7LTE功率控制

合集下载

LTE功率控制

LTE功率控制

LTE 功率控制OFDMA系统如果要使用下行功控,主要用于补偿信道的路径损耗和阴影。

但下行功控和频域调度存在一定的冲突。

●1.系统完全可以通过频域调度的方式避免在那些路径损耗较大的RB进行传输,因此对PDSCH采用下行功率控制就不是很重要了。

●2.采用下行功率控制反而会扰乱下行CQI测量,由于功控补偿了某些RB的路径损耗,UE无法获得真实的下行信道质量信息,从而影响到下行调度的准确性。

LTE的小区公共参考信号CRS,必须每个子帧都发射,而且是跨整个系统带宽的。

根据基站的发射天线数量,小区公共参考信号所占的资源比例在4.8%-14.3%下行物理信号包括:同步信号和参考信号,同步信号又分为主同步信号(PSS)和辅同步信号(SSS),用来做小区的同步,确定唯一的物理小区ID;参考信号分为小区专用参考信号(CRS)和终端专用参考信号(DRS),CRS用来做下行信道估计和测量,DRS还可以用来做UE端的相干检测和解调。

小区专用参考信号CRS在时频资源中的位置与端口数有关,不同的端口数所占用的位置不同。

扩展CP和常规CP也不同。

下行参考信号简介及功能在R9中,下行定义了四种参考信号,分别为分别为小区专用参考信号(C-RS),用户专用参考信号(UE-RS,又称DM-RS),MBSFN参考信号,位置参考信号(P-RS)。

在R10中,下行定义了五种参考信号,分别为小区专用参考信号(C-RS),用户专用参考信号(UE-RS,又称DM-RS),MBSFN参考信号,位置参考信号(P-RS),以及CSI参考信号(CSI-RS)。

在R9与R10中定义的这些参考信号的主要功能及区别如下:Rel9 中:C-RS:用于除了不基于码本的波束赋形技术之外的所有下行传输技术的信道估计和相关解调。

在天线端口{0}或{0,1}或{0,1,2,3}上传输。

UE-RS(D-RS):用于不基于码本的波束赋形技术的信道估计和相关解调。

支持PDSCH的单天线端口传输,在天线端口5或7或8上传输。

LTE功率控制综述综述

LTE功率控制综述综述

2019扰协调 小区专属天线端口下的ρ A/ρ B比。其由高层信令 通知的小区专用参数 以及 eNodeB 配置的小区专用 天线端口数目决定。
小区专属天线端口下的ρ A/ρ B比
2019/2/20
2019/2/20
7
用户功率分配和小区间干扰协调
小区专属比值与PDSCH使用的不同传输模式有关。对于16QAM、 64QAM调制、多层空分复用,或多用户MIMO的PDSCH传输: ������ 当UE接收使用4小区特定天线端口发送分集预编码传输的PDSCH数 据时:ρ A= power -offset PA 10log10 (2) 其他情况下:ρ A= power -offset PA 其中,在除了多用户MIMO之外的所有传输模式中, power -offset 均为0; 在指示 B / A基础上,通过高层参数 PA 确定 ρ A的具体数值,得到 基站下行针对用户的PDSCH发射功率。
下行功率分配
在频率和时间上采用恒定的发射功率,基站通过高 层信令指示该发射功率数值。 在LTE系统中,使用每资源单元容量(Transmit Energy per Resource Element, EPRE)来衡量下行 发射功率大小。 下行功率分配方法: 提高参考信号的发射功率(Power Boosting) 与用户调度相结合实现小区间干扰抑制的相关 机制
2019/2/20
5
提高参考信号的发射功率-Power Boosting
ρ A或 ρ B表示每个OFDM符号内的PDSCH EPRE和小区专属RS EPRE的比 值,且ρ A或ρ B是UE专属的。 在包含RS的数据OFDMA的EPRE与小区专属RS EPRE的比值标识用ρ B
表示; 在不包含RS的数据OFDMA的EPRE与小区专属RS EPRE的比值标识用 ρ A表示。

LTE下行功率控制

LTE下行功率控制

LTE下行功率分配与功率控制LTE下行功率控制采用固定功率分配和动态功率控制两种策略:1、固定功率分配:由于不同的物理信道的作用不同,为了让终端能更好的解调公共信道的信息所以采用固定功率分配,公共信道如下:小区参考信号(RS):固定功率分配的基准,根据信道功率分配的原则,所有固定功率分配均由RS功率加偏置分配。

LTE小区功率配置原则:上下行链路平衡公共信道与业务信道平衡能够保证覆盖,降低干扰,保证容量和覆盖平衡TypeA符号和TypeB符号上的PDSCH RE功率尽量相等TypeA符号和TypeB符号上的总功率尽量相等DL-RS-Power=P-10*log(12*NRB)+10*log(1+Pb)DL-RS-Power下行参考信号RS功率P:单天线发射功率Pb:表示PDSCH上RE的功率因子NRB:RB数量与带宽有关后台设置参数:ReferenceSignalPwr:参考信号功率。

同步信号(SCH):RS功率+SchPwr(同步信道功率,建议值:0)PBCH:RS功率+PbchPwr(物理广播信道功率,建议值:-600即-3dB)PCFICH:RS功率+PcfichPwr(物理控制格式指示信道功率,建议值:-600即-3dB)PDCCH(承载小区公共信息的调度信息):PDSCH(公共信息):2、动态功率控制或者固定功率分配:专用信道采用固定或动态功率控制PHICH :承载HARQ的ACK/NACK反馈信息,如果UE对PHICH解调错误率过高,会严重影响用户吞吐率。

