奥数行程问题的基本公式
六年级奥数(行程问题)
学习改变命运,思考成就(chéngjiù)未来!姓名(xìngmíng) _______________行程问题是我们在小学应用题中经常会遇到的,其中还包括水流问题以及一些特殊的行程问题我们在解决(jiějué)行程问题前,要牢记以下公式行程问题是研究(yánjiū)物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间路程一定,时间(shíjiān)和速度成反比速度一定,路程和时间成正比时间一定,路程和速度成正比关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷21、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米 ?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对(xiāngduì)开出,相向而行。
奥数行程问题知识点总结大全
小学奥数行程问题公式奥数行程问题知识点总
结大全
【根本公式】:路程=速度×时间
【根本类型】
相遇问题:速度和×相遇时间=相遇路程;
追及问题:速度差×追及时间=路程差;
流水问题:关键是抓住水速对追及和相遇的时间不产生影响;
顺水速度=船速+水速逆水速度=船速-水速
静水速度=〔顺水速度+逆水速度〕÷2 水速=〔顺水速度-逆水速度〕÷2
〔也就是顺水速度、逆水速度、船速、水速4个量中只要有2个就可求另外2个〕
其他问题:利用相应知识解决,比方和差分倍和盈亏;
【复杂的行程】
1、屡次相遇问题;
2、环形行程问题;
3、运用比例、方程等解复杂的题。
查看:小升初奥数行程问题公式和例题解析汇总。
学而思奥数模块之行程问题
学而思奥数模块之行程问题1、基本行程问题:基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置2、简单的相遇、追及问题:相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差简单的相遇与追及问题各自解题时的入手点及需要注意的地方1.相遇问题:与速度和、路程和有关⑴是否同时出发⑵是否有返回条件⑶是否和中点有关:判断相遇点位置⑷是否是多次返回:按倍数关系走。
⑸一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果2.追及问题:与速度差、路程差有关⑴速度差与路程差的本质含义⑵是否同时出发,是否同地出发。
⑶方向是否有改变⑷环形时:慢者落快者整一圈(1) 甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?(2) 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?(3) 甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。
甲列车每小时行93千米,乙列车每小时行多少千米?(1)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(2)甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3) 甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?(4)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
奥数.行程.相遇和追及公式
相遇和追及问题一.行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系。
基本公式: 路程=速度×时间 速度=路程÷时间时间=路程÷速度关键问题:确定行程过程中的位置二.相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.相向运动相遇问题的 速度和×相遇时间=总路程,即=t S V 和和数量关系 总路程÷速度和=相遇时间总路程÷相遇时间=速度和三.追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地追击问题的 追及路程=速度差×追及时间,即=t S V 差差数量关系 速度差=追及路程÷追及时间追及时间=追及路程÷速度差【分段提速 】 环路周长(路程差)÷速度差=相遇时间环路上【同向运动】追击问题 环路周长÷相遇时间=速度差数量关系 速度差×相遇时间=环路周长速度和×相遇时间=环路周长 路程差÷速度差=相同走过的时间往返平均速度=往返总路程÷往返总时间 平均速度=总路程÷总时间1、“环形跑道”,也是称为封闭回路,它可以是圆形的、长方形的、三角形的,也可以是由长方形和两个半圆组成的运动场形状。
行程问题小升初奥数综合教案及练习
行程问题(一)教学目标:1. 理解行程问题的基本概念和基本公式。
2. 掌握行程问题的解题方法和技巧。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 行程问题的基本概念:行程、速度、时间、路程。
2. 行程问题的基本公式:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。
3. 行程问题的解题方法和技巧。
教学步骤:1. 引入行程问题的概念,让学生了解行程问题的基本元素:行程、速度、时间、路程。
2. 讲解行程问题的基本公式,让学生理解路程、时间、速度之间的关系。
3. 通过例题讲解行程问题的解题方法和技巧,让学生学会如何解决行程问题。
4. 练习题:让学生运用所学的知识和技巧解决实际问题。
