(完整word版)证明微积分基本公式

合集下载

微积分基本公式与计算

微积分基本公式与计算

微积分基本公式与计算微积分是数学中的一个分支,研究的是函数的变化、变化率和积分运算。

微积分的基本公式是指在微积分的基础知识中常用的、基础性的公式和计算方法。

下面将介绍微积分中的基本公式与计算方法。

1.导数公式导数是函数在其中一点上的变化率,描述了函数沿着自变量的变化速率。

常用的导数公式如下:(1)常数函数的导数为0:d(c)/dx = 0,其中c为常数。

(2)幂函数的导数为幂次与系数的乘积:d(x^n)/dx = nx^(n-1),其中n为实数。

(3)指数函数的导数为函数自身与底数的乘积:d(a^x)/dx = ln(a) * a^x,其中a为底数。

(4)对数函数的导数为导数值与函数自身的倒数的乘积:d(log_a(x))/dx = 1/(x * ln(a)),其中a为对数的底数。

2.求导法则求导法则是指求导数时常用的一些运算规则。

常用求导法则如下:(1)和差法则:d(u ± v)/dx = du/dx ± dv/dx,其中u和v是两个函数。

(2)乘积法则:d(uv)/dx = u * dv/dx + v * du/dx,其中u和v是两个函数。

(3)商法则:d(u/v)/dx = (v * du/dx - u * dv/dx) / v^2 ,其中u和v是两个函数,v≠0。

(4)链式法则:如果函数y = f(u)和u = g(x)有关系,那么y对x 的导数可以表示为:dy/dx = dy/du * du/dx。

3.积分公式积分是导数的逆运算,是计算函数在一个区间上面积的方法。

常用的积分公式如下:(1)不定积分的基本公式:∫f(x)dx = F(x) + C,其中F'(x) = f(x),C为常数。

(2)定积分的基本公式:∫[a, b]f(x)dx = F(b) - F(a),其中F'(x) = f(x)。

(3)换元积分法:根据函数的复合结构,选择适当的变量替换,使得被积函数简化,然后再进行积分。

(完整word)高数微积分公式+三角函数公式考研

(完整word)高数微积分公式+三角函数公式考研

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

微积分公式大全

微积分公式大全

微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。

1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。

1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。

《微积分公式大全》word版

《微积分公式大全》word版

2! 3!
n!
sin x = x- x3 + x5 - x7 +…+ (1)n x 2n1 + …
3! 5! 7!
(2n 1)!
cos x = 1- x2 + x4 - x6 +…+ (1)n x2n + …
2! 4! 6!
(2n)!
ln <1+x> = x- x2 + x3 - x4 +…+ (1)n x n1 + …
微积分公式
Dx sin x=cos x cos x = -sin x tan x = sec2 x cot x = -csc2 x sec x = sec x tan x csc x = -csc x cot x
sin x dx = -cos x + C cos x dx = sin x + C tan x dx = ln |sec x | + C cot x dx = ln |sin x | + C sec x dx = ln |sec x + tan x | + C csc x dx = ln |csc x – cot x | + C
2 sin α cos β = sin <α+β> + sin <α-β>
2 cos α sin β = sin <α+β> - sin <α-β>
2 cos α cos β = cos <α-β> + cos <α+β>
2 sin α sin β = cos <α-β> - cos <α+β>

微积分公式

微积分公式

微积分公式微积分是数学中计算变化率和求解曲线面积的学科。

它通过研究求解方程来使用数学工具来分析和描述实际现象。

微积分有许多公式,下面是一些常见的公式:1、导数基本公式:如果f(x)是定义在x上的连续函数,那么f(x)的导数为:f′(x)=limh→0[f(x+h)-f(x)/h]2、极限公式:设f(x)是定义在某一点x=a处的连续函数,如果那么当x趋近于a时,f(x)的极限hy→0f(x)的存在限limx→af(x)=L,那么极限公式就是:limx→af(x)=L3、渐近线公式:如果y=f(x)是关于x之间连续相关的函数,当x取极限时,渐近线公式为y=limx→∞f(x)=L4、复合函数求导法则:如果y=f(u)和u=g(x)是连续函数,则dy/dx=dy/du×du/dx,其中du/dx 为求dg(x)/dx。

5、高阶导数:如果y=f(x)是关于x的连续函数,它的第n阶导数dnfdxn=f′(x)=limh→0[f(x+h)-f(x)/h]n-16、微积分定理:即定积分定理,如果f(x)是定义在[a,b]上的连续函数,且f′(x)是定义在[a,b]上的可积函数,则F(x)=∫ f(x)dx在区间[a,b]上极限存在,且F(x)=lim A→BA f(x)dx=F(b)-F(a)7、李雅普诺夫准则:称为最大-最小法则,如果f′(x)>0,则在区间[a,b]内f(x)为递增函数;如果f′(x)<0,则在区间[a,b]内f(x)为递减函数;如果f′(x)=0,则在[a,b]上可能存在极值。

8、Rolle定理:如果函数f(x)在[a,b]上连续有界且f(a)=f(b),其导数在[a,b]上连续,那么该函数f(x)在[a,b]上必定存在一个极值点,此极值点的坐标可以通过公式c=(a+b)/2来确定。