所以要保证每个UE有相似的PHICH性能;其可以采用固定功率分配方式,也可以采用动态功率分配方式,通过PhichlnnerLoopPcSwitch参数设置,当PhichlnnerLoopPcSwitch开关关闭的时候,为固定功率分配,PHICH的功率为PowerPHICH= ReferenceSignalPwr+PwrOffset;当PhichlnnerLoopPcSwitch开关开启的时候,PHICH会根据信道质量,来动态调整PHICH的功率,通过测量SINR(由UE上报CQI计算得出)与目标阀值SINR(门限)比较来调整,如下图:PDCCH(承载UE专用信道的调度的信息):当承载小区公共消息在PDSCH上传输的指示,采用固定功率分配,eNodeB通过设置基于小区参考信号功率的固定偏置进行PDCCH功率控制;当承载UE PDSCH专用信息的传输指示,可采用固定功率分配,也可以采用动态功率分配,通过PdcchPcSwitch参数设置,如下图:PdcchPcSwitch:PDCH工控开关,建议值ON(开),DediDciPwrOffset:UE专用搜索空间的DCI功率偏置,建议值:-30,即-3dBPDSCH(承载UE专用信息):A类符号和B类符号功率分别为PPDSCH-A,PPDSCH-B PPDSCH-A=ρA+ ReferenceSignalPwrPPDSCH-B=ρB+ ReferenceSignalPwr下图:红色线表示传输的是公共信息采用固定功率分配,黑色线表示专用信息传输可以固定也可以动态。

lte相对功率控制容限fail

lte相对功率控制容限fail

标题:LTE相对功率控制容限失败的原因及解决方法1. 引言LTE相对功率控制容限(Relative Power Control Range)是LTE系统中常见的一种参数,它用于调整用户设备的发射功率,以保证网络中所有设备的信号质量均衡。

然而,在实际应用中,我们常常会遇到LTE相对功率控制容限失败的情况。

本文将就这一问题展开探讨,并提出解决方法。

2. LTE相对功率控制容限的概念LTE相对功率控制容限是LTE系统中的一个重要参数,它用于控制用户设备的发射功率范围。

当用户设备与基站之间的信号质量发生变化时,LTE系统会根据相对功率控制容限来调整用户设备的发射功率,以保证信号质量的稳定和均衡。

3. LTE相对功率控制容限失败的原因在实际应用中,LTE相对功率控制容限可能会出现失败的情况。

造成这一问题的原因主要包括:- 网络拓扑结构设计不合理,导致用户设备与基站之间信号质量波动较大。

- 基站硬件故障或软件问题,导致基站无法正确地处理LTE相对功率控制容限。

- 环境影响,如天气、电磁干扰等因素影响了用户设备和基站之间的信号传输。

4. 解决LTE相对功率控制容限失败的方法针对LTE相对功率控制容限失败的情况,可以采取以下方法来解决:- 优化网络拓扑结构,合理规划基站布局,减少不必要的信号质量波动。

- 加强基站硬件和软件的维护和监控,确保基站设备能够正确地处理LTE相对功率控制容限。

- 采用先进的天线技术和信号处理算法,提高用户设备和基站之间的信号传输质量,减少外部环境因素的影响。

5. 个人观点和总结作为LTE系统中的重要参数,LTE相对功率控制容限的合理设置和有效管理对于保障系统的稳定性和性能至关重要。

在实际应用中,我们需要密切监控LTE相对功率控制容限的工作情况,及时发现并解决可能存在的问题,保证LTE系统能够提供稳定高效的通信服务。

6. 总结LTE相对功率控制容限作为LTE系统中的重要参数,其合理设置和有效管理对于保障系统的稳定性和性能至关重要。

LTE功率控制总结

LTE功率控制总结

LTE功率控制总结LTE (Long Term Evolution) 是一种高速无线通信技术,由于其高速率和低延迟,广泛应用于移动通信领域。

在LTE中,功率控制是保证信号质量、最大限度利用系统资源的重要技术。

下面是我对LTE功率控制的总结。

首先,LTE功率控制的目标是保证用户的通信质量,同时最大程度地利用系统资源。

因此,功率控制主要关注两个方面,即上行功控和下行功控。

上行功控是指对用户终端(UE)的上行信号进行功率控制。

在LTE中,上行功控通过调整UE的传输功率来控制其到达基站的信号强度,以保证信道质量。

LTE中采用了多种功控算法,例如关闭循环功控、开环加权功控和闭环功控等。

其中,闭环功控利用了基站对收到的上行PUCCH(物理上行共享信道)信号的质量进行反馈来调整功率。

基站通过应答信令中携带的反馈信息来控制UE的发射功率,实现了根据实际情况进行功率调节的闭环控制。

下行功控是指对基站对UE的下行信号进行功率控制。

在LTE中,下行功控通过调整基站的传输功率来保证UE接收到的信号强度在适当范围内,以保证信道质量。

下行功控主要包括两种方式,即全局功控和子载波功控。

全局功控通过调整基站的全局传输功率来控制信道质量,保证覆盖范围内所有UE的接收信号质量。

而子载波功控则是根据每个子载波的接收信号质量来调整功率,以实现对不同位置或用户间信号的灵活控制。

对于LTE功率控制的优化,可以从多个方面进行考虑。

首先,可以优化功控算法,提高功控的精确度和灵活性。

例如,可以引入更复杂的功控算法,结合信道质量、拥塞状态等因素进行综合权衡,以实现更加准确的功率调节。

其次,可以优化功控策略,根据网络负载、用户需求等因素,动态调整功控目标,以实现更好的资源利用效率。

此外,还可以优化功控参数的配置,根据网络拓扑和用户分布等特点,合理配置功控参数,以实现全网覆盖和负载均衡的最优化。

此外,LTE功率控制还需要考虑与其他技术的协同工作。

例如,与LTE调度算法的协同可以实现对功率控制和调度资源的优化配置,以提高系统性能。

LTE功率控制

LTE功率控制

功率控制功率控制是无线系统中重要的一个功能。

UE 在不同的区域向基站发送信号,这样发送的功率就会有不一致。

远的UE 发送的功率应该大一些,近的稍微小一些,这样以便基站能够更好的将不同的UE 能够解调出来。

功率控制也通常分为开环功率控制和闭环功率控制。

开环功率控制通常不需要UE 反馈,基站通过自身的一些测量或者其他信息,来控制UE 的功率发送或者自身的功率发送。

闭环功率控制通常需要UE 的一些相应的信息,包括信噪比(SIR/ SINR) 或者是BLER/FER 等信息,来调整UE 的发送功率。

闭环功率控制又一般分为两种,一种是内环功率控制,一种是外环功率控制。

内环功率控制是通过SIR 来进行相应的功率控制,基站通过接收到UE 的SIR ,发现与预期的SIR 有差距,然后产生功率控制命令,指示UE 进行调整发送功能,以达到预期的SIR 。