教学评价:1. 课堂讲解:评价学生对行程问题基本概念和公式的理解程度。
2. 练习题解答:评价学生对行程问题解题方法和技巧的掌握程度。
行程问题(二)教学目标:1. 理解行程问题的基本概念和基本公式。
2. 掌握行程问题的解题方法和技巧。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 行程问题的基本概念:行程、速度、时间、路程。
2. 行程问题的基本公式:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。
3. 行程问题的解题方法和技巧。
教学步骤:1. 引入行程问题的概念,让学生了解行程问题的基本元素:行程、速度、时间、路程。
2. 讲解行程问题的基本公式,让学生理解路程、时间、速度之间的关系。
3. 通过例题讲解行程问题的解题方法和技巧,让学生学会如何解决行程问题。
4. 练习题:让学生运用所学的知识和技巧解决实际问题。
教学评价:1. 课堂讲解:评价学生对行程问题基本概念和公式的理解程度。
2. 练习题解答:评价学生对行程问题解题方法和技巧的掌握程度。
行程问题(三)教学目标:1. 理解行程问题的基本概念和基本公式。
2. 掌握行程问题的解题方法和技巧。
小学奥数行程问题大汇总
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定()2;路程一定2(),牢记平均速度公式,就不会错。
(完整版)小学奥数行程问题汇总
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。
奥数行程问题及公式
在郑州小升初考试中,数学试题基本为奥数题目。
其中,行程问题类的奥数题占了很大的分值,尤其是应用题,经常会考到行程问题。
为了帮助同学们掌握行程问题应用题,小编整理了行程问题的学习资料和35道经典练习题和详解如下:1、行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。
2、常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。
3、常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。
4、行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。
例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间?分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。
设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则回来时的时间为:即回来时用了3.5小时。
评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。
例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。
解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。
答:汽车在后半段路程时速度加快8千米/时。
例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?分析:求时间的问题,先找相应的路程和速度。
行程问题的九个公式分别是什么
行程问题的九个公式分别是什么行程问题是学校奥数中的一大基本问题。
行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一。
行程问题包含多人行程、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题等。
行程问题公式流水问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种状况下计算船只的航行速度、时间和所行的路程,叫做流水问题。
流水问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速;(1)逆水速度=船速-水速。
(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程。
水速,是指水在单位时间里流过的路程。
顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程(请留意单位名称统一)。
依据加减法互为逆运算的关系,由公式(1)可以得到:水速=顺水速度-船速,由公式(2)可以得到:水速=船速-逆水速度;船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,依据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
时间*速度=路程火车过桥(桥长+车长)÷速度=时间(桥长+车长)÷时间=速度速度*时间=桥长+车长追及问题路程差÷速度差=时间路程差÷时间=速度差速度差*时间=路程差流水行船问题例:一只轮船从甲地开往乙地顺水而行,每小时行28 千米,到乙地后,又逆水航行,回到甲地。
逆水比顺水多行 2 小时,已知水速每小时4 千米。
求甲乙两地相距多少千米?分析:此题必需先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。
小学奥数必做的道行程问题
