第3章-流体动力学理论基础

合集下载

流体动力学基础

流体动力学基础

流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。

本文将介绍流体动力学的基础概念、基本方程以及常用方法。

一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。

2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。

常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。

3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。

流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。

二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。

对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。

2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。

对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。

3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。

三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。

2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。

3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。

流体动力学基础理论

流体动力学基础理论

流体动力学基础理论流体动力学是研究流体运动规律及其物理现象的学科,其基础理论包括流体静力学和流体动力学两个部分。

本文将围绕流体动力学的基础理论展开论述,包括主要概念、基本方程和典型应用等内容。

一、流体动力学概述流体动力学是研究流体在受力作用下的运动规律的学科。

在研究流体动力学时,通常将流体视为连续分布的介质,分析其运动状态和受力情况。

流体动力学的研究对象包括气体、液体和等离子体等。

流体动力学的基本假设有两个,即连续介质假设和边界层假设。

连续介质假设认为流体可以被看作是连续分布的介质,从而可以用连续函数来描述其物理量。

边界层假设认为流体与物体表面之间存在一层边界层,该层内的流体性质发生较大变化,而在该层外的流体相对稳定。

二、基本方程流体动力学的基本方程包括质量守恒方程、动量守恒方程和能量守恒方程三个方程。

这三个方程构成了描述流体运动规律的基本框架。

1. 质量守恒方程质量守恒方程描述了流体质量的变化情况,其数学表达式为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ表示流体的密度,t表示时间,v表示流体的速度,∇·表示散度运算符。

质量守恒方程表明在流体中,质量的增减与流体的速度有关,通过质量守恒方程可以研究流体的质量流动和密度分布情况。

2. 动量守恒方程动量守恒方程描述了流体运动的动力学规律,其数学表达式为:ρ(∂v/∂t + v·∇v) = -∇p + ∇·τ + ρg其中,p表示流体的压力,τ表示流体的黏性应力,g表示重力加速度。

动量守恒方程表明流体的运动受到压力、黏性应力和重力的综合作用,通过动量守恒方程可以研究流体的速度场和受力情况。

3. 能量守恒方程能量守恒方程描述了流体能量的变化情况,其数学表达式为:ρCv(∂T/∂t + v·∇T) = ∇·(κ∇T) + Q其中,Cv表示流体的定压比热容,T表示流体的温度,κ表示流体的热导率,Q表示流体受到的热源项。

流体力学理论基础

流体力学理论基础

3.2.2 伯努利方程
3.3 流动阻力基本概念
流体旳平衡—流体静力学基础
3.1.1 平衡状态下流体中旳应力特征
1、流体静压力方向必然重叠于受力面旳内法向方向
n
A
c
b
B
P
a
2、平衡流体中任意点旳静压强只能由该点旳坐标位置
决定,而与该压强作用方向无关。
z
c
pn
dz py
px dy O dx b
a
pz
x
PyD g sin J x
PyD ghc AyD gyc sin AyD
gyc sin AyD g sin J x
根据面积二次力矩平行移轴定理
J x Jc yc2 A
yD
yC
JC yC A
常见图形旳几何特征量
常见截面旳惯性矩
y
z h
b
Jc
bh3 12
y
dz
Jc
d4
64
0
0'
p0=p=pa+ρgh0
h0=(p-pa) /ρg =(119.6-100)×103/(1000×9.81)=2.0m
3.1.5 均质流体作用在平面上旳液体总压力
p0
O
C点为平面壁旳形心,
a
hD
hc h dp P
y
yc
D点为总压力P旳作用点 取微元面积dA,设形

yD
dA
心位于液面下列h深处
T
A hE
hc
HP
D
B 60
解:闸门形心
hc 1.5m
总压力
P hc A
98001.5 ( 3 1) sin 60

