于它的绝对值,这样的数共有()A.1个B.2个C.3个D.4个8.将代数式合并同类项,结果是()A.B.C.D.9.下列说法中,错误的有()①﹣2是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A.1个B.2个C.3个D.4个10.如果|a+2|+(b﹣1)2=0,那么(a+b)2009的值是()A.﹣2009 B.2009 C.﹣1 D.1二、填空题(每小题5分,共35分)11.小明、小芳同时从A处出发,如果小明向东走50米记作:+50米,则小芳向西走70米记作:米.12.若x<0,则= .13.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.14.用科学记数法表示39万千米是千米.15.代数式2x﹣4y﹣3中,y的系数是,常数项是.16.如果3x2yn与是同类项,那么m=,n= .17.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2015﹣2015xy= .三、解答题(共60分)18.计算题(1)3.5+(﹣1.4)﹣2.5+(﹣4.6)(2)23﹣×[2﹣(﹣3)2](3)[2﹣(+﹣)×24]÷5×(﹣1)2009.19.去括号,并合并相同的项:(1)x﹣2(x+1)+3x(2)﹣(y+x)﹣(5x﹣2y)20.先化简,再求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+(﹣2a)2b的值.21.画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.22.出租车司机小李某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小李距下午出发地点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?23.某种水果第一天以2元的价格卖出a斤,第二天以1.5元的价格卖出b斤,第三天以1.2元的价格卖出c斤,求:(1)这三天共卖出水果多少斤?(2)这三天共卖得多少元?(3)这三天平均售价是多少?并计算当a=30,b=40,c=45时,平均售价是多少?24.某校大礼堂第一排有a个座位,后面每一排都比前一排多2个座位,(1)求第n排的座位数?(2)若该礼堂一共有10排座位,且第一排的座位数也是10,请你计算一下该礼堂能容纳多少人?2015-2016学年××市××市马家店中学七年级(上)月考数学试卷(11月份)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.|﹣2|的相反数是()A.B.﹣2 C.D.2【考点】绝对值;相反数.【专题】常规题型.【分析】利用相反数和绝对值的定义解题:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.只有符号不同的两个数互为相反数.【解答】解:∵|﹣2|=2,2的相反数是﹣2.∴|﹣2|的相反数是﹣2.故选:B.【点评】主要考查了相反数和绝对值的定义,要求掌握并灵活运用.2.下列叙述正确的是()A.符号不同的两个数是互为相反数B.一个有理数的相反数一定是负有理数C.2与2.75都是﹣的相反数D.0没有相反数【考点】相反数.【分析】理解相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.所以2与2.75都是﹣的相反数是正确的.【解答】解:A中,符号不同,但绝对值不相等的两个数不叫互为相反数,如2和﹣3等,错误;B中,当该有理数是0时,它的相反数是0,0不是负数,错误;C中,根据相反数的定义,2与2.75都是﹣的相反数,正确;D中,0的相反数是0,错误.故选C.【点评】本题考查了相反数的意义,求一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.已知|a|=﹣a,则a是()A.正数B.负数C.负数或0 D.正数或0【考点】绝对值.【分析】根据绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.即可判断.【解答】解:|a|=﹣a,即a的绝对值是它的相反数,则a是负数或0.故选C.【点评】本题考查了绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.4.如果ab<0,且a>b,那么一定有()A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0【考点】有理数的乘法.【专题】规律型.【分析】先由ab<0,判断出a、b异号,再由a>b,得出a>0,b<0.【解答】解:∵ab<0,∴a、b异号,又∵a>b,∴a>0,b<0,故选B.【点评】本题考查了有理数的乘法,解题的关键是明确两数相乘积小于零,则这两个数异号.5.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.【点评】解决此类题目的关键是熟记平方数的特点,任何数的平方都是非负数,所以平方为正数的数有两个,且互为相反数.6.(﹣2)5表示()A.5与﹣2相乘的积B.﹣2与5相乘的积C.2个5相乘的积的相反数 D.5个2相乘的积【考点】有理数的乘方.【分析】(﹣2)5表示5个﹣2相乘的积,再把各个选项表示成算式比较即可.【解答】解:A、(﹣2)5表示5个﹣2相乘的积,故本选项正确;B、(﹣2)5表示5个﹣2相乘的积,﹣2与5相乘的积表示为﹣2×5,故本选项正错误;C、(﹣2)5表示5个﹣2相乘的积,2个5相乘的积的相反数表示为﹣5×5,故本选项正错误;D、(﹣2)5表示5个﹣2相乘的积,5个2相乘的积表示为2×2×2×2×2,故本选项错误;故选A.【点评】本题考查了对有理数的乘方的应用,关键是能把语言叙述表示成正确算式.7.已知一个数的平方等于它的绝对值,这样的数共有()A.1个B.2个C.3个D.4个【考点】有理数的乘方;绝对值.【专题】常规题型.【分析】根据平方和绝对值得定义解答即可.【解答】解:根据平方和绝对值的定义,∵(﹣1)2=|﹣1|,12=|1|,02=|0|,∴符合条件的数有三个,即﹣1,1,0.故选C.【点评】此题不仅考查了平方和绝对值的定义,还考查了特殊数值的平方和绝对值,要认真对待.8.将代数式合并同类项,结果是()A.B.C.D.【考点】合并同类项.【专题】计算题.【分析】先变形为原式=xy2+x2y﹣xy2,然后把同类项进行合并即可.【解答】解:原式=xy2+x2y﹣xy2=x2y.故选A.【点评】本题考查了合并同类项:同类项的合并只是把系数相加减,字母和字母的指数不变.9.下列说法中,错误的有()①﹣2是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于0的分数是负分数,可判断①;根据分母不为1的数是分数,可判断②;根据大于或等于零的有理数是非负有理数,可判断③;根据有理数是有限小数或无限循环小数,可判断④;根据有理数是有限小数或无限循环小,可判断⑤⑥.【解答】解:①﹣2是负分数,故①正确;②1.5是分数,故②正确;③非负有理数是大于或等于零的有理数,故③错误;④有理数是有限小数或无限循环小数,故④错误;⑤没有最小的有理数,故⑤错误;⑥3.14是有理数,故⑥错误;故选:B.【点评】本题考查了有理数,注意没有最小的有理数.10.如果|a+2|+(b﹣1)2=0,那么(a+b)2009的值是()A.﹣2009 B.2009 C.﹣1 D.1【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:∵|a+2|+(b﹣1)2=0,∴a=﹣2,b=1,∴(a+b)2009=(﹣2+1)2009=﹣1,故选C.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.二、填空题(每小题5分,共35分)11.小明、小芳同时从A处出发,如果小明向东走50米记作:+50米,则小芳向西走70米记作:﹣70 米.【考点】正数和负数.【分析】用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.【解答】解:向东走50米记作:+50米,则小芳向西走70米记作:﹣70米.故答案是:﹣70.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.若x<0,则= ﹣1 .【考点】有理数的除法;绝对值.【分析】根据负数的绝对值等于他的相反数,可得,根据互为相反数的两数相除,可得.【解答】解:∵x<0,∴=﹣x,∴=﹣=﹣1,故答案为:﹣1.【点评】本题考查了有理数的除法,先求出x的绝对值,再相除.13.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【专题】计算题.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.【点评】此题主要考查正负数在实际生活中的应用,温差=最高气温﹣最低气温.14.用科学记数法表示39万千米是 3.9×105千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:39万=39 0000=3.9×105,故答案为:3.9×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.代数式2x﹣4y﹣3中,y的系数是﹣4 ,常数项是﹣3 .【考点】多项式.【分析】2x﹣4y﹣3中,含有y的项是﹣4y,故y的系数是﹣4,常数项是﹣3.常数项就是不含字母的项.【解答】解:2x﹣4y﹣3中含有y的项是﹣4y,故y的系数是﹣4,常数项是﹣3.故答案是﹣4;﹣3.【点评】本题考查了多项式,解题的关键是注意不要缺失符号.16.如果3x2yn与是同类项,那么m= 2 ,n= 1 .【考点】同类项.【专题】计算题.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),可求出m,m的值.【解答】解:∵3x2yn与是同类项,∴m=2,n=1.故答案为:2;1【点评】此题考查了同类项的定义,即所含字母相同,且相同字母的指数分别相同,同时具备这两个条件的项是同类项,缺一则不是,本题的易错点在于中y的指数是1,而不是0.17.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2015﹣2015xy= 0 .【考点】代数式求值;相反数;倒数.【专题】计算题.【分析】利用相反数,负倒数的定义求出m+n,xy的值,代入原式计算即可得到结果.【解答】解:根据题意得:m+n=0,xy=﹣1,则原式=0﹣2015+2015=0,故答案为:0.【点评】此题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.三、解答题(共60分)18.计算题(1)3.5+(﹣1.4)﹣2.5+(﹣4.6)(2)23﹣×[2﹣(﹣3)2](3)[2﹣(+﹣)×24]÷5×(﹣1)2009.【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(3.5﹣2.5)+(﹣1.4﹣4.6)=1﹣6=﹣5;(2)原式=8﹣×(﹣7)=8+=;(3)原式=﹣(2﹣9﹣4+18)×=﹣×=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.去括号,并合并相同的项:(1)x﹣2(x+1)+3x(2)﹣(y+x)﹣(5x﹣2y)【考点】合并同类项;去括号与添括号.【分析】对两个题目都是先去掉括号,然后把同类项合并即可.【解答】解:(1)x﹣2(x+1)+3x=x﹣2x+3x﹣2=2x﹣2;(2)﹣(y+x)﹣(5x﹣2y)=﹣y﹣x﹣5x+2y=y﹣6x.【点评】同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.去括号时,特别需要注意的是括号前边是负号时,去掉括号后,括号内的各项都要改变符号.20.先化简,再求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+(﹣2a)2b的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b 的值,代入计算即可求出值.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1,则原式=5ab2﹣2a2b+4ab2﹣2a2b+4a2b=9ab2=36.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.【考点】有理数大小比较;数轴.【专题】计算题.【分析】先利用数轴表示四个数,然后根据负数小于零;负数的绝对值越大,这个数反而越小即可得到它们的大小关系.【解答】解:用数轴表示为:它们的大小关系为﹣4<﹣2<﹣0.5<0.【点评】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.也考查了数轴.22.出租车司机小李某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小李距下午出发地点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?【考点】正数和负数.【分析】(1)将所走的路程相加可得出小李距下午出发地点的距离.(2)耗油量=耗油速率×总路程,总路程为所走路程的绝对值的和.【解答】解:(1)(+15)+(﹣3)+(+14)+(﹣11)+(+10)+(﹣12)+(+4)+(﹣15)+(+16)+(﹣18)=0千米;(2)|+15|+|﹣3|+|+14|+|﹣11|+|+10|+|﹣12|+|+4|+|﹣15|+|+16|+|﹣18|=15+3+14+11+10+12+4+15+16+18=118(千米),则耗油118×a=118a公升.答:将最后一名乘客送到目的地时,小李距下午出发地点的距离是0千米;若汽车耗油量为a公升/千米,这天下午汽车共耗油118a公升.【点评】本题考查正负数,属于基础题,一定要注意所走的总路程为所走路程的绝对值的和.23.某种水果第一天以2元的价格卖出a斤,第二天以1.5元的价格卖出b斤,第三天以1.2元的价格卖出c斤,求:(1)这三天共卖出水果多少斤?(2)这三天共卖得多少元?(3)这三天平均售价是多少?并计算当a=30,b=40,c=45时,平均售价是多少?【考点】列代数式;代数式求值.【分析】(1)三天卖出的水果斤数相加即可;(2)求出三天卖出水果所得的钱数相加即可;(3)根据平均售价=总钱数÷总斤数计算,把a、b、c的值代入算式计算.【解答】解:(1)三天共卖出水果:(a+b+c)斤;(2)三天共得:(2a+1.5b+1.2c)元(3)平均售价:元;当a=30,b=40,c=45时, =元.【点评】此题考查列代数式和求代数式的值,读懂题意是正确列出代数式的关键.24.某校大礼堂第一排有a个座位,后面每一排都比前一排多2个座位,(1)求第n排的座位数?(2)若该礼堂一共有10排座位,且第一排的座位数也是10,请你计算一下该礼堂能容纳多少人?【考点】列代数式;代数式求值.【分析】(1)根据第1排a个座位,后面每排比第一排多2个座位,可直接求出第2排、第3排、第n排的座位数;(2)先分别求出前10排每排的座位数,再把所得的结果相加即可.【解答】解:(1)∵第1排a个座位,后面每排比第一排多2个座位,∴第2排有(a+2)个座位,第3排有(a+4)个座位,第4排有(a+6)个座位;第n排有a+2(n﹣1)个座位.(2)根据题意得:a+(a+2)+(a+4)+…+(a+18)=10a+(2+18)×9÷2=10a+90当a=10时,10×10+90=190(人).答:共容纳190人.【点评】此题考查列代数式;得到每排座位数是在m的基础上增加多少个2是解决本题的关键.。