外环功率通常是一种慢功率调整,主要是通过链路的质量来调整SIR ,通过测量链路的BLER ,来指示SIR 的调整情况。

LTE 的功率控制,有别于其他系统的功率控制。

LTE 在一个小区是一个信号正交的系统,所以小区内相互干扰比较小,LTE 主要是在小区之间的干扰。

所以LTE 对于小区内的功率控制的频率相对比较慢。

LTE 有个概念下行功率分配时要使用到,the energy per resource element (EPRE),可以立即为每个RE 的平均功率。

1上行功率控制1.1 PUSCH1.1.1 PUSCH 的功率控制UE 需要根据eNB 的指示设置每个子帧的PUSCH 的发射功率PUSCH P :)}()()()())((log 10,min{)(TF O_PUSCH PUSCH 10CMAX PUSCH i f i PL j j P i M P i P +∆+⋅++=α[dBm]以下对于各个参数进行相应的解析。

CMAX P 是UE 的发射的最大的功率,在协议36101中定义的,)(PUSCH i M 是UE 在子帧i 所分配的PUSCH 的RB 的数目或者PUSCH 的RB 带宽,用RB 数目来表示;)(O_PUSCH j P 是预期的PUSCH 的功率,包括两部分,一部分是小区属性的参数)( PUSCH O_NOMINAL_j P ,一个是UE 属性的参数)(O_UE_PUSCH j P 。

LTE功率控制

LTE功率控制

LTE功率控制LTE功率控制的对象包括PUCCH,PUSCH,SRS,RA preamble,RA Msg3等。

由于这些上行信号的数据速率和重要性各自不同,其具体功控方法和参数也不尽相同。

PUSCH和SRS的功控基本相同。

1 标称功率(Nominal Power)eNB首先为该小区内的所有UE半静态设定一标称功率P0(对PUSCH和PUCCH有不同的标称功率,分别记为P0_PUSCH和P0_PUCCH ),该值通过系统消息SIB2(UplinkPowerControlCommon: p0-NominalPUSCH, p0-NominalPUCCH)广播给所有UE;P0_PUSCH的取值范围是(-126,24)dBm。

需要注意的是对于动态调度的上行传输和半持久调度的上行传输,P0_PUSCH的值也有所不同(SPS-ConfigUL: p0-NominalPUSCH-Persistent)。

另外RA Msg3的标称功率不受以上值限制,而是根据RA preamble初始发射功率(preambleInitialReceivedTargetPower)加上?Preamble_Msg3 (UplinkPowerControlCommon: deltaPreambleMsg3)。

每个UE还有UE specific的标称功率偏移(对PUSCH和PUCCH 有不同的UE标称功率,分别记为P0_UE_PUSCH和P0_UE_PUCCH ),该值通过dedicated RRC信令(UplinkPowerControlDedicated: p0-UE-PUSCH, p0-UE-PUCCH)下发给UE。

P0_UE_PUSCH和P0_UE_PUCCH的单位是dB,因此这个值可以看成是不同UE对于eNB范围标称功率P0_PUSCH和P0_PUCCH的一个偏移量。

对于动态调度的上行传输和半持久调度的上行传输,P0_UE_PUSCH的值也有所不同。

LTE 功率控制

LTE 功率控制

LTE功率控制手机刚开机,手机(在这种情况下为发射器)必须向基站(在这种情况下为接收器)发送一些信号。

手机必须发送多大的功率才能发射它的第一个信号?这非常重要。

如果移动电话以太低的功率发射信号,则基站将无法检测到它;而如果发射的功率过高,则基站将无法检测到它,它可能会干扰其他手机与基站之间的通信。

因此,它必须确定适当的发射功率电平,该功率应足够强以被基站正确解码,并且足够弱以不干扰其他移动电话与基站之间的通信。

UE应该使用哪种方法确定适当的传输功率?手机通信系统中常用的总体逻辑如下:1.网络(基站)正在传输具有固定功率值的特定参考信号;2.网络传输有关其正在传输的参考信号的信息(例如,功率);3.网络还发送UE可以发送的最大允许功率;4.UE解码来自基站的参考信号并测量功率;5.UE可以通过比较步骤4和2的结果来找出UE与基站之间的路径损耗;6.同样从步骤2中的信息,UE知道允许它使用多少功率;7.根据步骤5和步骤4的结果,UE可以算出它实际可以发送多少功率。