总的来说,微积分的公式十分的丰富,这些公式是学习和使用微积分的基础。

只有熟练运用这些公式,才能更好的理解并使用微积分。

(完整word版)积分公式

(完整word版)积分公式

2.基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=-cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=-1的特例.(2)=ln|x|+C,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.事实上,对x>0,(ln|x|)' =1/x;若x<0,则(ln|x|)' =(ln(-x))' =.(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下面我们要学习不定积分的计算方法,首先是四则运算.3.不定积分的四则运算根据微分运算公式d(f(x)±g(x))=d f(x)±d g(x)d(kf(x))=k d f(x)我们得不定积分的线性运算公式(1)∫[f(x)±g(x)]d x=∫f(x)d x±∫g(x)d x(2)∫kf(x)d x=k∫f(x)d x,k是非零常数.现在可利用这两个公式与基本积分公式来计算简单不定积分.例2.5.4求∫(x3+3x++5sin x-4cos x)d x解.原式=∫x3d x+∫3x d x+7∫d x+5∫sin x d x-4∫cos x d x=+7ln|x|-5cos x-4sin x+C .注.此例中化为五个积分,应出现五个任意常数,它们的任意性使其可合并成一个任意常数C,因此在最后写出C即可.例2.5.5求∫(1+)3d x解.原式=∫(1+3+3x+)d x=∫d x+3∫d x+3∫x d x+∫d x=x+3+C=x+2x++C .注.∫d x与∫1d x是相同的,其中1可省略.例2.5.6求解.原式===-x+arctan x+C .注.被积函数是分子次数不低于分母次数的分式,称为有理假分式.先将其分出一个整式x2-1,余下的分式为有理真分式,其分子次数低于分母的次数.例2.5.7求.解.原式==∫csc2x d x-∫sec2x d x=-cot x-tan x+C .注.利用三角函数公式将被积函数化简成简单函数以便使用基本积分公式.例2.5.8求.解.原式==+C .为了得到进一步的不定积分计算方法,我们先用微分的链锁法则导出不定积分的重要计算方法−−换元法.思考题.被积函数是有理假分式时,积分之前应先分出一个整式,再加上一个有理真分式,一般情形怎样实施这一步骤?4.第一换元法(凑微分法)我们先看一个例子:例2.5.9求.解.因(1+x2)' =2x,与被积函数的分子只差常数倍数2,如果将分子补成2x,即可将原式变形:原式=(令u=1+x2)=(代回u=1+x2).注.此例解法的关键是凑了微分d(1+x2).一般地在F'(u)=f(u),u=ϕ(x)可导,且ϕ' (x)连续的条件下,我们有第一换元公式(凑微分):u=ϕ (x) 积分代回u=ϕ (x)∫f[ϕ(x)]ϕ' (x)d x=∫f[ϕ(x)]dϕ(x)=∫f(u)d u=F(u)+C=F[ϕ(x)]+C其中函数ϕ(x)是可导的,且F(u)是f(u)的一个原函数.从上述公式可看出凑微分法的步骤:凑微分————→换元————→积分————→再换元ϕ' (x)d x=dϕ(x) u=ϕ(x) 得F(u)+C得F[ϕ(x)]+C注.凑微分法的过程实质上是复合函数求导的链锁法则的逆过程.事实上,在F'(u)=f(u)的前提下,上述公式右端经求导即得:[F[ϕ(x)]+C]' =F '[ϕ(x)]ϕ' (x)=f[ϕ(x)]ϕ' (x)这就验证了公式的正确性.例2.5.10求∫(ax+b)m d x.(m≠-1,a≠0)解.原式=(凑微分d(ax+b))=(换元u=ax+b)=(积分)=. (代回u=ax+b)例2.5.11求.解.原式=(凑微分d(-x3)=-3x2d x)===(换元u=-x3).注.你熟练掌握凑微分法之后,中间换元u=ϕ(x)可省略不写,显得计算过程更简练,但要做到心中有数.例2.5.12求∫tan x d x.解.原式==-ln|cos x|+C .同理可得∫cot x d x=ln|sin x|+C .例2.5.13求(a>0).解.原式==.例2.5.14求(a>0).解.原式==.例2.5.15求.解.原式====.例2.5.16∫sec x d x.解.原式=(换元u=sin x)===(代回u=sin x)===ln|sec x+tan x|+C .公式:∫sec x d x=ln|sec x+tan x|+C .例.2.5.17求∫csc x d x .解.原式===ln|csc x-cot x|+C .公式:∫csc x d x=ln|csc x-cot x|+C .凑微分法是不定积分换元法的第一种形式,其另一种形式是下面的第二换元法.5.第二换元法不定积分第一换元法的公式中核心部分是∫f[ϕ(x)]ϕ'(x)d x=∫f(u)d u我们从公式的左边演算到右边,即换元:u=ϕ(x).与此相反,如果我们从公式的右边演算到左边,那么就是换元的另一种形式,称为第二换元法.即若f(u),u=ϕ(x),ϕ'(x)均连续,u=ϕ(x)的反函数x=ϕ-1(u)存在且可导,F(x)是f[ϕ(x)]ϕ'(x)的一个原函数,则有∫f(u)d u=∫f[ϕ(x)]ϕ'(x)d x=F(x)+C=F[ϕ-1(u)]+C .第二换元法常用于被积函数含有根式的情况.例2.5.18求解.令(此处ϕ(t)=t2).于是原式===(代回t= -1(x)=) 注.你能看到,换元=t的目的在于将被积函数中的无理式转换成有理式,然后积分.第二换元法除处理形似上例这种根式以外,还常处理含有根式,,(a>0)的被积函数的积分.例2.5.19求. (a>0)解.令x=a sec t,则d x=a sec t tan t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .到此需将t代回原积分变量x,用到反函数t=arcsec,但这种做法较繁.下面介绍一种直观的便于实施的图解法:作直角三角形,其一锐角为t及三边a,x,满足:sec t=由此,原式=ln|sec t+tan t|+C1==.注.C1是任意常数,-ln a是常数,由此C=C1-ln a仍是任意常数.(a>0)例2.5.20求.解.令x=a tan t,则d x=a sec2t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .图解换元得原式=ln|sec t+tan t|+C1=.公式:.例2.5.21求(a>0).解.令x=a sin t,则d x=a cos t d t,于是原式===+C.图解换元得:原式=+C=+C .除了换元法积分外,还有一个重要的积分公式,即分部积分公式.思考题.在第二换元法公式中,请你注意加了一个条件“u=ϕ(x)的反函数x=ϕ1-(u)存在且可导”,你能否作出解释,为什么要加此条件?6.分部积分公式我们从微分公式d(uv)=v d u+u d v两边积分,即∫d(uv)=∫v d u+∫u d v由此导出不定积分的分部积分公式∫u d v=uv -∫v d u下面通过例子说明公式的用法.例2.5.22求∫x2ln x d x解.∫x2ln x d x=(将微分dln x算出)==.例2.5.23求∫x2sin x d x.解.原式=∫x2d(-cos x) (凑微分)=-x2cos x-∫(-cos x)d(x2) (用分部积分公式)=-x2cos x+∫2x cos x d x=-x2cos x+2∫x dsin x(第二次凑微分)=-x2cos x+2[x sin x-∫sin x d x] (第二次用分部积分公式)=-x2cos x+2x sin x+2cos x+C .例2.5.24求∫e x sin x d x.解.∫e x sin x d x=∫sin x d e x (凑微分)=e x sin x-∫e x dsin x(用分部积分公式)=e x sin x-∫e x cos x d x(算出微分)=e x sin x-∫cos x d e x(第二次凑微分)=e x sin x-[e x cos x-∫e x dcos x] (第二次用分部积分公式)=e x(sin x-cos x)-∫e x sin x d x(第二次算出微分)由此得:2∫e x sin x d x=e x(sin x-cos x)+2C因此∫e x sin x d x=(sin x-cos x)+C .注.(1)此例中在第二次凑微分时,必须与第一次凑的微分形式相同.否则若将∫e x cos x d x凑成∫e x dsin x,那将产生恶性循环,你可试试.(2)积分常数C可写在积分号∫一旦消失之后.例2.5.25求∫arctan x d x解.此题被积函数可看作x0arctan x,x0d x=d x,即适合分部积分公式中u=arctan x,v=x.故原式=x arctan x - ∫x d(arctan x) (用分部积分公式)=x arctan x - d x(算出微分)=x arctan x - (凑微分)=x arctan x - ln(1+x2)+C .小结.(1)分部积分公式常用于被积函数是两种不同类型初等函数之积的情形,例如x3arctan x,x3ln x 幂函数与反正切或对数函数x2sin x,x2cos x幂函数与正弦,余弦x2e x幂函数与指数函数e x sin x,e x cos x 指数函数与正弦,余弦等等.(2)在用分部积分公式计算不定积分时,将哪类函数凑成微分d v,一般应选择容易凑的那个.例如arctan x d,ln x d我们已学习了不定积分的几种常用方法,除了熟练运用这些方法外,在许多数学手册中往往列举了几百个不定积分公式,它们不是基本的,不需要熟记,但可以作为备查之用,称为积分表.思考题.你仔细观察分部积分公式,掌握其中使用的规律,特别是第一步凑微分时如何选择微分.7.积分表的使用除了基本积分公式之外,在许多数学手册中往往列举了几百个补充的积分公式,构成了积分表.下面列出本节已得到的基本积分公式.(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=- cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=- cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C(14)∫tan x d x=-ln|cos x|+C(15)∫cot x d x=ln|sin x|+C(16)=(a>0)(17)=(a>0)(18)(a>0)(19)=(a>0)(20)∫sec x d x=ln|sec x+tan x|+C(21)∫csc x d x=ln|csc x-cot x|+C利用积分表中的公式,可使积分计算大大简化.积分表的使用方法比较简单,现举一例说明之.例2.5.26求解.从积分表中查得公式则将a=3,b=-1,c=4代入上式并添上积分常数C即得解答:=.。