一、行程问题:S=V×T;总结如下:当路程一定时;速度和时间成反比当速度一定时;路程和时间成正比当时间一定时;路程和速度成正比二、衍伸总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=顺水速度-逆水速度÷2船速=顺水速度-逆水速度×2两岸问题:S=3A-B;两次相遇相隔距离=2×A-B 电梯问题:S=人与电梯的合速度×时间=人与电梯的合速度×时间平均速度:V平=2V1×V2÷V1+V21、邮递员早晨7时出发送一份邮件到对面的山坳里;从邮局开始要走12千米的上坡路;8千米的下坡路..他上坡时每小时走4千米;下坡时每小时走5千米;到达目的地后停留1小时;又从原路返回;邮递员什么时候可以回到邮局解析核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡;去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时 7:00+10:00=17:002、小明从甲地到乙地;去时每小时走6千米;回时每小时走9千米;来回共用5小时..小明来回共走了多少千米解析当路程一定时;速度和时间成反比速度比=6:9=2:3时间比=3:23+2=5小时;正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米;一辆汽车原计划用6小时从A城开到B城;汽车行驶了一半路程;因故在途中停留了30分钟..如果按照原定的时间到达B城;汽车在后半段路程速度应该加快多少解析核心公式:速度=路程÷时间前半程开了3小时;因故障停留30分钟;因此接下来的路程需要2.5小时来完成V=120÷2.5=48千米/小时原V=240/6=40千米/小时所以需要加快:48-40=8千米/小时4、甲、乙两车都从A地出发经过B地驶往C地;A;B两地的距离等于B;C 两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟;但在B地停留了7分钟;甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时;甲车就超过乙车..解析11-7=4分钟甲乙车的速度比=1:0.8=5:4甲乙行的时间比=4:5=16:20所以是在乙车出发后的16+11=27分钟追上甲车5、铁路旁的一条平行小路上;有一行人与一骑车人同时向南行进..行人速度为3.6千米/小时;骑车人速度为10.8千米/小时..这时有一列火车从他们背后开过来;火车通过行人用22秒;通过骑车人用26秒..这列火车的车身总长是多少米解析S=V火车-V人×时间=V火车-V车×时间V人=3.6千米/小时=1米/秒V车=10.8千米/小时=3米/秒S=V火车-1×22=V火车-3×26S=286米或者合时间比=22:26=11:13合速度比=13:11V人:V车=1:314-1:14-3=13:11所以V火车=14米/秒S=14-1×22=286米6、小刚和小强租一条小船;向上游划去;不慎把水壶掉进江中;当他们发现并调过船头时;水壶与船已经相距2千米;假定小船的速度是每小时4千米;水流速度是每小时2千米;那么他们追上水壶需要多少时间解析我们来分析一下;全程分成两部分;第一部分是水壶掉入水中;第二部分是追水壶第一部分;水壶的速度=V水;小船的总速度则是=V船+V水那么水壶和小船的合速度就是V船;所以相距2千米的时间就是:2/4=0.5小时第二部分;水壶的速度=V水;小船的总速度则是=V船-V水那么水壶和小船的合速度还是V船;所以小船追上水壶的时间还是:2/4=0.5小时7、甲、乙两船在静水中速度分别为每小时24千米和每小时32千米;两船从某河相距336千米的两港同时出发相向而行;几小时相遇如果同向而行;甲船在前;乙船在后;几小时后乙船追上甲船解析时间=路程和÷速度和T=336÷24+32=6小时时间=路程差÷速度差T=336÷32-24=42小时8、甲、乙两港间的水路长208千米;一只船从甲港开往乙港;顺水8小时到达;从乙港返回甲港;逆水13小时到达;求船在静水中的速度和水流速度..解析流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=顺水速度-逆水速度÷2船速=顺水速度-逆水速度×2V顺=208÷8=26千米/小时V逆=208÷13=16千米/小时V船=26+16÷2=21千米/小时V水=26-16÷2=5千米/小时9、小明早上从家步行去学校;走完一半路程时;爸爸发现小明的数学书丢在家里;随即骑车去给小明送书;追上时;小明还有3/10的路程未走完;小明随即上了爸爸的车;由爸爸送往学校;这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间解析小明走1/2-3/10=2/10的路程;爸爸走了7/10的路程因此小明的速度:自行车的速度=2/10:7/10=2:7因此时间比就是7:27-2=5份;对应5分钟所以小明步行剩下的3/10需要7分钟那么小明步行全程需要:7/3/10=70/3分钟10、一只狗追赶一只野兔;狗跳5次的时间兔子能跳6次;狗跳4次的距离与兔子7次的距离相等.兔子跳出550米后狗子才开始追赶.问狗跳了多远才能追上兔子解析狗跳5次的时间=兔子跳6次的时间→狗跳20次的时间=兔子跳24次的时间狗跳4次的路程=兔子跳7次的路程→狗跳20次的路程=兔子跳35次的路程综上得到V狗:V兔=35:24当时间一定时;路程和速度成正比S狗:S兔= V狗:V兔=35:24=1750:1200因此狗只需要跑1750米即可11、主人追他的狗;狗跑三步的时间主人跑两步;但主人的一步是狗的两步.