奥数行程问题的基本公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数行程问题的基本公

Revised as of 23 November 2020

行程问题的基本公式

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

关键问题:确定行程过程中的位置

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)

流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间

顺水速度=船速+水速

逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2

水速=(顺水速度-逆水速度)÷2

流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

仅供参考:

【和差问题公式】

(和+差)÷2=较大数;

(和-差)÷2=较小数。

【和倍问题公式】

和÷(倍数+1)=一倍数;

一倍数×倍数=另一数,

或和-一倍数=另一数。

【差倍问题公式】

差÷(倍数-1)=较小数;

较小数×倍数=较大数,

或较小数+差=较大数。

【平均数问题公式】

总数量÷总份数=平均数。

【一般行程问题公式】

平均速度×时间=路程;

路程÷时间=平均速度;

路程÷平均速度=时间。

【反向行程问题公式】

反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:

(速度和)×相遇(离)时间=相遇(离)路程;

相遇(离)路程÷(速度和)=相遇(离)时间;

相遇(离)路程÷相遇(离)时间=速度和。

【同向行程问题公式】

追及(拉开)路程÷(速度差)=追及(拉开)时间;

追及(拉开)路程÷追及(拉开)时间=速度差;

(速度差)×追及(拉开)时间=追及(拉开)路程。

【列车过桥问题公式】

(桥长+列车长)÷速度=过桥时间;

(桥长+列车长)÷过桥时间=速度;

速度×过桥时间=桥、车长度之和。

【行船问题公式】

(1)一般公式:

静水速度(船速)+水流速度(水速)=顺水速度;

船速-水速=逆水速度;

(顺水速度+逆水速度)÷2=船速;

(顺水速度-逆水速度)÷2=水速。

(2)两船相向航行的公式:

甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度

(3)两船同向航行的公式:

后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。

解决基本行程问题注意两点

我们每天都在行走,行走就离不开速度、时间、路程这三个量,这类问题就称为行程问题.相遇问题和追及问题就是行程问题中的两种类型.在解答行程问题时,要注意所走的方向、是否同时行驶、是否相遇等问题,一般要采用直观画图法帮助理解题意、分析题目中的数量关系,最终找到解题思路.

解答行程问题时必须注意:

⑴要弄清题意:对具体问题要做仔细分析,必要时作一条线段图帮助理解

⑵要弄清距离、速度和、时间之间的关系,紧扣数量关系式

在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。其实此类应题只要掌握正确的方法,解答起来也十分方便。

例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。求A、B两地间的路程。[分析与解]根据题意可画出下面的线段图:

由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。两车同时出发同时停止,共行了3个全程,说明两车第二次相遇

时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:

240-60=180(千米)

例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。求A、B两地间的路程。[分析与解]根据题意可画出线段图:

由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O 千米。两车同时出发同时停止,共行了3个全程。说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:

(24O+6O)÷2=150(千米)

可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

例1 一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?

分析当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。

例2 一支队伍长350米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队头,然后再返回队尾,一共要用多少分钟?

分析要求一共要多少分钟,必须先求出从队尾赶到队头要多少分钟,再求出从队头到队尾要用多少分钟,把这两个时间相加即可。

例3 某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为米。李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用多少秒

分析要求一共要用多少分钟,首先必须求出队伍的长度,然后可以参照例2解题。

例4 甲、乙、丙三人都从A地出发到B地。乙比丙晚出发10分钟,40分钟后追上丙;甲比乙晚出发20分钟,100分钟追上乙;甲出发多少分钟后追上丙?

设丙的速度为1米/分钟. (1)当乙追上丙时,丙共行了1×

(40+10)=50米,由此可知乙行50米用了40分钟,乙的速度为50÷40=(米/分钟); (2)当甲追乙时,乙已经先出发走了20分钟,这时甲乙的距离差为×20=25(米),甲乙的速度差为25÷100=(米); 甲的速度为+=(米); (3) 当甲追丙时,丙已经先出发走了10+20=30分钟,这时甲丙的距离差为1×(10+20)=30米,速度差为=(米/分钟),追及时间为30÷=60(分钟)。

相关文档
最新文档