这种过程也称为功率控制过程。

但是,由于该功率确定过程不像闭环功率控制中那样基于反馈环路,因此被称为“开环功率控制”。

功率控制机制大致有两种不同的方式。

一种称为开环功率控制,另一种称为闭环功率控制。

不要对“循环”一词感到困惑。

当我们说“开环”时,它并不意味着“循环”控制。

这只是一个方向控制过程,没有反馈,如下图所示。

(实际上,“没有任何反馈输入的控制路径”是控制理论中的“开环”的定义。

)。

在开环控制中,UE通过自己的功率设置算法确定其传输功率。

该功率设置算法接受许多输入,但是所有这些输入均来自UE内部设置或UE的测量数据。

没有来自eNB的反馈输入。

开环功控开环功率控制的最常见示例之一是初始PRACH功率。

如下所示确定该PRACH功率。

一旦检测到初始PRACH,UE功率将由TPC(传输功率控制)命令(DCI 0中的MAC CE或TPC字段)动态控制。

LTE功率控制

LTE功率控制



4 12 4 4 4 4 4 3 3
4 16 4 4 4 4 4 2 2
4 12
4 16

B B A
/
A
RS所占功率
5 5 4 4
/ / / /
4 4 4 24 1 / 6
4 4 4 8
/ / / /
4 8 8 24 2 / 6
3 / 4 3 /12 4 /12 12 / 24 3 / 6
通过X2接口交换小区间干扰信息,进行协调调度,抑制小区间的
同频干扰,交互的信息有:
过载指示OI(被动):指示本小区每个PRB上受到的上行干扰情况。
相邻小区通过交换该消息了解对方的负载情况。 高干扰指示HII(主动):指示本小区每个PRB对于上行干扰的敏感 程度。反映了本小区的调度安排,相邻小区通过交换该信息了解对方将 要采用的调度安排,并进行适当的调整以实现协调的调度。
提高参考信号的发射功率-Power Boosting
对于PDSCH信道的EPRE可以由下行小区专属参考信号功率EPRE 以及每个OFDM符号内的PDSCH EPRE和小区专属RS EPRE的比值ρA 或ρB的得到。 PDSCH_EPRE =小区专属RS _ EPRE ×ρA PDSCH_EPRE =小区专属 RS_ EPRE ×ρB 下行小区参考信号EPRE定义为整个系统带宽内所有承载下行小区专 属参考信号的下行资源单元(RE)分配功率的线性平均。UE可以认为 小区专属RS_EPRE在整个下行系统带宽内和所有的子帧内保持恒定, 直到接收到新的小区专属RS_EPRE。小区专属RS_EPRE由高层参数 Reference-Signal-power通知。

) 在j=0或者1时, PO _ PUSCH ( j) PO_NOMINAL_ PUSCH ( j) PO_UE_ PUSCH ( j,PO_NOMINAL_ PUSCH ( j) 为针对一个

第九课:LTE功率控制

第九课:LTE功率控制

第九课:LTE功率控制LTE下行功率控制由于LTE下行采用OFDMA技术,一个小区内发送给不同UE的下行信号之间是相互正交的,因此不存在CDMA系统因远近效应而进行功率控制的必要性。

就小区内不同UE的路径损耗和阴影衰落而言,LTE系统完全可以通过频域上的灵活调度方式来避免给UE分配路径损耗和阴影衰落较大的RB,这样,对PDSCH采用下行功控就不是那么必要了。

另一方面,采用下行功控会扰乱下行CQI测量,影响下行调度的准确性。

因此,LTE系统中不对下行采用灵活的功率控制,而只是采用静态或半静态的功率分配(为避免小区间干扰采用干扰协调时静态功控还是必要的)。

下行功率分配的目标是在满足用户接收质量的前提下尽量降低下行信道的发射功率,来降低小区间干扰。

在LTE系统中,使用每资源单元容量(Transmit Energy per Resource Element, EPRE)来衡量下行发射功率大小。

对于PDSCH信道的EPRE可以由下行小区专属参考信号功率EPRE以及每个OFDM符号内的PDSCH EPRE和小区专属RS EPRE的比值ρA或ρB的得到。

其中,下行小区参考信号EPRE定义为整个系统带宽内所有承载下行小区专属参考信号的下行资源单元(RE)分配功率的线性平均。

UE可以认为小区专属RS_EPRE在整个下行系统带宽内和所有的子帧内保持恒定,直到接收到新的小区专属RS_EPRE。

小区专属RS_EPRE 由高层参数Reference-Signal-power通知。

ρA或 ρB表示每个OFDM符号内的PDSCH EPRE和小区专属RS EPRE的比值,且ρA或ρB 是UE专属的。

具体来说,在包含RS的数据OFDMA的EPRE与小区专属RS EPRE的比值标识用Bρ表示;在不包含RS的数据OFDMA的EPRE与小区专属RS EPRE的比值标识用ρA表示。

一个时隙内不同OFDMA的比值标识ρA或ρB与OFDMA符号索引对应关系图1OFDMA系统如果要使用下行功控,主要用于补偿信道的路径损耗和阴影。

LTE中的功率控制总结

LTE中的功率控制总结

LTE中的功率控制总结1、LTE框图综述2、LTE功率控制与CDMA系统功率控制技术的比较下表所示。

3、LTE当中上下行分别采用OFDMA和SC-FDMA的多址方式,所以各子载波之间是正交不相关的,这样就克服了WCDMA当中远近效应的影响。

为了保证上行发送数据质量,减少归属不同eNodeB的UE使用相同频率的子载波产生的干扰,同时也减少UE的能量消耗,并使得上行传输适应不同的无线传输环境,包括路损,阴影,快衰落等。

(质量平衡与信干噪比平衡的原则相结合使用,是现在功率控制技术的主流.)4、功率控制方面,只是对上行作功率调整(采用慢速功率控制),下行按照参数配置进行固定功率的发送,即只有eNodeB对UE的发送功率作调整。

LTE中,上行功率控制使得对于相同的MCS(Modulation And Coding Scheme), 不同UE到达eNodeB的功率谱密度(Power Spectral Density,PSD单位带宽上的功率)大致相等。

eNodeB 为不同的UE分配不同的发送带宽和调制编码机制MCS,使得不同条件下的UE获得相应不同的上行发射功率.5、对于下行信号,基站合理的功率分配和相互间的协调能够抑制小区间的干扰,提高同频组网的系统性能。