狗跑出10步后;主人开始追;主人跑出了多少步才追上狗解析主人跑2步的时间=狗跑3步的时间→主人跑2步的时间=狗跑3步的时间主人跑1步的路程=狗跑2步的路程→主人跑2步的路程=狗跑4步的路程综上得到主人跑2步可以追上狗4-3=1步现在狗比主人多跑了10步所以主人要跑20步12、某人从甲地前往乙地办事;去时有2/3的路程乘大客车;1/3的路程乘小汽车;返回时乘小汽车与大客车行的时间相同;返回比去时少用了5小时;已知大客车每小时行24千米;小汽车每小时行72千米;甲地到乙地的路程、是多少千米解析当时间一定时;路程和速度成正比返回:时间一定;路程比=速度比=24:72=1:3=3:9去时:路程比=2:1=8:4返回的时间:3/24+9/72=1/4去时的时间:8/24+4/72=7/187/18-1/4=5/36;对应5小时12对应5×12÷5/36=432千米13、某工厂每天派小汽车于上午8时准时到总工程师家接他到工厂上班;有一天早晨总工程师临时决定提前回工厂办事;匆匆从家步行出发;途中遇到接他的小汽车;立即上车到工厂;结果比平时早40分钟到达..总工程师上车时是几时几分解析A-------B----------------CAB段汽车开一个来回需要40分钟;所以AB段汽车开需要20分钟汽车是8点钟准时到A点;所以工程师上车是在8:00-0:20=7:4014、小明从家去体育馆看球赛.去时他步行5分钟后;跑步8分钟;到达体育馆..回来时;他先步行10分钟后;开始跑步;结果比去时多用了3分15秒钟回到家.他跑步的速度与步行的速度比是多少解析去时的时间:5+8=13分钟回来的时间:13+3.25=16.25分钟去时步行时间:5分钟;回来步行时间:10分钟去时跑步时间:8分钟;回来跑步时间:6.25分钟跑步与步行的时间比为8-6.25:10-5=1.75:5速度比就是5:1.75=20:715、B在A;C两地之间;甲从B地到A地去送信;出发10分钟后;乙从B 地出发去送另一封信..乙出发后10分钟;丙发现甲乙刚好把两封信拿颠倒了;于是他从B地出发骑车去追赶甲和乙;以便把信调过来.已知甲、乙的速度相等;丙的速度是甲、乙速度的3倍;丙从出发到把信调过来后返回B 地至少要用多少时间解析A-----------B------------C分成如下几个部分:先追上乙;把信取到手并返回B点..用时1:3=10:30;就是10分钟再追上甲;把信交给甲并把信取到手并返回B点..用时1:3=30:90;就是30分钟再追上乙;把信交给乙并返回B点..用时1:3=50:150;就是50分钟总共用时:10+30+50=90分钟16、甲放学回家需走10分钟;乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6;甲每分钟比乙多走12米;那么乙回家的路程是几米解析甲乙路程比1:7/6=6:7甲乙时间比10:14=5:7甲乙速度比6/5:7/7=6:5=72:60所以乙的路程=60×14=840米17、在400米环形跑道上;A、B两点相距100米如图..甲、乙两人分别从A、B两点同时出发;按逆时针方向跑步..甲每秒跑5米;乙每秒跑4米;每人每跑100米;都要停10秒钟.那么;甲追上乙需要的时间是秒..解析甲每秒跑5米;则跑100米需要100/5=20秒;连同休息的10秒;共需要30秒乙每秒跑4米;则跑100米需要100/4=25秒;连同休息的10秒;共需要35秒35秒时;乙跑100米;甲跑100+5×5=125米因此;每35秒;追上25米;所以甲追上乙需要35×4=140秒18、小明从家去学校;如果他每小时比原来多走1.5千米;他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米;那么他走这段路的时间就比原来时间多几分几之解析原时间:现时间=5:4原速度:现速度=4:5=6:7.5现速度=6-1.5=4.5原速度:现时间=6:4.5原时间:现时间=4.5:66-4.5/4.5=1/319、甲、乙两列火车的速度比是5:4.乙车先发;从B站开往A站;当走到离B站72千米的地方时;甲车从A站发车往B站;两列火车相遇的地方离A;B两站距离的比是3:4;那么A;B两站之间的距离为多少千米解析A---------N---------M-----B3 4 72千米速度比=路程比=5:4=15:12路程比=3:4=15:2020-12=8份对应72千米全程=15+20×72÷8=315千米20、已知小明与小强步行的速度比是2:3;小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米;那么小明在20分钟里比小强少走几米解析小明:小强:小刚=8:12:15=48:72:9072-48×20=480米21、甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发;开始时甲的速度为8米/秒;乙的速度为6米/秒;当甲每次追上乙以后;甲的速度每秒减少2米;乙的速度每秒减少0.5米.这样下去;直到甲发现乙第一次从后面追上自己开始;两人都把自己的速度每秒增加0.5米;直到终点.那么领先者到达终点时;另一人距离终点多少米解析第一次甲追上乙;400÷8-6=200秒;S甲=200×8=1600米;S乙=200×6=1200米第二次甲速度变成6;乙速度变成5.5;400÷6-5.5=800秒S甲=800×6+1600=6400米;S乙=800×5.5+1200=5600米第三次甲速度变成4;乙速度变成5;400÷5-4=400秒S甲=400×4+6400=8000米;S乙=400×5+5600=7600米第四次开始;甲速度变成4.5;乙速度变成5.5;400÷5.5-4.5=400秒S甲=400×4.5+8000=9800米;S乙=400×5.5+7600=9800米9800<1000;因此乙先到达终点..乙跑到终点时;甲还剩下:200×5.5-4.5÷5.5=400/11米22、一支解放军部队从驻地乘车赶往某地抗洪抢险;如果将车速比原来提高1/9;就可比预定的时间20分钟赶到;如果先按原速度行驶72千米;再将车速比原来提高1/3;就可比预定的时间提前30分钟赶到..