5招搞定!抑制纹波、减小高频噪声超简单

合集下载

纹波抑制

纹波抑制

• 低频纹波 • 低频纹波是与输出电路的滤波电容容量相关。由于开关电 源体积的限制,电解电容的容量不可能无限制地增加,导 致输出低频纹波的残留,该输出纹波频率随整流电路方式 的不同而不同。 • 一般的开关电源由AC/DC和DC/DC两部分组成。AC/DC 的基本结构为整流滤波电路,它输出的直流电压中含有交 流低频纹波,其频率为输入交流电源频率的二倍,幅值与 电源输出功率及滤波电容容量有关,一般控制在10%以内 。该交流纹波经DC/DC变换器衰减后,在开关电源输出端 表现为低频噪声,其大小由DC/DC变换器的变比和控制系 统的增益决定。
3、PCB layout要求 • 开关电源的PCB布线也非常关键,这是个很辣手的问题。 4、在二极管上并电容C或RC • 二极管高速导通截止时,要考虑寄生参数。在二极管反向 恢复期间,等效电感和等效电容成为一个RC振荡器,产 生高频振荡。为了抑制这种高频振荡,需在二极管两端并 联电容C或RC缓冲网络。电阻一般取10Ω-100 Ω,电容取 4.7pF-2.2nF。 • 在二极管上并联的电容C或者RC,其取值要经过反复试验 才能确定。如果选用不当,反而会造成更严重的振荡。
b、合理选择闭环调节器的开环放大倍数和闭环 调节器的参数,开环放大倍数过大有时会引起调 节器的振荡或自激,使输出纹彼含量增加,过小 的开环放大倍数使输出电压稳定性变差及纹波含 量增加,所以调节器的开环放大倍数及闭环调节 器的参数要合理选取,调试中要根据负载状况进 行调节。 c、在反馈通道中不增加纯滞后滤波环节,使延时 滞后降到最小,以增加闭环调节的快速性和及时 性,对抑制输出电压纹波是有益的
• 闭环调节控制引起的纹波噪声
2、抑制纹波的一般措施和方法 • 低频纹波的抑制 • 低频纹波抑制的几种常用的方法: a、加大输出低频滤波的电感,电容参数, 使低频纹波降低到所需的指标。 b、采用前馈控制方法,降低低频纹波分量 。

开关电源工作时,如何抑制纹波和减小高频噪声?

开关电源工作时,如何抑制纹波和减小高频噪声?

开关电源工作时,如何抑制纹波和减小高频噪声?
开关电源通过高频化的能量变换获得较高的能量转换效率,工作频率一般是几十KHz到上百KHz。

相对于线性电源,开关电源工作时的高频噪声是比较多的,纹波系数也相对较高,需要设计合适的滤波电路来抑制纹波和消除高频噪声。

电容滤波
在电源电路中,电容滤波是必不可少的。

在开关电源电路中,滤波电容的选择显得特别重要,特别是输出端的滤波电容。

由于工作频率较高,需要考虑电容的阻抗和频率特性,滤波电容容量并不是越大越好。

因为电源的频率提高后,电容值会急剧下降,所以选择滤波电容的时候我们需要考虑电容的ESR(等效串联阻抗)。

需要尽量使用ESR值小的滤波电容。

电容需要在工作频率内有较低的等效阻抗才会有良好的滤波效果。

选择电容时需要考虑开关电源的工作频率,输出电压,输出电流,电容容值大小可以参考前辈们的计算公式:C>0.289/{f×(U/I)× ACv},ACv是纹波系数,单位是%。