常用微积分公式大全

常用微积分公式大全

常用微积分公式大全微积分是数学的一个重要分支,它研究了函数的导数、积分以及它们之间的关系。

微积分公式是求导和积分的基本工具,以下是一些常用的微积分公式:1.基本导数法则:-导数和差法则:(f+g)'=f'+g'-常数倍法则:(c*f)'=c*f'-乘积法则:(f*g)'=f'*g+f*g'-商法则:(f/g)'=(f'*g-f*g')/g^22.基本函数的导数:-非常数次幂:(x^n)'=n*x^(n-1)- 幂函数:(a^x)' = ln(a) * a^x-自然指数函数:(e^x)'=e^x- 对数函数:(log_a x)' = 1 / (x ln(a))3. 链式法则:如果 y = f(u) 和 u = g(x) 是可导函数,那么复合函数 y = f(g(x)) 的导数为 dy/dx = (dy/du) * (du/dx)4.高阶导数:如果f'(x)存在,则f''(x)表示f'(x)的导数,称为f(x)的二阶导数。

同理,f''(x)的导数称为f(x)的三阶导数,以此类推。

5.基本积分法则:- 恒等积分:∫(c dx) = c*x + C- 幂函数积分:∫(x^n dx) = (1/(n+1)) * x^(n+1) + C- 自然指数函数积分:∫(e^x dx) = e^x + C- 对数函数积分:∫(1/x dx) = ln,x, + C6. 替换法则:如果∫(f(g(x)) g'(x) dx) 可以被积分,则∫(f(u) du) = ∫(f(g(x)) g'(x) dx)7. 定积分:∫[a,b] f(x) dx 表示函数 f(x) 在区间 [a,b] 上的定积分,表示曲线围成的面积。

8.收敛性和发散性:如果一个定积分存在有限的数值,那么它是收敛的;如果一个定积分没有有限的数值,那么它是发散的。

高数微积分基本公式大全

高数微积分基本公式大全

高数微积分基本公式大全1.导数的基本公式:-基本导数:(常数)' = 0, (x^n)' = nx^(n-1), (e^x)' = e^x, (a^x)' = a^xln(a), (ln(x))' = 1/x, (sin(x))' = cos(x),(cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x), (sec(x))' = sec(x)tan(x), (csc(x))' = -csc(x)cot(x).-乘法法则:(uv)' = u'v + uv'.-除法法则:(u/v)' = (u'v - uv') / v^2.-链式法则:(f(g(x)))' = f'(g(x)) * g'(x).2.不定积分的基本公式:-基本积分:∫(k) dx = kx + C, ∫(x^n) dx =(1/(n+1))x^(n+1) + C, ∫(e^x) dx = e^x + C, ∫(1/x) dx =ln(|x|) + C, ∫(sin(x)) dx = -cos(x) + C, ∫(cos(x)) dx =sin(x) + C.-分部积分:∫(uv') dx = uv - ∫(u'v) dx.-特殊积分:∫(1/(1+x^2)) dx = arctan(x) + C,∫(1/(sqrt(1-x^2))) dx = arcsin(x) + C.3.微分方程的基本公式:-一阶线性微分方程:dy/dx + P(x)y = Q(x),解为y = e^(-∫P(x)dx) * (∫Q(x)e^(∫P(x)dx)dx + C).-齐次方程:dy/dx = f(y/x),令v = y/x,化为可分离变量的形式求解.-常系数线性齐次微分方程:ay'' + by' + cy = 0,其特征方程为ar^2 + br + c = 0,解为y = C1e^(r1x) + C2e^(r2x)。