这支解放军部队的行程是多少千米解析速度比=9:10;时间比=10:9=10/3:3速度比=3:4 ;时间比=4:3=2:1.5因此;按照原速度行驶72千米需要10/3-2=4/3小时S=72×10/3÷4/3=180千米23、甲、乙两人同时从山脚开始爬山;到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍..甲到山顶时;乙距山顶还有400米;甲回到山脚时;乙刚好下到半山腰..求从山顶到山脚的距离..解析甲到山脚时;乙到半山腰→甲走1.5个上坡;乙走1.25个上坡时间一定;路程比=速度比=1.5:1.25=6:5=2400:2000因此山的高度为:2400米24、甲、乙两车分别从A;B两地同时相向开出;四小时后两车相遇;然后各自继续行驶三小时;此时甲车距B地10千米;乙车距A地80千米.问甲车到达B地时乙车还要经过多少小时才能到达A地解析整体考虑总共行了7个小时;甲车比乙车多行80-10=70千米;因此甲车每小时比乙车多行10千米4小时乙行的路程=3小时甲行的路程+10乙=40千米/小时;甲=50千米/小时T=80/40-10/50=1.8小时25、从家里骑摩托车到火车站赶乘火车.如果每小时行30千米;那么早到15分钟;如果每小时行20千米;则迟到5分钟.如果打算提前5分钟到;那么摩托车的速度应是多少解析S=30×T-15/60=20×T+5/6015+5=20分钟速度比=30:20=3:2时间比=2:3=40:60正好需要:40+15=55分钟提前5分钟:55-5=50分钟时速=30×40÷50=24千米/小时26、同样走100米;小明要走180步;父亲要走120步.父子同时同方向从同一地点出发;如果每走一步所用的时间相同;那么父亲走出450米后往回走;还要走多少步才能遇到小明解析父亲走450米;走了450×120÷100=540步小明走540步;走了540÷180×100=300米两人相差450-300=150米150÷100/120+100/180=108步27、小明从家到学校时;前一半路程步行后一半路程乘车;从学校回家时;前1/3时间乘车;后2/3时间步行;结果去学校的时间比回家所用的时间多2小时;已知小明步行的速度为每小时5千米;乘车速度为每小时15千米;那么小明从家到学校的路程是千米解析回家乘车和步行的路程比是1/3×15:2/3×5=3:2所以回家乘车的路程是3/53/5-1/2=1/10;对应15千米/小时行驶1小时或5千米/小时行驶3小时S=15/1/10=150千米或者去时;路程比=1:1=5:5;速度比=5:15;时间比=1/5:1/15返回;时间比=2:1;速度比=5:15;路程比=2×5:1×15=2:3=4:6所以去时的时间=5/5+5/15=4/3;返回的时间=4/5+6/15=6/54/3-6/5=2/15;对应2小时全程=10×2/2/15=150千米28、A、B两地相距207千米;甲、乙两车8:00同时从A地出发到B地;速度分别为60千米/小时;54千米/小时;丙车8:30从B地出发到A地;速度为48千米/小时..丙车与甲、乙两车距离相等时是几点几分解析假设丙也是从8点出发;到达B点时正好是8:30那么丙走的路程就是:0.5×48=24千米;那么全程就变成:207+24=231千米丙车与甲、乙两车的距离;可以看成甲乙的平均速度与丙相遇V平=V甲+V乙÷2=57千米/小时T=231÷V平+V丙=231÷57+48=2.2小时=2小时=12分所以这时是:8:00+2:12=10:12分29、小明通常总是步行上学;有一天他想锻炼身体;前1/3路程快跑;速度是步行速度的4倍;后一段的路程慢跑;速度是步行速度的2倍.这样小明比平时早35分到校;小明步行上学需要多少分钟解析这天;路程比=1:2;速度比=4:2;时间比=1/4:2/2;时间=1/4+1=5/4平时;时间=3/1=33-5/4=7/4对应35分平时用时=35×3÷7/4=60分钟30、红光农场原定9时来车接601班同学去劳动;为了争取时间;8时同学们就从学校步行向农场出发;在途中遇到准时来接他们的汽车;于是乘车去农场;这样比原定时间早到12分钟..汽车每小时行48千米;同学们步行的速度是每小时几千米解析A------B--------------------C8点钟;同学们从A点出发;到B点遇到来接他们的车汽车来回AB需要12分钟;那么走一趟AB需要6分钟而人走AB需要:60-6=54分钟时间比=速度比的反比;54:6=48:48/9所以同学步行的速度是16/3千米/小时31、从甲地到乙地;如果提速20%;提前1小时到达;如果按原速先行120米;再提速25%;则提前40 分钟;问甲到乙的距离解析设原速度为x;两地相距y y/x=y/1.2x+1y/x=120/x+y-120/1.25x+2/3得x=45千米/小时y=270千米。
奥数行程问题的基本公式完整版
奥数行程问题的基本公式HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】行程问题的基本公式基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
仅供参考:【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
小学奥数行程问题习题及详解系列之二