LC滤波
电感有着通直流隔交流的特性,加入滤波电感对消除高频噪声有着非常好的效果。

电容和电感组合在一起使用效果更好。

如果有必要,我们还可以加入二级的LC滤波电路。

使用滤波电感时,需要根据开关电源的功率选择适当的功率电感。

LDO滤波
LDO(低压差线性稳压器)有一项噪声抑制比的指示,也有着很好的滤波效果,加入LDO后,纹波系数会大幅的降低,对抑制纹波和消除高频噪声非常有效。

消除纹波的方法

消除纹波的方法

消除纹波的方法在电子电路中,纹波是指电压或电流中周期性的波动。

这种波动可能会对电子设备产生不利影响,因此,掌握消除纹波的方法至关重要。

本文将为您详细介绍几种消除纹波的方法。

一、纹波产生的原因1.电源波动:电源本身的电压波动会导致输出电压纹波。

2.负载变化:电子设备负载的波动也会引起输出电压纹波。

3.元器件性能:电路中元器件的性能不稳定,如电容、电感等,可能导致纹波产生。

二、消除纹波的方法1.线性稳压器线性稳压器是一种常见的消除纹波的方法。

它通过调整稳压器的输出电压,使其稳定在设定值。

线性稳压器具有结构简单、可靠性高等优点,但功耗较大。

2.开关稳压器开关稳压器利用开关元件对输入电压进行脉冲宽度调制(PWM),从而实现高效、低功耗的电压稳定。

开关稳压器具有体积小、效率高等优点,但电路较为复杂。

3.滤波器滤波器是一种用于消除纹波的被动元件。

根据纹波频率,可以选择低通滤波器、高通滤波器、带通滤波器等。

滤波器能有效抑制纹波,但需要注意选择合适的滤波器类型和参数。

4.电容补偿电容补偿是通过在电路中添加适当容值的电容,提高电源的负载能力,从而降低纹波。

电容补偿简单易行,但需要根据负载变化调整电容值。

5.磁性元件磁性元件(如电感、变压器)具有储能和滤波作用,能有效抑制纹波。

磁性元件的选择和设计需根据实际电路参数进行。

6.数字信号处理对于数字信号处理电路,可以通过软件算法对纹波进行补偿。

这种方法具有灵活性高、适应性强等优点,但需要一定的编程和算法知识。

7.多级稳压多级稳压是指将多个稳压器级联,逐级降低纹波。

这种方法适用于对纹波要求较高的场合,但电路复杂度和成本较高。

三、总结消除纹波的方法多种多样,需要根据实际电路需求和性能要求进行选择。

在设计电路时,应充分考虑纹波产生的原因,采用合适的消除纹波方法,确保电子设备的稳定运行。

5招搞定!抑制纹波、减小高频噪声超简单

5招搞定!抑制纹波、减小高频噪声超简单

5招搞定!抑制纹波、减小高频噪声超简单
5 招搞定!抑制纹波、减小高频噪声超简单
开关电源的纹波和噪声是一个本质问题,换而言之无论纹波和噪声多幺小,也无法从根本上去除,再绝对的讲,开关电源无论成本怎幺提高,也无法完全达到线性电源的性能和特点。

那幺,通常抑制或减少它的做法有五种:
1.加大电感和输出电容滤波
根据开关电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。

所以加大电感值和输出电容值可以减小纹波。

同样,输出纹波与输出电容的关系:vripple=Imax/(Co×f)。

可以看出,加大输出电容值可以减小纹波。

通常的做法,对于输出电容,使用铝电解电容以达到大容量的目的。

但是电解电容在抑制高频噪声方面效果不是很好,而且ESR 也比较大,所以会在它旁边并联一个陶瓷电容,来弥补铝电解电容的不足。

同时,开关电源工作时,输入端的电压Vin 不变,但是电流是随开关变化的。

这时输入电源不会很好地提供电流,通常在靠近电流输入端(以BucK 型为例,是SWITcH 附近),并联电容来提供电流。

上面这种做法对减小纹波的作用是有限的。

因为体积限制,电感不会做的很大;输出电容增加到一定程度,对减小纹波就没有明显的效果了;增加开关频率,又会增加开关损失。

所以在要求比较严格时,这种方法并不是很好。

关于开关电源的原理等,可以参考各类开关电源设计手册。

2.二级滤波,就是再加一级LC 滤波器
LC 滤波器对噪纹波的抑制作用比较明显,根据要除去的纹波频率选择合适的电感电容构成滤波电路,一般能够很好的减小纹波。

消除纹波的方法

消除纹波的方法

消除纹波的方法
纹波是指在电力传输过程中出现的电压或电流波动现象,可能会影响电力系统
的稳定性和安全性。

因此,消除纹波是电力系统运行中非常重要的一项任务。

以下是一些常用的消除纹波的方法:
1. 调整电源质量:电源质量不佳是导致纹波的一个常见原因。

因此,可以通过
安装电力滤波器、使用电源稳压器等措施来提高电源的质量,减少纹波的产生。

2. 安装滤波器:滤波器是一种能够滤除电力信号中的杂波和谐波的装置。

在电
力系统中,安装滤波器可以有效消除纹波,提高电力系统的稳定性。

3. 使用电容器:电容器是一种能够储存电能的元件,可以在电力系统中起到平
滑电压波动的作用。

通过合理配置电容器,可以消除电力系统中的纹波。

4. 调整负载平衡:负载不平衡也是导致电力系统中纹波产生的原因之一。

因此,通过调整负载的平衡性,可以有效减少电力系统中的纹波。

5. 使用线性稳压器:线性稳压器是一种能够稳定输出电压的电子元件,可以有
效消除电力系统中的纹波。

通过使用线性稳压器,可以提高电力系统的稳定性和可靠性。

6. 加装电容:电容器是一种可以储存电能的电子元件,可以在电力系统中平滑
电压波动。

通过合理加装电容,可以有效消除电力系统中的纹波。

总的来说,消除电力系统中的纹波是电力系统运行中非常重要的一项任务,可
以通过调整电源质量、安装滤波器、使用电容器、调整负载平衡、使用线性稳压器等方法来实现。

通过有效的消除纹波,可以提高电力系统的稳定性和可靠性,确保电力系统的正常运行。

开关噪声与纹波噪声的抑制-基础电子

开关噪声与纹波噪声的抑制-基础电子

开关噪声与纹波噪声的抑制-基础电子
无论何种工作方式的直流-直流变换器都用电解电容或钽电容吸收输出纹波,然而,从0℃开始这些电容的tanδ增大,+20℃时是-20℃时的20~50倍,纹波也按此比例增大。