微积分基本定理word版

微积分基本定理word版

1.6.1微积分基本定理教材分析本节内容选自数学选修2-2第一章第六节,是在学习了定积分的概念知识后,对求解定积分值的再学习,可以看作是对前面学习过的内容的应用,要求用牛顿莱布尼茨公式求解定积分的值.此外,本节又是定积分应用的起始课,对后续内容的学习起着奠基的作用,本课题的重点通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分,难点是微积分基本定理的含义及其应用.通过探究公式的由来过程,可以很好地培养学生分析问题、解决问题的能力,要求学生有意识地运用特殊与一般思想、数形结合思想、分类讨论思想,在解决新问题的过程中,又要自觉的运用化归与转化思想,体现解决数学问题的一般思路与方法.课时分配本节内容用2课时的时间完成,本节课为第一课时主要讲解牛顿莱布尼茨公式的证明及运用公式解决简单的求解定积分的问题.教学目标重点: 微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 难点:微积分基本定理的含义及其应用. 知识点:牛顿---莱布尼茨公式.能力点:如何探寻牛顿---莱布尼茨公式的证明思路,数形结合的数学思想的运用.教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情. 自主探究点:如何运用变速直线运动物体的速度与位移的关系推导出牛顿---莱布尼茨公式. 考试点:通过变速运动的速度与位移间的关系探寻牛顿---莱布尼茨公式、用公式求定积分问题. 易错易混点:当定积分的被积函数较复杂在计算时学生容易在“符号”上出问题. 拓展点:在求解复合函数在给定区间上的积分值时有哪些技巧可寻.教具准备 多媒体课件 课堂模式 学案导学 一、引入新课前面,我们已经学习了微积分学中两个最基本和最重要的概念——导数和定积分,那么这两个概念之间有没有内在的联系呢?我们可以直接利用定积分的定义来计算130x dx ⎰的值,我们通过分割、近似代替、求和、取极限的“四步曲”来计算此定积分的值,但是过程却比较麻烦.而对于有些定积分,例如211dx x⎰,当我们再用定义去求解时,会出现什么情况呢?21111111lim lim n nn n i i dx =n i x n n in→∞→∞===⋅++∑∑⎰那么该和式的极限值是多少呢?我们可以借助于定积分的几何意义来看一下:由定积分的几何意义结合图像可知该定积分的值不为零,那么该如何计算该定积分的值呢?有没有比定义更简洁、有效的方法求定积分呢?接下来我们就从导数与定积分的内在联系出发去探寻一种求解定积分的值的更简洁有效的方法. 【设计说明】在计算定积分211dx x⎰的值时,让学生自己先按照定义去求,让学生回顾一下定积分的定义及前面所学过的“四步曲”.【设计意图】通过以上应用定义求解定积分的过程出现定义法失效的情况,激发学生去探寻其他的求解定积分的方法.二、探究新知探究:如下图所示,一个做变速直线运动的物体的运动规律是()s s t =,并且()s t 有连续的导数.由导数的概念可知,它在任意时刻t 的速度'()()v t s t =.设这个物体在时间段[,]a b 内的位移为s ,你能分别用(),()s t v t 表示s 吗?α显然,物体的位移s 是函数()s s t =在t b =处与t a =处的函数值之差,即()()S s b s a =-.①另一方面,我们还可以利用定积分,由()v t 求位移s .用分点011i i n a t t t t t b -=<<<<<=将区间[,]a b 等分成n 个小区间:011211[,],[,],,[,],,[,],i i n n t t t t t t t t --每个小区间的长度均为:1i i b at t t n--∆=-=.当t ∆很小时,在1[,]i i t t -上()v t 的变化很小,可以认为物体近似的以速度1()i v t -做匀速运动,物体所做的位移为:''111()()().i i i i i b a S h v t t s t t s t n----∆≈=∆=∆=② 由几何意义上看(如上右图),设曲线()s s t =上与1i t -对应的点为P ,PD 是P 点处的切线,由导数的几何意义知,切线PD 的斜率等于'1()i s t -,于是:'1tan ()i i i s h DPC t s t t -∆≈=∠⋅∆=⋅∆.结合上图,可得物体总位移:'111111()()nnnni i i i i i i i s s h v t t y t t --=====∆≈=∆=⋅∆∑∑∑∑.可以发现,n 越大,即t ∆越小,区间[,]a b 的分割就越细,'1111()()nni i i i v tt y t t --==∆=⋅∆∑∑与s 的近似程度就越好,并且当n →∞时两者之差趋向于0.由定积分的定义有:''1111lim ()lim ()()()nn b b i i a a n n i i b a b a S v t y t v t dt y t dt n n --→∞→∞==--====∑∑⎰⎰. 结合①有:'()()()()bbaaS v t dt y t dt y b y a ===-⎰⎰.上式表明,如果做变速直线运动的物体的运动规律是()s s t =,那么'()()v t s t =在区间[,]a b 上的定积分就是物体的位移()()y b y a -.一般地,如果()f x 是区间[,]a b 上的连续函数,并且'()()F x f x =,那么()()()baf x dx F b F a =-⎰.这个结论叫做微积分基本定理,又叫牛顿---莱布尼茨公式. 为了方便,我们常常把()()F b F a -记成()ba F x ,即()()()()bba af x dx F x F b F a ==-⎰.微积分基本定理表明,计算定积分()baf x dx ⎰的关键是找到满足'()()F x f x =的函数()F x .通常,我们可以运用基本初等函数的求导公式和导数四则运算法则从反方向上求出()F x .【设计意图】给学生充分的感性材料,揭示公式的发现过程, 通过学生发现若干特例的共性, 培养学生归纳、概括、提出数学问题的能力(一般性探究).避免直接将公式抛给学生.三、理解新知分析公式()()()()bba af x dx F x F b F a ==-⎰的结构特点,得到:求解定积分的关键是找到被积函数的一个原函数.【设计意图】为准确地运用新知,作必要的铺垫.四、运用新知例1.计算下列定积分:(1)211dx x ⎰; (2)3211(2)x dx x -⎰. 解:(1)因为'1(ln )x x=,所以22111ln |ln 2ln1ln 2dx x x==-=⎰.(2))因为2''211()2,()x x x x==-,所以3332211111(2)2x dx xdx dxxx -=-⎰⎰⎰233111122||(91)(1)33x x =+=-+-=. 【设计意图】本例为课本上两个例题,属于公式的简单应用,让学生感受一下牛顿---莱布尼茨公式在求解定积分时的应用. 【变式练习】计算:(1)54xdx ⎰,(2)520(2)x x dx -⎰,(3)21(1)x dx -⎰,(4)321(321)x x dx --+⎰,(5)211()x dx x -⎰,(6)2211dx x⎰. 【设计意图】给学生留有充分的练习时间,让学生亲自体会牛顿---莱布尼茨公式在求解定积分时的应用.例2.计算下列定积分:220sin ,sin ,sin xdx xdx xdx ππππ⎰⎰⎰.由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论. 解:因为'(cos )sin x x -=, 所以00sin (cos )|(cos )(cos 0)2xdx x πππ=-=---=⎰,22sin (cos )|(cos 2)(cos )2xdx x ππππππ=-=---=-⎰, 22sin (cos )|(cos 2)(cos 0)0xdx x πππ=-=---=⎰.可以发现,定积分的值可能取正值也可能取负值,还可能是0: ( l )当对应的曲边梯形位于x 轴上方时(图1.6-3 ) ,定积分的值取正值,且等于曲边梯形的面积;图1 . 6 - 3(2)当对应的曲边梯形位于x 轴下方时(图 1 . 6 - 4 ) ,定积分的值取负值,且等于曲边梯形的面积的相反数;图1 . 6 -4 图1 . 6 -5 ( 3)当位于x 轴上方的曲边梯形面积等于位于x 轴下方的曲边梯形面积时,定积分的值为0(图 1 . 6 - 5 ) ,且等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.【设计意图】本例可以作为当被积函数是三角函数时求解定积分的一种技巧,可让学生从定积分的几何意义的角度去求解定积分的值. 【变式练习】计算:(1)cos xdx π⎰,(2)0sin xdx π-⎰,(3)30sin xdx π⎰.【设计意图】考查学生用定积分的几何意义求解定积分的值.例3.汽车以每小时32公里速度行驶,到某处需要减速停车.设汽车以等减速度21.8/a m s =刹车,问从开始刹车到停车,汽车走了多少距离?解:首先要求出从刹车开始到停车经过了多少时间.当0t =时,汽车速度032100032//8.88/3600v km h m s m s ⨯==≈,刹车后汽车减速行驶,其速度为0(t)=t=8.88-1.8t v v a -当汽车停住时,速度(t)=0v ,故从(t)=8.88-1.8t=0v 解得8.88t= 4.931.8≈秒于是在这段时间内,汽车所走过的距离是4.934.93(t)(8.88 1.8t)s v dt dt ==-⎰⎰= 4.93201(8.88 1.8t )21.902-⨯≈米,即在刹车后,汽车需走过21.90米才能停住.【设计意图】定积分的简单实际应用,也是对微积分基本定理的应用.五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法? 学生作答:1.知识:()()()()bba af x dx F x F b F a ==-⎰.2.思想:数形结合的思想、特殊与一般的思想.教师总结: 本节课借助于变速运动物体的速度与路程的关系以及图形得出了特殊情况下的牛顿-莱布尼兹公式成立,进而推广到了一般的函数,得出了微积分基本定理,得到了一种求定积分的简便方法,运用这种方法的关键是找到被积函数的原函数,这就要求大家前面的求导数的知识比较熟练,希望,不明白的同学,回头来多复习!微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法.微积分基本定理是微积分学中最重要的定理,它使微积分学蓬勃发展起来,成为一门影响深远的学科,可以毫不夸张地说,微积分基本定理是微积分中最重要、最辉煌的成果. 【设计意图】加强对学生学习方法的指导,做到“授人以渔”.六、布置作业1.阅读教材P51—54; 2.书面作业必做题:P55 习题1.6 A 组 1 B 组1,2 选做题:1、求函数0()(4)xF x t t dt =-⎰在[1,5]-上的最大值与最小值.2、 计算221x x dx --⎰.课外思考:求由抛物线24y ax =与过焦点的弦所围成的图形的面积的最小值.【设计意图】设计作业1,2,是引导学生先复习,再作业,培养学生良好的学习习惯.书面作业的布置,是为了让学生能够运用牛顿---莱布尼茨公式,解决简单的数学问题;课外思考的安排,是让学生理解公式的应用,从而让学生深刻地体会到微积分基本定理的主线作用,培养学生用整体的观点看问题,起到承上启下的作用.七、教后反思1.本教案的亮点是变式训练.在例1的教学中,让学生大量的练习,巩固公式.例2则为利用定积分的几何意义求解定积分的值,既注重了与原问题的联系,又在不知不觉中提高了难度,提高了学生的解题能力.2.由于各校的情况不同,建议教师在使用本教案时灵活掌握,但必须在公式的证明思路的探寻上下足功夫.3.本节课的弱项是由于整堂课课堂容量较大,在课堂上没有充分暴露学生的思维过程,并给予针对性地诊断与分析.八、板书设计(注:本资料素材和资料部分来自网络,仅供参考。

积分常用公式(可编辑修改word版)