一元流体动力学基础

一元流体动力学基础

拉格朗日法表示流体质点的 速度
二、欧拉法
特点
以固定空间点为研究 对象,描述各瞬时物理量 在空间的分布来研究流体 运动的方法。
欧拉变量
变量 (x 、 y 、 z 、 t )称为欧拉变量。
本书以下的流动描 述均采用欧拉法!
第二节 恒定流动和 非恒定流动
非恒定流动
运动不平衡的流动,在流场中各 点流速随时间变化,各点压强,粘性力 和惯性力也随着速度的变化而变化。
质点标志
把流体质点在某一时间 t0时 的坐标( a 、 b 、c)作为该质点 的标志,则不同的( a 、 b 、c) 就表示流动空间的不同质点。这 样,流场中的全部质点,都包含 在 ( a 、 b 、c) 变数中。
拉格朗日变量
表达式中的自变量( a 、 b 、c、 t ) , 称为拉格朗日变量。
外力(压力)作功等于流段机械能量增加
压力作功为: (a) 动能增量为: (b)
位能增量为:
(c)
理想不可压缩流体恒定流元流能量方程(伯努利方程):
二、恒定元流能量方程本身及 其各项含义
Z: 断面对于选定基准面的高度, 水力 学中称为位置水头,表示单位重量 的位置势能,称为单位位能。
p γ
是断面压强作用使流体沿测压管所 能上升的高度,水力学中称为压强水头, 表示压力 y 作功所能提供给单位重量流 体的能量,称为单位压能。 以断面流速 u为初速的铅直上升射流所 能达到的理论高度,水力学中称为流速 水头,表示单位重量的动能,称为单位 动能。
一、总流能量方程的应用要点:
(1)基准面是写方程中 Z 值的依据。一般通过两 断面中较低一断面的形心,使一Z 为零,而另一Z 值 为正值。 (2)两计算断面必须是均匀流或渐变流断面并包含 已知和要求参数; (3)过水断面上计算点的选取,可任取,一般: 管流-断面中心点, 明渠流-自由液面上; (4)两计算断面压强必须采用相同计算基准〕 (绝对、常用:相对压强); (5)方程中各项单位必须统一。

第3章2 流体动力学基础-伯努利方程应用

第3章2 流体动力学基础-伯努利方程应用

17

【解】 以0-0为基准面,列1-1、2-2两个断面的伯努利方程:
V12 p2 V22 z1 z2 2g 2g p1
其中,z1 0、V1 Q A1 = (4 0.1) (3.14 0.32 ) =1.42m/s z2 z h、V2 Q A2 = (4 0.1) (3.14 0.12 ) =12.74m/s
z2

2

2
2g
z4

4

4
2g
其中,z2 0、p2 p0、V2 0, z4 0.3 1.0 1.3m、p4 0、V4 ?
10

【解】 联立以上两个方程,解得
V4 6.57(m / s)

喷射高度:
V4 2 h 2.2(m) 2g

即,喷水出口流速为6.57m/s,喷射高度为2.2m。
3

【解】

流量Q=VA,管径A已知,只需求出流速V。 基准面取在管道处,取1-1和2-2两个断面,列伯努 利方程。
V12 p2 V22 z1 z2 h12 2g 2g p1
1 1断面:z1 H 7m,p1 0,V1 0; 2 2断面:z2 0,p2 0.5atm 50662.5Pa,V2 ?,h12 1.5m。
11流体动力学基础流体动力学基础n伯努利方程的应用伯努利方程的应用n泵对液流能量的增加泵对液流能量的增加2伯努利方程的应用伯努利方程的应用11一般的水力计算一般的水力计算22节流式流量计节流式流量计33驻压强和测速管驻压强和测速管44流动吸力问题流动吸力问题311一般的水力计算一般的水力计算例例3131从水池接一管路如图所示

水力学第三章水动力学基础PPT课件

水力学第三章水动力学基础PPT课件

斯托克斯定理
总结词
描述流体在重力场中运动时,流速与密 度的关系。
VS
详细描述
斯托克斯定理指出,在不可压缩、理想流 体中,流体的流速与密度之间存在一定的 关系。具体来说,流速大的地方密度小, 流速小的地方密度大。这个定理对于理解 流体运动的基本规律和解决实际问题具有 重要的意义。
06 水动力学中的流动现象与 模拟
设计、预测和控制等领域。
THANKS FOR WATCHING
感谢您的观看
静水压强
静止液体内部压强的分布规律。
液柱压力计
利用静止液体的压强测量压力的方法。
帕斯卡原理
静止液体中任意封闭曲面所受外力之和为零。
浮力原理
浸没在液体中的物体受到一个向上的浮力, 其大小等于物体所排液体的重量。
03 水流运动的基本方程
连续性方程
总结词
描述水流在流场中连续分布的特性
详细描述
连续性方程是水力学中的基本方程之一,它表达了单位时间内流场中某一流体 的质量守恒原理。对于不可压缩流体,连续性方程可以简化为:单位时间内流 出的流量等于该时间内流体的减少量。
湍流
水流呈现不规则状态,流线曲折、交 叉甚至断裂,流速沿程变化大,有强 烈的脉动现象。
均匀流与非均匀流
均匀流
水流在同一条流线上,速度和方向保持一致,过水断面形状和尺寸沿程保持不变 。
非均匀流
水流在同一条流线上,速度和方向发生变化,过水断面形状和尺寸沿程也发生变 化。
一维、二维和三维流动
一维流动
水流只具有一个方向的流动,如 管道中的水流。一维流动的研究 可以通过建立一维数学模型进行。
水力学第三章水动力学基础ppt课 件
目 录