严格来说,LTE的下行方向是一种功率分配机制,而不是功率控制。

不同的物理信道和参考信号之间有不同的功率配比。

下行功率分配以开环的方式完成,以控制基站在下行各个子载波上的发射功率。

下行RS一般以恒定功率发射。

下行共享控制信道PDSCH功率控制的主要目的是补偿路损和慢衰落,保证下行数据链路的传输质量。

下行共享信道PDSCH的发射功率是与RS发射功率成一定比例的。

它的功率是根据UE反馈的CQI与目标CQI 的对比来调整的,是一个闭环功率控制过程。

在基站侧,保存着UE 反馈的上行CQI值和发射功率的对应关系表。

这样,基站收到什么样的CQI,就知道用多大的发射功率,可达到一定的信噪比(SINR)目标。

LTE中的功率控制总结

LTE中的功率控制总结

LTE中的功率控制总结LTE框图综述1、系统功率控制技术的比较下表所示。

LTE功率控制与CDMA、2 LTE CDMA明显不明显远近效应补偿路径损耗和阴影衰对抗快衰落功控目的落功控周期慢速功控快速功控小区功控围小区和小区间上行:每个RE具体功率目标上的能量整条链路的总发射功率EPRE;资料Word的多址方式,所SC-FDMA当中上下行分别采用OFDMA和3、LTE 当中远近WCDMA以各子载波之间是正交不相关的,这样就克服了eNodeB效应的影响。

为了保证上行发送数据质量,减少归属不同的能量消UEUE使用相同频率的子载波产生的干扰,同时也减少的耗,并使得上行传输适应不同的无线传输环境,包括路损,阴影,快(质量平衡与信干噪比平衡的原则相结合使用,是现在功率衰落等。

)控制技术的主流。

,下采用慢速功率控制)4、功率控制方面,只是对上行作功率调整(的发送对UE行按照参数配置进行固定功率的发送,即只有eNodeB的相于同控制使得对功中调功率作整。

LTE,上行率eNodeBUE到达MCS(Modulation And Coding Scheme), 不同单位带宽上的功率)Density,PSD的功率谱密度(Power Spectral 分配不同的发送带宽和调制编码机UEeNodeB 为不同的大致相等。

获得相应不同的上行发射功率。

,使得不同条件下的制MCSUE、对于下行信号,基站合理的功率分配和相互间的协调能够抑制小5的下行方向LTE区间的干扰,提高同频组网的系统性能。

严格来说,资料Word是一种功率分配机制,而不是功率控制。

不同的物理信道和参考信号之间有不同的功率配比。

下行功率分配以开环的方式完成,以控制基站在下行各个子载波上的发射功率。

下行RS一般以恒定功率发射。

下行共享控制信道PDSCH功率控制的主要目的是补偿路损和慢衰落,保证下行数据链路的传输质量。

下行共享信道PDSCH的发射功率是与RS发射功率成一定比例的。

LTE系统中的功率控制技术

LTE系统中的功率控制技术

1LTE 系统的干扰分析从3GPP 长期演进(LTE)的设计目标可以看出,下行100Mbit/s 和上行50Mbit/s 的速率指标对物理层传输技术提出了较高要求。

经过多轮的讨论,最终确定3GPP LTE 系统物理层传输方案为上行采用单载波SC -FDMA 、下行采用OFDMA 。

由于LTE 采用OFDMA 多址方式,相较于CDMA系统,对功率控制的依赖性大大降低了。

CDMA 系统是自干扰系统,小区内用户占用相同的频率,只是通过码分来区分用户,同频干扰非常大,必须使用高效的功率控制技术,限制系统内部的干扰电平,降低小区内和小区间的干扰。

另外,CDMA 系统还需要通过小区内的功率控制来克服“远近效应”,并减小UE 的功耗。

对于LTE 系统来说,系统采用OFDMA 和SC -FDMA 多3G 系统采用CDMA 多址方式,小区内/小区间的用户使用相同的频率资源,同频干扰较大,而LTE系统采用OFDMA 多址方式,小区内的不同用户占用不同的频率资源,小区间一般占用相同的频率资源,小区内用户间同频干扰相对减弱,因此,在主要用于解决干扰问题的功率控制技术方面,LTE 系统比3G 系统有较大简化。

本文重点介绍LTE 系统的功率控制技术,在介绍之前,首先分析了LTE 系统的干扰情况,随后对现有系统中的通用功率控制技术进行探讨,从而引出LTE 系统的功率控制方案。

关键词LTE ;OFDM ;上行功控;干扰LTE 系统中的功率控制技术龙紫薇,邓伟,杨光(中国移动通信集团公司研究院北京100053)TD 与LTE 技术创新论坛协办了各种多天线发射技术在终端不同移动速度下的吞吐量。

8结束语在LTE 系统中,根据覆盖场景、信道环境的变化,可自适应地采用发送分集、空间复用和波束赋形等技术,以获得较好的覆盖质量和小区吞吐量。

根据上面的仿真结果,发送分集、空间复用和波束赋形的应用场景建议如下。

·对于运动速度低、信噪比高的场景,建议采用闭环空间复用技术发射多个数据流,可获得较高的小区吞吐量。

LTE中的功率控制总结

LTE中的功率控制总结

LTE中的功率控制总结1、LTE框图综述2、LTE功率控制与CDMA系统功率控制技术的比较下表所示。

3、LTE当中上下行分别采用OFDMA和SC-FDMA的多址方式,所以各子载波之间是正交不相关的,这样就克服了WCDMA当中远近效应的影响。

为了保证上行发送数据质量,减少归属不同eNodeB的UE使用相同频率的子载波产生的干扰,同时也减少UE的能量消耗,并使得上行传输适应不同的无线传输环境,包括路损,阴影,快衰落等。