积分常用公式(可编辑修改word版)

x a x a a 2 x 2x 2a 2x 2 a 2x 2 a 21dxxa一.基本不定积分公式: 1.dx x C2. x dx1 x11积分常用公式(1 )3. 1dxln x Cx4.a xdx Cln a (a 0, a 1)5.e x dxe x C6.s in xdx cos x C 8. sec 2 xdx1dx tan x Ccos 2 x 10.s ec xtan xdx sec x C 17.cos xdx sin xC9. csc 2 xdx1dxcot x C sin 2 x 11.csc xcot xdxcsc xC112.dx arcsin x C(或dxarccos x C 1 )13.1dx arctan x C x 2(或1x 2dx arc cot xC 1 )14.s inh xdxcosh x C15.cosh xdx sinh x C二.常用不定积分公式和积分方法: 1.an xdx l n c os x C 2.cot xdxln sin x Cdx 1 xdx 13. a 2 x 2arctan Ca a4.x 2a 2ln C 2a 5.s ec xdx ln s ec x tan x C dxx7. arcsin a C6. csc xdxln csc x cot xC 8.ln x C9.dxa 2 2 arcsin x Ca10.dx a2 2ln x C11. 第一类换元积分法(凑微分法):1 x 21x 2a 2 x 2 x2a 2 x 2 x 2 a 2 x 2 x 2a 2为m m 1 g ( x )dx f [( x )]( x )dx f [( x )]d [( x )] 为t ( x ) 12. 第二类换元积分法(典型代换:三角代换、倒代换、根式代换):F [( x )] Cg ( x )dx为 x (t )g [(t )](t )dt f (t )dt F (t ) C F [1( x ) C注:要求代换(t ) 单调且有连续的导数,且“换元须还原”13. 分部积分法(典型题特征:被积函数是两类不同函数的乘积,且任何一个函数不能为另一个函数凑微分)udvuvvdu14. 万能置换公式(针对三角有理函数的积分。

微积分公式大全Word版

微积分公式大全Word版

微积分公式sin x dx = -cos x + C cos x dx = sin x + Ctan x dx = ln |sec x | + C cot x dx = ln |sin x | + Csec x dx = ln |sec x + tan x | + C csc x dx = ln |csc x – cot x | + Csin -1(-x) = -sin -1 x cos -1(-x) = - cos -1 x tan -1(-x) = -tan -1 x cot -1(-x) = - cot -1 xsec -1(-x) = - sec -1 x csc -1(-x) = - csc -1 xsin -1 x dx = x sin -1 x+21x -+C cos -1 x dx = x cos -1 x-21x -+Ctan -1 x dx = x tan -1 x-½ln (1+x 2)+C cot -1 x dx = x cot -1 x+½ln (1+x 2)+C sec -1 x dx = x sec -1x- ln|x+12-x |+Ccsc -1 x dx = x csc -1 x+ ln |x+12-x |+Ctanh coth sinh x dx = cosh x + Ccosh x dx = sinh x + Ctanh x dx = ln | cosh x |+ C coth x dx = ln | sinh x | + C sech x dx = -2tan -1 (e -x ) + C csch x dx = 2 ln |xx e e 211---+| + Cd uv = u d v + v d ud uv = uv = u d v + v d u → u d v = uv - v d u cos 2θ-sin 2θ=cos2θ cos 2θ+ sin 2θ=1 cosh 2θ-sinh 2θ=1 cosh 2θ+sinh 2θ=cosh2θsinh -1 x dx = x sinh -1 x-21x ++ Ccosh -1 x dx = x cosh -1x-12-x + Ctanh -1 x dx = x tanh -1 x+ ½ ln | 1-x 2|+ Ccoth -1 x dx = x coth -1 x- ½ ln | 1-x 2|+ C sech -1 x dx = x sech -1 x- sin -1 x + C csch -1 x dx = x csch -1 x+ sinh -1 x + C a bc α β γ Rtan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r=1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 Γ(x) = ⎰∞0t x-1e -t d t = 2⎰∞0t 2x-12t e -d t = ⎰∞0)1(ln tx-1 d tβ(m , n ) =⎰10x m -1(1-x)n -1d x =2⎰20sin π2m -1x cos 2n -1x d x= ⎰∞+-+01)1(nm m x x d x希腊字母 (Greek Alphabets)大写 小写读音 大写 小写读音 大写 小写 读音Α α alpha Ι ι iota Ρ ρrho Β β beta Κ κ kappa Σ σ, ς sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilonΕ ε epsilon Ν ν nu Φ φphi Ζ ζ zeta Ξ ξ xi Χ χkhi Η η eta Ο ο omicron Ψ ψpsi Θθ thetaΠπ piΩω omega倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高;顺位高d 顺位低 ; 0*=∞1* =∞∞ = 0*01 = 00 00 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一: 对数; 反三角(反双曲) 顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)算术平均数(Arithmetic mean) nX X X X n+++= (21)中位数(Median) 取排序后中间的那位数字 众数(Mode)次数出现最多的数值几何平均数(Geometric mean) n n X X X G ⋅⋅⋅= (21)调和平均数(Harmonic mean))1...11(1121nx x x n H +++=1 000 000 000 000 000 000 000 000 10 yotta Y1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或写作「厘」),百分之一0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一0.000 000 001 10-9 nano n 奈,十亿分之一0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0.000 000 000 000 000 001 10-18 atto a 阿0.000 000 000 000 000 000 001 10-21 zepto z0.000 000 000 000 000 000 000 001 10-24 yocto y友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

微积分公式表

微积分公式表

微积分公式表微积分的公式是数学的基本组成部分,它概括了数学中的主要定理、关系,是许多理论的重要工具和手段。

以下是常见的微积分公式:一、欧拉公式欧拉公式(Fundamental Theorem of Calculus)是微积分中最重要的定理,它十分简单,却深刻地证明了微积分和它的基本工具:积分之间的关系。

其核心表达式为:∫fdx=F(x)+contstant其中f为定义曲线的函数,F(x)为曲线下面积。

二、几何公式几何公式(Geometric Series)是微积分学习者最常遇到的公式之一,它用几何连续的因子来描述某个函数的收敛性。

几何系列的数学表达式为:Sn=a1(1-q^n)/(q-1)其中a1是连续序列的第一个元素,q是每个元素比前一个元素增加的倍数,n是所出现序列中第n个元素;Sn表示连续序列的前n个元素和。

三、分式公式分式公式(Fractional Formula)用于解决数字在某个时间间隔内的变化和发展,它用于计算某一期的累计收益及费用等问题:ni=a+(n-1)d其中a是起始时点的金额,d是增加的数量,n是连续序列第n个元素;ni表示第n期的金额。

四、反正弦公式反正弦公式(Inverse Trigonometric Formula)是微积分里最常用的公式之一,它用来解决正弦函数正面和反面两层数据的问题,它用正余弦函数构成如下公式:arcsin x = ∫(1-x^2)^(-1/2)dx这里x为弧度值,其定义域为-1<x<1。

五、指数公式指数公式(Exponential Formula)又称指数函数公式。

它常用于描述在一段固定时间内某个量的定量变化,它提供了一种数学模型来解释增长曲线:y=ae^bx其中y为函数的表达式,a为基准值,b为增长率,x为时间变化系数。

这些公式是微积分学中最常用的公式,他们是众多定理、公式和运算的基础,它们是学习微积分的学习者不可缺少的基本常识。

高数微积分基本公式大全

高数微积分基本公式大全

高数微积分基本公式大全1.导数的基本公式如果函数f(x)在点x0处可导,那么它在该点的导数可以通过以下公式计算:(1) 常数函数导数:d/dx(a) = 0,其中a为常数。