《流体力学》第三章一元流体动力学基础

《流体力学》第三章一元流体动力学基础

02
能源领域
风力发电机的设计和优化需要考虑风力湍流对风能转换效率的影响;核
能和火力发电厂的冷却塔设计也需要考虑湍流流动的传热和传质特性。
03
环境工程领域
大气污染物的扩散和传输、城市空气质量等环境问题与湍流流动密切相
关,需要利用湍流模型和方法进行模拟和分析。
06
一元流体动力学的实验研 究方法
实验设备与测量技术
一元流体动力学
研究一元流体运动规律和特性的学科。
研究内容
包括流体运动的基本方程、流体的物理性质、流动状态和流动特 性等。
02
一元流体动力学基本概念
流体静力学基础
静止流体
流体处于静止状态,没有相对运动,只有由于重力引起的势能变 化。
平衡状态
流体内部各部分之间没有相对运动,且作用于流体的外力平衡。
流体静压力
总结词
求解无旋流动的方法主要包括拉普拉斯方程和泊松方程。
详细描述
拉普拉斯方程是描述无旋流动的偏微分方程,它可以通过求 解偏微分方程得到流场的速度分布。泊松方程是另一种求解 无旋流动的方法,它通过求解泊松方程得到流场的速度分布 。
无旋流动的应用实例
总结词
无旋流动在许多工程领域中都有应用,如航 空航天、气象学、环境工程等。
能量方程
• 总结词:能量方程是一元流体动力学的基本方程之一,用于描述流体能量的传递和转化规律。
• 详细描述:能量方程基于热力学第一定律,表示流体能量的变化率等于流入流体的净热流量和外力对流体所做的功。在直角坐标系下,能量方程可以表示为:$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}(\rho u_j E + p u_j) = \frac{\partial}{\partial x_j}(k \frac{\partial T}{\partial x_j}) + \frac{\partial}{\partial xj}(\tau{ij} u_i)$,其中$E$为流体 的总能,$T$为温度,$k$为热导率。

第三章流体动力学基础(1)

第三章流体动力学基础(1)

A Control Volume is a region in space, mass can cross its boundary 8
2019/3/27
流体力学基础
第三章 流体动力学基础
§2 流体运动中的几个基本概念
一、物理量的质点导数(全导数) • 运动中的流体质点所具有的物理量N(例如速度、压强、 密度、温度、质量、动量、动能等)对时间的变化率称 为物理量N的质点导数。 • 流体质点处于静止状态,则不存在质点导数概念; • 质点导数是针对某一物理量; • 质点导数必然是数学上多元复合函数对独立自变量t的 导数
流体微团的标识:通常取 t0 时刻该流体微团的初始空间坐标 (a, b, c )作为该流体微团的标识 (a, b, c )可以是直角坐标系下,也可以任选,只要能把所 研究的流体微团彼此区别开即可
2019/3/27
流体力学基础
2
第三章 流体动力学基础
• 拉格朗日变数 : ( a, b, c ) 和 t • 任一时刻流体微团(a, b, c )的运动空间坐标(x, y,z)
r t
(2)
2019/3/27
流体力学基础
16
第三章 流体动力学基础
• 欧拉参数转换为拉格朗日参数
若已知欧拉法表示的速度场为 v = v (r, t) = v (x, y, z, t ) 利用流体质点的速度关系式: dr/dt = v(r, t) 或分量形式: dx/dt = u(x, y, z, t) dy/dt = v(x, y, z, t) dz/dt = w(x, y, z, t) 设此组常微分方程组的解为: x = x(c1, c2, c3, t) y = y(c1, c2, c3, t) z = z(c1, c2, c3, t) 由起始条件确定积分常数,t=t0时有: a = x(c1, c2, c3, t0) b = y(c1, c2, c3, t0) c = z(c1, c2, c3, t0) 积分常数由拉格朗日参数(a, b, c)表示,获得拉氏与欧氏 参数关系:x=x (a, b, c, t), y=y (a, b, c, t), z=z (a, b, c, t), 原速度场:v = v [x(a,b,c,t), y(a,b,c,t), z(a,b,c,t), t] = v (a,b,c,t) 完成欧氏参数向拉氏参数转换 流体力学基础 17