开封市七年级上学期数学第二次月考试卷

开封市七年级上学期数学第二次月考试卷

开封市七年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10小题,每小题4分,满分40分.) (共10题;共40分)1. (4分) (2017七上·老河口期中) 两个数的商为正数,则这两个数()A . 都为正数B . 都为负数C . 同号D . 异号2. (4分)(2020·商城模拟) 下列运算正确的是()A .B .C .D .3. (4分)的系数是()A . -2B .C .D . 24. (4分)把27430按四舍五入取近似值,保留两个有效数字, 并用科学记数法表示应是()A . 2.8×104B . 2.8×103C . 2.7×103D . 2.7×1045. (4分)减去-2m等于m2+3m+2多项式是()A . m2+5m+2B . m2+m+2C . m2-5m-2D . m2-m-26. (4分)计算a+(﹣a)的结果是()A . 2aB . 0C . ﹣a2D . ﹣2a7. (4分) (2020九下·龙岗期中) 下列各式错误的是()A .B .C .D .8. (4分) 9月初,某蔬菜价格为10元/千克。

由于部分菜农盲目扩大种植,至11月中旬,价格连续两次大幅下跌,现在价格为3元/千克。

如果平均每次下跌的百分率为x,根据题意,下面所列方程正确的是()A . 10(1+x)2=3B . 10(1-x)2=3C . 10(1-2x)=3D . 10(1-x)2=10-39. (4分)若,则 =()A .B .C .D .10. (4分) (2016七上·下城期中) 有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A . (l﹣)tB . (l﹣t)tC . (﹣t)tD . (l﹣2t)t二、填空题(本大题共4小题,每小题5分,满分20分) (共4题;共20分)11. (5分) (2010七下·横峰竞赛) 若0<x<1,则把x,x2 ,从小到大排列为: ________。

人教版数学七年级上学期第一次月考数学试卷(含答案) (2)

人教版数学七年级上学期第一次月考数学试卷(含答案) (2)