(2) 幂函数导数:d/dx(x^n) = n * x^(n-1),其中n为实数。

(3) 指数函数导数:d/dx(e^x) = e^x。

(4) 对数函数导数:d/dx(ln(x)) = 1/x,其中x > 0。

(5)三角函数导数:d/dx(sin(x)) = cos(x)d/dx(cos(x)) = -sin(x)d/dx(tan(x)) = sec^2(x)d/dx(cot(x)) = -csc^2(x)d/dx(sec(x)) = sec(x) * tan(x)d/dx(csc(x)) = -csc(x) * cot(x)(6)反三角函数导数:d/dx(arcsin(x)) = 1/√(1 - x^2)d/dx(arccos(x)) = -1/√(1 - x^2)d/dx(arctan(x)) = 1/(1 + x^2)d/dx(arccot(x)) = -1/(1 + x^2)d/dx(arc sec(x)) = 1/(x * √(x^2 - 1))d/dx(arccsc(x)) = -1/(x * √(x^2 - 1))2.微分法则(1) 常数乘法法则:d/dx(c * f(x)) = c * d/dx(f(x)),其中c为常数。

(2) 和差法则:d/dx(f(x) ± g(x)) = d/dx(f(x)) ± d/dx(g(x))。

(3) 积法则:d/dx(f(x) * g(x)) = f(x) * d/dx(g(x)) + g(x) *d/dx(f(x))。

(4) 商法则:d/dx(f(x) / g(x)) = [g(x) * d/dx(f(x)) - f(x) *d/dx(g(x))] / [g(x)]^2(5) 复合函数法则:如果y = f(g(x)),那么dy/dx = dy/dg *dg/dx。

常用微积分公式大全

常用微积分公式大全

常用微积分公式大全1. 导数公式1.1 基本导数公式•常数规则: 如果c是一个实数, 那么导数f(x)=c相对于x是f′(x)= 0。

•幂函数规则: 如果f(x)=x n, 其中n是常数, 那么导数f′(x)=nx n−1。

•指数函数规则: 如果f(x)=e x, 那么导数f′(x)=e x。

•对数函数规则: 如果 $f(x) = \\log_a(x)$, 那么导数 $f'(x) = \\frac{1}{x\\ln(a)}$。

•乘法法则: 如果f(x)=g(x)ℎ(x), 那么导数f′(x)=g′(x)ℎ(x)+g(x)ℎ′(x)。

•除法法则: 如果 $f(x) = \\frac{{g(x)}}{{h(x)}}$, 那么导数 $f'(x) =\\frac{{g'(x)h(x) - g(x)h'(x)}}{{(h(x))^2}}$。

1.2 常见函数导数表•常数函数: f(x)=c, 导数f′(x)=0。

•幂函数: f(x)=x n, 导数f′(x)=nx n−1。

•指数函数: f(x)=e x, 导数f′(x)=e x。

•对数函数: $f(x) = \\log_a(x)$, 导数 $f'(x) = \\frac{1}{x \\ln(a)}$。

•三角函数:–正弦函数: $f(x) = \\sin(x)$, 导数 $f'(x) = \\cos(x)$。

–余弦函数: $f(x) = \\cos(x)$, 导数 $f'(x) = -\\sin(x)$。

–正切函数: $f(x) = \\tan(x)$, 导数 $f'(x) = \\sec^2(x)$。

2. 积分公式2.1 基本积分公式•幂函数积分: 如果f(x)=x n, 其中n不等于−1, 那么积分 $\\intf(x)\\,dx = \\frac{1}{n+1}x^{n+1} + C$。

•指数函数积分: 如果f(x)=e x, 那么积分 $\\int f(x)\\,dx = e^x + C$。

微积分数学公式[整理版]

微积分数学公式[整理版]

微积分微分学的主要内容包括:极限理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

微积分是与科学应用联系着发展起来的微积分是与科学应用联系着发展起来的。

最初,牛顿应用微积分学及微分方程对第谷浩瀚的天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。

此后,微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。

并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

编辑本段一元微分定义设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。

如果函数的增量Δy = f(x0 + Δx) – f(x0)可表示为Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。

通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx。

于是函数y = f(x)的微分又可记作dy = f'(x)dx。

函数的微分与自变量的微分之商等于该函数的导数。

因此,导数也叫做微商。

几何意义设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。

当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

编辑本段多元微分多元微分多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量表示的。

ΔZ=A*ΔX+B*ΔY+ο(ρ)为函数Z在点(x、y)处的全增量,(其中A、B不依赖于ΔX和ΔY,而只与x、y有关,ρ=[(x∧2+y∧2)]∧(1\2),A*ΔX+B*ΔY即是Z在点的全微分。

微积分基本公式和基本定理

微积分基本公式和基本定理
ln a
(14) sh xdx ch x C
sh x ex ex 2
ch x ex ex 2
(15) ch xdx sh x C
23
例11. 求
dx . x3 x
解: 原式 =
x
4 3
dx
x
4 3
1
4 3
1
C
3x13 C
例12 求
sin
x 2
cos
x 2
dx
.
解: 原式=
xdx,
于是
2 e xdx
2
xdx.
2
2
0
0
例9
证明2e
1 4
2 e x2 xdx 2e2 .
0
2
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
3
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
定理 2.1 ( Newton Leibniz公式)
b f (x)dx F(b) F(a) F(x) b
a
a
----微积分基本公式
4
注意
当a
b时, b a
f
(
x)dx
F
(b)
F
(a ) 仍成立.
解(1)
6
例2

2 0
(
2
cos
x
sin
x
1)dx
.