一维流体动力学基础

一维流体动力学基础
❖ 由于流体做定常流动, 则根据质量守恒定律得 ❖ dM=0 则
❖ ——可压缩流1u体1d微A1小流束2u的2d连A2续性方程。
对不可压缩流体的定常流动, 1 2
dQ1 dQ2
u1dA1
u2dA2
——不可压缩流体微小流束定常流动的 连续性方程。
其物理意义是: 在同一时间间隔内流过微小流束上任一过水断面的流量均相等。或 者说,在任一流束段内的流体体积(或质量)都保持不变
(x,y,z,t)——欧拉变量
2.欧拉加速度
流体质点某一时刻处于流场不同位置, 速度是坐标及时间的函
数, 所以流速是t 的复合函数, 对流速求导可得加速度:
a
dux,
y,
z,
t
dt
如:
ax
dux dt
ux t
ux x
dx dt
ux y
dy dt
ux z
dz dt
a
dx dt
ux
du
dt
其物理意义是: 不可压缩流体做定常流动时,总流的体积流量 保持不变;各过水断面平均流速与过水断面面积成反比,即过 水断面积↑处,流速↓;而过水断面面积↓处,流速↑。
第四节 流体定常流能量方程
一、理想流体元流能量方程
从功能原理出发,取不可 压缩无黏性流体恒定流动 这样的力学模型,可以推 出元流的能量方程式:
一时段内的运动轨迹线。
图中烟火的轨迹为迹线。
2)迹线的微分方程
dx dy dz dt
ux uy uz
式中, ux,uy,uz 均为时空t,x,y,z的函数, 且t是自变量。
注意: 流线和迹线微分方程的异同点。
dx dy dz ux uy uz

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学知识点总结第一章绪论1液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3流体力学的研究方法:理论、数值、实验。

4作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

ΔFΔPΔTAΔAVτ法向应力pA周围流体作用的表面力切向应力作用于A上的平均压应力作用于A上的平均剪应力应力为A点压应力,即A点的压强法向应力为A点的剪应力切向应力应力的单位是帕斯卡(pa),1pa=1N/㎡,表面力具有传递性。

(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5流体的主要物理性质(1)惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下):4℃时的水20℃时的空气(2)粘性huu+duUzydyx牛顿内摩擦定律:流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知——速度梯度,剪切应变率(剪切变形速度)粘度μ是比例系数,称为动力黏度,单位“pa·s”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度单位:m2/s同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体T↑μ↓气体T↑μ↑无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

(3)压缩性和膨胀性压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。

T一定,dp增大,dv减小膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。

P一定,dT增大,dV增大A液体的压缩性和膨胀性液体的压缩性用压缩系数表示压缩系数:在一定的温度下,压强增加单位P,液体体积的相对减小值。

流体动力学理论基础第三章解析

流体动力学理论基础第三章解析

az= x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
uz t
ux
uz x
uy
uz y
uz
uz z
式中第一项叫时变加速度或当地加速度 (Local Acceleration),流动过程中流体由于速度 随时间变化而引起的加速度;第二项叫位变速度 ,流动过程中流体由于速度随位置变化而引起的 加速度(Connective Acceleration)。
uz uz (x、y、z、t)
(x,y,z,t)—欧拉变量
考察不同时刻液体质点通过流场中固定空间点 的运动情况,综合足够多的固定空间点的运动情 况,得到整个液流的运动规律。——流场法
欧拉法不直接追究质点的运动过程,而是研究各时 刻质点在流场中的变化规律。将个别流体质点运动过程 置之不理,而固守于流场各空间点。通过观察在流动空 间中的每一个空间点上运动要素随时间的变化,把足够 多的空间点综合起来而得出的整个流体的运动情况。
显然,在欧拉描述中,各空间点上的物理量(实际上是通 过此点的流体质点所具有的物理量)是随时间变化的。因此, 流体的运动参数应该是空间坐标和时间的函数。如流体的速 度、压强和密度可以表示为
z
t时刻
M (x,y,z) O
x
y
ux ux (x, y, z,t) uy uy (x, y, z,t) uz uz (x, y, z,t)
算子
全质 导点 数导

d dt
=
t
+ (u )
时变导数 当地导数 局部导数
位变导数 迁移导数 对流导数

(最新整理)流体力学第三章流体动力学

(最新整理)流体力学第三章流体动力学

Mz
(uz)dxdydzdt
z
dt时间内,控制体总净流出质量:
M M xM yM z(xux)(yuy)(zuz)d x d y d z
u d xd d y( id u v )d zx dd t yd zd t
由质量守恒:控制体总净流出质量,必等于控制体内由于
2021/7/26
密度变化而减少的质量,即
解:流线方程: dxdyx2y2c (流线是同心圆族)
ky kx
线变形: x y 0
(无线变形)
角变形: z 0
(无角变形)
旋转角速度:针的旋转)
2021/7/26
刚体旋转流动
36
有旋流动和无旋流动
1.有旋流动 2.无旋流动
0 0
即: x 0
y 0
z 0
uz u y y z ux uz z x
(2) 不可压缩流体中,流线的疏密程度反映了该时刻 流场中各点的速度大小,流线越密,流速越大,流 线越稀,流速越小。
(3)恒定流动中,流线的形状不随时间而改变,流 线与迹线重合;非恒定流动中,一般情况下,流线 的形状随时间而变化,流线与迹线不重合。
2021/7/26
12
例:速度场vx=a,vy=bt,vz=0(a、b为常数) 求:(1)流线方程及t =0、1、2时流线图;
2021/7/26
20
A
B
A
B
A
B
0
12
3
4
56
A B
A
B
7
8
9
10
显然,渐变流是一种近似的均匀流。因此,渐变流有如 下性质: (1)渐变流的流线近于平行直线,过流断面近于平面; (2)渐变流过流断面上的动压强分布与静止流体压强分