七年级(上)第一次月考数学试卷一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定3.在有理数中有()A.最大的数 B.最小的数C.绝对值最小的数D.不能确定4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.25.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)29.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 01310.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=310012.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.15.若|x+2|与|y﹣3|互为相反数,则x+y= ,x y= .16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= .三.解答题17.计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣a=2,则a等于﹣2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定【考点】有理数的乘法;有理数的加法;有理数的除法.【分析】根据互为相反数的两数的和等于0判断出这两个数是互为相反数,再根据异号得负解答.【解答】解:∵两个非零有理数的和为零,∴这两个数互为相反数,∴它们的商是负数.故选B.【点评】本题考查了有理数的除法,有理数的加法,判断出这两个数互为相反数是解题的关键.3.在有理数中有()A.最大的数 B.最小的数C.绝对值最小的数D.不能确定【考点】绝对值;有理数.【分析】根据有理数的知识和绝对值的性质作出正确地判断即可.【解答】解:没有最大的有理数也没有最小的有理数,绝对值最小的数是0,故选C【点评】本题主要考查了绝对值和有理数的知识,解题的关键是掌握有理数的有关知识以及绝对值的性质.4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.2【考点】有理数的乘法;倒数.【分析】先求出x的值,再根据倒数的定义即可求出x的倒数.【解答】解:∵x=(﹣3)×=﹣,∴x的倒数是﹣2,故选C.【点评】此题主要考查了有理数的乘法和倒数的定义,两数相乘,同号得正,异号得负,并把绝对值相乘.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.5.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个【考点】有理数.【分析】根据有理数分为整数与分数,判断即可得到结果.【解答】解:在数轴上﹣2与1.2之间的有理数有无数个.故选D.【点评】此题考查了数轴,熟练掌握有理数的定义是解答本题的关键.6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个【考点】相反数;正数和负数.【分析】注意﹣(﹣2)=2,﹣23=﹣8,指出所有的负数即可.【解答】解:负数有﹣1,﹣2,﹣23,一共有3个,故答案为:B.【点评】本题考查了有理数的分类,本题比较简单,明确有理数分为正数、负数和0即可做出正确判断.7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b【考点】数轴.【分析】根据数轴可以得到a、0、b的关系,从而可以解答本题.【解答】解:由数轴可得,a<﹣1<0<b<1,∴﹣a>﹣b,故选项A错误,﹣b>a,故选项B错误,a<b,故选项C错误,﹣a>b,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)2【考点】有理数大小比较.【分析】根据正数大于一切负数即可解答.【解答】解:(2)2=4,(﹣22)=﹣2,∴最大的数是(﹣2)2,故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 013【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出m、n的值,再代入代数式进行计算即可得解.【解答】解:由题意得,1﹣m=0,n+2=0,解得m=1,n=﹣2,所以,(m+n)2013=(1﹣2)2013=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个【考点】有理数的除法;有理数的乘法.【分析】根据有理数的乘法和除法法则分别进行计算即可.【解答】解:①(﹣1)×(﹣2)×(﹣3)=﹣6,故原题计算错误;②(﹣36)÷(﹣9)=4,故原题计算错误;③×(﹣)÷(﹣1)=,故原题计算正确;④(﹣4)÷×(﹣2)=16,故原题计算正确,正确的计算有2个,故选:C.【点评】此题主要考查了有理数的乘除法,关键是注意结果符号的判断.11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=3100【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方分别求出即可得出答案.【解答】解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.【点评】此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.12.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13【考点】有理数的减法;绝对值.【专题】分类讨论.【分析】根据绝对值的意义及a+b<0,可得a,b的值,再根据有理数的减法,可得答案.【解答】解:由|a|=5,|b|=8,且满足a+b<0,得a=5,或a=﹣5,b=﹣8.当a=﹣5,b=﹣8时,a﹣b=﹣5﹣(﹣8)=﹣5+8=3,当a=5,b=﹣8时,a﹣b=5﹣(﹣8)=5+8=13,故选:D.【点评】本题考查了有理数的减法,分类讨论是解题关键,以防漏掉.二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思净含量最大不超过50kg+0.5kg,最少不低于50kg ﹣0.5kg..【考点】正数和负数.【分析】意思是净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【解答】解:由题意可知:“50kg±0.5kg”表示净含量的浮动范围为上下0.5kg,即含量范围在(50+0.5)=50.5kg到(50﹣0.5)=49.5kg之间.即:它表示净含量的浮动范围为上下5kg,最多重50.5kg,最少重49.5kg;故答案为:净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5 .【考点】数轴.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A的两侧,分别是﹣1和5.【解答】解:2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.【点评】本题考查了数轴的性质,理解点A所表示的数是2,那么点A距离等于3个单位的点所表示的数就是比2大3或小3的数是关键.15.若|x+2|与|y﹣3|互为相反数,则x+y= 1 ,x y= ﹣8 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,|x+2|+|y﹣3|=0,则x+2=0,y﹣3=0,解得,x=﹣2,y=3,则x+y=1,x y=﹣8,故答案为:1;﹣8.【点评】本题考查的是相反数的概念和非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= 13 .【考点】有理数的混合运算.【专题】新定义.【分析】利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣5)(﹣3)=9﹣(﹣5)﹣1=9+5﹣1=13.故答案为:13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.(2015秋•利川市校级月考)计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=4﹣1+2=5;(2)原式=4.3+4﹣2.3﹣4=2;(3)原式=﹣﹣﹣+=﹣;(4)原式=﹣3+6﹣8+9=4;(5)原式=﹣48﹣8﹣100+4=﹣156+4=﹣152;(6)原式=﹣8+1﹣9=﹣16.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ ,﹣(﹣3.14),2006,+1.88 …};(2)负数集合:{ ﹣23,﹣|﹣|,﹣(+5)…};(3)整数集合:{ ﹣23,0,2006,﹣(+5)…};(4)分数集合:{ ﹣|﹣|,,﹣(﹣3.14),+1.88 …}.【考点】有理数.【分析】按照有理数分类即可求出答案.【解答】解:故答案为:正数:,﹣(﹣3.14),2006,+1.88;负数:﹣23,﹣|﹣|,﹣(+5);整数:﹣23,0,2006,﹣(+5);分数:﹣|﹣|,,﹣(﹣3.14),+1.88;【点评】本题考查有理数的分类,属于基础题型.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.【考点】有理数的混合运算.【专题】新定义.【分析】根据新运算得出1×0.5﹣(﹣3)×(﹣2),算乘法,最后算减法即可.【解答】解:=1×0.5﹣(﹣3)×(﹣2)=0.5﹣6=﹣5.5.【点评】本题考查了有理数的混合运算的应用,能根据新运算得出1×0.5﹣(﹣3)×(﹣2)是解此题的关键.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】根据相反数,绝对值,倒数的概念和性质求得a与b,c与d及x的关系或值后,代入代数式求值.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵|x|=1,∴x=±1,当x=1时,a+b+x2﹣cdx=0+(±1)2﹣1×1=0;当x=﹣1时,a+b+x2+cdx=0+(±1)2﹣1×(﹣1)=2.【点评】本题主要考查相反数,绝对值,倒数的概念及性质.(1)相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;(2)倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;(3)绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.【考点】有理数的混合运算.【分析】根据题意,可以知道顶峰的温度与小明所在位置的温差,从而可以求得顶峰的高度.【解答】解:由题意可得,星斗山顶峰的海拔高度是:1020+(14﹣2)÷0.6×100=1020+12÷0.6×100=1020+2000=3020(米),即星斗山顶峰的海拔高度是3020米.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?【考点】数轴.【分析】(1)数轴三要素:原点,单位长度,正方向.依此表示出家以及A、B、C三个村庄的位置;(2)距离相加的和即为所求;(3)分两种情况:①D村在C村左边时;②D村在C村右边时;分别计算即可.【解答】解:(1)如图所示:(2)2+3+10=15,即小明一共走了15千米;(3)分两种情况:①D村在C村左边时,则C、D村表示的数分别是5千米、4千米,4﹣(﹣2﹣3)=4+5=9(千米);②D村在C村右边时,则C、D村表示的数分别是5千米、6千米,6﹣(﹣2﹣3)=6+5=11(千米);综上所述:D到B村有9千米或11千米.【点评】本题考查的是数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?【考点】正数和负数.【分析】(1)将各数据相加即可求出20袋小麦是不足或超过;(2)将(1)中的数据与20袋标准小麦总量相加即可求出答案;(3)记数为0时,小麦重量非常标准.【解答】解:(1)﹣6+4+3﹣2﹣3+1+0+5+8﹣5=5,这20袋小麦总计超过5千克;(2)20袋小麦总质量是:20×450+5=9005;(3)只有一袋非常标准,由于该袋小麦与标准质量相比较为0;【点评】本题考查正负数的意义,属于基础题型上学期第三次月考考试七年级数学试卷测试时间:90分钟 试卷总分:120分题号 总分分数一、选择(每小题3分,共30分)1. 下列各数中,大于-2小于2的负数是 ( ) A .-3 B .-2 C .-1 D .02. 用一平面截一个正方体,不能得到的截面形状是 ( ) A.直角三角形 B.等边三角形 C.长方形 D.六边形3.从多边形一条边上的一点(不是顶点)出发,分别连接这个点和其余各个顶点得到8个三角形,则这个多边形的边数为 ( )A .7B .8C .9D .104.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A .240元B .250元C .280元D .300元 5、如果方程6x+3a=22与方程3x+5=11的解相同,那么a=( )A.103 B. 310 C. -103 D.- 310 6.小强用8块棱长为3 cm 的小正方体,搭建了一个如图所示的积木,下列说法中不正确的是( )A .从左面看这个积木时,看到的图形面积是27 cm 2B .从正面看这个积木时,看到的图形面积是54 cm 2C .从上面看这个积木时,看到的图形面积是45 cm 2D .分别从正面、左面、上面看这个积木时,看到的图形面积都是72 cm 2座号7、下列变形中,正确的是()A 、若ac=bc ,那么a=b 。

河南省开封市七年级上学期数学第一次月考试卷

河南省开封市七年级上学期数学第一次月考试卷

河南省开封市七年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·栾城期末) 如果a的倒数是﹣1,那么a2等于()A . 1B . ﹣1C . 3D . ﹣32. (2分)(2018·淮安) 地球与太阳的平均距离大约为150 000 000km,将150 000 000用科学记数法表示应为()。

A . 15×107B . 1.5×108C . 1.5×109D . 0.15×1093. (2分)下列四个数中,其倒数的相反数是正整数的是()A . 3B .C . -2D .4. (2分) (2019七上·镇海期末) 宁波市2018年上半年地方财政收入约837.90亿元,这个数精确到()A . 百万位B . 百分位C . 千万位D . 十分位5. (2分)某地一天早晨的气温是-5℃,中午上升了10℃,午夜又下降了8℃,则午夜的气温是()A . -3℃B . -5℃C . 5℃D . -9℃6. (2分)(2016·黔南) 一组数据:﹣5,﹣2,0,3,则该组数据中最大的数为()A . ﹣5B . ﹣2C . 0D . 37. (2分)下列运算结果不一定为负数的是()A . 异号两数相乘B . 异号两数相除C . 异号两数相加D . 奇数个负因数的乘积8. (2分) (2017七上·北票期中) 下列说法中,正确的个数有()个.① 有理数包括整数和分数;② 一个代数式不是单项式就是多项式;③ 几个有理数相乘,若负因数的个数是偶数个,则积为正数.④ 倒数等于本身的数有1,-1;A . .1B . 2C . 3D . 49. (2分)下列判断错误的是()A . 5.2>-5.2B . -0.2<0C . -2>-5D . -0.2<-10. (2分)(2020·济源模拟) 如图,在一单位为1的方格纸上,,,…,都是斜边在轴上,斜边长分别为2,4,6,…的等腰直角三角形,若的顶点坐标分别为,,,则依图中所示规律,的坐标为()A .B .C .D .二、填空题 (共4题;共4分)11. (1分)如果收入70元记作+70,那么支出10元应记作________元.12. (1分) (2019七上·厦门月考) 计算:⑴ ________;⑵ ________;⑶________;⑷ ________;13. (1分) (2016七上·柳江期中) 把下列各数填在相应的大括号内:8,0.275,﹣|﹣2|,﹣1.04,﹣(﹣10)2 ,﹣(﹣8).正整数集合{________…};负整数集合{________…};整数集合{________…};正分数集合{________…}.14. (1分)(2012·泰州) 如图,数轴上的点P表示的数是﹣1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是________.三、解答题 (共9题;共63分)15. (5分) (2019七上·郑州月考) 小明记录了本小组同学的身高(单位: ): 158,163,154,160,165,162,157,160.请你计算这个小组同学的平均身高.16. (5分)已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由).17. (5分) (2018七上·无锡期中) 计算:(1)-5-(-4)+7-8(2)(3)(4)18. (5分) (2019七上·岑溪期中) 计算:(+8)﹣(+5)+(﹣3)﹣(﹣2)19. (15分) 10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:.(1)与标准重量相比较,10袋小麦总计超过或不足多少千克?(2) 10袋小麦中哪一个记数重量最接近标准重量?(3)每袋小麦的平均重量是多少千克?20. (5分) (2019七上·盘龙镇月考) 计算或化简:(1)(2)21. (5分)地球绕太阳公转的速度约为1.1×105㎞/h,声音在空气中传播速度为330m/s,试比较这两个速度的大小.22. (3分) (2019七上·丰台期中) 数学是一门充满乐趣的学科,某校七年级小凯同学的数学学习小组遇到一个富有挑战性的探究问题,请你帮助他们完成整个探究过程;(问题背景)对于一个正整数,我们进行如下操作:①将拆分为两个正整数,的和,并计算乘积;②对于正整数,,分别重复此操作,得到另外两个乘积;③重复上述过程,直至不能再拆分为止,(即拆分到正整数1);④将所有的乘积求和,并将所得的数值称为该正整数的“神秘值”,请探究不同的拆分方式是否影响正整数的“神秘值”,并说明理由.(尝试探究):(1)正整数2的“神秘值”是________;(2)为了研究一般的规律,小凯所在学习小组通过讨论,决定再选择两个具体的正整数6和7,重复上述过程探究结论:如图1所示,是小凯选择的一种拆分方式,通过该拆分方法得到正整数6的“神秘值”为15.请模仿小凯的计算方式,在图2中,选择另外一种拆分方式,给出计算正整数6的“神秘值”的过程;对于正整数7,请选择一种拆分方式,在图3中给出计算正整数7的“神秘值”的过程.(结论猜想)结合上面的实践活动,进行更多的尝试后,小凯所在学习小组猜测,正整数的“神秘值”与其拆分方法无关.请帮助小凯,利用尝试成果,猜想正整数的“神秘值”的表达式为________.(用含字母的代数式表示,直接写出结果)23. (15分)某足球守门员练习折返跑,从守门员位置出发,向前跑记为正数,向后跑记为负数,他的练习记录如下(单位:米):+5﹣3+10﹣8﹣6+13﹣10(1)守门员最后是否回到了守门员位置?(2)守门员离开守门员位置最远是多少米?(3)守门员离开守门员位置达到10米以上(包括10米)的次数是多少?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、答案:略6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共63分)15-1、16-1、答案:略17-1、17-2、答案:略17-3、答案:略17-4、18-1、19-1、答案:略19-2、19-3、答案:略20-1、答案:略20-2、21-1、答案:略22-1、答案:略22-2、答案:略23-1、答案:略23-2、答案:略23-3、答案:略。