原式
2sin
x
cos
x
x2 0

微积分公式大全

微积分公式大全

微积分公式D x sin x=cos x cos x = -sin x tan x = sec 2 x cot x = -csc 2 x sec x = sec x tan x csc x = -csc x cot x ? sin x dx = -cos x + C ? cos x dx = sin x + C ? tan x dx = ln |sec x | + C ? cot x dx = ln |sin x | + C ? sec x dx = ln |sec x + tan x | + C ? csc x dx = ln |csc x – cot x | + C sin -1(-x) = -sin -1 x cos -1(-x) = ? - cos -1 x tan -1(-x) = -tan -1 x cot -1(-x) = ? - cot -1 x sec -1(-x) = ? - sec -1 x csc -1(-x) = - csc -1 x D x sin -1 (a x )= 221x a -±cos -1 (ax )= tan -1 (a x )=22x a a+± cot -1 (ax )= sec -1 (a x )=22ax x a -±csc -1 (x/a)= ? sin -1 x dx = x sin -1 x+21x -+C ? cos -1 x dx = x cos -1 x-21x -+C? tan -1 x dx = x tan -1 x-?ln (1+x 2)+C ? cot -1 x dx = x cot -1 x+?ln (1+x 2)+C ? sec -1 x dx = x sec -1 x- ln |x+12-x |+C ? csc -1 x dx = x csc -1 x+ ln |x+12-x |+Csinh -1 (ax )= ln (x+22x a +) x ∈R cosh -1 (ax )=ln (x+22a x -) x ≧1 tanh -1 (a x )=a21ln (x a x a -+) |x| <1coth -1 (a x )=a21ln (a x ax -+) |x| >1sech -1(a x)=ln(x 1-+221xx -)0≦x ≦1 csch -1(a x )=ln(x 1+221x x +) |x| >0D x sinh x = cosh x cosh x = sinh x tanh x = sech 2 x coth x = -csch 2 x sech x = -sech x tanh x csch x = -csch x coth x? sinh x dx = cosh x + C ? cosh x dx = sinh x + C ? tanh x dx = ln | cosh x |+ C ? coth x dx = ln | sinh x | + C ? sech x dx = -2tan -1 (e -x ) + C ? csch x dx = 2 ln |xx ee 211---+| + Cd uv = u d v + v d u? d uv = uv = ? u d v + ? v d u →? u d v = uv - ? v d u cos 2θ-sin 2θ=cos2θ cos 2θ+ sin 2θ=1cosh 2θ-sinh 2θ=1 cosh 2θ+sinh 2θ=cosh2θ D x sinh -1(ax)=221x a +cosh -1(ax )=221ax -tanh -1(a x )= 22x a a -± coth -1(ax )=sech -1(a x)= 22xa x a --csch -1(x/a)=22x a x a +-? sinh -1 x dx = x sinh -1 x-21x ++ C ? cosh -1 x dx = x cosh -1 x-12-x + C? tanh -1 x dx = x tanh -1 x+ ? ln | 1-x 2|+ C ? coth -1 x dx = x coth -1 x- ? ln | 1-x 2|+ C ? sech -1 x dx = x sech -1 x- sin -1 x + C ? csch -1 x dx = x csch -1 x+ sinh -1 x + Csin 3θ=3sin θ-4sin 3θ cos3θ=4cos 3θ-3cos θ →sin 3θ= ? (3sin θ-sin3θ) →cos 3θ=?(3cos θ+cos3θ)sin x = j e e jx jx 2-- cos x = 2jxjx e e -+sinh x = 2x x e e -- cosh x = 2xx e e -+正弦定理:αsin a= βsin b =γsin c =2R余弦定理: a 2=b 2+c 2-2bc cos αb 2=a 2+c 2-2ac cos β c 2=a 2+b 2-2ab cos γa bcα βγ Rsin (α±β)=sin α cos β ± cos α sin β cos (α±β)=cos α cos βsin α sin β2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin ?(α+β) cos ?(α-β) sin α - sin β = 2 cos ?(α+β) sin ?(α-β) cos α + cos β = 2 cos ?(α+β) cos ?(α-β) cos α - cos β = -2 sin ?(α+β) sin ?(α-β) tan (α±β)=βαβαtan tan tan tan ±, cot (α±β)=βαβαcot cot cot cot ±e x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r=1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1∑=ni 11= n∑=ni i 1= ?n (n +1)∑=ni i 12=61n (n +1)(2n +1) ∑=ni i13= [?n (n +1)]2Γ(x) =⎰∞0t x-1e -t d t = 2⎰∞t 2x-12t e -d t =⎰∞)1(ln tx-1 d tβ(m , n ) =⎰1xm -1(1-x)n -1d x =2⎰2sin π2m -1x cos 2n -1x d x =⎰∞+-+01)1(nm m x x d x 希腊字母 (Greek Alphabets)大写 小写读音 大写 小写读音 大写 小写 读音 Α α alpha Ι ι iota Ρ ρ rho Β β beta Κ κ kappa Σ σ, ? sigma Γ γ gamma Λ λ lambda Τ τ tau Δ δ delta Μ μ mu Υ υ upsilon Ε ε epsilon Ν ν nu Φ φ phi Ζ ζ zeta Ξ ξ xi Χ χ khi Η η eta Ο ο omicron Ψ ψ psi Θθ thetaΠπ piΩωomega倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ? 顺位高d 顺位低 ;0*? =∞1 *? = ∞∞ = 0*01 = 00 00 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一: 对数; 反三角(反双曲) 顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)算术平均数(Arithmetic mean)中位数(Median) 取排序后中间的那位数字 众数(Mode)次数出现最多的数值 几何平均数(Geometric mean) 调和平均数(Harmonic mean) 平均差(Average Deviatoin)变异数(Variance)nX Xni21)(-∑ or1)(21--∑n X Xni标准差(Standard Deviation)nX Xni21)(-∑ or1)(21--∑n X Xni分配机率函数f (x )期望值E(x )变异数V(x )动差母函数m (t )Discrete Uniform21(n +1) 121(n 2+1)Continuous Uniform 21(a +b ) 121(b -a )2Bernoullip x q 1-x (x =0, 1)p pq q +pe t Binomial⎪⎪⎭⎫ ⎝⎛x n p x q n -x npnpq(q+ pe t )nNegative Binomial⎪⎪⎭⎫ ⎝⎛-+x x k 1p k q xMultinomialf (x 1, x 2, …, x m -1)=m xm x x m p p p x x x n ...!!...!!212121np inp i (1-p i )三项 (p 1e t 1+ p 2e t 2+p 3)nGeometricpq x-1Hypergeometricn ⎪⎭⎫⎝⎛N k ⎪⎭⎫ ⎝⎛--1N n N n ⎪⎭⎫⎝⎛N kPoissonλλNormal μσ2Beta Gamma ExponentChi-Squared χ2=f (χ2)E(χ2)=nV(χ2)=2n=212222)(221χχ--⎪⎭⎫ ⎝⎛Γen n nWeibull1 000 000 000 000 000 000 000 000 1024 yotta Y 1 000 000 000 000 000 000 000 1021 zetta Z 1 000 000 000 000 000 000 1018 exa E 1 000 000 000 000 000 1015 peta P 1 000 000 000 000 1012 tera T 兆 1 000 000 000 109 giga G 十亿 1 000 000 106 mega M 百万 1 000 103 kilo K 千 100 102 hecto H 百 10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或写作「厘」),百分之一 0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一 0.000 000 001 10-9 nano n 奈,十亿分之一 0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一 0.000 000 000 000 000 001 10-18 atto a 阿 0.000 000 000 000 000 000 001 10-21 zepto z 0.000 000 000 000 000 000 000 001 10-24 yocto y。

微积分史上最全公式. pdf格式方便查看.

微积分史上最全公式. pdf格式方便查看.
(4) lim n n = 1
n →∞
(5) lim arctan x =
x →∞
π
2
(6) lim arc tan x = −
x →−∞
π
2
(7) limarccot x = 0
x→∞
( 8)
x →−∞
lim arccot x = π
x → 0+
( 9)
x →−∞
lim e = 0
x
(10)
x →+∞
tan A + tan B 1 − tan A tan B cot A ⋅ cot B − 1 cot( A + B) = cot B + cot A tan( A + B) =
2.二 倍 角 公 式
sin( A − B) = sin A cos B − cos A sin B cos( A − B) = cos A cos B + sin A sin B
u = ln x
∫ f ( ln x ) ⋅ x dx = ∫ f ( ln x )d ( ln x )
1
∫ f (e ) ⋅ e dx = ∫ f (e )d (e )
x x x x
u = ex
x
∫ f ( a ) ⋅ a dx = ln a ∫ f ( a )d ( a )
x x x
1
u = ax
π
6
= 3 ( 3 ) cot
π
3
=
3 π ( 4 ) cot = 0 ( 5 ) cot π 不存 3 2
考无忧论坛-----考霸整理版
1.两 角 和 公 式
sin( A + B) = sin A cos B + cos A sin B cos( A + B) = cos A cos B − sin A sin B

(完整word版)常用微积分公式大全

(完整word版)常用微积分公式大全

常用微积分公式基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式.因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)对这些公式应正确熟记.可根据它们的特点分类来记.公式(1)为常量函数0的积分,等于积分常数.公式(2)、(3)为幂函数的积分,应分为与.当时,,积分后的函数仍是幂函数,而且幂次升高一次.特别当时,有.当时,公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清.当时,有.是一个较特殊的函数,其导数与积分均不变.应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.公式(10)是一个关于无理函数的积分公式(11)是一个关于有理函数的积分下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分.例1 求不定积分.分析:该不定积分应利用幂函数的积分公式.解:(为任意常数)例2 求不定积分.分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.解:由于,所以(为任意常数)例3 求不定积分.分析:将按三次方公式展开,再利用幂函数求积公式. 解:(为任意常数)例4 求不定积分.分析:用三角函数半角公式将二次三角函数降为一次.解:(为任意常数)例5 求不定积分.分析:基本积分公式表中只有但我们知道有三角恒等式:解:(为任意常数)同理我们有:(为任意常数)例6(为任意常数)。