流体力学 第3章流体动力学基础

流体力学 第3章流体动力学基础

第3章 流体动力学基础教学提示:流体力学是研究流体机械运动的一门学科,与理论力学中分析刚体运动的情况相似。

如研究的范围只限于流体运动的方式和状态,则属于流体运动学的范围。

如研究的范围除了流体运动的方式和状态以外,还联系到流体发生运动的条件,则属于流体动力学的范围。

前者研究流体运动的方式和速度、加速度、位移等随空间与时间的变化,后者研究引起运动的原因和流体作用力、力矩、动量和能量的方法。

如前所述,流体力学的研究方法是基于连续介质体系的,重点研究由流体质点所组成的连续介质体系运动所产生的宏观效果,而不讨论流体分子的运动。

与处于相对平衡状态下的情况不同,处于相对运动状态下的实际流体,粘滞性将发生作用。

由于流体具有易流动性和粘滞性的影响,因此流体力学的研究方法与固体力学有明显的区别。

教学要求:流体运动的形式虽然多种多样的,但从普遍规律来讲,都要服从质量守恒定律、动能定律和动量定律这些基本原理。

在本章中,我们将阐述研究流体流动的一些基本方法,讨论流体运动学方面的一些基本概念,应用质量守恒定律、牛顿第二运动定律、动量定理和动量矩定理等推导出理想流体动力学中的几个重要的基本方程:连续性方程、欧拉方程、伯努利方程、动量方程、动量矩方程等,并举例说明它们的应用。

3.1 流体运动的描述方法要研究流体运动的规律,就要建立描述流体运动的方法。

在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。

3.1.1 拉格朗日法拉格朗日法是瑞士科学家欧拉首先提出的,法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用。

该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。

按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标),,(c b a (即当时间t 等于起始值0t 时的坐标)以及时间t 的单值连续函数。

若以r 代表任意选择的质点在任意时间t 的矢径,则: ),,,(t c b a r r = (3-1) 式中,r 在x 、y 、z 轴上的投影为x 、y 、z ;a 、b 、c 称为拉格朗日变量。

《流体力学》第三章 一元流体动力学基础3.6-3.7

《流体力学》第三章 一元流体动力学基础3.6-3.7

渐变流
急变流 渐变流
急 变 流
均匀流和不均匀流
§3-7 过流断面的压强分布
p1
A

p2
Z1
Z2
均匀流断面上微小柱体的平衡
§3-7 过流断面的压强分布
粘滞阻力对垂直于流速方向的过流断面上压强 的变化不起作用。过流断面只考虑压力和重力 的平衡,和静止流体所考虑的一致。
能量方程式说明:理想不可压缩流体 恒定流动中,各断面总水头相等,单位 重量的总能量保持不变。
实际流体的流动中,由于粘性力的存在, 单位能量方程式为:
p1 u p2 u ' Z1 Z2 hl12 2g 2g
§3-6 恒定元流能量方程
2 1
2 2
1'
2'
h
p1
u2 0 2g p2
u 2 gh
p1 p2
1'
2'
2、u 2 g

2 1 2
u 2g h
'
第七节
过流断面的压强分布
流体内部作用的力:重力、粘性力、惯性力。 重力是不变的,粘性力与惯性力则与质点流速 有关。 流速的变化包括大小的变化和方向的变化 直线惯性力、离心惯性力
§3-7 过流断面的压强分布
p1dA ldA cos p2 dA 因为: l cos Z1 Z 2
p1
p1 (Z1 Z 2 ) p2
Z1
A
p1

Z2
p2


p2
Z2
Z1
所以:均匀流过 流断面上压强分 布服从于水静力 学规律。
§3-7 过流断面的压强分布

流体力学第三章流体动力学(1)

流体力学第三章流体动力学(1)

(2)流线的作法
流线的作法如下:在流速场中任取一点1(如下图),绘出
在某时刻通过该点的质点的流速矢量u1,再在该矢量上取距
点1很近的点2处,标出同一时刻通过该处的另一质点的流速
矢量u2……如此继续下去,得一折线1 2 3 4 5 6……,若
折线上相邻各点的间距无限接近,其极限就是某时刻流速场 中经过点1的流线。
(b)非恒定流
mt1 流线 mt2
迹线 mt3
且与迹线重合。
3. 均匀流和非均匀流 划分依据:按流速的大小和方向是否沿程变化
(1)均匀流
流速沿程不变的流动称为均匀流
在均匀流时不存在迁移加速度,即 auuo s
其流线为彼此平行的直线
例:等直径直管中的液流或者断面形状和水深不变的长直渠道中的水流 都是均匀流。
ux
uz x
uy
uz y
uz
uz z
质点的加速度由两部分组成:
auuu t s
欧拉加速度
ax
ux t
ux
ux x
uy
ux y
uz
ux z
ay
uy t
ux
uy x
uy
uy y
uz
uy z
az
uz t
ux
பைடு நூலகம்
uz x
uy
uz y
uz
uz z
①时变加速度(当地加速度)——流动过程中液体由于速度 随时间变化而引起的加速度; ——等号右边第一项是时变 加速度 ②位变加速度(迁移加速度)——流动过程中液体由于速度 随位置变化而引起的加速度。 ——后三项是位变加速度
(1) (a,b,c)=Const , t为变数,可以得出某个指定质点在任意时刻 所处的位置。 (2) (a,b,c)为变数, t =Const ,可以得出某一瞬间不同质点在空 间的分布情况。