(质量平衡与信干噪比平衡的原则相结合使用,是现在功率控制技术的主流。

)4、功率控制方面,只是对上行作功率调整(采用慢速功率控制),下行按照参数配置进行固定功率的发送,即只有eNodeB对UE的发送功率作调整。

LTE中,上行功率控制使得对于相同的MCS(Modulation And Coding Scheme), 不同UE到达eNodeB的功率谱密度(Power Spectral Density,PSD单位带宽上的功率)大致相等。

eNodeB 为不同的UE分配不同的发送带宽和调制编码机制MCS,使得不同条件下的UE获得相应不同的上行发射功率。

5、对于下行信号,基站合理的功率分配和相互间的协调能够抑制小区间的干扰,提高同频组网的系统性能。

严格来说,LTE的下行方向是一种功率分配机制,而不是功率控制。

不同的物理信道和参考信号之间有不同的功率配比。

下行功率分配以开环的方式完成,以控制基站在下行各个子载波上的发射功率。

下行RS一般以恒定功率发射。

下行共享控制信道PDSCH功率控制的主要目的是补偿路损和慢衰落,保证下行数据链路的传输质量。

下行共享信道PDSCH的发射功率是与RS发射功率成一定比例的。

它的功率是根据UE反馈的CQI与目标CQI的对比来调整的,是一个闭环功率控制过程。

在基站侧,保存着UE 反馈的上行CQI值和发射功率的对应关系表。

这样,基站收到什么样的CQI,就知道用多大的发射功率,可达到一定的信噪比(SINR)目标。

LTE功率控制技术分析

LTE功率控制技术分析

LTE功率控制技术分析1LTE下行功率控制1)在频率和时间上采用恒定的发射功率,基站通过高层信令指示该发射功率数值。

2)下行功率分配以每个RE为单位,控制基站在各个时刻各个子载波上的发射功率。

3)下行功率分配方法:●提高参考信号的发射功率(Power Boosting)●与用户调度相结合实现小区间干扰抑制的相关机制4)PDSCH不采用功率控制●采用OFDMA技术,不同UE信号互相正交,不存在CDMA系统的远近效应。

●频域调度能够避免在深度路径损耗的RB上传输。

●采用功控会扰乱下行CQI测量,影响下行调度的准确性。

5)下行信道(PDSCH/PDCCH/PCFICH/PHICH)采用半静态的功率分配。

◇OFDMA系统如果要使用下行功控,主要用于补偿信道的路径损耗和阴影。

但下行功控和频域调度存在一定的冲突。

1.系统完全可以通过频域调度的方式避免在那些路径损耗较大的RB进行传输,因此对PDSCH 采用下行功率控制就不是很重要了。

2.采用下行功率控制反而会扰乱下行CQI测量,由于功控补偿了某些RB的路径损耗,UE无法获得真实的下行信道质量信息,从而影响到下行调度的准确性。

1.1 提高参考信号的发射功率-Power Boosting小区通过高层信令指示,通过不同比值设置RS信号在基站总功率中的不同开销比例,来实现RS发射功率的提升。

1.2 用户功率分配和小区间干扰协调在指示基础上,通过高层参数确定的具体数值,得到基站下行针对用户的PDSCH发射功率。

●关系:●用于MU-MIMO的场景●表示功率平均分配给两个用户●为了支持下行小区间干扰协调,定义了基站窄带发射功率限制(RNTP,Relative Narrowband Tx Power)的物理层测量,在X2口上进行交互。

它表示了该基站在未来一段时间内下行各个PRB将使用的最大发射功率的情况,相邻小区利用该消息来协调用户,实现同频小区干扰协调。

2LTE上行功率控制1)终端的功率控制目的:节电和抑制用户间干扰2)手段:采用闭环功率控制机制3)控制终端在上行单载波符号上的发射功率,使得不同距离的用户都能以适当的功率达到基站,避免“远近效应”。

LTE功率控制的基本思路范文

LTE功率控制的基本思路范文

LTE功率控制的基本思路1概述根据上行和下行信号的发送特点,LTE物理层定义了相应的功率控制机制。

对于上行信号,终端的功率控制在节电和抑制小区间干扰两方面具有重要意义,因此,上行功率控制是LTE重点关注的部分。

小区内的上行功率控制,分别控制上行共享信道PUSCH、上行控制信道PUCCH、随机接入信道PRACH和上行参考信号SRS。

PRACH信道总是采用开环功率控制的方式。

其它信道/信号的功率控制,是通过下行PDCCH信道的TPC信令进行闭环功率控制。

对于下行信号,基站合理的功率分配和相互间的协调能够抑制小区间的干扰,提高同频组网的系统性能。

严格来说,LTE的下行方向是一种功率分配机制,而不是功率控制。

不同的物理信道和参考信号之间有不同的功率配比。

下行功率分配以开环的方式完成,以控制基站在下行各个子载波上的发射功率。

下行RS 一般以恒定功率发射。

下行共享控制信道PDSCH功率控制的主要目的是补偿路损和慢衰落,保证下行数据链路的传输质量。

下行共享信道PDSCH的发射功率是与RS发射功率成一定比例的。

它的功率是根据UE反馈的CQI与目标CQI的对比来调整的,是一个闭环功率控制过程。

在基站侧,保存着UE反馈的上行CQI值和发射功率的对应关系表。

这样,基站收到什么样的CQI,就知道用多大的发射功率,可达到一定的信噪比(SINR)目标。

2上行功率控制上行功率控制可以兼顾两方面的需求,即UE的发射功率既足够大以满足QoS的要求,又足够小以节约终端电池并减少对其他用户的干扰。

为了实现这个目标,上行链路功率控制必须使自己适应于无线传播信道的特征(包括路径损耗特征、阴影特征和快速衰落特征),并克服来自其他用户的干扰(包括小区内用户的干扰和相邻小区内用户的干扰)。