小学奥数行程问题习题及详解系列之二小学行程问题是我们在小学应用题中经常会遇到的,我们在解决行程问题前,要牢记以下公式:基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间路程一定,时间和速度成反比速度一定,路程和时间成正比时间一定,路程和速度成正比关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题:(直线):甲的路程+乙的路程=总路程相遇问题:(环形):甲的路程 +乙的路程=环形周长追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 流水速度+流水速度÷2 水速:流水速度-流水速度÷231、客货两车从甲地到乙地客车出发30分钟后货车才出发结果货车比客车早到1小时,如果甲乙两地相距360km,客车速度是货车的3/4.货车和客车行驶的速度分别是多少?解:若同时出发客车比货车晚到1小时30分=1.5小时客车和货车的速度比=3:4时间比=4:3所以客车行驶全程的时间=1.5/(1-3/4)=6小时所以客车速度=360/6=60千米/小时货车速度=60/(3/4)=80千米/小时32、甲乙两辆汽车都从A地开往B地,甲车每小时行65千米,乙车每小时行42千米乙车先行2小时后再出发,再经过几小时,甲车超过了乙车。
解:路程差=42×2=84千米速度差=65-42=23千米再经过84/23=3又15/23小时≈3.65小时甲车超过了乙车33、甲乙两车同时从A、B两地相对开出,4小时后相遇,相遇后甲车在开3小时到达B地。
四年奥数(上)期末复习
四年奥数(上)期末复习一,行程问题我们把研究路程,速度,时间以及这三者之间关系的一类问题,总称为行程问题。
行程问题基本公式:路程=速度×时间,速度=路程÷时间,时间=路程÷时间1,相遇问题相遇问题:简单的说就是甲、乙分别从A、B两地出发,相向运动,在途中某地碰面。
基本公式:总路程=速度和×相遇时间,速度和=总路程÷相遇时间相遇时间=总路程÷速度和1,甲、乙同时从 A, B两地相向走来。
甲每时走 5千米,两人相遇后,乙再走10千米到A地,甲再走1.6时到B地。
乙每时走多少千米?2,甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟。
问:甲、乙每分钟各走多少米?3,甲、乙两车的速度分别为 52千米/时和 40千米/时,它们同时从甲地出发到乙地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。
求这辆卡车的速度。
4,甲、乙二人从相距36千米的两地相向而行。
若甲先出发2时,则在乙动身2.5时后两人相遇;若乙先出发2时,则甲动身3时后两人相遇。
求甲、乙二人的速度。
5,甲、乙两车同时从A,B两地相向而行,在距B地54千米处相遇。
他们各自到达对方车站后立即返回原地,途中又在距A地42千米处相遇。
求两次相遇地点的距离。
6,大毛和二毛两人同时从相距1000米的两地相向而行,大毛每分钟行120米,二毛每分钟行80米,如果一只大狗与大毛同时同向而行,每分钟行500米,遇到二毛后,立即回头向大毛跑去,这样不断来回,直到大毛和二毛相遇为止,狗共行了多少米?2,追击问题定义:两人同时同向运动,包含距离(路程差),速度差,时间三个量的问题叫追击问题。
基本公式:路程差=速度差×追击时间速度差=路程差÷追击时间追击时间=路程差÷速度差1,某学校组织同学看电影,第一批同学骑自行车200米/分钟先走,10分钟后,其余同学乘汽车去600米/分钟,结果所有同学同时到达电影院,问学校距离电影院多远?2,甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。
六年级 行程问题(综合)奥数 答案
正比例和反比例的性质参考答案典题探究一、行程问题考点1)一般行程问题:基本公式:路程=速度×时间高级公式:(务必倒背如流,此两公式太重要了)相遇问题(速度和×相遇时间=路程和),追击问题(速度差×追击时间=路程差)2)流水问题:水速对追击和相遇时间无影响。
原因?四者中只要知2就可求另外2个量。
基本公式:顺水速度=船速+水速逆水速度=船速-水速高级公式:船速=(顺+逆)÷2,水速=(顺-逆)÷23)非环形跑道多次相遇问题:要注意“第一次相遇行的全程数”与“第二次相遇行的全程数”的关系。
环形跑道:每相遇一次,总路程多了一圈,不存在以上关系。
所以如果速度和不变,则每相遇一次所用时间相同。
二:行程问题主要方法:(1)列方程求解;(2)画图分析;(3)抓住原因分析求解;(4)比例(常用到设数的方法)例1小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?分析这道题实际上是一个行程问题.开始时两针成一直线,最后两针第一次重合.因此,在我们所考察的这段时间内,两针的路程差为30分格,又因分格/分钟,所以,当它们第一次重合时,一定是分针从后面追上时针.这是一个追及问题,追及时间就是小明的解题时间。
例2甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A 地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
画图如下:分析结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。
又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。
五年级奥数之行程问题
植树问题行程问题行程问题是研究运动物体的路程、速度和时间三个量之间关系的问题。
行程问题的基本数量关系是:速度×时间=路程路程÷时间=速度路程÷速度=时间相遇问题在行程问题中,还包括相遇(相离)问题(相离指的是两个人背对背行走)和追及问题。
这两个问题主要的变化在于人的数量和运动方向上。
现在我们可以简单地理解成:相遇(相离)问题和追及问题当中参与者必须是两个人以上;如果他们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
1、相遇(相离)问题的基本数量关系:速度和×相遇时间= 相遇(相离)路程相遇(相离)路程÷相遇时间 = 速度和相遇(相离)路程÷速度和 = 相遇时间2、追及问题的基本数量关系速度差×追及时间= 相差路程相差路程÷追及时间 = 速度差相差路程÷速度差 = 追及时间在相遇(相离)问题和追击问题中,必须很好地理解各个数量的含义及其在应用体重是如何给出的,这样才能提高解题速度和能力。