图1所示为直流-直流变换器的输出等效电路。

电路中,用电容C、寄生电感要Ls和电阻Rs,等效表示平滑电容,使用温度较低时,这L些寄生成分变大,则抑制噪声效果变差。

图1 直流-直流变换器的输出等效电路
为了抑制开关与纹波噪声,建议在直流-直流变换器的输入端接入大容量而且高频特性良好的电解电容(1~4.7μF),并要与其并联0.22~0.47μF的薄膜电容。

这种薄膜电容要选用开关电源用的电容,并要靠近直流-直流变换器安装,引线尽量短,以免引线电感影响电路J眭能。

对于直流-直流变换器,外接负载的接线长度不同,其噪声大小也不一样。

对于优质的直流-直流变换器来说,负载接线长达1m,其开关与纹波噪声也不会增大,这也是评价直流一直流变换器特性良好的指标。

电路方式与内部构成较差的直流一直流变换器,其噪声随着与负载的距离加长而变大。

对于产品说明书中记载不用外接电容等元器件的直流-直流变换器产品不要过于相信,可在其输出部分外接2.2μF电容C2和C3与负载RL并联2.2μF电容C4和C5,在输入端接入C1(33~47μF),还可以与其并联1~2.2μF的陶瓷电容,如图2所示。

这样,可以减小直流-直流变换器的噪声。

图2 直流-直流变换器外接电容的情况
:。

如何抑制电源纹波

如何抑制电源纹波

如何抑制电源纹波直流电压波动会产生纹波现象,叠加在直流上的分量称为纹波,在我们平常的应用中DCDC输出电源纹波过大对于正常工作的芯片可能会造成影响,严重的会导致CPU挂机,如:板载DDR颗粒的VDD纹波过大可能会使得CPU对于DDR的数据读写出错,CPU访问到非法地址空间造成芯片的挂机。

电源输出交流纹波可以视为是直流输出叠加一个交流成份;从图中可以看出,纹波中包括了两个交流成份:一个DCDC输出的纹波信号与一个高频噪声的叠加。

在龙芯3A3000手册中对于芯片的电源纹波有明显的规定。

因此对于DCDC输出电压的纹波抑制显得尤为重要。

根据BUCK电路输出纹波计算公式:减少DCDC输出纹波的几种方式如下:1、增大BUCK输出电容:增大输出电容容量也就是增大了电源系统所存储的能量,当CPU在加载过程中需要大电流提供时,电源平面上较大的电容即可为CPU 提供瞬时所需的能量,使得电压波动不大。

但是电容的选择也是很重要的,对于小电流电源平面(负载电流3A这种)可能增加些许陶瓷电容即可达到较好的需求,但是对于大电流电源平面(负载电流上百A这种),所增加的电容容量就会变得很大,此时ESR就变成了考虑对象。

通常CPU的核心电源都是低压大电流的,一般选择大容量低ESR的高分子铝电解电容,而不选择铝液体电解电容。

铝液体电解电容不同规格ESR如下:高分子铝电解电容不同规格EESR如下:基本上为mΩ级2、增大电源芯片的开关频率:提高高频纹波频率,有利于抑制输出高频纹波,但是过大的开关频率容易造成EMI辐射超标,因此开关频率最好还是选择一个合适的值。

3、增大输出电感:根据开关电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。

所以加大电感值可以减小输出电源的纹波。

4、优化反馈环路设计:4.1、增加前馈电容因为电源的反馈断加入了前馈电容,所以与反馈电阻形成新的零点和极点,虽然Cff在其零点频率之后引入了增益提升,此处涉及较深的控制理论,此处不再展开叙述。