微积分基本定理公式

微积分基本定理公式

微积分基本定理公式微积分基本定理公式,这可是数学领域里相当重要的一块内容!咱们先来说说啥是微积分基本定理公式。

简单来讲,微积分基本定理公式就像是一座桥梁,把导数和定积分这两个看似不太相关的概念紧密地联系在了一起。

它告诉我们,如果有一个函数 F(x) 是另一个函数 f(x) 的原函数,那么在某个区间 [a, b] 上,定积分∫(从 a 到 b)f(x)dx 就等于 F(b) - F(a)。

就比如说,咱们来算一个简单的例子。

假设 f(x) = 2x,那它的一个原函数 F(x) 就是 x²。

如果我们要计算在区间 [1, 3] 上的定积分∫(从 1到 3)2xdx ,根据微积分基本定理公式,那就等于 F(3) - F(1),也就是3² - 1² = 9 - 1 = 8 。

还记得我之前给学生们讲这个公式的时候,有个学生特别可爱。

那是一节高中数学课,我正在黑板上推导微积分基本定理公式,底下的学生们都聚精会神地看着。

突然,一个平时特别活泼的男生举起了手,皱着眉头问我:“老师,这公式到底有啥用啊?感觉好复杂!”我笑了笑,没急着回答他,而是先在黑板上写下了一个物理中的匀加速直线运动的速度与位移的关系式子。

然后我对他说:“你看,这个物理问题,如果没有微积分基本定理公式,咱们要想求出位移,得多麻烦呀。

但是有了它,一下子就能轻松搞定。

”这孩子听了之后,眼睛一下子亮了起来,好像突然明白了什么。

这微积分基本定理公式在实际生活中的应用那可多了去了。

比如说,要计算一条不规则曲线围成的面积,要是没有这个公式,那可真是让人头疼。

但有了它,咱们就能把复杂的问题简单化,轻松求出面积来。

再比如,在经济学中,计算成本和收益的时候,微积分基本定理公式也能大显身手。

它可以帮助我们分析企业的生产决策,找到最优的生产规模,从而实现利润最大化。

而且啊,这公式不仅仅是在数学、物理、经济这些学科里有用,它还能培养咱们的逻辑思维能力和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义(定积分)
设函数f (x )是定义在闭区间[a ,b ]上的连续函数,用n + 1个分点
a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b
把闭区间[a ,b ]划分成n 个小区间
[x 0,x 1],[x 1,x 2],…,[x i – 1,x i ],…,[x n – 1,x n ]
记各小区间[x i – 1,x i ](i = 1,2,…,n )的长度为Δx i = x i - x i – 1,在各小区间[x i – 1,x i ]内任取一点ξi ,取函数值f (ξi )与小区间长度Δx i 的乘积f (ξi )Δx i ,作和式
n n i i n i i i
x f x f x f x f x f Δ)(Δ)(Δ)(Δ)(Δ)(22111ξξξξξ+++++=∑=
称为函数f (x )在区间[a ,b ]上的积分和。

记各小区间的最大长度为d = max{Δx i },如果对于区间
[a ,b ]任意的划分和点ξi 在[x i – 1,x i ]上的任意取法,当d → 0时,积分和的极限存在,则称此极限为函数f (x )在区间[a ,b ]上的定积分,简称积分,记为
∑⎰=→=n
i i i d b
a x x f x x f 10Δ)(lim d )( 其中⎰为积分号,[a ,
b ]称为积分区间,f (x )称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限。

如果函数f (x )在区间[a ,b ]上的积分存在,则称f (x )在[a ,b ]上可积。

上述定义中的积分限要求a < b ,实际上这个限制可以解除,补充两条规定:
(1)当a = b 时,规定0d )(=⎰a
a x x f ; (2)当a >
b 时,规定⎰⎰-=a
b b a x x f x x f d )(d )(。

可以看出,这两条规定是合理的,其中第一条规定也可以根据第二条推出。

定理1(可积的必要条件)
如果函数f (x )在闭区间[a ,b ]上的可积,则f (x )在[a ,b ]上有界。

定理2(可积的充分条件)
1.如果函数f (x )在闭区间[a ,b ]上的连续,则f (x )在[a ,b ]上可积。

2.如果函数f (x )在闭区间[a ,b ]上的单调,则f (x )在[a ,b ]上可积。

3.如果在闭区间[a ,b ]内除去有限个不连续点外,函数f (x )有界,则f (x )在[a ,b ]上可积。

引理(微分中值定理)
设函数f (x )在闭区间[a ,b ]内连续,在开区间(a ,b )内可导,则至少存在一点ξ∈(a ,b ),成立等式
f (b ) − f (a ) = f'(ξ)(b − a )
以上结论称为微分中值定理,等式称为微分中值公式。

设函数f (x )在闭区间[a ,b ]内连续,则可以证明f (x )在[a ,b ]上可积,于是存在新的函数F (x ),成立微分关系F'(x ) = f (x )或d F (x ) = f (x )d x ,则称F (x )为f (x )的一个原函数。

试利用微分中值定理和定积分的定义证明微积分基本公式
)()()(d )(a F b F x F x x f b
a b
a -==⎰ 这个公式又称为牛顿-莱布尼茨公式。

证明:
因为f (x )在[a ,b ]上可积,f (x )的原函数F (x )存在,即F'(x ) = f (x ),又因为可导函数必定连续,所以F (x )在[a ,b ]内连续,因此F (x )在[a ,b ]内满足微分中值定理的条件。

对于定义中区间[a ,b ]任意的划分,在各小区间[x i – 1,x i ](i = 1,2,…,n )上,函数F (x )也满足微分中值定理的条件,于是必定存在ξi ∈[x i – 1,x i ],成立等式
F (x i ) - F (x i – 1) = F'(ξi )(x i − x i – 1)

F (x i ) − F (x i − 1) = f (ξi )Δx i
对于每一个小区间[x i – 1,x i ](i = 1,2,…,n ),以上等式都成立,将各个小区间内的上述等式左右两边分别相加,可以得到
F (x 1) − F (x 0) + F (x 2) − F (x 1) + … + F (x i ) − F (x i – 1) + … + F (x n – 1) − F (x n – 2) + F (x n ) − F (x n – 1) =
f (ξ1)Δx 1 + f (ξ2)Δx 2 + … + f (ξi )Δx i + … + f (ξn – 1)Δx n – 1 + f (ξn )Δx n

i n
i i n x f x F x F Δ)()()(10∑==-ξ
令d = max{Δx i } → 0,以上等式两边分别取极限
i n
i i d n d x f x F x F Δ)(lim )]()([lim 1000∑=→→=-ξ 等式的左边F (x n ) − F (x 0) = F (b ) − F (a )是常数,极限显然存在
)()()]()([lim 00
a F
b F x F x F n d -=-→ 等式的右边正是积分和的极限,因为f (x )在[a ,b ]上可积,所以此极限存在,于是根据定积分的定义,f (x )在[a ,b ]上的定积分存在,即
⎰∑==→b
a n i i i d x x f x x f d )(Δ)(lim 10 于是就得到
)()(d )(a F b F x x f b
a -=⎰
这就是微积分基本公式,表明了定积分与原函数之间的联系。

习惯上将F (b ) − F (a )简写成b
a x F )(,于是微积分基本公式可以写成 )()()(d )(a F
b F x F x x f b
a b
a -==⎰ 此外,利用f (x )的不定积分(C 为任意常数)
C x F x x f +=⎰)(d )(
微积分基本公式还可以表示为
()b a
b
a x x f x x f ⎰⎰=d )(d )( 此式表明了定积分与不定积分之间的联系。

相关文档
最新文档