例1:小丽和小红两家相距910米,两人电话相约同时从家中出发向对方相向行驶,小丽每分钟走60米,小红每分钟走70米,几分钟后两人在途中相遇?例2:甲、乙两人同时从学校向相反的方向行驶,甲每分钟行52米,乙每分钟行50米,经过7分钟后他们相距多少米?他们各自离学校有多少米?例3:甲、乙两辆汽车从相距600千米的两地相对开出,甲每小时行45千米,乙车每小时行40千米,甲车先开出2小时后,乙车才开出,问乙车行几小时后与甲车相遇?相遇时各行多少千米?练习:1、甲、乙两地相距54千米,A、B两人同时从两地相向而行,A每小时行4千米,B每小时行5千米,两人经过几小时后相遇?2、甲、乙两地相距480千米,客车和货车同时从两地相向而行,经过5小时相遇,客车的速度是每小时50千米,求货车的速度是每小时行多少千米?3、王乐和张强两人从相距2280米的两地相向而行,王乐每分钟行60米,张强每分钟行80米,王乐出发3分钟后张强才出发,张强出发几分钟与王乐相遇?4、一列火车于下午4时30分从甲站开出,每小时行120千米,经过1小时后,另一列火车以同样的速度从乙站开出,晚上9时30分两车相遇,问甲、乙两站铁路长是多少千米?5、AB两地相距360千米,客车与货车从A、B两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇?相遇地点距B地多远?例4:快车和慢车同时从甲、乙两地相对开出,已知快车每小时行60千米,慢车每小时行52千米,经过几小时后快车在经过中点32千米处与慢车相遇,求甲、乙两地的路程是多少?1、甲、乙两车从A、B两地同时相向而行,甲车每小时行40千米,乙车每小时行35千米,两车在距中点15千米处相遇,求AB两地相距是多少?2、甲、乙两人同时从两地骑车相向而行,甲每小时行18千米,乙每小时行15千米,两人相遇时距中点3千米,求两地距离多少千米?3、甲、乙两人同时从正方形花坛A点出发,沿着花坛的边上走,甲顺时针每分钟走40米,乙逆时针每分钟行45米,两人在距C点15米处相遇,求这个花坛周长是多少?例5:甲、乙相距640千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行46千米,第二辆汽车每小时行34千米,第一辆汽车到达乙地后立即返回,两辆汽车从开出到相遇共用了几小时?1、AB两地相距900米,甲、乙两人同时从A到B,甲每分钟行70米,乙每分钟行50米,当甲到达B后立即返回与乙在途中相遇,两人从出发到相遇共经过多少分钟?2、AB两地相距250千米,一辆客车和一辆货车同时从A到B,客车每小时行65千米,货车每小时行60千米,客车到达B后立即返回与货车在途中相遇,求相遇点距B地有多少?3、甲乙两队学生从相距2700米的两地同时出发,相向而行,一个同学骑自行车以每分150米的速度在两队间不停地往返联络,甲队每分行25米,乙队每分行20米,两队相遇时,骑自行车的同学共行了多少米?与环形有关的行程问题一对老年夫妇沿着周长为200米的圆形花坛散步,他们从同一地点出发,相背而行,老太太每分钟走45米,老先生每分钟走55米,多长时间后他们第一次相遇(合走一圈)?多长时间后他们第二次相遇?火车过桥(过隧道或山洞)、火车经过人、两车对开问题火车过桥(过隧道或山洞)问题,主要发生变化的量是路程。
四年级奥数.行程 .火车与火车的相遇与追及问题
火车与火车的相遇与追及知识框架火车过桥常见题型及解题方法(一)、行程问题基本公式:路程=速度⨯时间总路程=平均速度⨯总时间;(二)、相遇、追及问题:速度和⨯相遇时间=相遇路程速度差⨯追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度±人的速度) ×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) = (快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追及问题,对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。
例题精讲【例 1】快车A车长120米,车速是20米/秒,慢车B车长140米,车速是16米/秒。
慢车B在前面行驶,快车A从后面追上到完全超过需要多少时间?【巩固】慢车的车身长是142米,车速是每秒17米,快车车身长是173米,车速是每秒22,慢车在前面行驶,快车从后面追上到完全超过慢车需要多少时间?【例 2】有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?【巩固】有两列火车,一列长200米,每秒行32米;一列长340米,每秒行20米.两车同向行驶,从第一列车的车头追及第二列车的车尾,到第一列车的车尾超过第二列车的车头,共需多少秒?【例 3】一列长72米的列车,追上长108米的货车到完全超过用了10秒,如果货车速度为原来的1.4倍,那么列车追上到超过货车就需要15秒。
小学奥数行程问题汇总
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定()2;路程一定2(),牢记平均速度公式,就不会错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数行程问题的基本公式Revised as of 23 November 2020行程问题的基本公式基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
仅供参考:【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