功放mos纹波抑制

功放mos纹波抑制

功放mos纹波抑制功放(MOS)纹波抑制是指在功放输出的电压波形中,消除或减小纹波信号的方法或技术。

纹波信号是指在直流电平上的交流成分,它会影响到功放输出的稳定性和音频质量。

因此,实现功放纹波抑制是提高功放性能的重要手段之一。

在功放电路中,纹波信号主要来自于电源和功放本身的非线性特性。

电源的纹波主要是由于电源本身的输出不稳定引起的,而功放的纹波则是由于功放的工作状态不稳定或工作频率不稳定引起的。

纹波信号会引起功放输出的电压波形不平稳,从而产生噪声和失真,降低音频信号的可听性和音质。

为了实现功放纹波抑制,可以采取以下几种方法:1. 电源滤波:通过在功放电路中添加合适的电源滤波电路,可以有效地滤除电源纹波。

电源滤波可以采用电容滤波、电感滤波和二极管整流等方法,将电源输出的交流成分滤除或降低到一个可接受的范围内。

2. 反馈控制:利用反馈控制技术可以有效地抑制功放本身的纹波。

反馈控制可以通过将功放输出与输入进行比较,并根据比较结果对功放进行调整,使输出波形更加稳定。

常见的反馈控制方法有全局反馈和局部反馈。

3. 模拟滤波:在功放输出端添加合适的模拟滤波电路,可以对输出信号进行滤波,降低纹波成分。

模拟滤波可以采用RC滤波器、LC 滤波器或者其他滤波器结构,根据功放输出频率的不同选择合适的滤波器。

4. 数字滤波:借助数字信号处理(DSP)技术,可以对功放的输出信号进行数字滤波处理,消除或降低纹波信号。

数字滤波可以利用滤波算法对功放输出信号进行滤波,通过调整滤波器参数和滤波器结构,可以实现不同程度的纹波抑制。

5. 优化设计:在功放的电路设计中,可以通过合理选择元器件、优化布局和提高抗干扰能力等手段,降低功放输出的纹波。

优化设计可以从电源部分、功放部分和输出部分入手,综合考虑各个部分的影响因素,以达到最佳的纹波抑制效果。

功放(MOS)纹波抑制是提高功放性能和音频质量的重要手段。

通过电源滤波、反馈控制、模拟滤波、数字滤波和优化设计等方法,可以有效地抑制功放输出中的纹波信号,提高功放的稳定性和音频质量。

降低电源纹波噪声的方法

降低电源纹波噪声的方法

降低电源纹波噪声的方法
降低电源纹波噪声的方法有多种,以下是一些常见的方法:
1. 采用高品质的电源滤波器:电源滤波器可以有效地降低电源中的高频纹波和噪声,从而提高电源的稳定性和可靠性。

高品质的电源滤波器通常具有更高的滤波效果和更低的损耗。

2. 使用低通滤波器:低通滤波器可以有效地滤除高频纹波和噪声,从而提高电源的稳定性和可靠性。

低通滤波器可以使用电容或电感等元器件组成,但要注意滤波器的通带和阻带特性。

3. 优化电源电路设计:合理的电源电路设计可以降低电源中的高频纹波和噪声。

要注意电源电路中的元件选择、电路布局和信号隔离等方面。

4. 采用直流滤波器:直流滤波器可以有效地降低电源中的低频纹波和噪声,从而提高电源的稳定性和可靠性。

直流滤波器可以使用电解电容或电感等元器件组成。

5. 调整电源供电电压和频率:适当的调整电源供电电压和频率可以降低电源中的高频纹波和噪声。

但要注意调整电压和频率的变化不能过大,否则会对电源的稳定性产生不利影响。

以上是一些常见的降低电源纹波噪声的方法,实际应用中需要根据具体情况选择合适的方法。

同时,为了减少电源纹波噪声,还需要注重电源电路的设计和制造质量,从根本上提高电源的稳定性和可靠性。

抑制llc工频纹波的方法

抑制llc工频纹波的方法

抑制llc工频纹波的方法
抑制LLC工频纹波的方法包括但不限于以下几种:
1. 使用π型滤波器:π型滤波器由一个电容、一个电感和一个电容组成,可以有效抑制纹波。

2. 加大输出电容容量:虽然加大电容容量对抑制纹波的效果不如使用π型滤波器明显,但仍然有一定的效果。

3. 加入RC缓冲电路:在二极管两端加RC缓冲电路,可以抑制二极管在高速导通和关断时产生的寄生电感和电容产生的高频振荡。

4. 使用LC滤波器:LC滤波器对噪声和纹波抑制效果比较明显,根据纹波频率选择合适电感电容值。

由于柱形电感价格低体积小的优点,一般LC中电感大都会选择柱形电感,然而柱形电感是开放式磁结构,对周围会产生较严重磁干扰,可以采用两个电感并排放置,且电流流入方向相反,即有助于引导磁通从一个磁柱到另一个磁柱,从而可以降低电磁干扰。