第三讲 流体动力学基础

第三讲  流体动力学基础

流体静压力矢量: F= -∫ApdAn
三、 流体静压力的两个重要特性。 1、流体静压力的方向总是沿受作用面法线方向。
2、平衡流体内任一点处的静压强的数值与其作用 面的方向无关,它只是该点空间坐标的函数。
10
§2-2 流体的平衡微分方程(欧拉平衡微分方程)
1 p f z
1、流量 单位时间内通过某一过流断面的流体量。体积流量qv或Q表示,质量流量 qm 。 qv vdA v A 体积流量(m3/s): A
质量流量(kg/s):
qm ρ vdA ρv A
A
2、净通量 在流场中取整个封闭曲面作为控制面,封闭曲面内的空间称为控制体。 流过全部封闭控制面A的流量称为净流量,或净通量。
动量修正系数是无量纲数,它的大小取决于总流过水断面的流速分布, 分布越均匀,β 值越小,越接近于1.0。
41
层流流速分布
湍流流速分布
断面流速分布 圆管层流 圆管紊流 旋转抛物面 对数规律
动能修正系数
动量修正系数 β =4/3 β =1.02~1.05
=2.0 =1.05~1.1
42
§3-3 连续方程式(一元流动)
绝对真空 p=0
15
第三章
流体动力学基础
16
3-1描述流体运动的两种方法
流体运动实际上就是大量流体质点运动的总和。
描述流体的运动参数在流场中各个不同空间位置上随时 间 连续变化的规律。
拉格朗日法(Lagrange):流体质点 着眼点不同
跟踪追迹法
欧拉法( Euler):空间 设立观察站法
17
一、 拉格朗日法与质点系
32
流线的性质:
1. 在某一时刻,过某一空间点只有一条流线。流线不能 相交,不能突然转折。三种例外: 驻点 相切点

3流体动力学

3流体动力学
19
工程流体力学
连续性方程的应用
3.流体动力学
连续性方程表明:
通过各个断面上的流体质量是相等的,流体通过管 道各断面上的流速和其断面面积成反比。在图a所示的管 路中,由于A1>A2,所以V1<V2。
对于有分支的管道,连续性方程就是: Q1=Q2+Q3+Q4即在有分支的管道中,各输入管道的
流量之和等于各输出管道流量之和。
流线可以形象地给出流场的流动状态。通过流 线,可以清楚地看出某时刻流场中各点的速度方向, 由流线的密集程度,也可以判定出速度的大小。流线 的引入是欧拉法的研究特点。例如在流动水面上同时 撤一大片木屑,这时可看到这些木屑将连成若干条曲 线,每一条曲线表示在同一瞬时各水点的流动方向线 就是流线。
12
工程流体力学
9
工程流体力学
3.流体动力学
2、 二元流(two-dimensional flow):
流体主要表现在两个方向的流动,而第三个方向的流 动可忽略不计,即流动流体的运动要素是二个空间坐标 (不限于直角坐标)函数。 如实际液体在圆截面(轴对 称)管道中的流动。
3、三元流(three-dimensional flow):
2)质量流量Qm
单位时间内通过过流截面的流体质量称为质量流量,以 Qm表示,其单位为kg/s.
3)关系:
Qm Q
17
工程流体力学
3.流体动力学
3、断面平均流速
平均流速为流量与过流断面通流面积之比。实
际上由于液体具有粘性,液体在管道内流动时,通 流截面上各点的流速是不相等的。管道中心处流速 最大;越靠近管壁流速越小;管壁处的流速为零。 为方便起见,以后所指流速均为平均流速。
21