LTE功率控制室开环功控和闭环功控的组合,这样与纯粹的闭环功控相比,理论上需要的反馈信息量比较少,即只有当LTE UE不能准确估算功率设置时才需要闭环功控。

LTE功率控制技术分析

LTE功率控制技术分析

LTE功率控制技术分析LTE(Long Term Evolution)是一种无线通信技术,它在高速移动通信、互联网接入和高质量媒体传输方面具有重要的应用。

在LTE系统中,功率控制是一项关键技术,它的主要目标是确保通信质量和效率,同时减少对网络资源的浪费。

开环功率控制是基于上行信号的接收质量,由终端设备自动调整发射功率。

当接收端的信号质量较差时,终端设备将增加发射功率,以确保信号能够被基站接收到。

当信号质量较好时,终端设备将减小发射功率,以节约网络资源和延长终端设备的电池寿命。

开环功率控制的主要优点是简单且容易实施。

然而,它也存在一些缺点。

首先,开环功率控制依赖于终端设备和基站之间的距离和信号质量,因此在距离较远、信号质量较差的情况下,可能导致终端设备需要增加更多的发射功率,从而耗费更多的能量。

其次,开环功率控制无法适应网络中的变化,例如,当网络中其他用户增加时,可能导致网络资源有限,从而影响终端设备的功率控制结果。

为了解决开环功率控制的不足,LTE系统引入了闭环功率控制。

闭环功率控制基于基站对终端设备发射功率的测量和反馈,以实现更精确的功率控制。

具体而言,基站会测量接收到的上行信号的强度,并将该测量结果反馈给终端设备。

终端设备根据反馈信息,调整自己的发射功率。

通过不断的测量和反馈,终端设备可以动态地调整发射功率,以适应网络变化和优化功率控制。

闭环功率控制的主要优点是能够实现更准确和可靠的功率控制。

通过基站的实时测量和反馈,终端设备可以准确地了解到自己的发射功率是否适当。

当发射功率过高时,终端设备可以及时减小功率,以避免对其他用户造成干扰。

当发射功率过低时,终端设备可以及时增加功率,以确保信号质量。

然而,闭环功率控制也存在一些挑战和限制。

首先,闭环功率控制需要更多的信道资源,以实现测量和反馈的交互。

这可能会占用网络容量,限制其他用户的数据传输速率。

其次,由于终端设备和基站之间的时延,反馈信息可能不及时到达终端设备,从而导致功率控制的不准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●无线资源管理包括功率控制、空闲态管理、准入控制、拥塞控制、切换和调度等模块。

●功率控制包括下行功控和上行功控,其主要目的为补偿信道的路径损耗、阴影衰落和多径衰落,以及抑制小区间干扰。

下行功控包括对下行小区参考信号、同步信号、PBCH、PCFICH、PHICH、PDCCH、PDSCH等信号和信道的功控,上行功控包括对PRACH、PUCCH、PUSCH以及Sounding RS等信号和信道的功控。

●空闲态管理涉及UE空闲态时的行为,包括PLMN选择、小区选择与重选、系统消息广播、跟踪区注册和寻呼等。

●准入控制根据负载监测反馈的小区负载情况,即PRB利用率、Non-GBR无线承载数量、GBR业务QoS满意率以及资源受限指示等来决定是否允许GBR业务和Non-GBR业务(新业务或切换业务)准入。

●负载控制通过控制小区的负载,释放或者降速低优先级GBR业务和Non-GBR业务,来保证已接入业务的QoS,为独立的连接提供系统要求的QoS和保证系统容量的最大化。

●切换是当UE在连接态下移动时,移动网络需要通过切换为UE提供畅通的物理信道,保证连续的用户体验,主要包括同频切换、异频切换与异系统切换。

●调度是指为上下行链路分配时频资源,基本目标是在满足QoS的前提下,利用不同UE之间的信道质量及其它条件的不同,计算出本TTI调度的UE所占用的的RB数、RB位置和MCS阶数等信息,尽可能最大化系统容量。

●E-UTRAN 下行采用OFDMA(Orthogonal Frequency Division Multiple Access)技术,上行采用SC-FDMA(Single Carrier-Frequency Division Multiple Access)技术,小区内不同UE的子载波之间是相互正交的。

因此功率控制主要用于补偿信道的路径损耗和阴影衰落,并抑制小区间干扰,保证网络覆盖和容量需求。

●E-UTRAN 功率控制在eNodeB和UE的配合下实现,可达到如下目的。

☐保证业务质量⏹功率控制通过调整eNodeB下行发射功率,UE上行发射功率,使业务质量刚好满足BLER(Block Error Rate)要求,避免功率浪费。

☐降低干扰⏹E-UTRAN 干扰主要来自邻区,通过对本小区的功率控制可减小对邻区的干扰。

☐降低能耗⏹上行功率控制减少UE电源消耗,下行功率控制减少eNodeB电源消耗。

☐提升覆盖与容量⏹下行功率控制为不同UE分配不同功率来满足系统覆盖要求,扩展小区覆盖范围;另外,eNodeB通过最小化分配下行发送给每个UE上的发射功率,使其刚好满足SINR(Signal to Interference plus Noise Ratio)要求,提高系统容量。

⏹由于对邻区的干扰主要来自边缘用户,eNodeB通过对边缘UE的上行功率控制采用部分路损补偿FPC(Fractional Power Compensate)降低对邻区干扰,提升网络容量。

●下行功率控制特性用于控制下行物理信号、数据信道和控制信道的功率,按照下行信道分类,下行功率控制特性主要包括:☐小区参考信号(Cell-specific Reference Signal)功率分配☐同步信号(Synchronization Signal)功率分配☐PBCH(Physical Broadcast Channel)功率分配☐PCFICH(Physical Control Format Indicator Channel)功率分配☐PHICH(Physical HARQ Indication Channel)功率控制☐PDCCH(Physical Downlink Control Channel)功率控制☐PDSCH(Physical Downlink Shared Channel)功率控制●上行功率控制特性用于控制上行物理信号、数据信道和控制信道的功率,按照上行信道分类,上行功率控制特性主要包括:☐PRACH(Physical Random Access Channel)功率控制☐PUSCH(Physical Uplink Shared Channel)功率控制☐PUCCH(Physical Uplink Control Channel)功率控制☐SRS(Sounding reference signal) 功率控制●下行功率控制采用固定功率分配和动态功率控制两种方式。