5. 降低变压器漏感:采用三明治绕法可使初次级绕组耦合更加紧密,使漏感得以减小,从而到达减小噪声的目的。

6. AC耦合和打开带宽限制:AC耦合是去掉叠加的直流电压,得到准确的波形。

打开带宽限制是防止高频噪声的干扰,防止测出错误的结果。

因为高频成分幅值较大,测量的时候应除去。

请注意,以上方法并非全部,建议咨询专业人士获取更全面的信息。

dcdc滤除纹波的方法

dcdc滤除纹波的方法

DCDC滤除纹波的方法主要有以下几种:
1. 增大输出电感:电感越大,对高频噪声的抑制能力越强,因此增大输出电感可以有效地降低DCDC输出的纹波噪声。

2. 增大输出电容:电容可以吸收和存储电荷,因此增大输出电容可以减小DCDC输出的纹波噪声。

3. 在反馈的上电阻并一个前馈电容(一般为10pf\~100pf):这种方法可以减少DCDC输出电压的纹波噪声,提高输出电压的稳定性。

4. 调节补偿引脚的RC参数:RC参数决定了DCDC的响应速度和稳定性,通过调整RC参数可以优化DCDC的输出性能,降低纹波噪声。

5. 在负载输入端加一级或者两级LC滤波电路:LC滤波电路可以有效地滤除高频噪声,提高DCDC输出的稳定性和可靠性。

需要注意的是,不同的DCDC电路和应用场景可能需要不同的滤波方法。

因此,在实际应用中,需要根据具体的电路参数和性能要求,选择合适的滤波方法。

同时,滤波电路的设计也需要考虑到成本、体积和可靠性等因素。

电路中如何降低噪音和波纹电流

电路中如何降低噪音和波纹电流

电路中如何降低噪音和波纹电流在电子电路的世界里,噪音和波纹电流就像是不和谐的音符,会影响整个电路系统的性能和稳定性。

它们可能导致信号失真、设备故障,甚至影响到整个系统的正常运行。

因此,学会如何降低电路中的噪音和波纹电流是电子工程师们必须掌握的重要技能。

要理解噪音和波纹电流,首先得知道它们是怎么产生的。

噪音在电路中可以来源于多个方面。

外部的电磁干扰,比如附近的电源线、电机或者无线通信设备,都可能向电路中引入不需要的电磁信号,从而形成噪音。

而在电路内部,元件的热噪声、散粒噪声以及闪烁噪声等也是常见的噪音源。

波纹电流则通常与电源相关。

当电源的输出不是完全平滑的直流,而是存在一定的周期性波动时,就产生了波纹电流。

这在一些使用滤波不充分的电源或者在负载变化较大的情况下尤为明显。

那么,我们可以通过哪些方法来降低这些不友好的“家伙”呢?一个有效的方法是优化电路布局。

在设计电路板时,要合理安排元件的位置,尽量缩短信号路径,减少信号的传输距离。

对于容易受到干扰的敏感信号线路,要与产生噪音的线路保持足够的距离,或者采用屏蔽措施。

而且,电源线和地线的布线也非常关键。

要确保电源线有足够的宽度,以降低电阻和电感,减少电源线上的电压降和波纹。

地线则要形成低阻抗的回路,避免形成环流产生噪音。

选择合适的电子元件也能对降低噪音和波纹电流起到很大的作用。

比如,在放大器的设计中,选择低噪声的放大器芯片可以从源头上减少噪音的产生。

对于电容和电感等储能元件,要根据电路的工作频率和性能要求,选择合适的参数和类型。

例如,在电源滤波电路中,使用大容量的电解电容来滤除低频的波纹,同时配合使用小容量的陶瓷电容来滤除高频的噪音。

滤波电路是降低波纹电流的重要手段。

常见的滤波电路有电容滤波、电感滤波以及 LC 滤波等。

电容滤波电路简单易用,通过电容的充放电作用来平滑电源输出。

电感滤波则利用电感的电流不能突变的特性,来抑制电流的变化,从而降低波纹。

LC 滤波结合了电容和电感的优点,能够提供更好的滤波效果。

开关电源适配器输出纹波和噪声电压的抑制措施

开关电源适配器输出纹波和噪声电压的抑制措施

开关电源适配器输出纹波和噪声电压的抑制措施第一篇:开关电源适配器输出纹波和噪声电压的抑制措施开关电源适配器输出纹波和噪声电压的抑制措施一、在开关电源适配器输出端采用片式三端电容器与普通电解电容器组合改善滤波的高频特性。

开关电源适配器的输出端含有较大的噪声电压的峰-峰值,这是由于电解电容器在高频下的特性不完善所造成的。

因为电解电容在高频下可以用电容、电阻和电感三者的串联来等效,所以在高频下电容对噪声的旁路作用不在明显。

由于电阻和电感的存在,反而使噪声电压体现在开关电源适配器的输出端。

为了抑制开关电源适配器的输出噪声,通常有两个建议可供设计人员采用:1)将输出端的电解电容一拆为几,即将一个大容量的电解电容采用几个小容量电解电容并联来替代。

这一建议虽不能根本抑制噪声电压的产生,但用新办法所产生的信噪声电压的峰-峰值要比原来为小。

2)在电解电容旁边并联一个小容量的高频陶瓷电容器,利用高频电容在高频下所体现的低容抗,使输出噪声电压得到较大衰减(当然在印制电路板上的陶瓷电容也应该保持比较短的布线长度,保持尽可能小的线路阻抗)。

二、采用高性能的表面贴装滤波器。

采用表面贴装的高性能滤波器来改善输出电压噪声。

贴装滤波器内部电路等效为一个π型滤波线路,在开关电源适配器的输出端串上一个贴装高性能滤波器。

对比原来的输出噪声电压峰-峰值,会大幅减小,在示波器上,几乎显示为一条直线,说明输出电压的噪声已明显得到抑制,从而很好说明了表面贴装高性能滤波器在这个线路中的作用。