河南省郑州市2023-2024学年七年级上学期月考数学试题

河南省郑州市2023-2024学年七年级上学期月考数学试题

河南省郑州市2023-2024学年七年级上学期月考数学试题一、单选题1.下列四个数中,是正整数的是( ) A .﹣1B .0C .12D .12.如果温度上升10℃记作+10℃,那么温度下降5℃记作( ) A .+10℃B .-10℃C .+5℃D .-5℃3.32-的绝对值是( )A .23-B .32-C .23D .324.比-1小2的数是( ) A .3B .1C .-2D .-35.如图,在数轴上点M 表示的数可能是( )A .1.5B .﹣1.5C .﹣2.4D .2.46.经中国旅游研究院综合测算,今年“五一”假日期间全国接待国内游客1.47亿人次,1.47亿用科学记数法表示为( ) A .714.710⨯B .71.4710´C .81.4710⨯D .90.14710⨯7.近似数3.02×106精确到( ) A .百分位B .百位C .千位D .万位8.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分9.下列各组数中:①23-与23;②()23-与23;③()2--与()2-+;④()33-与33-;⑤32-与23,其中互为相反数的共有( )A .4对B .3对C .2对D .1对10.有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -大小关系是( )A .b a a b ->>->B .a a b b >->>-C .b a b a >>->-D .b a a b -<<-<11.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为( )A .3B .1-C .2-D .3-12.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是( )A .256B .900C .841D .1000二、填空题13.比较大小(填“>”或“<”):23 -34-. 14.若()2120a b -++=,则()2021a b +=.15.在数轴上的点A 表示的数是2-,则与点A 相距5个单位长度的点表示的数是. 16.按如图的程序计算,输出的结果是 .17.若21a =,236b =,且a b <,则a b -=.18.某同学把7×(□-3)错抄为7×□-3,抄错后算得答案为y ,若正确答案为x ,则x -y =三、解答题19.把下列各数在数轴上表示出来,并按从大到小的顺序用“>”连接起来,1.5-,0,38-,2.5,()1--,4--20.计算:(1)()()3211234⎡⎤--⨯--⎣⎦;(2)()457369612⎛⎫-⨯-+- ⎪⎝⎭;(3)()2499155⨯-(用简便方法计算)(4)()()()()223234232⎡⎤-+-⨯-+--÷-⎣⎦. 21.学习了绝对值的概念后,我们知道:一个非负数的绝对值等于它本身,负数的绝对值|等于它的相反数,也即当0a ≥时,a a =,当0a <时,a a =-,根据以上内容完成下面的问题:(1)23-=______; (2)3.14π-=______;(3)如果有理数a b <,则a b -=______; (4)请利用你探究的结论计算下面式子:111111112324320092008-+-+-+⋅⋅⋅+-. 22.郑州地铁1号线是河南省郑州市第一条建成运营的地铁线路,起于河南工业大学站,途经中原区、二七区、管城区、金水区、郑东新区,止于河南大学新区站,其中的15个站点如图所示.小亮从郑州火车站开始乘坐地铁,在图中15个地铁站点做值勤志愿服务,到A 站下车时,本次志愿者活动结束,约定向文苑北路站方向为正,当天的乘车记录如下(单位:站):+6,+2,-3,+9,-3,-4,+2,-5. (1)请你通过计算说明A 站是哪一站?(2)已知相邻两站之间的平均距离为1.4千米,求小亮在志愿者服务期间乘坐地铁行进的路程是多少千米? 23.观察下列运算:()()31518++=+※()()14721--=+※ ()()21416-+=-※()()15823+-=-※()01515-=+※()13013+=+※(1)请你认真思考上述运算,归纳※运算的法则: 两数进行※运算,______特别地,0和任何数进行※运算,或任何数和0进行※运算,结果等于______. (2)计算:()()11012+-⎡⎤⎣⎦※※(括号的作用与它在有理数运算中的作用一致) 24.观察下列三行数,回答问题:1-,2,3-,4,5-,…;1,4,9,16,25,…; 0,3,8,15,24,…. (1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系? (3)取每行数的第10个数,计算这三个数的和. 25.如图所示,点A 在数轴上所对应的数为2-.(1)点B 在点A 右边,且距A 点4个单位长度,点B 所对应的数是______.(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,同时点B以每秒2个单位所在的点时,求A、B两点间距离.长度沿数轴向右运动,当点A运动到6(3)在(2)的条件下,A点静止不动,B点沿数轴向左运动,经过t秒点A与点B相距4个单位长度,求t的值.。