流体力学课件本构方程

流体力学课件本构方程

◆ 对于液体来说,随着温度的升高,粘性系数μ下降
;对于气体来说,当温度升高时,粘性系数反而上升。 ◆ 对于气体,粘性系数μ和温度T的关系可表成: (3.4.4)
其中
的范围内
此式称为索士兰特公式,索士兰在相当大
对空气是适用的。由于上式比较复杂,
在实用上多采用幂次公式 (3.4.5)
来近似真实的粘性关系,其中幂次n的变化范围是
牛顿所做的剪切运动的实验 (动力学粘性系数) 牛顿在1687年第一个对于最简单的剪切运动作了一个著名的 实验,并且建立了切向应力和剪切变形速度之间的关系。
实验:考虑两个很长的平行平板之间的粘性流体运动,平板间
的距离为 h,设下面一个平板静止不动,而上面的那个平板则
在自己的平面上以等速 U 向右运动。实验表明,两平板上的
基本假定下用于一般情形的广义牛顿定律 (1) 运动流体的应力张量在运动停止后应趋于静止流
体的应力张量。据此将应力张量P写成各向同性部分-PI 和各向异性部分P’的和是方便的。 (3.4.7) 写成分量形式则为
(3.4.8)
其中p 根据纯力学考虑定义出来的运动流体的压力函数。
它不等于静止流体的压力函数,但当运动静止时趋于静 止流体的压力函数。 P ’是除去-PI 后得到的张量,称为偏应力张量,当 运动消失时它趋于零。并且,偏应力张量和应力张量一
样也是对称二阶张量。
(2)偏应力张量 的各分量是局部速度梯度张量
各分量的线性齐次函数。
关系:当速度在空间均匀分布时,偏应力张量为零;当
速度偏离均匀分布时,在粘性流体中产生了偏应力,它力 图使速度回复到均匀分布情形。
由此可见,偏应力张量 至于 各分量为什么是
应和局部速度张量
有关。

水力学:第三章 流体动力学理论基础

水力学:第三章 流体动力学理论基础

若过水断面为渐变流,则在断面上 得
g
积分可
p

(z
p
Q
g
) gdQ ( z
p
g
) g dQ ( z
u x t p t 0 u y t 0 t u z
非恒定流:流场中任何点上有任何一个运动要素是随 时间而变化的。
6
二、 迹线与流线
拉格朗日法研究个别流体质点在不同时刻的运动情况 ,引出了迹线的概念。 欧拉法考察同一时刻流体质点在不同空间位置的运动 情况引出了流线的概念。
u x x
t
0

0

u y y
常数
u z z 0
22

二、 恒定不可压缩总流的连续性方程
液流的连续性方程是质量守恒定律的一种特殊方式。 取恒定流中微小流束如图所示: 因液体为不可压缩的连续介质,有

1 2
根据质量守恒定律在dt时段内
流入的质量应与流出的质量
)于1738年首先推导出来的。
28
二、实际流体恒定元流的能量方程
理想流体没有粘滞性无须克服内摩擦力而消耗能量,
其机械能保持不变。
对实际流体,令单位重量流体从断面1-1流至断面2-2
所失的能量为
hw
'
。则1-1断面和2-2断面能量方程为:
p1
z1
g

u1
2
2g
z2
p2
g

u2
2
2g
hw
相等。
u 1 dA 1 dt u 2 dA 2 dt u 1 dA 1 u 2 dA 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取图示管状总流控制体,因其侧面上 u n 0(为什么?请 思考),故有
t
(ux)(uy)(uz)0
x y z

(u)0
☆对于不可压缩流体 ( C) ,连续性方程简化为
ux uy uz 0 x y z

u0
.
§3-3 流体运动的连续性方程
【例2】假设不可压缩流体的流速场为
uxf(y,z),uyuz0
试判断该流动是否可能存在。 【解】判断流动是否可能存在,主要看其是否满足连续
变流。
Text
急变流
.
§3-2 研究流体运动的若干基本概念
渐变流定义
◇流线近似为平行直线的流动;或流线的曲率半径R
足够大而流线之间的夹角β足够小的流动。
R
.
β
§3-2 研究流体运动的若干基本概念
渐变流过流断面 性质
☆渐变流过流断面近似为平面 ☆渐变流过流断面上流体动压强近似按流体静压强分 布,即
.
§3-2 研究流体运动的若干基本概念
☆迹线方程: dx dy dt kx ky
积分得: xc1 ek,tyc2e kt x c y 1 c 2 e ke t k tc 1 c 2 c
与流线方程相同,说明恒定流动时,流线与迹线在几 何上完全重合。
.
§3-2 研究流体运动的若干基本概念
流管、元流、总流、过流断面
基本方程
迹线方程
dx dy dz dt ux uy uz
时间t是变量
.
流线方程
uds0
dx dy dz ux uy uz
时间是参变量
§3-2 研究流体运动的若干基本概念
流线的性质 ☆一般情况,流线不能相交,且只能是一条光滑曲
线。 施工组 织计划
☆流线充满整个流场。 ☆恒定流动时,流线的形状、位置不随时间变化, 且与迹线重合。 ☆流线愈密,流速愈大。
施工组 织设计
.
§3-2 研究流体运动的若干基本概念
恒定流与非恒定流
◇恒定流:运动要素不随时间变化的流动
☆恒定流动的当地加速度等于零
一元流、二元流、三元流
流线与迹线
◇流线定义
某时刻流场中所有流体质点的速度矢量与其相
切的一条空间曲线。
u6
u1
u2
12 3
u3
6 u5
5
u4
4
.
§3-2 研究流体运动的若干基本概念
.
§3-1 描述流体运动的方法
拉格朗日法 ◇研究对象——流体质点或质点系 ☆固体运动常采用拉格朗日法研究,但流体运动一般较 固体运动复杂,通常采用欧拉法研究。
运动流体
.
§修充正施满运动流体质点的
固定空间)