三、避免多个模块电源之间相互干扰。

当在同一块印制电路板上有多个模块电源一起工作,若两个模块靠得很近,模块电源本身是不屏蔽的,并且靠得很近,输出端也没有采用低阻抗的电容,而且两个模块离开实际的输出端子的距离又比较远时,则可能因为相互之间的干扰使输出噪声电压增加。

为避免这种相互干扰,可采用屏蔽措施,或将它们的安装位置适当远离,以减小相互之间的影响。

四、在开关电源适配器的输出端增加一级低压差线性稳压电路。

降低电源纹波噪声的一些常用方法

降低电源纹波噪声的一些常用方法

降低电源纹波噪声的一些常用方法在应用电源模块常见的问题中,降低负载端的纹波噪声是大多数用户都关心的。

下文结合纹波噪声的波形、测试方式,从电源设计及外围电路的角度出发,阐述几种有效降低输出纹波噪声的方法。

1、电源的纹波与噪声图示纹波和噪声即:直流电源输出上叠加的与电源开关频率同频的波动为纹波,高频杂音为噪声。

具体如图1所示,频率较低且有规律的波动为纹波,尖峰部分为噪声。

图12、纹波噪声的测试方法对于中小微功率模块电源的纹波噪声测试,业内主要采用平行线测试法和靠接法两种。

其中,平行线测试法用于引脚间距相对较大的产品,靠测法用于模块引脚间距小的产品。

但不管用平行线测试法还是靠测法,都需要限制示波器的带宽为20MHz,同时需要去掉地线夹。

具体如图2和图3所示。

图2 平行线测试法注1:C1为高频电容,容量为1μF;C2为钽电容,容量为10μF。

注2:两平行铜箔带之间的距离为2.5mm,两平行铜箔带的电压降之和应小于输出电压的2%。

图3靠测法3、去除地线夹测试的区别测试纹波噪声需要把地线夹去掉,主要是由于示波器的地线夹会吸收各种高频噪声,不能真实反映电源的输出纹波噪声,影响测量结果。

下面的图4和图5分别展示了对同一个产品,使用地线夹及取下地线夹测试的巨大差异。

图4 使用地线夹测试-示波器垂直分辨率200mv/div图5 去除地线夹测试-示波器垂直分辨率50mv/div4、设计上PCB布局的影响好与坏的PCB布局,是设计上影响纹波噪声的关键因素。