河南省部分学校2024-2025学年高三上学期11月月考数学试题含答案

河南省部分学校2024-2025学年高三上学期11月月考数学试题含答案

高三数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数,三角函数、三角恒等变换,解三角形、平面向量.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数tan y x =的值域可以表示为()A.{tan }xy x =∣ B.{tan }yy x =∣C.{(,)tan }x y y x =∣D.{tan }y x =【答案】B 【解析】【分析】根据函数的值域是指函数值组成的集合,即可判断.【详解】因函数的值域是指函数值组成的集合,故对于函数tan y x =,其值域可表示为:{tan }yy x =∣.故选:B.2.若“sin 2θ=-”是“tan 1θ=”的充分条件,则θ是()A .第四象限角B.第三象限角C.第二象限角D.第一象限角【答案】B 【解析】【分析】根据角θ的正切值与正弦值的正负判断象限即可.【详解】由题可知,sin 02θ=-<,则θ是第三象限角或第四象限角;又要得到tan 10θ=>,故θ是第三象限角.故选:B3.下列命题正确的是()A.x ∃∈R ,20x <B.(0,4)x ∀∈,20log 2x <<C.(0,)x ∃∈+∞,132x x< D.π0,2x ⎛⎫∃∈ ⎪⎝⎭,4sin cos x x =【答案】C 【解析】【分析】对于选项A:利用指数函数的值域即可判断;对于选项B:利用对数函数的单调性求出值域即可判断;对于选项C:采用特殊值法,令14x =即可判断;对于选项D:令4sin cos 2sin 2y x x x ==,结合三角函数的值域求解验证即可.【详解】对于选项A:因为指数函数2x y =的值域为0,+∞,故x ∀∈R ,20x >,故选项A 错误;对于选项B:因为对数函数2log y x =在(0,4)x ∈上单调递增,所以当(0,4)x ∈时,()2log ,2y x ∞=∈-,故选项B 错误;对于选项C:令14x =,则311464⎛⎫= ⎪⎝⎭,121142⎛⎫= ⎪⎝⎭,显然11642<,故(0,)x ∃∈+∞,使得132x x <成立,故选项C 正确;对于选项D:结合题意可得:令4sin cos 2sin 2y x x x ==,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以()20,πx ∈,所以(]2sin 20,2y x =∈,2>,故不存在π0,2x ⎛⎫∈ ⎪⎝⎭,使得4sin cos x x =,故选项D 错误.故选:C.4.函数24()f x x x =-的大致图象是()A. B.C.D.【答案】C 【解析】【分析】先确定函数的奇偶性,排除两选项,再根据特殊点的函数值的正负,选出正确答案.【详解】函数24y x x =-是偶函数,图象关于y 轴对称,排出选项A 、B ;再取特殊值12x =和2x =,可得函数的大致图象为C ,故选:C .5.已知向量1e ,2e 满足121e e == ,120e e ⋅= ,则向量1e 与12e e -的夹角为()A.45︒B.60︒C.120︒D.135︒【答案】A 【解析】【分析】利用向量夹角的计算公式计算即可.【详解】由题可知()21121121e e e e e e ⋅-=-⋅=,12e e -==,121e e == 所以()1121121122cos ,2e e e e e e e e e ⋅--===-故向量1e 与12e e -的夹角为45︒故选:A 6.已知5πtan 210α+=,则4π5tan 5α-=()A.125 B.125-C.43D.43-【答案】C 【解析】【分析】先确定两个角的关系,然后利用三角恒等变换公式求解即可.【详解】由题可知,5π4π52π105αα+-⨯+=25π2tan5π4410tan 25π101431tan 10ααα++⎛⎫⨯===- ⎪+-⎝⎭-所以有4π55π5π4tan tan π2tan 2510103ααα-++⎛⎫⎛⎫=-⨯=-⨯= ⎪ ⎪⎝⎭⎝⎭故选:C7.已知0a >,0b >,9a b +=,则36a ba+的最小值为()A.8B.9C.12D.16【答案】A 【解析】【分析】我们观察形式,显然分式的分子和分母同时有变量,所以令()364a b =+代入化简,然后利用基本不等式求解即可.【详解】43644448b a b a a a b b a a b a +=+=++≥+=+当且仅当4b aa b=,9a b +=,即26a b ==时等号成立;故选:A8.若0x ∀>,()()()21ln 10x ax ax ---≥,则a =()A.B.C.D.【答案】D 【解析】【分析】先将两个乘积看做两个函数()21,ln 1y x ax y ax =--=-,易知要使0x ∀>时,()21(ln 1)0xax ax ---≥,则需要两函数()21,ln 1y x ax y ax =--=-同号,所以我们需要去找他们零点,0x >时零点相同,然后求解参数a 即可.【详解】由题易知0a >,当ex a=时,()ln 10ax -=;由对数函数的性质可知,当e 0,x a ⎛⎫∈ ⎪⎝⎭时,()ln 10ax -<;当e ,x a ∞⎛⎫∈+ ⎪⎝⎭时,()ln 10ax ->;显然函数21y x ax =--有两个根12,x x ,不妨令12x x <,则120x x <<由二次函数的图像可知,()20,x x ∈时,210x ax --<;()2,x x ∞∈+时,210x ax -->故要使()()()21ln 10x ax ax ---≥恒成立,则2ex a=所以有2e e 10aa a ⎛⎫-⨯-= ⎪⎝⎭,解得a =故选:D【点睛】关键点点睛:当两个式子相乘大于等于零时,两个式子必定同为负或者同为正,或者有一个为零.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数sin()()2x f x -=,则()A.()f x 的值域为1,22⎡⎤⎢⎥⎣⎦B.()f x 为奇函数C.()f x 在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增 D.()f x 的最小正周期为2π【答案】AD 【解析】【分析】对于选项A:利用换元()sin t x =-,再结合指数函数的单调性即可求出值域;对于选项B:利用奇偶性的定义说明即可;对于选项C :结合复合函数的单调性即可判断;对于选项D :借助三角函数的周期,以及周期函数的定义即可判断.【详解】对于选项A:由sin()()2x f x -=,令()sin t x =-,则2t y =,[]1,1t ∈-,因为2t y =在[]1,1t ∈-上单调递增,所以12,22ty ⎡⎤=∈⎢⎥⎣⎦,故选项A 正确;对于选项B:由sin()()2x f x -=可知(),x ∞∞∈-+,对任意的(),x ∞∞-∈-+,因为sin ()2x f x -=,而sin ()2x f x -=,易验证()(),f x f x -≠-故()f x 不是奇函数,故选项B 错误;对于选项C :结合选项A 可知()sin t x =-在ππ,22⎡⎤-⎢⎥⎣⎦单调递减,而2t y =在定义域上单调递增,由复合函数的单调性可得sin()()2x f x -=在ππ,22⎡⎤-⎢⎥⎣⎦单调递减,故选项C 错误;对于选项D :因为()sin t x =-的最小正周期为2πT =,所以sin(2π)sin()(2π)22()x x f f x x ---==+=,所以()f x 的最小正周期为2π,故选项D 正确.故选:AD.10.国庆节期间,甲、乙两商场举行优惠促销活动,甲商场采用购买所有商品一律“打八四折”的促销策略,乙商场采用“购物每满200元送40元”的促销策略.某顾客计划消费(0)x x >元,并且要利用商场的优惠活动,使消费更低一些,则()A.当0200x <<时,应进甲商场购物B.当200300x ≤<时,应进乙商场购物C.当400500x ≤<时,应进乙商场购物D.当500x >时,应进甲商场购物【答案】AC 【解析】【分析】分别计算不同选项两个商场的优惠判断即可.【详解】当0200x <<时,甲商场的费用为0.84x ,乙商场的费用为x ,0.84x x >,故应进甲商场,所以选项A 正确;当200300x ≤<时,甲商场的费用为0.84x ,乙商场的费用为40x -,400.840.1640x x x --=-,因为200250x ≤<,所以80.16400x -≤-<,400.84x x -<,进入乙商场,当250300x ≤<故400.84x x ->应进甲商场,所以选项B 错误;当400500x ≤<时,甲商场的费用为0.84x ,乙商场的费用为80x -800.840.1680x x x --=-,因为400500x ≤<,所以160.16800x -≤-<故800.84x x -<,所以应进乙商场,所以选项C 正确;假设消费了600,则在甲商场的费用为6000.84504⨯=,在乙商场的费用为600120480-=,所以乙商场费用低,故在乙商场购物,故选项D 错误.故选:AC11.已知函数()f x 满足:①x ∀,R y ∈,()[()]y f xy f x =;②(2)1f ->,则()A.(0)0f = B.()()()f x y f x f y +=⋅C.()f x 在R 上是减函数 D.[1,3]x ∀∈,()2(3)1f x kx f x -⋅-≥,则3k ≥【答案】BCD 【解析】【分析】取2,0x y =-=可求(0)f ,判断A ,取12,2x y =-=-证明()011f <<,取1x =可得()[(1)]y f y f =,由此可得()[(1)]x f x f =,结合指数运算性质和指数函数性质判断BC ,选项D 的条件可转化为当[1,3]x ∈,31x k x+-≤恒成立,结合函数性质求结论.【详解】因为x ∀,R y ∈,()[()]y f xy f x =,(2)1f ->取2,0x y =-=可得01(0)[(2)]f f =-=,A 错误;取12,2x y =-=-可得12(1)[(2)]f f -=-,又(2)1f ->,所以()011f <<,取1x =可得,()[(1)]y f y f =,所以()[(1)]x f x f =,其中()011f <<,所以()()()()()()111x yx yf x y f f f f x f y ++===,B 正确,由指数函数性质可得()[(1)]x f x f =,其中()011f <<在R 上单调递减,所以()f x 在R 上是减函数,C 正确;不等式()2(3)1f x kx f x -⋅-≥可化为()()()23111xkxx f f f --≥,所以230x kx x -+-≤,由已知对于[1,3]x ∀∈,230x kx x -+-≤恒成立,所以当[1,3]x ∈,31x k x+-≤恒成立,故max31x k x ⎛⎫+-≤ ⎪⎝⎭,其中[1,3]x ∈,因为函数1y x =+,3y x=-在[]1,3上都单调递增,所以31x x+-在[1,3]上的最大值为3,所以3k ≥,D 正确;故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()1ln(2)f x x =-+,则曲线()y f x =在点(1,(1))f --处的切线方程为______.【答案】0x y +=【解析】【分析】利用导数的几何意义求出切线斜率,然后代入点斜式直线方程即可求解切线.【详解】由题可知,()12f x x =-+',()11f -=,所以切线斜率()11k f =-=-',故切线方程为()110y x x y -=-+⇒+=.故答案为:0x y +=13.已知函数()cos (0)f x x ωω=>,若π2f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在区间(0,π)内仅有两个零点,则ω的值是__________.【答案】2【解析】【分析】根据偶函数的性质,求得2k ω=,Z k ∈,再结合余弦函数的零点,列出不等式,即可求解.【详解】πππcos cos 222f x x x ωωω⎛⎫⎛⎫⎛⎫+=+=+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为偶函数,所以ππ2k ω⋅=,Z k ∈,得2k ω=,Z k ∈,当∈0,π时,()0,πx ωω∈,()f x 在区间(0,π)内仅有两个零点,所以3π5ππ22ω<≤,解得:3522w <£,所以2ω=.故答案为:214.若ABC V 内一点P 满足PAB PBC PCA α∠=∠=∠=,则称P 为ABC V 的布洛卡点,α为布洛卡角.三角形的布洛卡点是法国数学家和数学教育家克洛尔于1816年首次发现,1875年被法国军官布洛卡重新发现,并用他的名字命名.如图,在ABC V 中,AB AC =,3cos 5BAC ∠=,若P 为ABC V 的布洛卡点,且2PA =,则BC 的长为______.【解析】【分析】利用三角恒等变换、正弦定理、余弦定理等知识进行分析,先求得sin α,进而求得a ,也即是BC .【详解】213cos 2cos 125BAC BAC ⎛⎫∠=∠-= ⎪⎝⎭,所以BAC ∠为锐角,12BAC ∠为锐角,所以11cos ,sin 2525BAC BAC ⎛⎫⎛⎫∠=∠== ⎪ ⎪⎝⎭⎝⎭.由于AB AC =,所以A ABC CB =∠∠,设ABC ACB θ∠=∠=,则2πBAC θ∠+=,ππ11cos cos cos sin 22225BAC BAC BAC θ-∠⎛⎫⎛⎫⎛⎫==-=∠= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,θ为锐角,则sin 5θ==.由于,BAP CBP ABP BCP θα∠=∠∠=∠=-,所以ABP BCP ,所以AB AP BPBC BP PC==①,在PBC △中,由正弦定理得()()()sin sin sin sin πBP BC BC PCθαθααθα===----,所以()sin sin BP PC θαα-=,所以()sin sin AB BP BC PC θαα-==,即()sin sin c a θαα-=,由正弦定理得sin sin cos cos sin sin cos sin sin tan ACB BAC θαθαθθαα∠-==-∠,即2525554tan 55α=-,解得4tan 7α=,则α为锐角,由22sin 4tan cos 7sin cos 1ααααα⎧==⎪⎨⎪+=⎩解得sin αα==,在三角形ABC 中,由余弦定理得222222342cos 2255a b c bc A b b b =+-=-⨯=,所以225,42b a b ==,在三角形ACP 中,由正弦定理得()()sin sin sin πAP AC ACBAC BAC ααα==∠--∠-,所以22445a=,解得a BC ==.