结构力学-桁架及组合结构2分解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 结点单杆 以结点为平衡对象能仅用一个方程求 出内力的杆件,称为结点单杆(nodal single bar)。
利用这个概念,根据荷载状况可判断此杆内力是 否为零。
3. 零杆 零内力杆简称零杆(zero bar)。
FN2=0 FN1=0
FN=0
FN=0
判断结构中的零杆
FP
FP
FP/ 2
FP/2
对称结构在对称或反对称的荷载作用下, 结构的内力和变形(也称为反应)必然对称 或反对称,这称为对称性(symmetry)。
对称结构受对称荷载作用, 内力和反 力均为对称:
E 点无荷载,红色杆不受力
FAy
FBy
对称结构受反对称荷载作用, 内力和 反力均为反对称:
垂直对称轴的杆不受力
FAy
FBy
对称轴处的杆不受力
影响下撑式五角形组合屋架内力状态的主要原因:
1、高跨比 f l
轴力 FNFG 可用三铰拱的推力公式计算:
FNFG

M
0 C
f
高跨比愈小,屋架轴力愈大,这与三铰拱相似。
2、 f1 与 f2 关系
高度 f 确定后,内力状态随 f1 与 f2 比例不同而改变。
弦杆轴力变化幅度不大,但上弦杆弯矩变化幅度很大。 当坡度(即 f1 )减小,上弦杆负弯矩增大。当 f1 0 时,为下撑式平行弦组合结构,上弦梁类似与悬臂梁。
§3-4 桁架内力分析
桁架结构(truss structure)
横梁
主桁架
纵梁
弦杆
上弦杆 斜杆 竖杆 腹杆
下弦杆
桁高
d 节间
跨度
经抽象简化后,杆轴交于一点,且“只 受结点荷载作用的直杆、铰结体系”的 工程结构.
特性:只有轴力,而没有弯矩和剪力。 轴力又称为主内力(primary internal forces)。
FP
零杆的作用 零杆是否在桁架结构中可拆除?
不可拆除,因为拆除后体系将成为几何可 变体系。
不可拆除,实际桁架还存在次内力,一般 情况零杆将受到次内力的作用。
除此之外零杆还有什么作用?
确定图示体系A点的位移? B
(a)图A点位移沿水平
方向向右。
B
(b) 图由于零杆AC的存 在,使得A点位移垂直于AC C 杆,斜向右下方。
A
FA P
(a)
A
FP A
(b)
零杆有约束(或称为引导)结点位移的作用。
截面法
截取桁架的某一局部作为隔离体,由 平面任意力系的平衡方程即可求得未知的 轴力。
对于平面桁架,由于平面任意力系的 独立平衡方程数为3,因此所截断的杆件数 一般不宜超过3
作用: 1、求解桁架中某些特定位置杆的轴力。 2、对计算结果进行校核。
四、按受力特点分类: 1. 梁式桁架
2. 拱式桁架
竖向荷载下将 产生水平反力
结点法(nodal analysis method)
以只有一个结点的隔离体为研究对象,用 汇交力系的平衡方程求解各杆内力的方法
例1. 求以下桁架各杆的内力
0 -33 34.8
19
19
Y 0 YNAD 11 kN YNAD CD 0.5 X NAD AC 1.5 X NAD 3YNAD 33 kN
X 0 FNAC 33 kN
0 -33
-33
34.8 -8
19
19
0 -33
-33
34.8
-8 -5.4
19
37.5
19
-8 kN
YDE CD 0.75 X DE CE 0.5
0 -33
-33 -33
-33
34.8 19
-8
-8
-5.4 -5.4
37.5
34.8 19
小结:
求得,则此杆称为截面单杆。
可能的截面单杆通常有相交型 和平行型两种形式。



FP FP FP FP FP
ቤተ መጻሕፍቲ ባይዱ

FP
a 为 截 面 单 杆
FP FP
平行情况
b为截面单杆
用截面法灵活截取隔离体
FP
FFPP
1
2
3
FN1
FP
FN2 FN3
FAy
联合法
凡需同时应用结点法和截面法才 能确定杆件内力时,统称为联合法 (combined method)。
试求图示K式桁架指定杆1、2、3的轴力
ED杆内力如何求?
如何 计算?
FP
返 回 章
组合结构的计算
组合结构——由链杆和受弯杆件混合组成的结构。
A FN图(kN)
5 kN
8 kN I
4
C
12 M图(kN . m)
B
-6 F 6 12
-6 G
2m
D
E
4m 2m 2m 4m
4 m 3 kN
I
一般情况下应先计算链杆的轴力 取隔离体时宜尽量避免截断受弯杆件
试用截面法求图示桁架指定杆件的内力。
nm 1
A 2.5FP
34
n2m FP FP FP FP FP
6 5m
6m B
2.5FP
FN1 =-3.75FP FN4=0.65FP
FN2 =3.33FP FN3 =-0.50FP
截面单杆 截面法取出的隔离 体,不管其上有几个轴力,如果某 杆的轴力可以通过列一个平衡方程
以结点作为平衡对象,结点承受汇交力 系作用。
按与“组成顺序相反”的原则,逐次建 立各结点的平衡方程,则桁架各结点未 知内力数目一定不超过独立平衡方程数。
由结点平衡方程可求得桁架各杆内力。
在用结点法进行计算时,注意以下三点, 可使计算过程得到简化。
1. 对称性的利用
如果结构的杆件轴线对某轴(空间桁架为 某面)对称,结构的支座也对同一条轴对 称的静定结构,则该结构称为对称结构 (symmetrical structure)。
2. 空间(三维)桁架(space truss) ——组成桁架的杆件不都在同一平面内
二、按外型分类 1. 平行弦桁架 2. 三角形桁架 3. 抛物线桁架 4. 梯形桁架
三、按几何组成分类
简单桁架 (simple truss)
联合桁架 (combined truss)
复杂桁架 (complicated truss)
0.000 35.000 60.000 75.000
刚架轴力 -34.966 -59.973 -74.977 -79.977
0.032 35.005 59.997 74.991
桁架结构的分类:
一、根据维数分类 1. 平面(二维)桁架(plane truss) ——所有组成桁架的杆件以及荷载的作 用线都在同一平面内
实际结构中由于结点并非是理想铰,同时还将 产生弯矩、剪力,但这两种内力相对于轴力的 影响是很小的,故称为次内力(secondary internal forces)。
次内力的影响举例
杆号 起点号 终点号
12
4
24
6
36
8
48
10
51
3
63
5
75
7
87
9
桁架轴力 -35.000 -60.000 -75.000 -80.000
相关文档
最新文档