差的PCB布局如图6所示,变压器输出的地,直接通过过孔连到背部的地平面,地平面连接电源的输出引脚。

此布局在输出5V/2A的负载下,实测电源尖峰达1.5V VP-P。

图6 差的PCB布局如图7 所示是比较好的PCB布局,调整了变压器的位置,将变压器输出地通过两个电容后,再回到地平面和输出引脚相连。

实测在相同5V/2A输出的负载下,噪声已降到60mV VP-P,差别显著。

电子电路中的电源滤波方法

电子电路中的电源滤波方法

电子电路中的电源滤波方法在电子电路中,电源滤波是非常重要的一部分,它用于减少电源中的噪声和纹波,确保电路能够正常运行。

本文将介绍几种常见的电源滤波方法及其原理和应用。

一、电源滤波的原理在了解电源滤波方法之前,我们需要先了解电源中存在的问题。

直接从电源获得的电力通常存在交流纹波和高频噪声。

这些噪声和纹波会对电子设备的稳定性和性能造成一定的干扰和损害。

因此,电源滤波的主要原理是通过特定的电路设计和元件选择,将这些噪声和纹波尽可能地滤除或削弱,使电子设备能够得到较为干净和稳定的电源。

二、电源滤波方法1. 电容滤波电容滤波是最常见、最简单的电源滤波方法之一。

它利用电容器的特性来削弱电源中的高频噪声。

具体来说,将一个电容器连接在电源的正负极之间,使其成为并联于负载电路的一部分。

在负载变化或电源纹波时,电容器可以通过吸收或释放电荷来平滑电压波动,从而降低电源中的纹波和噪声。

2. 电感滤波电感滤波是通过电感元件来抑制电源中的高频噪声和纹波。

电感滤波主要依靠电感元件对电流的阻抗特性。

当电流中断或变化时,电感元件的阻抗会使得电流无法突变,从而削弱电源中的纹波和噪声。

3. RC滤波RC滤波是一种结合了电容和电阻的滤波方法。

它通过电容器和电阻器的串联或并联组合,来实现对不同频率信号的滤波效果。

在RC滤波中,电容器主要负责高频信号的滤波,而电阻器主要负责低频信号的滤波。

4. 低通滤波低通滤波是一种常用的电源纹波滤波方法。

它通过设置合适的频率阈值,将高于该频率的信号滤出,从而减少纹波。

低通滤波常常采用RC滤波电路或者二阶滤波器来实现。

5. 高通滤波高通滤波和低通滤波相反,它主要用于滤除低频信号和直流分量,保留高频信号。

高通滤波常常在信号输入前用于电源中,以消除直流偏置和低频干扰。

三、电源滤波方法的应用电源滤波方法广泛应用于各种电子设备和系统中。

比如,在音频放大器和音响系统中,电源滤波可以有效减少不必要的杂音,提升音质。

在数字电路中,电源滤波可以降低功耗和提高稳定性。

降低电源输出纹波噪声设计技巧

降低电源输出纹波噪声设计技巧

降低电源输出纹波噪声设计方法纹波噪声是衡量电源的一个重要指标,一个好的电源必须要把输出纹波噪声控制在一个合理的范围内。

但一般有哪些行之有效的降低纹波噪声的对策呢?下面我们抛砖引玉,简单讨论常用的八个方法。

1、电源PCB走线和布局反馈线路应避开磁性元件、开关管及功率二极管。

输出滤波电容放置及走线对纹波噪声至关重要,如图1所示,传统设计中由于到达每个电容的阻抗不一样,所以高频电流在三个电容中分配不均匀,改进设计中可以看出每个回路长度相当即高频电流会均匀分配到每个电容中。

图1如果PCB是多层板,可以选择和主电流回路层最近一层覆地,覆地可以有效的解决噪声问题,注意,尽量保证覆地的完整性。

2、场效应管D级与输入正之间加RCD一般选择场效应管的反向恢复时间要比二极管D1慢2~3倍,以避免形成直通电流,此电流会产生很强的磁场,可增大输出噪声干扰,所以可人为的通过栅极电阻R4来减慢开关管的开关速度。

为了不影响关断速度可以在栅极电阻并联一个二极管D2如图2所示。

图23、场效应管DS端并联RC可以在场效应管DS两端并联一个RC电路也可以有效的降低噪声干扰如图2所示,电容C2一般在100P左右,电容值过大会导致场效应管的开关损耗加大,电阻R2一般选取小于10Ω电阻。

4、输出二极管两端并联RC二极管在高速导通和关断时,反向恢复期间,二极管的寄生电感和电容会产生高频振荡,为了抑制高频振荡可在二极管两端加RC缓冲电路如图2所示,电阻R3一般在1Ω~100Ω,电容C3一般在100pF~1nF,如果电源工作频率较低,效率满足要求的话,二极管D3可以选择反向恢复时间较慢的二极管。

5、输出加二级LC滤波LC对噪声和纹波抑制效果比较明显,根据纹波频率选择合适电感电容值,但由于柱形电感价格低体积小的优点,所以一般LC中电感大都会选择柱形电感,然而柱形电感是开放式磁结构,对周围会产生较严重磁干扰,我们可以采用两个电感并排放置,且电流流入方向相反,即有助于引导磁通从一个磁柱到另一个磁柱,从而可以降低电磁干扰,如图3所示。

DCDC降低纹波噪声的3种方法

DCDC降低纹波噪声的3种方法

DCDC降低纹波噪声的3种方法
1、纹波的定义
纹波是指在直流电压或电流上,有规律的叠加在直流稳定量上的交流分量。

现实中的电压和电流并不是完全稳定的一条直线,而是叠加有很多的波动,并且这些波动的频率是固定的,把这些波动叫做纹波。

2、噪声的定义
噪声是指叠加在纹波之上,非连续存在并无规律的电压或者电流尖峰。

也就是说噪声指的是叠加在纹波上的杂波。

下面的图1很好的描述了什么是纹波噪声。

3、纹波噪声的危害
当电源的纹波噪声过大时,它们可能会影响运放的精度,干扰AD或者DA模块的工作,使得整机的精度大幅度下降。

4、如何降低纹波噪声
降低开关器件动作带来的纹波噪声:设计人员在实际的开发过程中,需要根据实际的电路
参数及性能要求进行适当的调整,进行综合考虑。

●降低输入前端的低频纹波:增加滤波措施,各种类型的电容及电感滤波电路:LC、π型等,
或者在一些条件允许的系统中,也可以在前端及后端增加稳压器件,来降低纹波噪声,在这种情况下该部分的纹波噪声则完全由稳压器件的性能决定。

●降低线路寄生及耦合导致的纹波噪声:从设计上改善寄生参数(如优化工艺设计及PCB走
线等等),还可以施加共模滤波方案。

提高开关电源工作频率,抑制输出高频纹波!

提高开关电源工作频率,抑制输出高频纹波!

提高开关电源工作频率,抑制输出高频纹波!低频纹波低频纹波是与输出电路的滤波电容容量相关。

由于开关电源体积的限制,电解电容的容量不可能无限制地增加,导致输出低频纹波的残留,该输出纹波频率随整流电路方式的不同而不同。

一般的开关电源由AC/DC和DC/DC两部分组成。

AC/DC的基本结构为整流滤波电路,它输出的直流电压中含有交流低频纹波,其频率为输入交流电源频率的二倍,幅值与电源输出功率及滤波电容容量有关,一般控制在10%以内。