【点睛】易错点睛:锐角与边长关系的判断:在判断三角形的角是否为锐角时,容易出现符号错误或判断失误.因此,在涉及角度大小的判断时,需特别注意各个角的定义和所使用定理的适用范围.正弦定理和余弦定理的符号处理:在使用正弦定理和余弦定理时,符号的处理必须谨慎,特别是在涉及平方根和正负符号的时候,需确保没有遗漏或误用.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且π2sin 6a C b c ⎛⎫+=+ ⎪⎝⎭.(1)求A ;(2)若O 为ABC V 的外心,D 为边BC 的中点,且1OD =,求ABC V 周长的最大值.【答案】(1)π3(2)【解析】【分析】(1)由正弦定理结合三角恒等变换进行化简即可求解;(2)利用向量表示出1122OD OB OC =+uuu r uu u r uuu r,由余弦定理结合基本不等式、三角形周长公式即可求解.【小问1详解】由已知π2sin 6a C b c ⎛⎫+=+ ⎪⎝⎭及正弦定理得:312sin sin cos sin sin 22A C C B C ⎛⎫+=+ ⎪ ⎪⎝⎭,由()()sin sin πsin sin cos cos sin B A C A C A C A C ⎡⎤=-+=+=+⎣⎦得:sin sin cos sin cos cos sin sin A C A C A C A C C +=++,sin cos sin sin A C A C C =+,又sin 0C ≠,cos 1A A =+,即π2sin 16A ⎛⎫-= ⎪⎝⎭,因为()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,所以ππ,66A -=解得π3A =.【小问2详解】因为O 为ABC V 的外心,且由上问知π3A =,所以2π23BOC A ∠=∠=,设OB OC R ==(R 为ABC V 的外接圆半径),因为D 为边BC 的中点,且1OD =,所以在OBC △中易得:1122OD OB OC =+uuu r uu u r uuu r,所以2221112πcos 4423OD OB OC OB OC =++ ,即22211121cos 4423πR R R =++,解得:2R =,在OBC △中由余弦定理可得:2222π2cos123BC OB OC OB OC =+-=,解得BC a ==在ABC V 中由余弦定理可得:()2222π2cos3123a b c bc b c bc =+-=+-=,由基本不等式22b c bc +⎛⎫≤ ⎪⎝⎭可得:()223122b c b c +⎛⎫+-≤ ⎪⎝⎭,当且仅当b c =时等号成立,所以()21124b c +≤,即b c +≤.所以ABC V 周长ABC C a b c =++≤+=V当且仅当b c ==时等号成立.故ABC V 周长的最大值为16.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且tan tan tan tan 1B C B C ++=,1b =,c =.(1)求a ;(2)如图,D 是ABC V 外一点(D 与A 在直线BC 的两侧),且AC CD ⊥,45CBD ∠= ,求四边形ABDC 的面积.【答案】(15(2)136【解析】【分析】(1)首先根据两角和的正切公式求()tan B C +,即求角A ,再根据余弦定理求解;(2)根据诱导公式求解sin BCD ∠,以及两角和的三角函数求sin D ,再根据正弦定理求BD ,最后根据面积公式,即可求解.【小问1详解】由条件可知,tan tan 1tan tan +=-B C B C ,所以()tan tan tan 11tan tan B CB C B C++==-,所以45B C += ,即135A = ,所以2cos 2A =-,则22222cos 1221252a b c bc A ⎛=+-=+-⨯⨯-= ⎪⎝⎭,所以5a =;【小问2详解】15225cos 5215ACB ∠==⨯⨯,()25sin sin 90cos 5BCD ACB ACB ∠=-∠=∠=,5cos 5BCD ∠=,()()sin sin 45sin cos 225510D BCD BCD BCD ⎛=∠+=∠+∠=⨯+= ⎝⎭ ,BCD △中,sin sin BC BD D BCD =∠,即sin sin 3BC BCD BD D ⋅∠==,所以15sin 4523BCD S BC BD =⨯⨯= ,11sin13522ABC S AC AB =⋅⋅= ,所以四边形ABDC 的面积为5113326+=.17.已知平面向量(,)m a b = ,(sin ,cos )n x x ωω=,且2m n = ,其中0a >,0ω>.设点(0,1)和11π(,0)12在函数()f x m n =⋅ 的图象(()f x 的部分图象如图所示)上.(1)求a ,b ,ω的值;(2)若()G x y ,是()y f x =图象上的一点,则1(2,)2K x y 是函数()y g x =图象上的相应的点,求()g x 在[0,π]上的单调递减区间.【答案】(1)a =1b =,2ω=;(2)π[,π]3【解析】【分析】(1)由2m n =得2=,利用向量数量积计算公式和辅助角公式化简得()2sin()f x x ωϕ=+,根据题设条件列出三角方程组,结合图象即可求出a ,b ,ω的值;(2)由题意中点的变换求得π()sin(6g x x =+,利用正弦函数的图象特点即可求得()g x 在[0,π]上的单调递减区间.【小问1详解】因(,)m a b = ,(sin ,cos )n x x ωω=,由2m n =2=,由()(,)(sin ,cos )f x m n a b x x ωω=⋅=⋅sin cos )2sin()a x b x x x ωωωϕωϕ=+=+=+,其中tan b aϕ=,因点(0,1)和11π(,0)12在函数()f x m n =⋅ 的图象上,则有,2sin 111πsin()012ϕωϕ=⎧⎪⎨+=⎪⎩①②,结合图象,由①可得πZ π2,6k k ϕ=+∈,将其代入②式,可得11πππ,Z 126n n ω+=∈,即212,Z 1111n n ω=-+∈,(*)由图知,该函数的周期T 满足311π412T T <<,即3π11π2π212ωω<<又0ω>,则有18241111ω<<,由(*)可得2ω=,故π()2sin(2)6f x x =+.由320b a a ⎧=⎪=⎪>⎩解得,1a b ⎧=⎪⎨=⎪⎩,故a =1b =,2ω=;【小问2详解】不妨记12,2x x y y ''==,则,22x x y y ''==,因()G x y ,是()y f x =图象上的一点,即得π22sin()6y x ''=+,即πsin(6y x ''=+,又因1(2,)2K x y 是函数()y g x =图象上的相应的点,故有π()sin()6g x x =+.由ππ3π2π2π,Z 262k x k k +≤+≤+∈,可得π4π2π2π,Z 33k x k k +≤≤+∈,因[0,π]x ∈,故得ππ3x ≤≤.()g x 在[0,π]上的单调递减区间为π[,π]3.18.已知函数()2()e xf x x mx n =++,m ,n ∈R .(1)当24m n =时,求()f x 的最小值;(2)当2m =-时,讨论()f x 的单调性;(3)当0m n ==时,证明:0x ∀>,()ln 1f x x >+.【答案】(1)0(2)答案见解析(3)证明见解析【解析】【分析】(1)利用求导判断函数的单调性,即得函数的极小值即最小值;(2)利用求导,就导函数中的参数进行分类,分别讨论导函数的符号,即得函数的单调性;(3)将待证不等式2e ln 1xx x >+等价转化为3e ln 1x x x x +>,设3e ln 1(),()x x g x h x x x+==,依题意,只需证在0x >时,min max ()()g x h x >成立,分别求m m ax in (),()h x g x 即可得证.【小问1详解】当24m n =时,22()()e 4x m f x x mx =++,22()[(2)2()e ()2)e 42x x m f x x m x m m m x x '=+++=++++,由()0f x '>,可得22m x <--或2mx >-,由()0f x '<,可得222m m x --<<-,即()f x 在(,2)2m -∞--和(,)2m -+∞上单调递增;在(2,)22m m---上单调递减,x →-∞时,()0f x →,x →+∞时,()f x →+∞,故2mx =-时,()f x 取得极小值也即最小值,为()02m f -=.【小问2详解】当2m =-时,()2()2e xf x x x n =-+,函数的定义域为R ,()2(e 2)xx f x n =+-',当2n ≥时,()0f x '≥恒成立,故()f x 在R 上为增函数;当2n <时,由()0f x '=,可得x =,故当x <x >时,()0f x '>;即()f x 在(,∞-和)∞+上单调递增;当x <<()0f x '<,即()f x 在(上单调递减.综上,当2n ≥时,()f x 在R 上为增函数;当2n <时,()f x在(,∞-和)∞+上单调递增,在(上单调递减.【小问3详解】当0m n ==时,2()e x f x x =,要证0x ∀>,()ln 1f x x >+,只需证2e ln 1x x x >+,即证3e ln 1x x x x+>在(0,)+∞上恒成立.设3e ln 1(),()x x g x h x x x+==,依题意,只需证在0x >时,min max ()()g x h x >.因e ()=x g x x ,2(1)e ()xx g x x-'=,由()0g x '<,可得01x <<,由()0g x '>,可得1x >,故()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,则()g x 在1x =时取得极小值也是最小值,为(1)e g =;因3ln 1()x h x x+=,423ln ()x h x x --'=,由()0h x '=,可得23x e -=,由()0h x '<,可得23x e->,由()0h x '>,可得230x e -<<,故()h x 在23(0,e)-上单调递增,在23(e ,)-+∞上单调递减,则()h x 在23x e -=时取得极大值也是最大值,为22332323ln e ()3e1e (e )h ---==+.因2e e 3>,即min max ()()g x h x >在(0,)+∞上成立,故得证.即0x ∀>,()ln 1f x x >+.【点睛】方法点睛:本题主要考查利用导数求函数的最值、证明不等式恒成立等知识点,属于较难题.证明不等式型如()()f x g x >的恒成立问题,一般方法有:(1)构造函数法:即直接构造()()()F x f x g x =-,证明min ()0F x >;(2)比较最值法:即证明min max ()()f x g x >即可;(3)等价转化法:即将待证不等式左右两边同除以一个式子,使得左右函数的最值可比较.19.已知非零向量(,)a m n =,(,)b p q = ,a ,b 均用有向线段表示,现定义一个新的向量c 以及向量间的一种运算“※”:(,)c a b mp nq mq np ==-+※.(1)证明:c 是这样一个向量:其模是a 的模的 b 倍,方向为将a绕起点逆时针方向旋转β角(β为x 轴正方向沿逆时针方向旋转到b所成的角,且02πβ≤<),并举一个具体的例子说明之;(2)如图1,分别以ABC V 的边AB ,AC 为一边向ABC V 外作ABD △和ACE △,使π2BAD CAE ∠=∠=,(01)AD AEAB ACλλ==<<.设线段DE 的中点为G ,证明:AG BC ⊥;(3)如图2,设(3,0)A -,圆22:4O x y +=,B 是圆O 上一动点,以AB 为边作等边ABC V (A ,B ,C 三点按逆时针排列),求||OC 的最大值.【答案】(1)证明见解析.(2)证明见解析.(3)5.【解析】【分析】(1)根据圆的参数方程设定,a b 的坐标,再依据题意证明即可;(2)依据新定义把,AG BC的坐标表示出来再运算证明即可;(3)掌握平面向量的模的运算和三角函数的最值求法即可解答.【小问1详解】证明:设(,)(cos ,sin ),(,)(cos ,sin )a m n r r b p q R R ααββ====(0,0,,r R αβ>>分别为x 轴正方向逆时针到,a b所成的角,且,[0,2)αβπ∈),则cos cos sin sin cos()mp nq Rr Rr Rr αβαβαβ-=-=+,cos sin sin cos sin()mq np Rr Rr Rr αβαβαβ+=+=+,于是cos()sin((,))Rr a b Rr c αβαβ=++=※,即c Rr a b ==⨯,x 轴正方向逆时针到c 所成的角为αβ+.故:c 是这样一个向量:把a的模变为原来的 b 倍,并按逆时针方向旋转β角(β为x 轴正方向逆时针到b所成的角,且02πβ≤<).例如,1(,),22a b == ,则111,1222((0,2)2c a b ⨯+=== ※,1,2a b == ,a 与x 轴正方向的夹角为π3,b 与x 轴正方向的夹角为6π,将a的模变为原来的2倍,并按逆时针旋转π6,即可得c .【小问2详解】证明:记(,),(,)AB m n AC p q ==,根据新定义,可得()3π3πcos ,sin ,22AD AB n m λλλ⎛⎫==- ⎪⎝⎭ ※,同理(cos ,sin )(,)22q p A AE C ππλλλ==- ※,所以1()()()()222n q p m AG A AD E λλ--=+= ,而(,)BC AC AB p m q n =-=--,所以1[()()()()]02AG BC p m n q q n p m λλ⋅=--+--= ,故:AG BC ⊥.【小问3详解】解:设(,)B u v ,则224,(3,)u v AB u v +==+,())3ππ13cos ,sin 3,,,33222222u u v AC AB u v λ⎛⎫⎛++⎛⎫==+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭※※,所以333(3)33333(3,0)(,)(,)222222u u v u v OC OA AC ++--++=+=-+-+=,所以OC ===.设2cos ,2sin (02)u v θθθπ==≤<,则OC == ,当πsin 16θ⎛⎫+= ⎪⎝⎭,即π3θ=时,max 5OC = .【点睛】此题考查了圆的参数方程;平面向量数量积的性质,以及三角函数最值.。