解决基本行程问题注意两点我们每天都在行走,行走就离不开速度、时间、路程这三个量,这类问题就称为行程问题.相遇问题和追及问题就是行程问题中的两种类型.在解答行程问题时,要注意所走的方向、是否同时行驶、是否相遇等问题,一般要采用直观画图法帮助理解题意、分析题目中的数量关系,最终找到解题思路.解答行程问题时必须注意:⑴要弄清题意:对具体问题要做仔细分析,必要时作一条线段图帮助理解⑵要弄清距离、速度和、时间之间的关系,紧扣数量关系式在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。
有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。
其实此类应题只要掌握正确的方法,解答起来也十分方便。
例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O 千米。
两车同时出发同时停止,共行了3个全程。
说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
例1 一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?分析当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。
例2 一支队伍长350米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队头,然后再返回队尾,一共要用多少分钟?分析要求一共要多少分钟,必须先求出从队尾赶到队头要多少分钟,再求出从队头到队尾要用多少分钟,把这两个时间相加即可。
例3 某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为米。
李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用多少秒分析要求一共要用多少分钟,首先必须求出队伍的长度,然后可以参照例2解题。
例4 甲、乙、丙三人都从A地出发到B地。
乙比丙晚出发10分钟,40分钟后追上丙;甲比乙晚出发20分钟,100分钟追上乙;甲出发多少分钟后追上丙?设丙的速度为1米/分钟. (1)当乙追上丙时,丙共行了1×(40+10)=50米,由此可知乙行50米用了40分钟,乙的速度为50÷40=(米/分钟); (2)当甲追乙时,乙已经先出发走了20分钟,这时甲乙的距离差为×20=25(米),甲乙的速度差为25÷100=(米); 甲的速度为+=(米); (3) 当甲追丙时,丙已经先出发走了10+20=30分钟,这时甲丙的距离差为1×(10+20)=30米,速度差为=(米/分钟),追及时间为30÷=60(分钟)。
【赛题练习】1、小冬、小青两人同时从甲、乙两地出发相向而行,两人在离甲地40千米处第一次相遇。
相遇后两人仍以原速继续行驶,并且在各自到达对方出发点后立即沿原路返回,途中两人在距乙地15千米处第二次相遇,甲乙两地相距多少千米?2、甲乙两站相距360千米,客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米。
客车到达乙站后停留小时,又以原速返回甲站,两车相遇地点离乙站多少千米?3、小张、小王两位运动员进行竞走训练,小张从甲地、小王从乙地两人同时出发,在两地之间往返行走(到达另一地后就马上返回)。
在离甲地千米处他们第一次相遇,又在小张离开乙地3千米处第二次相遇。
这样继续下去,当他们第四次相遇时,距甲地多少千米?练习题一:1、小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的倍,如果上山用了3时50分,那么下山用了多少时间?2、一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为千米/时,求轮船在静水中的速度。
3、已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.4、小燕上学时骑车,回家时步行,路上共用50分钟.若往返都步行,则全程需要70分钟.求往返都骑车需要多少时间?5、汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地.求该车的平均速度.6、两地相距480千米,一艘轮船在其间航行,顺流需16时,逆流需20时,求水流的速度.7、某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了时.问:他步行了多远?练习题二:1、在地铁车站中,从站台到地面有一架向上的自动扶梯。
小强想逆行从上到下,如果每秒向下迈两级台阶,那么他走过100级台阶后到达站台;如果每秒向下迈三级台阶,那么走过75级台阶到达站台。
自动扶梯有多少级台阶?2、有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,载学生时车速每小时40公里,空车时车速为每小时50公里.问:要使两班学生同时到达少年宫,第一班学生要步行全程的几分之几(学生上下车时间不计)3、一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分钟发一辆公共汽车?4、从电车总站每隔一定时间开出一辆电车。
甲与乙两人在一条街上沿着同一方向步行。
甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。
那么电车总站每隔多少分钟开出一辆电车?5、甲步行上楼梯的速度是乙的2倍,一层到二层有一上行滚梯(自动扶梯)正在运行。
二人从滚梯步行上楼,结果甲步行了10级到达楼上,乙步行了6级到达楼上。
这个滚梯共有多少级?。