该交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。

低频纹波例如:对普通24V电源来说,电压型控制DC/DC变换器的纹波抑制比一般为45~50dB,其输出端的低频交流纹波有效值为60~120mV。

电流型控制DC/DC变换器的纹波抑制比稍有提高,但其输出端的低频交流纹波仍较大。

若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施。

可采用前级预稳压和增大DC/DC变换器闭环增益来消除。

低频纹波的抑制a、加大输出低频滤波的电感,电容参数,使低频纹波降低到所需的指标。

b、采用前馈控制方法,降低低频纹波分量。

高频纹波高频纹波噪声来源于高频功率开关变换电路,在电路中,通过功率器件对输入直流电压进行高频开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关,设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。

高频纹波高频纹波的抑制a、提高开关电源工作频率,以提高高频纹波频率,有利于抑制输出高频纹波。

b、加大输出高频滤波器,可以抑制输出高频纹波。

c、采用多级滤波。

共模纹波噪声由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生电感,因此当矩形波电压作用于功率器件时,开关电源的输出端因此会产生共模纹波噪声。

电子元器件的噪音与干扰控制方法

电子元器件的噪音与干扰控制方法

电子元器件的噪音与干扰控制方法在电子设备中,电子元器件的噪音和干扰是影响其性能和可靠性的重要因素之一。

为了确保设备的正常运行和信号的准确传输,我们需要采取一些方法来控制和降低噪音与干扰的影响。

本文将介绍几种常用的电子元器件噪音与干扰控制方法。

1. 电源滤波电子设备的电源往往存在着各种噪声,例如交流电源的纹波和高频成分等。

为了减少这些噪声对设备的影响,可以在电源输入端加入低通滤波器。

该滤波器能够滤除高频成分和纹波,从而提供一个相对稳定的电源供给,减少噪声和干扰的传导。

2. 接地处理接地问题是导致电子设备噪声和干扰的重要原因之一。

合理的接地设计和处理能够有效地降低设备的噪声和干扰水平。

首先需要建立一个良好的接地系统,将设备和电源的接地点连接在一起,并通过大面积接地来提供低阻抗路径。

其次,对于高频信号的接地问题,可以采用分离接地和干扰源的方法,将高频噪声通过滤波器等措施排除。

3. 屏蔽与隔离对于电子设备中可能存在的高频电磁干扰,可以采用屏蔽和隔离的方法来降低其对其他元器件的影响。

屏蔽主要通过添加屏蔽罩或屏蔽壳体来实现,以阻挡或吸收外部的干扰信号。

隔离则是通过适当的布线和隔离材料将高频信号与其他部分隔离开来,避免其传导和辐射。

4. 建立合理的电路布局合理的电路布局对于噪音与干扰的控制起着重要作用。

在设计电子设备时,应根据信号传输路径和噪声源的位置进行合理布局。

避免信号线和功率线的交叉和平行布局,尽量采用对称布局和减少回转线路,以减小信号之间的相互干扰。

5. 使用抗干扰元器件和材料选择具有抗干扰性能的电子元器件和材料也是降低噪音与干扰的有效方法。

例如,采用具有良好抗干扰性能的芯片、抗干扰滤波器和屏蔽RF电缆等能够有效减少外界干扰的影响。

总结:噪音与干扰对于电子设备的性能和可靠性有着重要影响,因此控制和降低噪音与干扰是电子设计中必不可少的一环。

通过电源滤波、接地处理、屏蔽与隔离、合理的电路布局以及使用抗干扰元器件和材料等方法,可以有效降低噪音与干扰的水平,提高电子设备的性能和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5 招搞定!抑制纹波、减小高频噪声超简单
开关电源的纹波和噪声是一个本质问题,换而言之无论纹波和噪声多幺小,也无法从根本上去除,再绝对的讲,开关电源无论成本怎幺提高,也无法完全达到线性电源的性能和特点。

那幺,通常抑制或减少它的做法有五种:
1.加大电感和输出电容滤波
根据开关电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。

所以加大电感值和输出电容值可以减小纹波。

同样,输出纹波与输出电容的关系:vripple=Imax/(Co×f)。

可以看出,加大
输出电容值可以减小纹波。

通常的做法,对于输出电容,使用铝电解电容以达到大容量的目的。

但是电解电容在抑制高频噪声方面效果不是很好,而且ESR 也比较大,所以会在它旁边并联一个陶瓷电容,来弥补铝电解电容的不足。

同时,开关电源工作时,输入端的电压Vin 不变,但是电流是随开关变化的。

这时输入电源不会很好地提供电流,通常在靠近电流输入端(以BucK 型为例,是SWITcH 附近),并联电容来提供电流。

上面这种做法对减小纹波的作用是有限的。

因为体积限制,电感不会做的很大;输出电容增加到一定程度,对减小纹波就没有明显的效果了;增加开关频率,又会增加开关损失。

所以在要求比较严格时,这种方法并不是很好。

关于开关电源的原理等,可以参考各类开关电源设计手册。

2.二级滤波,就是再加一级LC 滤波器
LC 滤波器对噪纹波的抑制作用比较明显,根据要除去的纹波频率选择合适的电感电容构成滤波电路,一般能够很好的减小纹波。

相关文档
最新文档