☐固定功率分配⏹对于小区参考信号、同步信号、PBCH、PCFICH 以及承载小区公共信息的PDCCH、PDSCH,其发射功率需保证小区的下行覆盖。

⏹固定功率是基于信道质量来配置的。

☐动态功率控制⏹对于PHICH 以及承载UE专用信息的PDCCH、PDSCH 等信道,其功率控制要在满足用户的QoS同时,降低干扰、增加小区容量和覆盖,采用动态功率控制。

eNodeB在所有下行子帧发射小区参考信号,用于UE进行下行信道估计以解调数据。

●一个时隙上的OFDM 符号可以根据是否有小区参考信号分为两类。

不同符号相对小区参考信号的EPRE 的比值由ρA 和ρB 决定。

☐ρA 用来确定不包含小区参考信号的OFDM 符号上的PDSCH 的EPRE 。

☐ρB 用来确定包含小区参考信号的OFDM 符号上PDSCH 的EPRE 。

☐P B 通过PDSCH 上EPRE 的功率因子比率ρB /ρA 确定,不同PB 和天线端口数配置下,对应的ρB/ρA 取值如表所示。

其中,P B 表示PDSCH 上EPRE 的功率因子比率ρB /ρA 的指示,通过参数Pb 设置。

●同步信号用于UE搜索可用小区以及系统同步,包括P-SCH(Primary SynchronizationChannel)和S-SCH(Secondary Synchronization Channel)。

●P-SCH 和S-SCH 功率通过参数SchPwr设置基于小区参考信号功率的偏置。

●可以使用MOD CELLCHPWRCFG修改小区信道功率配置信息的数据记录。

●SchPwr☐参数名称:同步信道功率☐界面取值范围:-3175~3175☐实际取值范围:-15.875~15.875,步长:0.005☐物理单位:0.005分贝☐内容:该参数表示小区同步信道功率相对于参考信号的功率偏置。

影响SCH的覆盖性能。

设置得越大,覆盖性能越好,但对邻区干扰越严重,且造成功率浪费。

反之,可能造成覆盖不足,形成盲区。

☐建议值:0●PBCH 功率分配☐PBCH 每帧广播一次,用于广播小区相关的基本系统信息(小区带宽、天线配置、帧号)。

☐PBCH 功率通过参数PbchPwr设置基于小区参考信号功率的偏置。

☐PBCH 的发射功率计算公式如下:⏹PowerPBCH= ReferenceSignalPwr+ PbchPwr●PCFICH 功率分配☐PCFICH 出现在每个子帧的第一个符号上,用于承载该子帧中用于PDCCH传输的OFDM符号数信息。

☐PCFICH 功率通过参数PcfichPwr设置基于基于小区参考信号功率的偏置。

☐PCFICH 发射功率计算公式如下:⏹PowerPCFICH= ReferenceSignalPwr+PcfichPwr●可以使用MOD CELLCHPWRCFG修改小区信道功率配置信息的数据记录。

●PbchPwr☐参数名称:物理广播信道功率☐界面取值范围:-3175~3175☐实际取值范围:-15.875~15.875,步长:0.005☐物理单位:0.005分贝☐内容:该参数表示小区PBCH信道功率相对于参考信号的功率偏置。

影响PBCH的覆盖性能。

设置得越大,覆盖性能越好,但对邻区干扰越严重,且造成功率浪费。

反之,可能造成覆盖不足,形成盲区。

☐建议值:一般场景下建议取值为-600;拉距测试场景下建议取值为0;峰值测试场景下建议取值为-600。

●PcfichPwr☐参数名称:物理控制格式指示信道功率☐界面取值范围:-3175~3175☐实际取值范围:-15.875~15.875,步长:0.005☐物理单位:0.005分贝☐内容:该参数表示小区PCFICH信道功率相对于参考信号的功率偏置。

影响PCFICH的覆盖性能。

设置得越大,覆盖性能越好,但对邻区干扰越严重,且造成功率浪费,减小PHICH和PDCCH能用的功率。

反之,可能造成覆盖不足,形成盲区。

☐建议值:FDD:-600;TDD:10M、15M、20M下取值为0,其余带宽下取值为-600。

●可以使用MOD CELLCHPWRCFG修改小区信道功率配置信息的数据记录。

●RaRspPwr☐参数名称:随机接入响应信号功率☐界面取值范围:-3175~3175☐实际取值范围:-15.875~15.875,步长:0.005☐物理单位:0.005分贝☐内容:该参数表示PDSCH发送随机接入响应消息功率相对于参考信号的功率偏置。

☐建议值:0●可以使用MOD CELLCHPWRCFG修改小区信道功率配置信息的数据记录。

●PchPwr☐参数名称:寻呼信道功率☐界面取值范围:-3175~3175☐实际取值范围:-15.875~15.875,步长:0.005☐物理单位:0.005分贝☐内容:该参数表示PDSCH发送寻呼消息时的功率相对于参考信号的功率偏置。

☐建议值:0●DbchPwr☐参数名称:动态广播信道功率☐界面取值范围:-3175~3175☐实际取值范围:-15.875~15.875,步长:0.005☐物理单位:0.005分贝☐内容:该参数表示在PDSCH上发送广播消息所使用的功率相对于参考信号的功率偏置。

☐建议值:一般场景下建议取值为-600;拉距测试场景下建议取值为0;峰值测试场景下建议取值为-600。

●PHICH 功率控制通过参数DlPcAlgoSwitch设置。

☐当子开关PhichInnerLoopPcSwitch打开时,PHICH 功率控制原理如下:eNodeB首先由CQI(Channel Quality Indicator)估算出SINRRS,然后根据SINRRS 和SINRTarget的差异周期性地调整PHICH 发射功率,适应路径损耗和阴影衰落的变化。

⏹如果SINRRS 小于SINRTarget,则增大PHICH 发射功率。

⏹反之则减小PHICH 发射功率。

☐当子开关PhichInnerLoopPcSwitch关闭时,PHICH 功率通过参数PwrOffset设置基于小区参考信号功率的偏置。

PHICH 发射功率计算公式如下:PowerPHICH= ReferenceSignalPwr+ PwrOffset●说明☐PHICH 的SINRTarget会影响小区覆盖半径、功率效率和小区容量等指标,产品中缺省设为恒定值。

相关文档
最新文档