☆当地加速度(时变加速度)
☆迁移加速度(位变加速度)
m x m y m ztdxdydzdt
.
§3-3 流体运动的连续性方程
将 m x、 m 代y、 入上 m 式z,化简得:
(ux)(uy)(uz)0
t x y z

(u)0
t
上式即为流体运动的连续性微分方程的一般形式。
.
§3-3 流体运动的连续性方程
☆对于恒定流 ( 0),连续性方程简化为
z p C g
.
§3-3 流体运动的连续性方程
★连续性方程是质量守恒定律在流体力学中的数学表达式 一、连续性微分方程
取如图所示微小T六EX面T 体为控制体,分析在TEdXtT时间内流
进、流出控制体的质量差:
.
§3-3 流体运动的连续性方程
◇ x 方向:
mx
(
1 2
x
dx)(ux
1 2
ux x
dx)dydzdt
Vt dVtVdV
据属性分析中 的高斯定理
V (u)dVÑ AundA
连续性 积分方程
tVdVÑ AundA0
.
§3-3 流体运动的连续性方程
三、恒定不可压缩总流的连续性方程
对于恒定
( t
V
dV
0)
不可压缩 (ρ=常数)总
流 ,连续性积分方程可简化为:
AundA0
.
§3-3 流体运动的连续性方程
.
§3-2 研究流体运动的若干基本概念
流量、断面平均流速 ◇流量——单位时间通过过流断面的流体量
dQ udA(元流)
Q A ud(A 总流)
☆常用单位:m3/s或L/s(体积流量) ☆换算关系:1m3=1000L
.
§3-2 研究流体运动的若干基本概念
◇断面平均流速 ☆不管是管流还是渠流,过流断面上实际流速分布均是 非均匀的。
.
§3-2 研究流体运动的若干基本概念
【例1】 已知平面流动的流速分布为 ux kx,uy ky
其中y≥0,k为常数。试求:①流线方程;②迹线方程。
【解】据y≥0知,流体流动仅限于xy半平面内,因
运动要素与时间t无关,故该流动为恒定二元流。
☆流线方程: dx dy
kx
ky
积分得: xyc
该流线为一组等角双曲线。
第3章流体动力学 理论基础
.
第3章 流体动力学理论基础
研究思路: 理想流体→实际流体 研究内容: 压强、流修工速正施分布 理论基础: 质量守恒定律
牛顿第二定律 重点掌握: 恒定总流的三大基本方程
施工组 织设计
.
第3章 流体动力学理论基础
编目制录依据
§3-1 描述流体运动的方法 §3-2 研究流体运动的若干基本概念 §3-3 流体运动的连续性方程 §3-4 理想流体运动微分方程及其积分 §3-5 伯努利方程 §3-6 动量方程
u
v
☆在流体力学中,为方便应用,常引入断面平均流速概 念。
v Q A udA AA .
§3-2 研究流体运动的若干基本概念
均匀流与非均匀流、渐变流 ◇均匀流:各流线为平行直线的流动 ☆均匀流的迁移加速度等于零
的直◇线非,均其匀迁流移:加各速流度线不或施等T为工于ex进曲t零度线。图,或为彼此不相互平行 ☆天然河流为典型的非Tex均t 匀流动 ☆非均匀流视其流线Te弯xt曲程度又可分为渐变流和急
(
1 2
x
dx)(ux
1 2
ux x
dx)dydzdt
(ux) dxdydzdt
x
.
§3-3 流体运动的连续性方程
y 方向:
my
(uy)dxdydzdt
y
z 方向: mz ( zuz)dxdydzdt
据质量守恒定律:单位时间内流进、流出控制体 的流体质量差等于控制体内流体面密度发生变化所引 起的质量增量。即:
性微分方程。
本题
ux uy uz 0 x y z
满足 ux uy uz 0 x y z
故该流动可能存在。
.
§3-3 流体运动的连续性方程
二、连续性积分方程 取图示总流控制体,将连续性微分方程对总流控
制体积分:
V tdVV(u)dV0
.
§3-3 流体运动的连续性方程
第1项
第2项
因控制体不随 时间变化
相关文档
最新文档