河南省开封市七年级上学期数学第一次月考试卷

河南省开封市七年级上学期数学第一次月考试卷

河南省开封市七年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2016·阿坝) ﹣3的绝对值是()A .B . ﹣C . 3D . ﹣32. (2分)某图纸上注明:一种零件的直径是30-0.02+0.03mm,下列尺寸合格的是().A . 30.05mmB . 29.08mmC . 29.97mmD . 30.01mm3. (2分)若水位上升6m记作+6m,则水位下降4m记作()A . ﹣2mB . ﹣10mC . +4mD . ﹣4m4. (2分)数轴上的点A、B分别表示-2和3,则线段AB的中点所表示的数是()A .B .C .D .5. (2分)如图,数轴上点A表示的数可能是()A .B . ﹣2.3C . -D . ﹣26. (2分) (2016七上·北京期中) 数轴上与原点距离是5个单位的点,所表示的数是()A . 5B . ﹣5C . ±5D .7. (2分)下列说法正确的是()A . “黑色”和“白色”表示具有相反意义的量B . “快”和“慢”表示具有相反意义的量C . “向南100米”和“向北1000米”表示具有相反意义的量D . “+15米”就表示向东走了15米8. (2分)在(-2)2 , (-2),+(−) , -|-2|这四个数中,负数的个数是()A . 1个B . 2个C . 3个D . 4个9. (2分) (2018七上·桐乡期中) 已知有理数a,b,c,d在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度.若3a=4b﹣3,则c﹣2d为()A . ﹣3B . ﹣4C . ﹣5D . ﹣610. (2分)一个正整数n与它的倒数、相反数n相比较,正确的是()A . -n≤n≤B . -n<<nC . -n≤≤nD . -n<≤n二、填空题 (共7题;共11分)11. (1分) (2019七上·川汇期中) 由于中美贸易战的影响,2018年中国从俄罗斯进口总额较上年增加了39.4%,增长率为39.4%,而从美国进口总额较上年下降了2.3%,增长率为________.12. (1分) (2018七上·北仑期末) 数轴上从左到右依次有三点,三点表示的数分别为,,,其中为整数,且满足,则 ________.13. (1分)(2017·吉林模拟) 计算:﹣|﹣1|=________.14. (1分) (2016七上·卢龙期中) 如果一个负数的平方等于它的相反数,那么这个数是________.15. (1分)填空:× =×________+×________=________+________=________.16. (1分) (2016七上·莒县期中) 若“*”是一种新的运算符号,并且规定a*b= ,则2*(﹣2)=________.17. (5分)在有理数中,既不是正数也不是负数的数是________三、解答题 (共4题;共65分)18. (5分)在一条东西走向的马路上,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校西边300 m处,商场在学校西边600 m处,医院在学校西边500 m处,若将该马路近似地看作一条直线,向东为正方向,1个单位长度表示100 m.找一个公共场所作为原点,在数轴上表示出这四家公共场所的位置,并使得其中两个公共场所所在位置表示的数互为相反数.19. (30分) (2020七上·苍南期末) 计算:(1) 3-(-5)+(-6)(2)20. (15分) (2019七上·萧山月考) 已知有理数a,b,c在数轴上的位置如图所示.(1)分别判断a,b,c,a+b的正负;(2)用符号“<”连接下列各数:a,b,c,-a,-b.21. (15分) (2018七上·湖州月考) 有20筐白菜,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如表:与标准质量的差(单位:千克)-3-2-1.501 2.5框数14228(1)请将表格补充完整.(2) 20筐白菜中,最重的一筐比最轻的一筐要重多少千克?(3)求这20筐白菜的总重量.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共4题;共65分)18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、。

开封市七年级上学期数学11月月考试卷

开封市七年级上学期数学11月月考试卷

开封市七年级上学期数学11月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·呼和浩特期中) 已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A . 1B . 5C . ﹣5D . ﹣12. (2分)下列说法中,正确的是()A . 在等式2x=2a-b的两边都除以2,得到x=a-bB . 等式两边都除以同一个数,等式一定成立C . 等式两边都加上同一个整式,所得结果仍是等式D . 在等式4x=8的两边都减去4,得到x=43. (2分)(2019·昭平模拟) 如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A . 48B . 60C . 76D . 804. (2分)挪威数学家阿贝尔,年轻时就利用阶梯形,发现了一个重要的恒等式——阿贝尔公式:右图是一个简单的阶梯形,可用两种方法,每一种把图形分割成为两个矩形.利用它们之间的面积关系,可以得到:a1b1+a2b2=()A . a1(b1-b2)+(a1+a2)b1B . a2(b2-b1)+(a1+a2)b2C . a1(b1-b2)+(a1+a2)b2D . a2(b1-b2)+(a1+a2)b15. (2分)如果是关于x的一元一次方程,则m的值为A . 4B .C . 2D . 2或6. (2分)(2019·丹东) ﹣2019的倒数是()A . ﹣2019B . 2019C . ﹣D .7. (2分) (2019七上·十堰期中) 单项式的系数.次数分别是().A . -1,2B . -2,3C . ,2D . ,38. (2分) (2018七上·太原期中) 经党中央批准、国务院批复自2018年起,将每年秋分日设立为“中国农民丰收节”.据国家统计局数据显示,2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为()A . 229.9×104吨B . 2.299×106吨C . 22.99×105吨D . 2299×103吨9. (2分) (2019七下·全椒期末) 在,0,,-3这四个数中,为无理数的是()A .B . 0C .D . -310. (2分) (2020七上·北仑期末) 在如图所示的2020年1月份的月历表中,任意框出表中竖立上三个相邻的数,这三个数的和不可能是()A . 27B . 51C . 69D . 75二、填空题 (共7题;共7分)11. (1分) (2019七上·双台子月考) 在-3、4、-2、5四个数中,任意两个数之积的最小值为________.12. (1分) (2019八上·兴化月考) 近似数13.7万精确到________位.13. (1分) (2016七下·翔安期末) 如果向东走2km记作+2km,那么﹣5km表示________.14. (1分) (2018八下·深圳期中) 若 ,那么 ________.15. (1分)在有理数的原有运算法则中,我们补充定义一种新运算“★”如下:a★b=(a+b)(a﹣b),例如:5★3=(5+3)×(5﹣3)=8×2=16,下面给出了关于这种新运算的几个结论:① 3★(﹣2)=5;②a★b=b★a;③若b=0,则a★b=a2;④若a★b=0,则a=b.其中正确结论的有__;(只填序号)16. (1分) (2019七上·开福月考) 若,则mn的值为 ________.17. (1分) (2019七上·保山月考) 某市某天最低气温是℃,最高气温是℃,那么当天的最大温差是________℃.三、解答题 (共6题;共70分)18. (10分)计算:.19. (10分) (2019七下·利辛期末) 计算:5°-(-2)+ ×20. (4分) (2017七下·江都月考) 用简便方法计算下列各题:(1)()2016×(﹣1.25)2017(2)(2 )10×(﹣)10×()11 .21. (10分) (2019七上·施秉月考) 某升降机第一次上升5米,第二次又上升6米,第三次下降4米,第四次又下降7米。

2021-2022学年河南省开封市祥符区集慧中学七年级(上)第一次月考数学试卷(附答案详解)

2021-2022学年河南省开封市祥符区集慧中学七年级(上)第一次月考数学试卷(附答案详解)

2021-2022学年河南省开封市祥符区集慧中学七年级(上)第一次月考数学试卷1.下列图形是棱锥的是( )A. B. C. D.2.如图,该物体从上面看是( )A. B. C. D.3.用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的是( )A. ①②④B. ①②③C. ②③④D. ①③④4.下列平面图形中不能围成正方体的是( )A. B.C. D.5.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A. B.C. D.6. 在数轴上与−3的距离等于4的点表示的数是( )A. 1B. −7C. −1或7D. 1或−77. 如图所示的图形绕虚线旋转一周,所形成的几何体是( )A. B. C. D.8. 下列说法正确的是( )A. 有理数包括正整数、零和负分数B. −a 不一定是整数C. −5和+(−5)互为相反数D. 两个有理数的和一定大于每一个加数 9. 数轴上一点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C.若点C 表示的数为1,则点A 表示的数( ) A. 7B. 3C. −3D. −2 10. 若|a|=−a ,a 一定是( ) A. 正数 B. 负数 C. 非正数D. 非负数 11. 在0,−9,|−3|,−(−5),5,6.8,−125,16中,正整数的个数是个.( )A. 1B. 2C. 3D. 412. −3的绝对值是______.13. 将如图几何体分类,柱体有______ ,锥体有______ ,球体有______ (填序号).14. 八棱柱是有______个面,______条侧棱,______个顶点.15. 绝对值小于4的所有整数的和是______。

16. 若2x +1是−9的相反数,则x =______.17. 小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有______个.18.若|x−2|+|y+1|=0,则2x−3y=______ .19.一个由若干个小正方体组成的几何体,从左面看到的视图和从上面看到的视图如图所示,则该几何体最少需要______ 小正方体;最多可以有______ 小正方体.20.把下列各数填入相应括号里:−35,|−8|,0,−0.3,−100,π,2.1010010001…,有理数集合:{______};分数集合:{______};整数集合:{______}.21.(1)(−81)+(−29);(2)(+7)+(−19)+(+23)+(−12);(3)−535−2+335−6.5−412;(4)−1.25+1112−3.75+(−2312)−|−3|.22.附加题:实数a、b在数轴上的位置如图,化简:|a|−|b|−|a−b|.23.若a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,求2a+3b+3c的值.24.把−(−1),−|−112|,4,−3,5分别表示在数轴上,并用“<”号把它们连接起来.25.如图是由五块积木搭成,这几块积木都是相同的正方体,请分别画出这个图形的从正面看、从左面看、和从上面看的图形.26.如图,是一个正方体的平面展开图,若将其按虚线折叠成正方体后,相对面上的两个数字之和均为5,求x−y+z的值.27.某检修站,甲小组乘一辆汽车,约定向东走为正,从A地出发到收工时,行走记录为(单位:千米):+15,−2,+5,−1,+10,−3,−2,+12,+4,−5,+6(1)计算收工时,甲小组在A地的哪一边,距A地多远?(2)若每千米汽车耗油0.3升,求出发到收工时甲组耗油多少升?答案和解析1.【答案】D【解析】解:四个几何体分别为:A、圆柱;B、圆锥;C、三棱柱;D、四棱锥,故选:D.分别说出各个选项的名称即可确定答案.本题考查了认识立体图形的知识,解题的关键是了解各个几何体的名称,难度不大.2.【答案】C【解析】解:从上面看易得2个正方形.故选C.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.【答案】B【解析】解:圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.根据圆锥、圆柱、球、五棱柱的形状特点判断即可.本题考查几何体的截面,关键要理解面与面相交得到线.4.【答案】C【解析】【分析】本题考查了正方体展开图,熟记展开图常见的11种形式与不能围成正方体的常见形式“一线不过四,田凹应弃之”是解题的关键.根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有C选项不能围成正方体.故选C.5.【答案】A【解析】解:根据题意及图示只有A经过折叠后符合.故选:A.本题考查了正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.本题着重考查学生对立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,由几何图形想象出实物的形状”的要求相一致,充分体现了实践操作性原则.要注意空间想象哦,哪一个平面展开图对面图案都相同6.【答案】D【解析】解:根据数轴的意义可知,在数轴上与−3的距离等于4的点表示的数是−3+4=1或−3−4=−7.故选:D.此题注意考虑两种情况:该点在−3的左侧,该点在−3的右侧.主要考查了数轴,要注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉一种情况.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.7.【答案】B【解析】解:根据以上分析应是圆锥和圆柱的组合体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省开封市七年级上学期数学11月月考试卷姓名:________ 班级:________ 成绩:________一、单选题。

(共12题;共24分)1. (2分)在-︱-2︱,︱-(-2)︱,-(+2),,+(-2),-(-3)2 , -22中,负数有()A . 2个B . 3个C . 4个D . 5个2. (2分) 2017的绝对值是()A . 2017B . -2017C .D . ±20173. (2分)有理数a,b在数轴上的对应点如图所示,则下列式子中:①﹣b>a;②|b|<|a|;③a﹣b>a+b;④|a|+|b|>|a﹣b|,正确的有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2018七上·永定期中) -9的相反数等于()A . -9B . 9C .D .5. (2分)冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高()。

A . -14℃B . 14℃C . -26℃D . 26℃6. (2分)关于有理数的加法,下列叙述正确的是()A . 两个负数相加,取负号,把绝对值相减B . 零加正数,和为正数;负数加正数,和为负数C . 两正数相加,和为正数;两负数相加,和为负数D . 两个有理数相加,等于它们的绝对值之和7. (2分) (2018七上·宿迁期末) | x-2 |+3=4,下列说法正确的是()A . 解为3B . 解为1C . 其解为1或3D . 以上答案都不对8. (2分)若|x|=4,|y|=7,且x+y>0,那么x﹣y的值是()A . 3或11B . 3或﹣11C . ﹣3或11D . ﹣3或﹣119. (2分)计算|﹣9+5|的结果是()A . ﹣4B . 14C . 4D . ﹣1410. (2分) (2020七上·德江期末) 在化学中,甲烷的化学式是,乙烷的化学式是,丙烷的化学式是,......,设碳原子()的数目为(为正整数),则它们的化学式都可以用下列哪个式子来表示()A .B .C .D .11. (2分)如果|a|=7,|b|=5,试求a-b的值为()A . 2B . 12C . 2和12D . 2;12;-12;-212. (2分) (2020七下·硚口月考) 如图,平面直角坐标系内有一条折线从原点出发后,在第一象限内曲折前行,已知A1A2⊥OA1 , A1A2=OA1;A2A3⊥A1A2 , A2A3=A1A2;A3A4⊥A2A3 , A3A4=A2A3;……;依照这个规律进行下去,其中A1(1,2),A2(3,1),A3(4,3),……. ,则A2019的坐标是()A . (2019,2020)B . ( 2019,2018)C . (3027,1009)D . (3028,1011)二、填空题。

(共7题;共13分)13. (2分)一个数的相反数大于它本身,那么,这个数是________,一个数的相反数等于它本身,这个数是________,一个数的相反数小于它本身,这个数是________.14. (1分) (2018七上·竞秀期末) 写出一个比﹣2小的有理数________.15. (1分) (2016七上·射洪期中) 若|a+5|+(b﹣4)2=0,则(a+b)2016=________.16. (1分) (2019七上·襄阳月考) 已知a、b互为相反数,c、d互为倒数, ,则代数式的值是________.17. (1分) (2019九上·万州期末) 用符号※定义一种新运算:a※b=(a﹣b)×a,则方程x※2=0的解是________.18. (1分) (2019九上·兴化月考) 如图,在平面直角坐标系中,点P是以C()为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最大值是________.19. (6分) (2016七上·鼓楼期中) 解答题(1)一个数的绝对值是指在数轴上表示这个数的点到________的距离;(2)若|a|=﹣a,则a________0;(3)有理数a、b在数轴上的位置如图所示,请化简|a|+|b|+|a+b|.三、解答题。

(共7题;共58分)20. (10分) (2020七上·延庆期末) 计算:(1) 5﹣(﹣9)+(﹣12)﹣1;(2)×(﹣)÷(﹣4 ).21. (10分)计算:(1) 5 ﹣(﹣2 )+(﹣3 )﹣(+4 )(2)(﹣﹣ + )×(﹣24)(3)(﹣3)÷ × ×(﹣15)(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017 .22. (10分) (2019七上·保山期中) 计算(1)÷(2)(3)(- - + )÷(4)23. (10分) (2019七上·聊城期中) 某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减(1)根据记录可知前三天共生产了________辆;(2)产量最多的一天比产量最少的一天多生产________辆;(3)该厂实行计件工资制,每辆车60元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?24. (5分) (2019七上·港口期中) 如图,正方形的边长为a,用整式表示图中阴影部分的面积,并计算当a=2时阴影部分的面积(取3.14)25. (6分) (2018七上·长葛期中) 材料:一般地,n个相同的因数a相乘:记为 .如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).问题:(1)计算以下各对数的值:log24=________,log216=________,log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式为________log24、log216、log264之间又满足怎样的关系式:________(3)由(2)的结果,你能归纳出一个一般性的结论吗?logaM+logaN=________(a>o且a≠1,M>0,N>0).26. (7分) (2019七上·南昌期中) 如图,在数轴上A点表示数a,B点表示数b,C点表示数c,已知数b 是最小的正整数,且a、c满足.(1) a=________,b=________,c=________;(2)若将数轴折叠,使得点A与点C重合,则点B与数________表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为,点A 与点C之间的距离表示为,点B与点C之间的距离表示为,求、、的长(用含t的式子表示);(4)在(3)的条件下,的值是否随着时间t的变化而改变?若改变,请说明理由;若不变,请求其值.参考答案一、单选题。

(共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题。

(共7题;共13分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:三、解答题。

(共7题;共58分)答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、答案:21-4、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、答案:26-3、答案:26-4、考点:解析:。

相关文档
最新文档